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Abstract

The aim of the project was to produce a simple graphics platform to allow the creation and
manipulation of graphics on a 640x480 display with 256 colors on the DEZ2.

The hardware is maximally capable of rendering frames at up to 60 frames per second. Our
hardware makes use of multiple memory devices to maximize the available memory
bandwidth for application code and image drawing operations. Tearing on the video output is
eliminated by an arrangement of bursted memory transfers combined with a FIFO queue to
control pixel transmission. 16-bit colour is achieved via a colour palette system allowing any
256 colours to be visible at one time.

We implemented simple drawing operations in hardware to draw shapes such as rectangles,
circles, and lines. These operations were implemented as NIOS/Il custom CPU instructions.
Implementing these instructions in hardware greatly simplified the generation of graphics for
the programmer while enabling a performance boost on an order of magnitude.

We used hardware to copy graphics from external SD Card storage to a frame buffer,
allowing the use of bitmaps.

Human-computer interaction is facilitated with two Sega Genesis 3-button controllers. A
custom PCB and VHDL logic was developed to interface these controllers to the GPIO
headers on the DEZ2.

All of this functionality is wrapped in an easy-to-use C API. To demonstrate the capabilities
of our system and the graphics API, we built a version of Pong which uses bitmaps, layering,
and the Sega Genesis controller inputs.
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Functional Requirements

This project was to create a platform with which simple applications could be built to make
use of a graphical display.

At a high level, the graphics engine on this system supports one or more pixel buffers in
memory which can be composited into a video frame. It will output video at 640x480
resolution using 256 configurable on-screen colors. The drawing layers support easy-to-use
graphical primitive instructions. When compositing layers, one colour can be designated as a
“transparent” colour, enabling layers to be drawn on top of each other.

The graphics engine supports a number of simple operations in hardware:
e Drawing shapes (line, rectangle, circle, pixel)
e Copying a window from a pixel buffer into another pixel buffer, with or without
transparency
Colour palette decoding during video output
VSync synchronized frame swapping

Other more complex operations are supported by combining the above in software:
e Drawing text
e Drawing shapes (triangles, filled circles, rounded rectangles)

Using the above combination of operations, it is possible to represent a large number of
graphical elements at a framerate of at least 20 frames per second, and potentially up to 60
frames per second depending on the software optimizations used and the number of shapes
being drawn.

In order to demonstrate the above, we implemented a simple application, the game of Pong.
This made use of many of the capabilities above, through some graphical effects designed
to show off the platform’s capabilities rather than to add to gameplay. This Pong game runs
on an instance of a Nios Il running in the FPGA. To conserve memory and CPU cycles, this
Nios Il does not run MicroC-OS/Il, but instead simply uses Altera’s HAL library with
bare-metal C, running the pong game in a tight loop.

To handle input for this application, we implemented an interface to connect to controllers
from the Sega Genesis game console. This module reads the controller inputs once per
video frame, and make the input data available to the running application as a
memory-mapped device. We chose the Genesis controller due to its low cost, simplicity, and
documentation. The Sega Genesis controller simply contains a 4x2-input multiplexer chip
and some pull-up circuitry on each button. This approach is much simpler than attempting to
interface with a device using a more modern protocol like RS-232, PS/2 or USB.

We met most of the requirements that we had set out for ourselves in the earlier design
phases of the project. A summary of these requirements exists in the following table.



Feature Achieved? | Comments
Signalling the completion of | Yes
a frame
Loading a colour palette into | Yes, with The design changed from having the colour
memory design palette stored in the upper % of SRAM to
change being stored in instantiated Altera Dual-Port
RAM in the colour palette converter block.
Applying an alpha mask to a | Yes The alpha mask is applied during layer
graphics layer compositing/copy from the sublayer to the
finalized output layer.
Drawing shapes (line, Yes Filled triangles and circles are accomplished
rectangle, pixel) to a by having software call multiple line-draws.
graphics layer
Drawing a texture to a Yes The system supports drawing bitmaps to
graphics layer arbitrary frame_buffers and offsets to the
framebuffer. Bitmaps can also have a
Drawing a texture to the Yes transparent colour set c_jurlng the DMA to
enable transparent regions.
background layer with an
offset
Loading a texture into Yes
memory
Loading a sprite into No, but can | The original design has support for hardware
memory be sprites. The idea was that small-sized layers
simulated would be DMA'd to a framebuffer, and
Drawing a sprite to a hardware would keep track of where the
- gasp sprites were. This can be simulated with the
position and layer as-built hardware by making one layer per
sprite, and keeping track of the coordinates
in software.
Setting the background No This feature was intended for scrolling

velocity in pixels per frame

backgrounds. The original design had
provisions for scrolling backgrounds.




Design & Description of Operation

To describe the design and operation of our video platform, let us first begin with a diagram
describing the organization of the hardware components.
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The diagram shows the overall organization of the system. The NIOS Il processor runs the
application code that calls the C video graphics library. The graphics library invokes our
graphical hardware primitives. Each hardware primitive is implemented as a custom CPU
instruction.

The custom instructions block the CPU for a variable length of CPU cycles dependent on the
number of pixels plotted.

Each CPU instruction component also contains several registers. These registers are
organized as follows, typically.
e Pixel buffer base address
e Graphical Parameters (bounding coordinates for a rectangle, center/radius for a
circle, etc..)
e Fill colour



Once the CPU custom instruction is called, a state machine described as {IDLE, RUNNING}
begins. When the instruction is in IDLE state, the registers within the instruction hardware
are being populated. When the instruction is RUNNING, the hardware is making Altera
Memory-Mapped Master writes into a pixel framebuffer. The particular framebuffer chosen
for writing is controlled by the user according to the scheme described below:

There are several framebuffers that can be written to. One framebuffer exists on the SRAM.
This framebuffer is continuously read from by the VGA pixel drawing hardware (consisting of
the frame reader, colour space converter, and VGA Signal Generator blocks in the block
diagram above). Writing directly to the SRAM during a frame draw will cause noticeable
visible artifacting and tearing.

For this reason, our system design has the user writing graphical primitives to a framebuffer
in the SDRAM. The SDRAM is organized into a number of 640x480 framebuffers. The base
addresses of these framebuffers are passed into the registers in the custom hardware.

Once the user is done writing into the SDRAM framebuffer and wishes to display the picture
onto the screen, the user needs to call the ALT_CI_CI_FRAME_DONE instruction. This
instruction performs a DMA memory copy from the primary SDRAM framebuffer into the
SRAM starting during the vertical blanking interval.

A more technical version of the VGA output pipeline is shown below.

Output Stage:

SDRAM |_|Framebuffer| | ~ SRAM | | Pixel FIFO Palette VGA Signal Video || VGA
Framebuffer Copier Framebuffer Queue Decoder Generator DAC Monitor

In detail, the video output pipeline works as follows. The 512 kB SRAM is capable of holding
one frame of video at 8-bit colour depth as well as other data in the remaining space. The
framebuffer section of the SRAM contains 640x480 8-bit words, with each word containing a
palette colour number. A component reads the data out of the SRAM in bursts into a FIFO.
This FIFO is emptied at a slower rate to feed the video output pipeline at the same rate as
the pixel clock, 25.2 MHz. The flow of pixel data beyond this point all follows the Avalon-ST
interface specification. The data from the FIFO is fed into the Palette Decoder component,
which takes the incoming 8-bit data and converts it to 16-bit colour data using an on-chip
512 byte memory block. The remaining components in the video output pipeline convert the
16-bit colour data to the 30-bit format required by the VGA Signal Generator component,
which generates the necessary signal timing to drive a display at 640x480 @ 60 Hz. These
final components are provided by Altera.

The Framebuffer Copier component copies from the SDRAM to SRAM. This transfer is
triggered by a Nios Il custom instruction that activates this component. Once it has been
triggered, this component immediately reads a burst of pixels from the SDRAM buffer, then
waits for the end of a frame to be read from SRAM into the pixel FIFO, and then immediately
starts writing that first burst of pixels to the SRAM. While the data is being written out to the
SRAM, another burst of pixel data is read from the SDRAM in parallel. This continues in a



similar fashion until the entire SDRAM buffer has been copied to SRAM. Writes to SRAM are
interrupted when the output FIFO gets low on data, at which point some pixels will be read
from SRAM. Because the system clock orchestrating these memory transfers from SDRAM
to SRAM is significantly faster than the pixel output clock, it is possible to update all of the
data in SRAM before the pixel output pipeline needs to read it, thus eliminating tearing on
the video output.

In more detail, the Palette Decoder works as follows: each 8-bit word given from the pixel
FIFO is mapped to a 16-bit RGB value (in the RGB 565 format). This allows, for example, a
frame to show 256 shades of blue, if required. The default active colour palette defaults to
one that provides a standard 8-bit to 16-bit colour mapping. Changing the active palette will
not be synchronized with video frame updates, so application developers must take care to
provide a black frame, or some other data that will appear acceptable even with an
incompletely updated colour palette.

A diagram of the colour palette shifter hardware is shown below.
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As mentioned earlier, there can be several framebuffers stored in the SDRAM. Our project
also supports layering (with transparency). In the SDRAM there is a primary framebuffer
which is copied to the output stage. Elsewhere in the SDRAM are other framebuffers. Our
graphics API exposes a custom instruction to copy buffers in a user-friendly manner. This
instruction performs a hardware DMA between two SDRAM framebuffers. This instruction
also takes a parameter which allows a particular colour to be set as the “transparent” colour.

This feature enables graphical compositions such as the one depicted below.
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Each of these hardware features involve a storage cost in the SDRAM. The overall function
of the SDRAM in the system is to provide a scratch space for compositing frames. These
frames, when composited, are sent to the SRAM when timing allows, as previously

described.

The C graphics APl is quite easy to use. An example usage is shown below, followed by a
table of features.

#include
#include
#include
#include
#include

#include

#include

{

9);

<jo.h>

<system.h>
<sys/alt_stdio.h>
"sys/alt_timestamp.h"
<string.h>

"graphics_commands.h"
"palettes.h"

int main()

graphics_init();

graphics_clear_screen();

switch_palette(&palette_ega);

/* Red Rectangle x/

graphics_draw_rectangle(graphics_get_final_buffer(), 0, 0, 640, 480, 15);
ALT_CI_CI_FRAME_DONE_O;

/* Filled Circle in Hardware, negative fills x/
graphics_draw_circle(graphics_get_final_buffer(), 640/2, 480/2, 239, 3, 0);
/* Filled Circle 1in Software x*/
graphics_draw_circle(graphics_get_final_buffer(), 640/2, 480/2, 239, 4, 1);
/* Line diagonally across */
graphics_draw_line(graphics_get_final_buffer(), 0, 0, 640, 480, 5);

ALT_CI_CI_FRAME_DONE_O;

/* Fonts. x/
print2screen(graphics_get_final_buffer(), 20, 20, 6, 2, "Hello, World!");

graphics_draw_triangle(graphics_get_final_buffer(), 15, 112, 300, 112, 170, 240, 1,

ALT_CI_CI_FRAME_DONE_O;
return 0;
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The C-API provides the following functions.

char graphics_init();
pixbuf_t xgraphics_get_final_buffer();
void graphics_draw_pixel(pixbuf_t *pixbuf, int x, int y, unsigned char color);

void graphics_draw_rectangle(pixbuf_t *pixbuf, int x1, int yl, int x2, int y2, unsigned
char color);

void graphics_draw_line(pixbuf_t *pixbuf, int x1, int yl, int x2, int y2, unsigned char
color);

void graphics_draw_circle(pixbuf_t *pixbuf, int cx, 1int cy, int radius, int color, int
filled);

void graphics_draw_rounded_rect(pixbuf_t *pixbuf, int x1, int yl, int x2, int y2, int
radius, int filled, unsigned char color);

void graphics_clear_screen();
void graphics_clear_buffer(pixbuf_t *pixbuf);

void graphics_draw_triangle(pixbuf_t *pixbuf, int x1, int yl, int x2, int y2, int x3,
int y3, int filled, 1int color);

/* Fonts x/
extern char font8x8_block[][8];
extern char font8x8_basic[][8];

void draw_letter(pixbuf_t xpixbuf, int yl, int x1, int color, int pixel_size, charx
letter);
void print2screen(pixbuf_t *pixbuf, int x1, int yl, int color, int pixel_size, charx
string);

void copy_buffer_area(pixbuf_t xsource, pixbuf_t xdest, rect_t *source_area, point_t
*dest_offset);

void copy_buffer_area_transparent(pixbuf_t xsource, pixbuf_t xdest, rect_t *source_area,
point_t *dest_offset, unsigned char t_color);

Overall, the C-API is very easy to use and powerful. Further discussion on the design and
implementation of the C-API is located in the Soffware Design section of this report.




Bill of Materials
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The physical parts needed for our project surround the adapter board we will be making to
adapt the SEGA Genesis controller to the GPIO header on the DE2, as well as external
components required to connect to a VGA monitor.

Development Board

om.tw/cgi-bin/page/
archive.pl?No=30

Development
Board

Part Qty | Cost/Unit | Datasheet Description | Supplier / P/N
DB9 Male Connector 2 $2.59 http://www.norcomp | DB9 Male, DigiKey /
.net/rohspdfs/Conn Through hole, 182-09ME-ND
ectors/18Y/182/182 | Right angle
-yyy-113Ryy1.pdf
40 Pin shrouded header 1 $1.38 http://sullinscorp.co | 2.54mm pitch DigiKey / S9175-ND
m/catalogs/145_PA | male header with
GE118_.100_SBH1 | keyed shroud
1_SERIES_MALE_
BOX_HDR_ST_RA
_SMT.pdf
40 Pin Ribbon Cable 1 $2.63 http://www.assman Ribbon cable with | DigiKey /
n.us/specs/AWG28- | 2.54mm pitch 40 H3CCS-4006G-ND
40_G_300.pdf pin connectors at
either end
Circuit Board 1 $11.25 https://oshpark.com | PCB, Plated Vias, | OSHPark
/shared_projects/Ph | Solder mask,
QrCqc9 Silkscreen
VGA Cable 1 $9.25 http://www.assman VGA Cable, 2m DigiKey /
n.us/specs/AK532- AE10183-ND
2-R.pdf
Sega Genesis Controller 2 $30.00 N/A 3-button Amazon
Controller
Altera / Terasic DE2 1 $517.72 http://www.terasic.c | Cyclone Il FPGA Terasic

Total Cost: $607.41

Note: 5V 2A power supply and video monitor required, not included in total



http://www.norcomp.net/rohspdfs/Connectors/18Y/182/182-yyy-113Ryy1.pdf
http://www.norcomp.net/rohspdfs/Connectors/18Y/182/182-yyy-113Ryy1.pdf
http://www.norcomp.net/rohspdfs/Connectors/18Y/182/182-yyy-113Ryy1.pdf
http://www.norcomp.net/rohspdfs/Connectors/18Y/182/182-yyy-113Ryy1.pdf
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Available Source

During our evaluation of re-usable design units, we found that, in most cases, that it is typical
for the VGA output block to be documented. This block, shown in [1], is typical to most
output blocks: it simply takes a framebuffer (assuming proper memory bandwidth
considerations) and generates the necessary analogue colour burst, Hsync, and Vsync
signals.

We have found that the Terasic DE2 as well as the development environment given in the
lab provides us with a pre-existing analogue output block [2] that generates the necessary
signals to drive a monitor. Our search of opencores.org, as well as other sources on the
internet led us to VGA output blocks such as [1] and [7]. Each of these blocks support
configuration options that are unnecessary for our platform. As well, the higher resolution
modes on each of [1] and [7] are easily capable of placing memory bandwidth demands that
our development board cannot meet.

Using the provided VGA generation block allows us to focus on the programmer-facing
aspects of the graphics generation. Because we are building a hardware graphics platform
with a custom API, we do not have to design the system to interface with any other existing
software API, such as a Linux framebuffer driver, for example. This enables us to pick and
choose features as desired. Our main feature-set inspiration is [2], the Gameduino, another
FPGA-based video generator.

The gameduino is designed to be used by an Arduino over an SPI bus, providing high level
drawing, sprite, and collision-detection primitives. As well, the Gameduino provides sound
generation capabilities. The gameduino is designed to be synthesized on a Xilinx Spartan
3-calibre board with minimal supporting hardware. The Gameduino supports 400x300
resolution in 512 colours, with a 512x512 character background, and is exposed as a 32KiB
memory to the SPI bus.
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Datasheet

Performance

On this system, the most important measurement of performance is how quickly graphical
operations can be performed. The number of operations that can be performed while
maintaining a particular frame rate can be estimated by determining the worst-case
execution time of an operation. This worst-case execution time relates to how many pixels
the system attempts to draw. For most operations, this worst-case time occurs when the
operation attempts to redraw an entire frame (the exception being lines, which are unable to
redraw a complete frame at once).

The chart below shows the time in milliseconds taken to complete various worst-case
drawing operations. The 60fps and 30fps deadlines represent the time allowed for a
combination of commands to still maintain the specified frame-rate.
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Operating Conditions
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Parameter Value (Typical) Units
Supply Voltage 9 Vv
Supply Current 470 mA
Operating Temperature 0-85 °C

O Signals

With the exception of the external interface to connect to game controllers and to a VGA

monitor, all peripherals are on the DE2 board [6].



Signal Direction | Description Location

CLOCK_50 input System clock input FPGA to Board
CLOCK_27 input Video clock input FPGA to Board
DRAM_ADDR[11..0] | output FPGA to Board
DRAM BA 0 output FPGA to Board
DRAM_BA_1 output FPGA to Board
DRAM_CAS N output FPGA to Board
DRAM_CKE output FPGA to Board
DRAM_CLK output FPGA to Board
DRAM_CS N output FPGA to Board
DRAM_DQJ[15..0] in/out FPGA to Board
DRAM_LDQM output FPGA to Board
DRAM_UDQM output FPGA to Board
DRAM_RAS N output FPGA to Board
DRAM_WE_N output FPGA to Board
SRAM_ADDR[17..0] | output FPGA to Board
SRAM_DQJ15..0] infout FPGA to Board
SRAM_WE_N output FPGA to Board
SRAM _OE N output FPGA to Board
SRAM UB N output FPGA to Board
SRAM LB N output FPGA to Board
SRAM_CE_N output FPGA to Board
FL_ADDR[21..0] output FPGA to Board
FL CE_N output FPGA to Board
FL OE_N output FPGA to Board

15



interface (Spec is 5V,
operable at 3.3V)[5]

FL_DQI[7..0] in/out FPGA to Board
FL RST_N output FPGA to Board
FL_WE_N output FPGA to Board
VGA _R[9..0] output FPGA to Board
VGA _G[9..0] output FPGA to Board
VGA_BJ9..0] output FPGA to Board
VGA_R_EXT output VGA Connector Pin 1 Off-board
VGA G _EXT output VGA Connector Pin 2 Off-board
VGA B EXT output VGA Connector Pin 3 Off-board
VGA _CLK output FPGA to Board
VGA_BLANK output FPGA to Board
VGA_HS output VGA Connector Pin 13 Off-board
VGA VS output VGA Connector Pin 14 Off-board
VGA_SYNC output FPGA to Board
SWI[17..0] input FPGA to Board
KEY[3..0] input FPGA to Board
GPI0[35..0] in/out Sega Genesis Controller Off-Board

Power Consumption
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This system has no idle or low power states. The power consumption in the operating mode
is detailed below. When the system is powered off, it draws no power.

Parameter Value Units
Voltage 8.93 Vv
Current 450 mA
Power Used 4.02 w




17

VGA Signal Timing

Constant Value

H_ACTIVE 640 (pixel clock cycles)
H_FRONT_PORCH 16

H_SYNC 96

H_BACK_PORCH 48

H_TOTAL 800

V_ACTIVE 480 (H_TOTAL * pixel clock cycles)
V_FRONT_PORCH 10

V_SYNC 2

V_BACK_PORCH 33

V_TOTAL 525

clock cycles per frame = H TOTAL x V TOTAL =420 000

pixel clock
clock cycles per frame

25200000 —
o000 — 00.0Hz

= refresh rate

SRAM Memory Map

SRAM Address Range Data

0x00000 - Ox257FF Pixel buffer

Background Research

The background research for this project falls within several spheres of investigation. One
investigatory sphere centers around the VGA output block which displays the contents of the
SRAM framebuffer to the VGA adapter. The research surrounding the output blocks centers
on the links [1]-[4] in our References section.

We found [1] to be a fully-featured VGA output system supporting multiple resolutions. We
found that the larger resolutions supported by this block may be too taxing for the clock and
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timing restraints imposed by our DE2 system. We have considered that, in the event that we
cannot get the supplied Altera VGA output block to work correctly, we will take the VHDL
provided in [1] and strip out all support for resolutions that are not 640x480.

Nevertheless, the solution provided in [1] does not provide a high-level interface to the
programmer: it is still up to the programmer to manually populate the framebuffer if he
wishes to implement object (sprite) movement, collision detection, and drawing primitives.

During our research, we also found the Gameduino, a “game adapter for microcontrollers”
[2]. The Gameduino supports 400x300 in 512 colours, background graphics (5612x512), 256
background sprites (each with 4 colour palette), and foreground sprites. The foreground
sprites support 16x16 size, up to 256 colours, four-way rotate and flip, and collision
detection. The Gameduino can be programmed via an SPI interface from an Arduino with
minimal wiring between the two. We were most impressed with the feature set and
programmer-facing API provided by the hardware. We aim to replicate many of the
Gameduino’s features, but with a higher resolution.

As well, we researched the VGA timing specifications as seen in [3]-[4]. We became familiar
with some of the timing constraints inherent in the VGA standard. Once we discovered that
pre-made VGA blocks exist, we became concerned primarily with the timing constraints
between the SRAM and the black-box VGA output block.

Another investigatory sphere of research centered around the algorithms to draw primitives
such as lines and circles. Our research in [11] led to Jack Bresenham’s algorithms. We used
Bresenham’s line and circle algorithm pseudocode to write VHDL that plots lines and circles
in hardware.

Software Design

The software running on our system consists of the following components:
1. NIOS Il software project.
a. This is where the user will put their code
2. Video_System_BSP
a. There is one BSP needed for every application running on our platform.
3. Video_System_Graphics_Library
a. This is a NIOS/Il library project that must be linked to item 1. This project
contains the C-API.

Our Pong demo application also follows the above scheme.

C-API Design
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The C-API is implemented as a NIOS/II library project. The overall layout of the APl is set up
so that the API's constants and functions are organized by concerns.

File Contents

Graphics_defs.c, graphics_defs.h Definitions of typedef'd structures for
pixelbuffers (pixfbufs, aka: framebuffers),
points, rectangles, and colour palettes

Graphics_commands.c, Definition and implementations of
graphics_commands.h commands to:
e Plot

o Pixel

o Rectangle

o Line

o Circle

o Rounded Rectangle

o Triangles

e Write a character to screen
e \Write a string to screen
e DMA copy buffer areas from one
pixbuf to another.
o Without transparency
o With Transparency

Graphics_layers.c, graphics_layers.h Definition and implementations of
commands to:
e Allocate and add a pixbuf to the
rendering stack
e Get a pointer to the origin point of
the pixel buffer

Palettes.c, palettes.h Definition of colour palettes:
e EGA 16-colour palette
e RGB-332 colour palette
e Test palettes containing magenta,
various shades of blue and red
Commands to:
e Switch the graphical output to a
specified colour palette
e Print a colour palette definition to
stdout.

Sdcard_ops.c, sdcard_ops.h Commandes to:

e Load and parse a bitmap file from
an sdcard into a pixel buffer

e Load a file (without regard for
format) into a void* buffer.
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o This function is used to read
the palette file
accompanying the bitmap.

This functionality depends on libEFSL.

Flash_ops.c, flash_ops.h Same as above, except loading from the
flash memory on the DE2 board instead of
the SD Card.

This functionality depends on the Altera
ZipFS library.

Each graphical operation operates on a pixbuf_t. This data structure defines a region in
memory which is a framebuffer. Each cell in the 640x480 array is one byte corresponding to
the colour to be displayed at that screen location. The pixbuf_t type is defined as follows:

typedef struct pixbuf_t

{
void *base_address;
unsigned short width;
unsigned short height;

} pixbuf_t;

Allocation of pixbuf_t’s is done by the functions in graphics_layers.c and graphics_layers.h.

In addition to the composited SDRAM layer, 3 other layers are supported. An overview of the
usage of the layering system is as follows:

1. Initialize the composited layer by calling graphics_init()
a. This will allocate the memory for the composited layer (final buffer), and pass
the base address of it to the VIDEO_FB_STREAMER hardware component.
b. A pointer to this layer (pixbuf) is returned when calling
graphics_get final_buffer().

2. Initialize other layers by calling graphics_layer _add()

3. Write graphics to any of the above layers by passing the pixbuf_t* to various drawing
commands. These pointers can be acquired by calling the graphics_layer _get()
function.

4. Copy each of the other layers to the composited layer

5. Call the ALT_CI_CI_FRAME_DONE instruction to mark the frame as done and ready
for output.

The C-API exposes a number of graphical primitives. While some primitives are built purely
in hardware, others are a combination of hardware and software.
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Primitive / Operation | Function Signature | Software | Comments
or
Hardware
graphics_draw_pixel void , Hardware | Simple memory copy into a
graphics_draw_pixel(p | ti
ixbuf_t *pixbuf, int memory location.
X, int y, unsigned
char color)
graphics_draw_rectangle void Hardware | Hardware Accelerated.
graphics_draw_rectang
le(pixbuf_t *pixbuf,
int x1, int yl, int
x2, int y2, unsigned
char color)
graphics_draw_line Voidh_ draw.Line (o Hardware | Uses Bresenham'’s
graphics_draw_line(pi . . .
xbuf_t *pixbuf, int algorithm, no floating-point
x1, int yl, int x2, number. Gracefully
"”{ yi’ unsigned char handles coordinates
colLor
beyond the edge of the
screen.
graphics_clear_screen void Hardware | Draws a rectangle in colour
graphics_clear_screen 0x00 to fill the screen
0O .
graphics_clear_buffer VO"dh_ ear bufs Hardware | Draws a rectangle into a
graphics_clear_bu er . . .
(pixbuf_t *pixbuf) p|xbuﬁ_‘er (of dlr_nenS|ons
equalling the size of the
pixbuffer) with colour 0x00.
draw_letter void ) Software Calls multiple rectangle
draw_letter(pixbuf_t ds to d
*pixbuf, int yl, int commands to raV\_/a
x1, int color, int character. Each “pixel” of
?;iil;?‘ze’ charx the font is a rectangle of
size pixel_size.
print2screen Voidtz (pixbuf_t Software Calls the draw_letter
rin screen IXbu . .
fpixbuf, int 51’ int functhn for each letter in
yl, 1int color, int the string. Does not
zli‘jkg‘ze’ charx support printf format
delimiters, calling sprintf to
prepare the output string
may be required.
graphics_draw_circle VO"dh_ g rete Hardware/ | Drawing an unfilled circle is
ra 1Cs raw_circtLe . .
srapn - c Software done entirely in hardware

pixbuf_t xpixbuf, int
cx, int cy, int
radius, int color,
int filled)

using Bresenham’s circle
algorithm and is very fast.

Drawing a filled circle with
filled<0 creates concentric
circles of radius radius to
radius radius * filled. This
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effect is fast, but does not
produce entirely filled
circles due to interference
patterns caused by
mathematical discretization
of the pixel coordinates.
The effect was left in
because it is fast and
suitable for explosion
graphics.

Drawing a filled circle with
filled == 1 draws a filled
circle, but the filling of the
circle is accomplished by
drawing lines from the
centre point radiating out to
all pixels plotted.

ent

copy_buffer_area_tran
sparent(pixbuf_t
*source, pixbuf_t
*dest, rect_t
*source_area, point_t
*dest_offset,
unsigned char
t_color)

g{aphics_draw_rounded_re Voidh. g ded Software Calls the rectangle and
C grapnics_draw_rounde . . . iy
“rect(pixbuf_t filled circle primitives.
*pixbuf, int x1, int
yl, int x2, 1int y2,
int radius, int
filled, unsigned char
color)
graphics_draw_triangle void ) Software If filled==0, draws 3 lines.
graphics_draw_triangl Otherwise. emblovs a
e(pixbuf_t xpixbuf, I ’ ploy
int x1, int yl, int complex “line-sweep”
:.‘i;c ;gt i’i;c }?{1:3’ algorithm to fill the triangle.
int color) ’ Depending on the size of
the filled triangle, this
algorithm can be very slow.
copy_buffer_area void butf (pixb Hardware | Copy part of a pixel buffer
copy_buffer_area(pix . .
uf_t *source, to another pixel buffer in
pixbuf_t *dest, memory.
rect_t *source_area,
point_t *dest_offset)
copy_buffer_area_transpar | void Hardware | Copy part of a pixel buffer

to another pixel buffer in
memory. Colors matching

t color will not be copied,
leaving whatever color was
previously present at that
location.

Inspection of graphics_commands.c shows which hardware registers each of the above
operations modify and how the custom hardware instructions are called. Note that the C-API
abstracts away the need to write directly to the hardware registers.
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The software overall design of a project using our graphics system would be along the lines
of the following diagram.
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Image Loading Tools

We have also developed some tools for making image loading easier on our board. We
wrote a python script called image_converter.py to read in an image file, and output a .BMP
file and a .pal binary palette file. The input image is read in, and posterized to 256 colours.
The accompanying palette file is produced so the picture can be reproduced faithfully on our
board.

As well, we wrote a small utility to visually display the contents of a palette file. A screenshot
of this utility is shown below.
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Genesis Controller Logic
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We wrote a VHDL block to expose the state of the Genesis controller as a memory-mapped

register. This was possible because of the very simple design of the Genesis controller

internals.

The VHDL block reads the controller pins when the Select pin on the controller is asserted to
high and low to determine which buttons are pressed. The schematics of the controller show

that we can gather the following information from it.

Pin Function (Select Function (Select
low) high)

1 Up Up

2 Down Down

3 Logic low Left

4 Logic low Right

5 Power (+5 V) Power (+5 V)

6 A button B button

7 Select signal Select signal

8 Ground Ground




9 Start button C button

Our project pulses the select line every 60ms to read the controller’s button value.

A C-API is exposed to the user. An example usage is shown below. More detailed
information can be found in our Application Note entitled “Sega Genesis Controller
Interfacing.”
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#include <stdio.h>

#include <system.h>

#include <genesis.h>

int main(void)

{

// Initialize the Genesis controller interface
genesis_open_dev (GENESIS_O_NAME);
genesis_controller_t playerl, player2;
while (1)

{

// Poll the status of each Genesis controller
playerl = genesis_get(GENESIS_PLAYER_1);
player2 = genesis_get(GENESIS_PLAYER_2);
// Check which buttons are pressed on controller 1
if (playerl.up){

printf("1 Up was pressed\n");

}

if (playerl.down){

printf ("1 Down was pressed\n");

}

if (playerl.left){

printf("1 Left was pressed\n");

}

if (playerl.right){

printf ("1 Right was pressed\n");

}

if (playerl.a){

printf("1 A was pressed\n");

}

7if (playerl.b){

printf("1 B was pressed\n");

}

if (playerl.c){

printf ("1 C was pressed\n");

}

if (playerl.start){

printf("1 Start was pressed\n");

}

// Check which buttons are pressed on controller 2
if (player2.up){

printf("2 Up was pressed\n");

}

if (player2.down){

printf ("2 Down was pressed\n");

}

if (player2.left){

printf("2 Left was pressed\n");

}

if (player2.right){

printf("2 Right was pressed\n");

}

if (player2.a){

printf("2 A was pressed\n");

}

if (player2.b){
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printf("2 B was pressed\n");

}

if (player2.c){

printf("2 C was pressed\n");

}

if (player2.start){

printf("2 Start was pressed\n");
}

}

return 0;

}

Test Plan

The test plan for our project involved incrementally building up and testing each component
of the hardware within the FPGA. Each specialized test environment (with only some
hardware implemented) will have special test software that will exercise that particular
component. This particular methodology is consistent with the “Bottom-Up” integration
testing methodology introduced in ECE 322.

The order of our tests is as follows:
1. Test the VGA signal generation block.

a. Verify that the VGA signal generation block can drive a monitor and display a
test pattern.

2. Test that the VGA signal generation block chosen can display any arbitrary image,
not just the test pattern supplied.

a. Again, this is to ensure that the VGA generation block works as advertised
and will meet our needs.

3. Build and test the palette shifter logic.

a. Modify the data stored in the SRAM. Prior to this step, each byte in the SRAM
framebuffer will contain an RGB233 value corresponding to the colour
displayed. After this, we aim to hard-code the colour palette into the palette
shifter. With this test, we aim to verify that the block works appropriately
within timing constraints.

b. Once a hard-coded pallette shifter is verified to be working, we will implement
the loading of pre-coded colour palettes from the SRAM into the palette
shifter block. For symmetry, we will also allow the palette shifter block to write
palettes into the SRAM. This will allow us to set and test the palette shifter’s
capability to load and store palettes without needing to build a separate gsys
block that “drives” the palette store operation.

4. Next, we will test the genesis controller logic.

a. The genesis controller gsys block is quite simple. It polls the genesis
controller frequently (toggling the select line in order to get reads of all
buttons) and stores the value in an internal register.

b. To complete these tests, we will build an architecture for the block called
“test”. The test architecture will implement the controller block entity and
mirror the avalon architecture, with the exception that a series of LEDs will be
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pulsed in a predetermined pattern to verify correct operation of the controller
read.

5. Next, we must stress-test the memory bandwidth constraints inherent to the system.

a. For this testing phase, we will populate the “composited frame” region of the
SDRAM.

b. From there, we need to perform a hardware DMA with the appropriate soft
hardware on the FPGA to verify our SRAM’s memory access timing
constraints. This testing step will verify whether or not we can “outrun” the
VGA display signals and populate the SRAM’s frame (portion-by-portion)
during the VBI.

c. After this testing is complete, we will know that the system is theoretically able
to render and output 10 frames per second.

6. Next, we must verify that we can run our two NIOS/II cores with their appropriate
memories.

a. We must set up each NIOS/II's memory map such that it can use the SDRAM
for variable storage without overwriting the framebuffers stored in memory.

7. Once each NIOS/Il is verified as being capable of running code without disrupting the
framebuffers stored in SDRAM, we can begin to implement and test the custom vdp
instructions.

8. Next, we can write a test dummy display program that verifies that our hardware is
capable of displaying a static frame.

a. This program will be further refined such that we test more of the features
promised in the proposal document.

9. Once the hardware features are confirmed to be working, we will begin writing our
demo application: pong. Pong will be tested for performance and will be extensively
play tested to check for bugs.

Results of Experiments and Characterization

Using a simple C-program to directly write a pixel color from SDRAM to SRAM gave a
ballpark figure in regards to memory performance in software. Writing the entirety of a frame
took 3 to 5 seconds with a Nios ll-e, or only 1 second on a Nios ll-s with hardware
multipliers. Several instructions are required to perform a memory write from software,
whereas performing these writes via direct memory access would allow for two pixels to be
written per clock cycle with no processor overhead. This was the baseline that we used to
determine our project’s acceleration capabilities.

There is a minimal latency of about eight clock cycles to write all pixels in the SRAM to the
display. This is virtually instantaneous and presents no issues for us going forward. We are
currently experiencing minor flickering issues in the test pattern which will be trivial to fix with
some slight modifications to our PLL configuration.

Although the graphical primitives employ Bresenham'’s line algorithms, we found that the
peer-reviewed citations within [11] adequately show that the algorithms are correct and
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performant. As a result, we did not perform numerical simulations of Bresenham’s
algorithms.

Numerical simulation of the algorithms would entail verification of correctness, or verification
of performance. During our development of the VHDL code implementing the algorithms, we
were able to visually distinguish whether the result was correct: if the state machine did not
terminate, the CPU would lock up and nothing at all would be displayed. When testing the
line algorithm, we were able to distinguish correctness in the “stair-stepping” by drawing
lines at 45 degrees (for each horizontal pixel incremented/decremented, a vertical pixel was
incremented/decremented) as well as verifying that the end coordinates of the line did not
have off-by-one errors.

Our performance figures in the datasheet section of this report show that our system is
highly performant. The primitives were timed using an Altera Timestamp timer. The 60fps
and 30fps drawing deadlines were also found using the timestamp timer.

There is no need for calibration, due to lack of analog inputs to calibrate against.

Safety

Our system consists of the standard Altera DE2 board, in addition to an adapter board to
interface with two sega genesis controllers. As such, the primary physical safety concerns of
our implementation are those of the DE2 board. Namely, users of our product should be
careful around electrical outlets, power cords, and avoid tasting the solder joints. The board
can reliably operate at 0 to 85 degrees Celsius. At maximum load, the DE2 will draw 1.3A
and 9V, for a maximum power consumption of 11.7 Watts.

Regulatory and Society

Our project does not make use of any personal information from its users, and as such
requires minimal regulation. There is no internet connectivity involved in our project, and we
are not subject to the typical concerns associated with networked “internet of things”
devices. All user interaction will be performed through the use of Sega Genesis controllers in
order to manipulate graphics, and so the ability for a user hack our device is largely
minimized. It could be possible for a user with sufficient time and effort to interface with one
of the DB9 ports to send inputs in such a way that memory could be altered in a way to allow
for arbitrary code execution, as has been demonstrated on the SNES console in the past [8].
However, as we implemented a simple Pong game, the level of possible inputs and changes
in memory relative to a complex SNES game reduces this risk of hacking. If the platform
were to be adopted by developers, video games would be subject to the same regulations
regarding subject matter that Sony or Nintendo would have to follow such as implementing
“Licensed Developer” schemes (such as “Nintendo Seal of Quality”) to restrict the content
run on the system technically and artistically.
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Environmental Impact

Our device is not RoHS compliant because the SEGA genesis controllers contain leaded
solder. Unleaded solders could be used in place of this solder. The DE2 board used with our
project is RoHS compliant.

In addition to the issue above regarding dangerous materials, our device would be
characterized as a leisure device which could be identified as unnecessary for human
survival, and therefore uses more resources to produce the power required to operate the
device than would otherwise be necessary.

Sustainability

Our project draws 0.45 Amps at 8.93 V for 4.02 W of power.

P=IxV
P =0454 %893V =4.02W

The average monthly cost of power in Edmonton over the last 12 months is 5.37 cents per
kilowatt-hour of power [9]. Assuming that our project is operating at maximum power draw
for twenty-four hours a day, seven days a week, this results in an estimated cost of $1.89 in
electricity per year for 35.22kWh of power.

E=Px¢
E=4.02W x24h x365 =352152Wh =3522kWh

Cost = E x Price
Cost=35.22kWh x0.0537 = $1.89

According to Environment Canada, Albertan CO2 emissions for utilizing electricity are 820g
of CO2 per kWh of electricity used. [10] For non-stop all day usage over the course of a
year, our project will release 30.1 kg of CO2 into the environment. (820g * 36.72 / 1000 =
30.1 kg)

Due to the nature of our project, there are no idle or sleep states, it is always active and
draws the same amount of power during operation.
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Appendices

Quick Start Guide

Hardware Setup
Required Components:

DE2 Board 5. VGA Monitor
“Sega Genesis Controller Adapter” PCB 6. VGA Cable

40-pin Ribbon Cable 7. SD Card (.sof only)
2x Sega Genesis Controller

honh =

Prepare SD Card (.sof only):
1. Create a FAT-16 formatted SD Card - you must use an old card that is not SDHC
2. Copy small.bmp and small.pal to the SD Card

Setup Instructions:
1. Use ribbon cable to connect DE2’s “GPIO 1” to “Sega Genesis Controller Adapter”
2. Plug Sega Genesis Controller into each port on “Sega Genesis Controller Adapter”
3. Connect DE2 to VGA Monitor with VGA Cable
4. (.sof only) Insert SD Card into DE2

Programming Board:
e Volatile: Run program_volatile.sh
e Non-Volatile: Run program_nv.sh

Demo Instructions

DE2 Buttons:
o KEYO: Reset

Genesis Controller Buttons:

START: Next Demo

[PONG] UP / DOWN: Move Pong paddle up / down

[PONG] B + LEFT / RIGHT: Move Pong paddle left / right
[PONG] A: Turn on / off “trajectory display”

[PONG] A + B: Deflect ball at maximum speed towards opponent
[PONG] A + B + C: Enable “the wall”

[PONG] B + C: Gradually slow down opponent
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Future Work

A number of things could be done in the future to extend or better make use of our platform.
For example, different applications could be written to make use of the platform - perhaps
other games like Tetris or Air Hockey. As well, audio support could be added to the platform
for an integrated console experience. In addition, the code could be ported to a newer
development board containing more RAM in a different arrangement allowing for a higher
frame resolution and removal of the 256 colour output limit. The graphics primitives
supported in hardware could also be extended to support more advanced operations such
as rotation, or drawing dotted lines instead of solid lines. Another application for our platform
would be for integration of a live video stream into the background layer, allowing for
graphics to be dynamically overlaid. This could assist in rear-view camera applications in
vehicles, where guidelines could be superimposed over the video feed to assist the driver.
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Genesis Adapter Board Documentation

In accordance to the Genesis controller specification outlined in [5], we have designed an

adapter board that will allow us to connect the Sega Genesis controller to the FPGA’s GPIO
pins. We have designed this hardware using a free version of Eagle.
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Source Code

Our source code can be found on GitHub:

https://qgithub.com/stephenjust/de2-video-processor

There is also a copy of the source code located at:

https://www.ualberta.ca/~delliott/local/ece492/projects/2016w/g6 _graphics system/de2-vide

O-processor-master.zip

All of the code included with the project has been compiled and tested by various methods

using a DE2 board. Note that some of the development tools may require extra Python

libraries.

All VHDL components are connected via Qsys. All software projects include the
video_system_graphics_library project as a dependency.

File Listing

File

Description

de2_video_processor.qpf

Quartus project file

de2_video_processor.gsf

Quartus project file

de2_video_processor.sdc

Timing constraints file

de2_video_processor_system.gsys

QSYS system definition

default_palette.mif

Default colour palette memory

default_palette_ega.mif

Example palette memory with only the EGA
colour palette

ip/ci_copy_rect/HDL/ci_copy_rect.vhd

Custom instruction to copy a rectangular area of
(discontinuous) memory

ip/ci_copy_rect/ci_copy_rect_hw.tcl

Qsys component definition

ip/ci_draw_circ/HDL/ci_draw_circ.vhd

Custom instruction to draw the outline of a circle
to a pixel buffer

ip/ci_draw_circ/ci_draw_circ_hw.tcl

Qsys component definition

ip/ci_draw_line/ci_draw_line.vhd

Custom instruction to draw a line to a pixel buffer

ip/ci_draw_line/ci_draw_line_hw.tcl

Qsys component definition

ip/ci_draw_rect/ci_draw_rect.vhd

Custom instruction to draw a rectangle to a pixel
buffer

ip/ci_draw_rect/ci_draw_rect_hw.tcl

Qsys component definition



https://github.com/stephenjust/de2-video-processor
https://www.ualberta.ca/%7Edelliott/local/ece492/projects/2016w/g6_graphics_system/de2-video-processor-master.zip
https://www.ualberta.ca/%7Edelliott/local/ece492/projects/2016w/g6_graphics_system/de2-video-processor-master.zip

ip/ci_frame_done/HDL/ci_frame_done.vhd

Custom instruction to trigger frame data copy
from SDRAM to SRAM

ip/ci_frame_done/ci_frame_done_hw.tcl

Qsys component definition

ip/colour_space_converter/HDL/colour_space_converter.vhd

Palette decoder component

ip/colour_space_converter/colour_palette_shifter_hw.tcl

Qsys component definition

ip/common/avalon.vhd

VHDL package including a couple of Avalon-bus
helper components

ip/common/avalon/avalon_copy_sequential.vhd

Component to copy a block of memory to a
destination, at 8 bits per clock.

ip/common/avalon/avalon_copy_sequential_16.vhd

Component to copy a block of memory to a
destination, at 16 bits per clock.

ip/common/avalon/avalon_write_sequential.vhd

Component to write a byte to a continuous
segment of memory, 16 bits per clock.

ip/common/geometry.vhd

VHDL package including geometry-related helper
functions and struct (record) definitions.

ip/genesis/HAL/inc/genesis.h

Header file for Genesis driver

ip/genesis/HAL/src/component.mk

Makefile for Genesis driver

ip/genesis/HAL/src/genesis.c

Source file for Genesis driver

ip/genesis/HDL/genesis.vhd

Genesis controller interface component

ip/genesis/genesis_hw.tcl

Qsys component definition

ip/genesis/genesis_sw.tcl

Qsys software driver definition

ip/video_fb_streamer/HDL/video_fb_dma_manager.vhd

Component that handles memory transfers
to/from SDRAM and SRAM for the output pipeline

ip/video_fb_streamer/HDL/video_fb_fifo.vhd

Component to take two pixels in at a time, and
output one pixel at a time on a second clock

ip/video_fb_streamer/HDL/video_fb_sdram_reader.vhd

Component to read SDRAM buffer in bursts

ip/video_fb_streamer/HDL/video_fb_streamer.vhd

Component to manage moving pixel data from
SDRAM to SRAM, and then streaming that data
to the output pipeline

ip/video_fb_streamer/video_fb_streamer_hw.tcl

Qsys component definition

release_files/program_nv.sh

Script to program EPSC and Flash from binaries

release_files/program_volatile.sh

Script to program FPGA over JTAG and launch
code from elf

software-tools/RGB323toRGB565_mif palette_generator.js

Script to generate the default_palette.mif file

software-tools/c_palette_generators.js

software-tools/image_converter.py

Script to convert image files to 8-bit paletted
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bitmaps, and to generate the palette files.

software-tools/palette_shower.py

Script to read palette file and show colours and
their indexes.

software/Pong/main.c

Main program logic for final demo application

software/Pong/pong_graphics.{c,h}

Graphics helpers for Pong game

software/Pong/pong_helpers.{c,h}

Game logic helpers for Pong game

software/benchmark_test/main.c

Benchmarking program to get performance of
graphics operations

software/compositing_test/main.c

Program to give an example of how to use
layering

software/de2_video_processor/hello_world.c

Sample program to test Genesis controller input

software/draw_images/main.c

Sample program to test bitmap drawing

software/graphics_and_font_test/main.c

Sample program to test graphics primitives

software/line_test/main.c

Sample program to test line drawing

software/rectangle_test/main.c

Sample program to test rectangle drawing

software/sdram_tearing/main.c

Sample program to test video output tearing

software/sdram_test_pattern/main.c

Sample program to test frame swapping from
SDRAM to SRAM

software/sram_simple_geometry/main.c

Sample program to test for video glitches

software/sram_test_pattern/main.c

Sample program to test SRAM buffer to video
output

software/sram_test_pattern_palette_switch/hello_world.c

Sample program to test the palette switcher

software/video_system_bsp/settings.bsp

Common BSP project

software/video_system_graphics_library/efsl/*

EFSL library to read files from SD card

software/video_system_graphics_library/flash_ops.{c,h}

Helper functions to read images and palettes from
flash

software/video_system_graphics_library/graphics_commands.{
c,h}

Main collection of graphics helper functions

software/video_system_graphics_library/graphics_defs.h

Common graphics library definitions

software/video_system_graphics_library/graphics_layers.{c,h}

Helper functions to handle graphics layers

software/video_system_graphics_library/palettes.{c,h}

Helper functions to handle colour palettes

software/video_system_graphics_library/sdcard_ops.{c,h}

Helper functions to read images and palettes from
SD card

src/de2_video_processor.vhd
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