
Augmented Reality Capture

the Flag

Group Members:

Amshu Gongal Kenan Kigunda Matthew Pon

Project Summary:

This project is an augmented reality capture-the-flag game, in

which players control RC cars through a web interface, with the

objective of being the first player to reach the opponent’s flag and

return to his own base. Infrared will be used to implement a

shooting feature, and a rover will temporarily freeze when shot.

Group Number: 7

Table of Contents
1 Abstract ... 5

2 Functional Requirements .. 5

3 Design and Description of Operation .. 6

3.1 Design Overview ... 6

3.2 Network Communications .. 7

3.3 Wi-Fi Hardware ... 9

3.4 Infrared Hardware .. 11

3.5 Motor Hardware ... 13

4 Bill of Materials ... 15

5 Datasheet .. 18

5.1 System Block Diagram ... 18

5.2 Speed and Performance Requirement: .. 18

5.3 Power Calculations: ... 18

5.4 Operating Conditions: ... 19

5.5 I/O Signals ... 19

5.5.1 Off-Board to Board: ... 19

5.5.2 Off-Board electronics to World ... 20

6 Background Reading ... 21

6.1 WebSockets ... 21

6.2 Augmented Reality Universal Controller and Identifier (ARUCI) .. 21

6.3 AR Shooter: An Augmented Reality Shooting Game System .. 21

6.4 Data Formats for IR Remote Control .. 21

7 Software Design .. 22

7.1 Rover Software.. 22

7.1.1 Wi-Fi Handler Start Task.. 22

7.1.2 Infrared Receiver Update Task .. 22

7.1.3 Network Sender Update Task ... 23

7.1.4 Network Receiver Ping Task .. 23

7.1.5 Network Receiver Update Task ... 23

7.1.6 Infrared Sender Update Task .. 23

7.1.7 Motor Handler Update Task ... 24

7.2 Server Software ... 24

7.3 Player Software ... 26

8 Test Plan .. 27

8.1 Software Test Plan .. 27

8.1.1 Command Interface .. 27

8.1.2 Network Interface ... 27

8.1.3 Infrared Interface .. 28

8.2 Hardware Test Plan ... 28

8.2.1 Infrared Emitter And Receiver .. 28

8.2.2 Xbee Wi-Fi Module .. 29

8.2.3 Motor Controller ... 29

8.3 Integration Test Procedure: .. 29

9 Results and Characterization .. 30

9.1 Infrared Readings .. 30

9.1.1 Ambient infrared readings .. 30

9.1.2 Infrared readings vs distance .. 30

10 Safety & Sustainability .. 31

10.1 Wi-Fi Connection Failure ... 31

10.2 Speed of Vehicle.. 31

10.3 Voltage, Current, & Power .. 31

10.3.1 Motor Component .. 31

10.3.2 Wi-Fi Component .. 31

10.3.3 Infrared Circuitry ... 31

10.3.4 Total Circuit Power .. 32

10.4 Energy ... 32

10.4.1 Kinetic Energy.. 32

10.4.2 Stored/Potential Energy .. 32

10.5 Summary of Safety Concerns .. 32

10.6 Energy Cost ... 32

10.7 C02 Production from an Equivalent Coal Generation of Energy .. 32

10.8 Solar Cell Area ... 32

11 Environmental Impact ... 33

11.1 Hazardous Substances/ RoHS Compliance ... 33

11.2 Other Environmental Points ... 33

12 References .. 34

13 Appendix A Quick Start Manual .. 35

14 Appendix B Future Features: .. 36

14.1 Future Feature 1: .. 36

14.2 Future Feature 2: .. 36

14.3 Future Feature 3: .. 36

14.3.1 Details of Operation with GPIO Camera ... 36

14.3.2 Details of Operation with IP Camera .. 37

15 Appendix C Hardware Documentation ... 38

15.1 Top-Level ... 38

15.2 Wi-Fi .. 39

15.3 Infrared ... 40

15.3.1 Emitters ... 40

15.3.2 Receivers ... 41

15.3.3 Motor .. 42

16 Appendix D Source Code ... 43

16.1 Index to Source Code .. 43

16.2 Data Flow .. 44

1 Abstract
The goal of this design project was to create an augmented-reality capture the flag game with two RC

vehicles. Each vehicle contains an on-board Altera DE0 Nano FPGA board, an infrared emitter circuit

using the LTE-4208, 4 infrared receiver circuits using the LTR-3208E, an XBee S6 Wi-Fi module, and a

Polulu Low-Voltage Motor Controller. 7 AA batteries are used on each rover; four batteries power the

DE0 Nano board, which in turn power the Wi-Fi module and the infrared circuitry, and three batteries

power the motor controller and the motor. On-board components communicate with the players

through a web server and through HTTP. The infrared module was interfaced to the Wi-Fi module and

server to allow for the shooting of opponents. Users log onto a web server to control vehicle movement.

Players will be able to control the speed of each track (right or left), and a skid steer mechanism will be

used to control rover movement. The infrared circuitry, composed of 2 infrared receivers on each of the

4 sides, and 3 infrared emitters on the front of each rover, will allow for simulated ‘shooting’ of

opponents. Overall the project was definite success, and almost all intended functionality was properly

implemented in the final product.

2 Functional Requirements
This project is an augmented-reality Capture the Flag game. Two players each log onto a browser and

use a simple user interface to control RC cars. Functionality included the control of left and right track

speed, as well as infrared transmission. Independent track controls allowed for finer movement of the

vehicles.

In order to make the game description easier to understand, let us first define a few terms:

Base A location for each player, known by all players at the start of the game

Game Space Any open location (indoors) in which the players choose to play the game

Flag An object placed at each player’s base

Capture the Flag To reach the opponent’s flag. (Determined by a referee)

Carrying the Flag Having reached the opponent’s base but not yet returned home

Return home To return to one’s base after having captured the flag

Shoot To register a shot through infrared transmission/reception

In the beginning state of the game, each car will be in its own base. The first player to navigate his

vehicle to his opponent’s base, capture the flag, and then return home, will win. Infrared reception at

the home bases and enemy flags will be used to avoid the need for location sensing. Each rover contains

1 DE0 Nano board, 1 Polulu low voltage motor controller, 1 XBee S6 Wi-Fi module, 8 infrared receivers,

and 3 infrared emitters.

The next feature added was the ability for users to shoot each other. Once a shot is registered, the car

that was shot freezes for a set period of time (we implemented this as 6 seconds). Cars are able to be

shot from a range of approximately 1-2 feet.

3 Design and Description of Operation

3.1 Design Overview

On each rover, there are four main components interfaced to the DE0 Nano board: a motor controller,

which is connected to a pair of motors which move the rover through skid steering; a set of infrared

emitters, which are used to shoot opponents; a set of infrared receivers, which are used to detect

infrared shoot events; and a Wi-Fi module, which is used to communicate with the rest of the world. By

joining a local area network provided by a router, the rovers can connect to a PHP socket server, while

players on the same network can connect to the server using any HTML5 browser. The server keeps

track of the game state and relays messages between players and servers, while client-side JavaScript

provides the user interface used to control the rovers and mark infrared hits.

Router

PHP Socket Server

Player Browser

DE0 Nano Board

Motor

Controller

Infrared Emitters

Wi-Fi Module

Infrared Receivers

3.2 Network Communications

For network communications between the players and the rovers, we set up a local area network using

a router. The network is encrypted using WPA2, and all network communications flow through a PHP

socket server. Each rover connects to the PHP server using a TCP socket that is provided by the firmware

on the Xbee Wi-Fi module, while each player connects to the server using the WebSocket protocol

specified in HTML5. The server relays messages from a player to the corresponding rover, and relays

events such as infrared hit events from the affect rover to all players, creating two-way communication

between the rovers and the players that allows the players to control their rovers and be aware of the

state of each rover.

router

rover

PHP socket server

player

HTTP

client

WebSocket TCP socket

http://www.w3.org/TR/websockets/

Network events are created by both the rovers (shown in red) and the players (shown in green). Each

event is a short string terminated by a newline. The first character of the event marks the type of the

event: i for infrared, m for motor, and n for network. The remaining characters give the parameters of

the event: is is used to mark an infrared shoot event; ih, an infrared hit event, and mmd$sss, a motor

movement command, where $m indicates which motor to move (one of l “left”, r “right”, or b “both”),

$d indicates the direction (one of f “forward” or b “back”), and $sss indicates the speed (between 0

“stop” and 127 “max”).

On the rover side, the InfraredReceiver class polls the analog-to-digital converter for the level of the

infrared receivers. When the level exceeds the infrared hit threshold, an infrared hit event ih is

generated. This event is forwarded to the NetworkSender class over a queue. The network sender reads

events from its queue and uses the WifiHandler class, which provides a high-level view of the interfacing

to the Xbee Wi-Fi module, to send the hit event to the server, which then forwards the hit event to all

the players.

On the client side, there is an HTML interface with SVG objects that have JavaScript callbacks attached

to the click event. When the user clicks on one of these UI buttons, the callback sends the corresponding

message to the server using the WebSocket. The server associates each WebSocket connection with a

particular rover, and forwards commands received on a WebSocket to the corresponding rover.

The NetworkReceiver class uses WifiHandler to poll for incoming network events, and forwards the

events over a queue to the listener class corresponding to the type given by the first character of the

is (infrared shoot)

PHP Socket

Server

Wi-Fi Handler

ih (infrared hit)

Network

Sender

Motor

Handler

Infrared

Receiver

Network

Receiver

Infrared

Sender

mbf120 (movement)

command)

TCP

Socket

Player

Browser

Web

Socket

ih

is
nd

mbf120

nd
nd (network disconnect)

event. Infrared shoot commands are executed by the InfraredSender class, while motor movement

commands are executed by the MotorHandler class.

In addition to checking for new messages from the server, Network Receiver also pings the server

periodically to keep the TCP connection alive. The Xbee Wi-Fi module has a configurable timeout that

we set to the maximum of 25.5 seconds. Network Receiver pings the server every 15 seconds and

displays the connection status on the LED. If the ping fails, the receiver issues a nd “network disconnect”

command to all listeners, which react accordingly. Namely, MotorHandler stops the motors on network

disconnect.

The WifiHandler class is synchronized, meaning that only one caller can read from or write to the server

at a time. When the Wi-Fi connection is in use, callers will wait up to a timeout fixed at around one

second to use the connection. If the timeout expires, the caller will try again after the task delays,

allowing other tasks to run.

In addition to the aforementioned messages, there are two types of network control messages.

Messages starting with a plus + are network connect messages. They are the first message sent to the

server and identify the type and ID of the client; for example +r1 indicates a new connection from rover

1, while +p1 indicates a new connection from player 1. The ID is how the server associates players with

rovers; messages from player 1 will be forwarded to rover 1.

Messages starting with a colon : are network status messages. The server sends back :ok to any message

that was received and processed successfully, and :err to any message that could not be processed; for

example, if the first message sent to the server on a new connection is not a network connect message

with a type and ID, then the server will return :err.

3.3 Wi-Fi Hardware

3.3 V
VCC 29 1 VCC

uart_wifi_txd 4

10 GND

2 DOUT

3 DIN

5 nRESET pio_wifi_reset_n_export 6

uart_wifi_rxd 2

GND 30

GPIO 1

Xbee S6 Wi-Fi Module

10 uF

100 nF
+

Wi-Fi communication with the rovers is achieved through the use of a Xbee S6 Wi-Fi module. The board

communicates with the Wi-Fi module using RS232 UART. Outgoing serial data is transmitted from GPIO

1 pin 2 to Xbee pin 2, and incoming serial data is transmitted from Xbee pin 3 to GPIO 1 pin 4. The GPIO

pins are mapped to an altera_up_avalon_rs232 Qsys component name uart_wifi, which handles the

implementation of RS232 UART and is memory mapped to UART_WIFI_BASE. Any data written to

UART_WIFI_BASE is transmitted through uart_wifi_txd to the Wi-Fi module, and data sent by the

module to uart_wifi_rxd can be read through UART_WIFI_BASE. The altera_up_avalon_rs232 Qsys

component also contains first-in-first-out (FIFO) queues for increased flexibility, and Alterra provides an

API for checking the status of the FIFO queues and then reading and writing, which is used instead of

reading and writing to UART_WIFI_BASE directly.

The Xbee Wi-Fi module is used in transparent mode, which means that any data sent over UART is

forwarded to the network, and any data received from the network is forwarded over UART. The

module is first configured by entering command mode and sending three plus characters +++. We then

use AT commands to configure the module to use the TCP protocol and establish a connection to our

server (more details in Software Design). Then, when the Wi-Fi module is not in command mode, the

first data it receives over UART will cause a TCP socket to be opened targeting the server. Once the

socket is opened, all data transmitted to the Wi-Fi module is forwarded over that socket, and all data

received on the socket is forwarded to the board.

The Wi-Fi module has an reset input on pin 5 which is connected to the PIO component pio_wifi_reset_n

on GPIO 1 pin 6. This reset input is active low, and so is set to one when the board starts up and remains

high.

The Wi-Fi module is powered from the board’s logic power supply at 3.3 V. To reduce noise, particularly

from the motors, there is an electrolytic capacitor of 10 uF and a ceramic capacitor of 100 nF between

the Wi-Fi power and ground lines.

3.4 Infrared Hardware

The infrared emitters are LTE 4208 photodiodes. To prolong the lifetime of the emitters, we operate

them near the lower end of their current range up to 50 mA, limiting the forward current to 𝐼𝐷 = 10 mA

with a corresponding forward voltage of around 𝑉𝐷 = 1.2 V. To limit the forward current, each diode

has a current-limiting resistor 𝑅𝐷 with value calculated as

𝑅𝐷 =
𝑉𝐶𝐶 − 𝑉𝐷 − 𝑉collector

𝐼𝐷

=
(3.3 − 1.2 − 0.2) V

10 mA

= 190 𝛺

The closest resistors available in the lab were 180 Ω and 200 Ω. Since we were at the low end of the

range and had room to grow upwards, we chose a limiting resistor of 180 Ω, allowing for a current at or

slightly above 10 mA.

The infrared emitters are turned on and off through an NPN transistor controlled through GPIO 2 pin 6.

This pin is wired to the base of the transistor, through a resistor 𝑅𝐵 = 430 Ω whose value is chosen such

that the base current is around one-tenth the collector current and the transistor stays in saturation.

When the GPIO pin is high, the transistor turns on and allows current to flow through the photodiodes;

when the GPIO pin is low, the transistor turns off and no current can flow through the photodiodes. This

GPIO pin is mapped to the Qsys component pio_ir_emitter, which is memory-mapped to

PIO_IR_EMITTER_BASE. As a result, writing 1 to PIO_IR_EMITTER_BASE turns the emitters on, and

writing 0 to PIO_IR_EMITTER_BASE turns them off.

The infrared receivers are R3208E phototransistors. The amount of current flowing through these

phototransistors is directly proportional to the intensity of the ambient light they receive. The collector

of each receiver is connected to 3.3 V power, while each emitter is connected to an 𝑅 = 10 kΩ pull-

down resistor and the first analog input of the analog-to-digital converter (ADC) on the board. There are

a total of eight receivers on each rover, with two on each side. When the level of infrared light received

by all the receivers is low, the pull-down resistor keeps the input on the ADC low. When any receiver

receives significant infrared light, it turns on and pulls the input on the ADC towards power. The degree

to which the ADC input is pulled towards VCC reflects the intensity of the ambient light.

Alterra provides a Qsys component altera_up_avalon_de0_nano_adc for interfacing the ADC. The ADC

has eight channels, of which we use only the first. In software, Alterra provides an API for reading the

value of a particular channel, returning an eight-bit integer. This integer is compared to an infrared hit

threshold, which was determined experimentally by finding the maximum reading caused by ambient

light in the location of expected use.

3.5 Motor Hardware

We use Polulu Low Voltage Dual Serial Motor Controller to drive the motor. The motor controller uses

RS-232 UART communication protocol to receive commands from the DE0 Nano board through the

GPIO’s. The board receives commands from the player and forwards the motor command to the motor

controller through GPIO 0 .The GPIO pins are mapped to an altera_up_avalon_rs232 Qsys component

name uart_motor, which handles the implementation of RS232 UART and is memory mapped to

UART_MOTOR_BASE. Any data written to UART_MOTOR_BASE is transmitted through uart_motor_txd

to the motor controller.

The motors are powered through a separate battery pack (3.6 V) on the rover. The motor controller is

powered through the DE0 Nano board with a 3.3 V power supply. The motor controller has an reset

input which is connected to the PIO component pio_motor_reset_n on GPIO 0 pin 33. This reset input is

active low, and so is set to one when the board starts up and remains high.

The motors used are noisy so capacitors are installed along the terminals to reduce noise. The noise

from the motors interferes with the reset line causing the motor to reset while in operation so 0.1 uF

capacitors are installed between the motor_reset and ground to reduce noise. Also LC filters are

installed between the power outputs from controller to the motors to reduce noise.

4 Bill of Materials

Part Quantity Unit

Cost

Net Cost Supplier Link Datasheet

Altera DE0

Nano FPGA

board

2 $59.00 $118.00 Lab Supplied http://www.altera.com/

education/univ/material

s/boards/de0-

nano/unv-de0-nano-

board.html

ftp://ftp.altera.com

/up/pub/Altera_M

aterial/12.1/Boards

/DE0-

Nano/DE0_Nano_D

atasheets.zip

Rover

Platform RB-

Tam-27

2 $18.99 $37.98 Robotshop http://www.robotshop.

com/ca/en/tracked-

vehicle-chassis-kit.html

Twin Motor

Gear Box

RB-Tam-01

2 $10.88 $21.76 Robotshop http://www.robotshop.

com/ca/en/tamiya-

twin-motor-

gearbox.html

Xbee S6 Wi-

Fi module

with PCB

antenna

XB24-

WFPIT-001

2 $41.92 $83.84 Digikey http://www.digikey.ca/

product-

detail/en/XB24-WFPIT-

001/602-1213-

ND/2700943

http://ftp1.digi.co

m/support/docum

entation/90002124

_F.pdf

Polulu Low

Voltage Dual

Serial Motor

Controller

2 $44.39 $88.78 Robotshop http://www.robotshop.

com/ca/en/pololu-low-

voltage-serial-

controller.html

http://www.robots

hop.com/media/fil

es/pdf/smc05a-

low-voltage-dual-

serial-motor-

controller-

guide.pdf

Metal

Standoffs

30 $0.40 $12.00 Lab Supplied

Perf Boards 4 $7.50 $30.00 Lab Supplied

Battery

Holders (4

AA)

2 $5.85 $11.70 Lab Supplied

Battery 2 $5.85 $11.70 Lab Supplied

http://www.altera.com/education/univ/materials/boards/de0-nano/unv-de0-nano-board.html
http://www.altera.com/education/univ/materials/boards/de0-nano/unv-de0-nano-board.html
http://www.altera.com/education/univ/materials/boards/de0-nano/unv-de0-nano-board.html
http://www.altera.com/education/univ/materials/boards/de0-nano/unv-de0-nano-board.html
http://www.altera.com/education/univ/materials/boards/de0-nano/unv-de0-nano-board.html
/up/pub/Altera_Material/12.1/Boards/DE0-Nano/DE0_Nano_Datasheets.zip
/up/pub/Altera_Material/12.1/Boards/DE0-Nano/DE0_Nano_Datasheets.zip
/up/pub/Altera_Material/12.1/Boards/DE0-Nano/DE0_Nano_Datasheets.zip
/up/pub/Altera_Material/12.1/Boards/DE0-Nano/DE0_Nano_Datasheets.zip
/up/pub/Altera_Material/12.1/Boards/DE0-Nano/DE0_Nano_Datasheets.zip
/up/pub/Altera_Material/12.1/Boards/DE0-Nano/DE0_Nano_Datasheets.zip
http://www.robotshop.com/ca/en/tracked-vehicle-chassis-kit.html
http://www.robotshop.com/ca/en/tracked-vehicle-chassis-kit.html
http://www.robotshop.com/ca/en/tracked-vehicle-chassis-kit.html
http://www.robotshop.com/ca/en/tamiya-twin-motor-gearbox.html
http://www.robotshop.com/ca/en/tamiya-twin-motor-gearbox.html
http://www.robotshop.com/ca/en/tamiya-twin-motor-gearbox.html
http://www.robotshop.com/ca/en/tamiya-twin-motor-gearbox.html
http://www.digikey.ca/product-detail/en/XB24-WFPIT-001/602-1213-ND/2700943
http://www.digikey.ca/product-detail/en/XB24-WFPIT-001/602-1213-ND/2700943
http://www.digikey.ca/product-detail/en/XB24-WFPIT-001/602-1213-ND/2700943
http://www.digikey.ca/product-detail/en/XB24-WFPIT-001/602-1213-ND/2700943
http://www.digikey.ca/product-detail/en/XB24-WFPIT-001/602-1213-ND/2700943
http://ftp1.digi.com/support/documentation/90002124_F.pdf
http://ftp1.digi.com/support/documentation/90002124_F.pdf
http://ftp1.digi.com/support/documentation/90002124_F.pdf
http://ftp1.digi.com/support/documentation/90002124_F.pdf
http://www.robotshop.com/ca/en/pololu-low-voltage-serial-controller.html
http://www.robotshop.com/ca/en/pololu-low-voltage-serial-controller.html
http://www.robotshop.com/ca/en/pololu-low-voltage-serial-controller.html
http://www.robotshop.com/ca/en/pololu-low-voltage-serial-controller.html
http://www.robotshop.com/media/files/pdf/smc05a-low-voltage-dual-serial-motor-controller-guide.pdf
http://www.robotshop.com/media/files/pdf/smc05a-low-voltage-dual-serial-motor-controller-guide.pdf
http://www.robotshop.com/media/files/pdf/smc05a-low-voltage-dual-serial-motor-controller-guide.pdf
http://www.robotshop.com/media/files/pdf/smc05a-low-voltage-dual-serial-motor-controller-guide.pdf
http://www.robotshop.com/media/files/pdf/smc05a-low-voltage-dual-serial-motor-controller-guide.pdf
http://www.robotshop.com/media/files/pdf/smc05a-low-voltage-dual-serial-motor-controller-guide.pdf
http://www.robotshop.com/media/files/pdf/smc05a-low-voltage-dual-serial-motor-controller-guide.pdf

Holders (3

AA)

Infrared

Emitters

6 $0.40 $2.40 Lab Supplied

Infrared

Receivers

16 $1.00 $16.00 Lab Supplied

LED 2 $0.50 $1.00 Lab Supplied

Headers 2 $8.00 $16.00 Lab Supplied

Misc.

Consumable

s (Wires,

solder, glue,

velcro etc)

 $8.00 Lab Supplied

Total $459.16

5 Datasheet

5.1 System Block Diagram

The diagram represents our entire system. The rover consists of the DE0 Nano board, Wi-Fi module,

Infrared emitters and Receivers and motor controller. We have a PHP socket server is the server side to

control the state of the game and Player browser is the client side for user interface.

5.2 Speed and Performance Requirement:

Speed of the processor is not a major concern in this system as most to the computation are computed

in the server side that controls the game state. The micro-controller parses the instruction from the

server and relays either to the infrared emitter or motor controller. Other task of the FPGA is to

continuously poll the infrared receiver to detect infrared emission. The network listener continuously

polls for data from the server. None of the tasks require vast memory for operation.

5.3 Power Calculations:

The rover requires 7 NiMH batteries to operate. 4 batteries (4.8 V) are used to power the Altera DE0

Nano board. 3 batteries (3.6 V) are used to power the motors.

Following calculations illustrates the power consumption when the motors running in maximum load:

Motors + Motor Controller:

(2 * 4200 + 10) mA * 3.6 V / 1000 = 30.276 Wh

3 Batteries: 2300 mAh * 3.6 V / 1000 = 8.28 Wh

	

Router	

PHP	Socket	Server	

Player	Browser	

	
DE0	Nano	Board	

	

	

Motor	

Controller	

Infrared	Emitter	

Wi-Fi	Module	

Infrared	Receiver	

Receiver	

Estimate run time = 8.28/30.276 = 16.4 minutes

Following calculations illustrates the power consumptions by DE0 Nano board, IR circuit and Wi-Fi

module:

On-board Electronics:

Wi-Fi module + IR circuits + DE0 board = 490 mA = 490mA

4 Batteries: 2300 mAh

Estimate run time = 2300 mAh/490 mA = 4.7 hours

Following calculations illustrates power consumption when the rover is idle:

Motors consume no power when the rover is idle.

On-Board Electronics consume 330 mA when the rover is idle.

5.4 Operating Conditions:

It is suggested that the rover is operated indoors with minimum exposure to infrared that can cause

unexpected hit event to be recognized by the infrared receivers since our infrared signal are not

encoded. The rover should not be operated further than the operating range of the router for network

communications. Low network signal strength can cause the rover to disconnect from the server.

5.5 I/O Signals

5.5.1 Off-Board to Board:

5.5.1.1 Xbee Wi-Fi module to DE0 Nano board

Signals preceded by n are active low.

Signal Origin Pin Voltage Destination Pin Description

VCC GPIO, 3.3 V 11 3.3 V Xbee 1 Power Supply from DE0
Nano to Xbee

GND GPIO 12 0 V Xbee 10 DEO gnd to Xbee gnd

DOUT Xbee 2 0 - 3.3 V GPIO_1 2 Data received from
server

DIN GPIO_1 4 0 - 3.3 V Xbee 3 Data transmitting to
server from board

nRESET GPIO_1 6 0 - 3.3 V Xbee 5 Reset Line

5.5.1.2 IR emitter and receiver to infrared controller

Signal Origin Pin Voltage Destination Description

VS GPIO_2, 3.3 V 1 3.3 V IR receiver, through
33 to 1k Ω resistor

and < 0.1 uF

Voltage supply for IR
receivers

capacitor

GND GPIO_2 26 0 V IR receiver, IR
emitter

Board gnd

OUT IR receiver 0 - 3.3 V ADC

IN GPIO_2 6 0 - 3.3 V IR emitter diode PIO, powered to turn
on IR emitter

5.5.1.3 Polulu motor controller to motor controller

Signal Origin Pin Voltage Destination Pin Description

Serial
Input

GPIO_0 17 0 - 3.3 V Motor
controller

4 Motor commands
transmitted though RS-

232 serial
communication

Reset GPIO_0 33 0 - 3.3 V Motor
controller

5 Motor reset

GND GPIO_0 30 0 V Motor
controller

2

VCC GPIO_0, 3.3
V

29 3.3 V Motor
controller

3 Logic Supply

5.5.2 Off-Board electronics to World

5.5.2.1 Polulu motor controller to power and motors

Signal Origin Voltage Destination Pin Description

VIN Power pack,
3V

3 V Motor controller 1 Power supply for motors

GND Power pack 0 V Motor controller 2 Connected to board gnd and
motor controller gnd

Motor 0 Motor
controller

3 V Left motor 6,7 Left motor power supply

Motor 1 Motor
controller

3 V Right motor

8,9 Right motor power supply

6 Background Reading

6.1 WebSockets

 WebSockets is an API that facilitates interactive communication between a user’s browser and a
server. It allows for messages to be sent to a server and event-driven responses to be received
without the requirement of polling.

 For our project, we need to set up some type of duplex communication between the Wi-Fi
module and the remote server. The WebSockets API will allow us to implement this functionality
on the client side.

 Links:
o http://www.websocket.org/index.html
o https://developer.mozilla.org/en-

US/docs/WebSockets/Writing_WebSocket_client_applications
o http://dev.w3.org/html5/websockets/

6.2 Augmented Reality Universal Controller and Identifier (ARUCI)

 ARUCI is a design project from some electrical engineering students last year at the University of
Waterloo.

 The students implemented a universal remote control, interfacing a smart phone along with Wi-
Fi/RF/Infrared modules.

 Our project involves some similar applications, and seeing some of the challenges and
workarounds that they have implemented may aid us in the design and troubleshooting process.

 Links for the ARUCI project:
o http://eleccelerator.com/our-fourth-year-design-project-aruci/
o http://eleccelerator.com/fydp_aruci/aruci_slides_w_notes.pdf

6.3 AR Shooter: An Augmented Reality Shooting Game System

 This is proposed system for an augmented reality shooter that details some possibilities for
creating such a system.

 The authors of the article tried LED markers for target shooting, but are also trying infrared
patterns.

 This paper was a resource in deciding how to implement the shooting aspect of the game, since
we removed cameras in the basic implementation.

 Link: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5643620

6.4 Data Formats for IR Remote Control

 This article outlines the details of encoding data for infrared transmission.

 In order to deal with the abundance of noise in IR transmission/reception, we have to properly
encode the signals. Different targets, along with flags and opponent vehicles should also be
distinguished and encoded differently. This paper is a good resource in outlining the details of
this process.

 Link: http://www.vishay.com/docs/80071/dataform.pdf

http://www.websocket.org/index.html
https://developer.mozilla.org/en-US/docs/WebSockets/Writing_WebSocket_client_applications
https://developer.mozilla.org/en-US/docs/WebSockets/Writing_WebSocket_client_applications
http://dev.w3.org/html5/websockets/
http://eleccelerator.com/our-fourth-year-design-project-aruci/
http://eleccelerator.com/fydp_aruci/aruci_slides_w_notes.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5643620
http://www.vishay.com/docs/80071/dataform.pdf

7 Software Design

7.1 Rover Software

The rover software involves a total of seven tasks, which communicate through queues. Each of the

tasks is managed through a C++ singleton class, i.e. there is one object instantiated for each class. In

general each class has an update task, with the exception of the NetworkReceiver class which has both

an update and a connect task. There are two categories of classes: the datasource classes

InfraredReceiver and NetworkReceiver poll periodically to check for updates; the listener classes

InfraredSender, MotorHandler, and NetworkReceiver wait on queues for new events from datasource

classes and process them as they arrive.

7.1.1 Wi-Fi Handler Start Task

The Wi-Fi handler start task configures the Xbee Wi-Fi module, if necessary, and then sends a network

connect message +r1 or +r2 to the server. The Wi-Fi module stores its configuration details in non-

volatile memory, so the configuration steps are only run when the settings are changed. While the

WifiHandler class attempts to communicate with the server, it indicates the network status on the LED,

which will blink until the connection is successful. The WifiHandler is synchronized, such that only one

caller can use the Wi-Fi connection at any given time, and so the start task locks WifiHandler until an :ok

message is received from the server. This task has the highest priority so it is guaranteed to run first.

Once the :ok is received, the start task is delayed indefinitely.

7.1.2 Infrared Receiver Update Task

The infrared receiver update task polls the analog-to-digital converter (ADC) for the reading from the

infrared phototransistors. The InfraredReceiver class uses an alt_up_de0_nano_adc_dev to read the

is (infrared shoot)

Wi-Fi Handler
(synchronized)

ih (infrared hit)

Network
Sender

Update Task

Infrared
Receiver

Update Task

Network
Receiver

Update Task

Infrared
Sender

Update Task

mbf120 (move)

TCP

ih

is

mbf120

nd

nd (network disconnect)

Network
Receiver Ping

Task

Wi-Fi Handler
Start Task

queue

queue

Motor
Handler

Update Task

queue

+r1 (rover connect)

nd

+r1

+r1
:ok

:ok

:ok

:ok

ADC value, which is first shifted right by four bits because the lower four bits are not used by the ADC,

and then subtracted from a base value, returning a reading between 0 and 255 corresponding the range

of 0 and 3.3 V. This reading is then compared to INFRARED_RECEIVER_HIT_THRESHOLD = 25, which was

experimentally determined to filter out ambient noise. If the reading is larger than the threshold, then

the InfraredReceiver posts an infrared hit event ih to its listener queue, which is set at startup to the

NetworkSender queue. Typically, the task runs every he tasks runs every

INFRARED_RECEIVER_NO_HIT_UPDATE_TIME_MILLIS = 200 milliseconds. However, when there is an

infrared hit, the tasks is delayed for INFRARED_RECEIVER_HIT_UPDATE_TIME_SECONDS = 4 seconds, so

that any high infrared readings that occur within four seconds are counted as one infrared hit event.

7.1.3 Network Sender Update Task

The network sender update task pends on a listener queue for outbound network events such as

infrared hits ih. When a new outbound event is posted to the queue, the NetworkSender class uses the

WifiHandler class to send the event to the server, and waits for an :ok response. If the connection is

busy, then the NetworkSender will wait until it is free to use. The NetworkSender uses the WifiHandler

sendAndConfirm method, where the message will be resent if an :ok response is not received before the

response timeout.

7.1.4 Network Receiver Ping Task

The network receiver ping tasks is similar to the Wi-Fi Handler start task. It sends a network connect

message +r1 or +r2 to the server and expects an :ok response. If the :ok is not received before the

response timeout, then the NetworkReceiver posts a network disconnect event nd to all of its listeners

and indicates the network disconnect status on the LED.

7.1.5 Network Receiver Update Task

The network receiver update task polls the WifiHandler for new network data using the hasData

method, which checks the read first-in-first-out buffer on the Wi-Fi UART line. If is new network data,

the NetworkReceiver reads it using the WifiHandler tcpReceive method, which returns the characters

sent from the server up to and including the next newline, or NULL if the Wi-Fi connection is busy. If the

connection is busy, the NetworkReceiver gives up and retries on the next polling cycle; if a line is read, it

looks at the first character of the line, which indicates the event type. Listeners are registered with the

NetworkReceiver instance for a particular type: InfraredSender is registered under i while MotorHandler

is registered under m. The NetworkReceiver will forward an event to the corresponding listener, or will

drop the event if there is no matching listener. Because the events are transferred across queues

between tasks and to allow for flexibility in the number of active events, network events are allocated

dynamically, and must be freed by the listener.

7.1.6 Infrared Sender Update Task

The infrared sender update task pends on a listener queue for infrared shoot commands is. When a

shoot command is posted to the queue, the InfraredSender class turns on the infrared photodiodes by

writing one to PIO_IR_EMITTER_BASE. The diodes remain on for

INFRARED_SENDER_ON_TIME_SECONDS = 3 seconds, at which point the InfraredSender clears

PIO_IR_EMITTER_BASE.

7.1.7 Motor Handler Update Task

The motor handler update task pends on a listener queue for motor movement commands. The first

character of the command indicates the command type: m, for motor. The second character indicates

which motor to move: l, for left, r, for right, or b, for both. The third character indicates the direction: f,

for forward, or b, for backward. The remaining characters up to the newline indicate the speed, ranging

between 0, for stop, and 127, for maximum speed. The MotorHandler class parses the movement

command by comparing the first three characters and using strtol to get the speed starting at the fourth

character, and then generates the sequence of bytes to send to the motor controller over UART:

1. The first byte is the start byte 0x80. This byte is distinguished by having a most significant byte
(MSB) of one; all other bytes have an MSB of zero.

2. The second byte is the device type, which for our motor controller is 0x00.
3. The third byte indicates both which motor and which direction, and is found by multiplying the

motor number by two and adding one if the direction is forward. Since our left motor is mapped
to motor 2, 0x04 indicates motor left backward, while 0x05 indicates motor left forward.
Similarly, 0x06 indicates motor right backward and 0x07, motor right forward. (In fact, there is a
naming error here: motor 2 actually signals the right motor, an error that was found later on and
was corrected for on the client side due to time constraints).

4. The fourth byte indicates the motor speed. Since this is not a start byte, the MSB must be zero,
and so the speed is indicated by the remaining seven bits, giving a range from 0 to 127.

The MotorHandler class also response to network status events. Namely, when nd is received, indicating

a network disconnect, the motor handler will stop the motors.

7.2 Server Software

The server is a PHP socket server which accepts connections from rovers and from players. The rovers

and the server exchange ASCII data, while the players and the server communicate using the WebSocket

protocol which requires an initial handshake exchanging a security key, performed in ASCII, followed by

exchanges of masked binary data. The server distinguishes plaintext TCP connections from WebSocket

connections using the first message received: if the message starts with the connect prefix +, then the

client is a rover TCP socket; if the message starts with GET, then the client is a player browser

WebSocket.

The files for the server are found in www/arcap/socket/. The file socket.php is the main file that actually

runs the server, while Client.php defines a class that abstracts the details of reading and writing to

clients. The file Websocket.php contains the functions used to perform WebSocket handshakes and to

mask and unmask WebSocket communications, while config.php defines the server parameters, such as

the IP address and port.

We start by creating a socket, binding to an IP address and port, and listening on the socket. We also

connect to a MySQL database to allow us to log all communications permanently for debugging. The

socket server then loops indefinitely over the following steps:

1. From the list of socket resources, use socket_select to find the ones which have new data to

read.

2. If the server socket is in the read list, then there is a new client. Accept the connection using

socket_accept and create a new Client object.

3. For each of the clients in the read list, read the message using Client::read. The read function

abstracts the protocol of the client:

a. If the client is using plain TCP, read uses socket_read to get ASCII data.

b. If the client is using WebSocket, read uses socket_read for the handshake and

socket_recv after the handshake. The latter returns binary data which is then unmasked

according to the rules of the WebSocket protocol, giving the original ASCII data.

4. The message is trimmed to ignore leading and trailing whitespace, and empty or whitespace-

only messages are ignored.

5. The server checks to ensure that the client has declared its type and ID in a network connect

message starting with +. Rovers send their details in their first message, while players send their

details after the WebSocket handshake. If the details are valid, the server returns :ok; otherwise,

it returns :err.

6. If a client resends a network connect message, the server checks if the details are the same as

previously declared; if so, the network confirms the details by returning :ok; otherwise, it

returns :err.

7. If the message starts with the network control character :, the server handles it the main loop:

a. :d(etail) is used by a client to request its details, which include the type, ID, and index of

client among all the clients being served

b. :q(uit) is used by a client to close its connection

c. :s(hutdown) is used to shut down the server, closing all client connections

8. If the message does not start with a control character, then it is forwarded to Client::handle,

which abstracts the type of the client:

a. If the client is a rover, handle forwards ih events to all players and returns :ok, while all

other events return :err. The id of the source rover is appended to the event, such that

an infrared hit originating from a client that connected with +r2 is forwarded as ih 2.

b. If the client is a player, handle forwards the event to the rover with the matching ID. For

example, a client that connected with +p2 will have its message forwarded to the client

that connected with +r2.

9. Messages are written to clients using Client::write, which abstracts the protocol of the client:

a. If the client is using plain TCP, then the ASCII string will be forwarded directly.

b. If the client is using WebSocket, then the ASCII string will be masked according to the

rules of the WebSocket protocol, and the masked binary data will be forwarded to the

client.

7.3 Player Software

The user interface (UI) is implemented in HTML5 using Scalable Vector Graphics (SVG) and WebSocket,

and so should work on any modern browser, including IE 10+, Firefox 11+, Chrome 14+, Safari 6+, Opera

12.1+, is Safari 6+, Android Browser 4.4+, BlackBerry Browser 7+, Opera Mobile 12.1+, Chrome for

Android 33+, Firefox for Android 26+, and IE mobile 10+ [1]. This allows for flexibility of use over a wide

range of devices.

The files for the user interface are found in www/arcap/game/. The file play.php renders the overall

page, which is styled using play.css. Connection.js defines a class that provides the methods for

communicating with the socket server, while DpadController.js, Dpad.js, DpadButton.js, SimpleButton.js,

and StatusMarker.js define the classes used to create the UI buttons and their corresponding callbacks.

The linking between the HTML and JavaScript elements of the page is performed using jQuery [2], while

the UI itself is drawn using svg.js [10], a lightweight library for manipulating and animating SVG. The

functionality is as follows:

 The direction pad (dpad) on the left is used to move the rover.

 The button on the right is used to shoot.

 The buttons in the middle indicate the status of the two rovers. They are green when the rovers

are enabled, meaning they can move and shoot, flashes red when a rover has been shot, and

then turn grey for six seconds, indicating that the rover is disabled and cannot move or shoot.

 When the players has been shot, the entire screen flashes red.

The url for the page shown above is 192.168.0.100/arcap/game/play.php?p=1, which breaks down as:

 192.168.0.100 is the IP address of our server

 /arcap/game/play.php is the path to our play page

 ?p=1 is a parameter selecting player 1

This is reflected in the header, which says arcap one for player 1 and arcap two for player two,

and determines the network connect message that the browser will send to the socket server

over WebSocket and thus which rover the player will control.

Using svg.js, we assign JavaScript callbacks to the click event of each of the buttons. Each callback uses

the Connection class to send the appropriate message to the server. For example, the dpad up buttons

sends the command mbf100, while the shoot button sends is.

The WebSocket object contained in the Connection class provides an onmessage callback which is used

to respond to events from the server. The Connection object has a reference to its parent controller;

upon receiving a hit event, the connection calls controller.hit(…) with the id of the source, which flashes

the screen or status button as appropriate.

The red bar at the bottom of the screen indicates the connection status. When the Connection object

receives an :ok message from the server, it calls controller.ready(true), which turns the status bar green

and allows the UI buttons to be pressed. When the Connection object receives and :err message from

the server, it calls controller.ready(false), which turns the status bar red and disables the UI buttons.

8 Test Plan

8.1 Software Test Plan

8.1.1 Command Interface

The command interface is a hardware-independent component that listens for network and infrared

events and responds by sending messages up to the remote server or down to the infrared and motor

hardware controllers. To test the command interface, mock objects are used to trigger test events and

the response of the command handler is checked against the expected response.

 Test response to infrared_receiver_update_task

Confirm that command handler prepares an appropriate message and forwards it to the

network handler successfully.

 Test response to infrared_sender_update_task of shoot command

Confirm that command handler parses command correctly and forwards to the infrared handler.

 Test response to motor_handler_update_task of move command

Confirm that command handler parses command correctly and forwards to the motor handler.

8.1.2 Network Interface

The network interface is a hardware-dependent component and so the following tests are integrated

with the tests for the proper setup of the Xbee Wi-Fi module

 Test TCP communications

Confirm that rover is able to connect to remote server, send a request, and receive an OK

response.

 Test Wi-Fi response time

Calculate delay in sending message to rovers from server. Calculate delay in sending messages

from server to rover. Confirm that these delays are within acceptable limits.

These tests are hardware independent:

 Test behavior of tcpSendAndConfirm

Confirm that network handler can take a high-level description of messages to be send over the

network and produce the corresponding HTTP request string or TCP payload.

8.1.3 Infrared Interface

The infrared interface is a hardware-dependent component and so the following tests are integrated

with the tests for the proper setup of the infrared emitter and receiver diodes.

 Test infrared emission

Confirm that writes to memory-mapped locations for infrared emitter are reflected in the VHDL

IR emitter component and on the GPIO pin to which the emitter will be connected.

 Test infrared reception

Confirm that reads from memory-mapped locations for infrared receptors reflect the state of

the VHDL IR receiver component and the GPIO pins to which the receivers will be connected.

 Test timer or GPIO interrupts

Confirm that interrupts are triggered either periodically, according to a timer, or on the rising

edges of the GPIO pins to which the receivers will be connected, depending on the architecture.

 Test infrared receive queue for overrun

Confirm that infrared handler responds to infrared events places in the infrared receive queue

by the timer or GPIO interrupt ISR quickly enough to stop the quick from overrunning. Find the

minimum time between consecutive infrared interrupts.

8.2 Hardware Test Plan

8.2.1 Infrared Emitter And Receiver

 Test infrared emitter with an infrared camera, camera without an IR filter, or other infrared

sensitive device to confirm its signal. Also installed LED and programmed it to turn on during

shoot event. Emitters were programmed to turn on when push button is pressed in the board.

 Test infrared receiver by connecting the receiver to an oscilloscope and using an infrared

remote.

 Test infrared emitter and receiver together using an oscilloscope to confirm that the signal from

the emitter is reflected at the receiver.

o Test range of emitter and receiver to determine maximum shooting range.

o Test response in various lighting conditions to determine impact of infrared noise from

sunlight, incandescent bulbs, etc.

o Test directionality of emitter and receiver.

8.2.2 Xbee Wi-Fi Module

 Modified its destination IP address, SSID of target network it is connecting to, network type to
infrastructure and checked if the change was saved.

 Test connection to Wi-Fi network such as UWS. Confirm that the Wi-Fi module setup with

WPA2 works as expected.

 Test Internet Protocol by pinging desktop over local network.

 Created a talkback PHP server and verified transmit and receive were working as expected.

8.2.3 Motor Controller

 Test Motor Movement by sending appropriate commands.

 Test noise caused by motors on power lines.

 Test desired motor move commands using LEDs in the motor controller.

Once all the components were working individually we integrated them and tested their functionality.

8.3 Integration Test Procedure:

 We integrated Wi-Fi and Infrared circuitry first and tested infrared emitter by sending command
to shoot

 Infrared receivers were tested with appropriate software implementation to sending hit
command to server

 Installed LEDs to test infrared emitter’s functionality. The LED’s were programmed to light up
when infrared emitters went on.

 Tested if polling implementation was working as expected in software by sending commands
and emitting infrared at receivers. Hit event was sent to server by rover

 Integrated motor controller to the system and tested by sending move commands to rover

 Tested if noise caused by motors were interfering with other signals using an oscilloscope

 To reduce noise capacitors were installed and tested noise caused by it in on reset and serial
input lines of the motor controller.

 Noise was tested in pins for Wi-Fi module and capacitors were installed to reduce noise.

 LED was installed in the rover to display connection status of the Wi-Fi module. LED was
programmed to turn on when connections were lost. Blinking LEDs represented trying to
connect.

 Created a web application and tested move commands and shoot commands.

 Web application functionality of displaying hit event was tested.

9 Results and Characterization

9.1 Infrared Readings

The infrared receivers are phototransistors whose collector-emitter voltage increases with increasing

infrared light. The analog signal from the emitters is read through the analog-to-digital converter on the

DE0 Nano and read by the infrared handler as an integer value.

To test the behaviour of the receivers and emitters, we constructed a test circuit with one receiver

beside three emitters. Because of this there is a bleed from the emitters to the receiver, which will be

true for one of the four receivers on the rover. There is also ambient infrared light from the room

lighting.

9.1.1 Ambient infrared readings

Context Max Recorded Level

emitter off 2

emitters on 47

The strength of the signal recorded by the receivers is expected to fall off with the square of the

distance. We measured the infrared readings using DVD remote with similar frequency and intensity as

our three infrared emitters to characterize infrared reception versus distance.

9.1.2 Infrared readings vs distance

Distance (ft) Max Recorded Level

0.5 246

1 243

1.5 235

2 180

2.5 131

3 118

4 86

5 70

6 65

7 57

8 55

9 54

10 51

11 51

10 Safety & Sustainability
(Unless Otherwise Stated, Calculations are Per Rover)

10.1 Wi-Fi Connection Failure

When a Wi-Fi connection failure occurs, the vehicle will stop moving.

10.2 Speed of Vehicle

Assuming we set the gear ratio to 58:1 (one of the two available options), use a conservative motor rpm

value of 9000 (of the 9710 maximum), and estimate the radius of the bottom wheels to be 1.25cm

(based on a total rover height of 2.125in), the speed of the vehicle is:

(9000/58) * (2*π*0.0125/60) = 20.31 cm/s

A small rover at this velocity should not pose any significant threat to safety.

10.3 Voltage, Current, & Power

10.3.1 Motor Component

 Active Mode Idle Mode

Max Current Draw 4.2 A (twice the stall current)
No current
flowing and

thus no power
consumed.

Average Current Draw 1.5 A, driving on ECE 492 Lab Floor

Voltage 3.638 V (measured 3 NiMH batteries)

Max Power 4.2 A * 3.638 V = 15.28 W

Mean Power 1.5 A * 3.638 V = 5.547 W

Duty Cycle Proportions
90% in Active Mode

10% in Idle Mode; powering on/off, pausing to shoot, frozen

10.3.2 Wi-Fi Component

 Transmit Mode Receive Mode AP Sleep Mode

Current Draw 260 mA 140 mA 1.2 mA

Max Voltage 3.64 V

Mean Voltage 3.43 V

Max Power (V * I) 3.64 V * 0.260 A = 0.9464 W

Duty Cycle Proportion 5 % 40 % 55 %

Mean Power (V * I) 3.43 V * (0.05 * 0.260 A + 0.4 * 0.140 A + 0.55 * 0.0012 A) = 0.2389 W

10.3.3 Infrared Circuitry

 3-Transmitter Circuit 1-Receiver Circuit

Max Voltage 1.6 V Max Supply as Above; 3.64 V

Mean Voltage 1.2 V Mean Supply as Above; 3.43 V

Operating Current 3 *50 = 150 mA 2.08 mA – 3.60 mA

Max Power 1.6 V * 150 mA = 240 mW 3.64 V * 0.0036 A = 0.013104 W

Mean Power 1.2 V * 150 mA = 180 mW 3.43 V * 0.00284 A = 0.009741 W

Duty Cycle Proportions
On 5-10% of the time;

Only for shooting
On 100% of the time;

Polled for shot reception

10.3.4 Total Circuit Power

Max Power Mean Power

15.28 W + 0.9464 W + 240 mW + 0.0524 mW =
16.5188 W

5.547 W + 0.2389 W + 180 mW + 0.0524 mW =
6.0183 W

10.4 Energy

10.4.1 Kinetic Energy

KE = ½ mv2 = 0.5 x 0.6 kg x (0.2031 m/s)^2 = 0.012375 J

10.4.2 Stored/Potential Energy

4 AA NiMH Batteries for the On-Board Circuitry, and 3 AA NiMH Batteries for the Rover.
Batteries provided in the lab are rated at 2650 mAH, 1.2V.
Energy = 2650 * 1.2 * 7 / 1000 = 22.26 Wh.

10.5 Summary of Safety Concerns

We do consider this project to merit any safety concerns. Power, voltage, speed, stored energy, and

temperature will not reach dangerous levels.

10.6 Energy Cost

* Based on January 2014 energy price of 7.61¢ per kWh *

http://www.directenergyregulatedservices.com/ELE/Electricity-Rates.aspx

21.05 Wh = 0.02105 KWh * $0.0761 = $0.001670395 per hour, * 24 * 365

= $14.63 per year for continuous operation

10.7 C02 Production from an Equivalent Coal Generation of Energy

* Based on the 0.989 kg CO2/KWh figure given in lecture *

21.05 Wh = 0.02105 KWh * 24 * 365 = 184.398 KWh/year / 0.989 kg CO2 = 186.449 kg CO2

10.8 Solar Cell Area

A 1.2 KW solar package in the Edmonton area produces approximately 1500 KW/hour.

http://www.efcl.org/EFCLActivities/SolarandEnergyProgram/tabid/449/Default.aspx

The area of such a package can be found at 6’ by 18’ = 108 square feet.

http://www.samsclub.com/sams/1-2kw-grid-tied-solar-power-system/prod1181196.ip

The area of solar cells required to power our project is thus is 0.02195 KW / 1500 KW

= 0.0000146333 * 108 square feet = 0.0015804 square feet * (2.54 cm/in * 12in/ft)^2

= 1.468 square centimeters

http://www.directenergyregulatedservices.com/ELE/Electricity-Rates.aspx
http://www.efcl.org/EFCLActivities/SolarandEnergyProgram/tabid/449/Default.aspx
http://www.samsclub.com/sams/1-2kw-grid-tied-solar-power-system/prod1181196.ip

11 Environmental Impact

11.1 Hazardous Substances/ RoHS Compliance

This project does not make use of any hazardous substances; it is RoHS compliant.

11.2 Other Environmental Points

The only aspect of this design that might be considered environmentally unfriendly is the use of

batteries; this is mitigated by our use of rechargeable batteries.

12 References
[1] Alexis Deveria. (2014). Can I Use… Websockets [Online]. Available:

http://caniuse.com/#feat=websockets

[2] The jQuery Foundation. (2014). jQuery [Online]. Available: http://jquery.com/

[3] Michael Fischer. (2012). Altera DE0 Nano [Online]. Available:

http://www.emb4fun.com/fpga/nutos1/index.html

[4] Mozilla Developer Network .(2014, March 18). WebSockets [Online]. Available:

https://developer.mozilla.org/en/docs/WebSockets

[5] The PHP Group. (2001-2014). Sockets [Online]. Available:

http://www.php.net/manual/en/book.sockets.php

[6] Sann-Remy Chea. (2011, December). Build a Real-Time Application Using HTML5 WebSockets

[Online]. Available: http://srchea.com/build-a-real-time-application-using-html5-websockets

[7] Saran Chamling. (2013, May 4). Simple Chat Using WebSocket and PHP Socket [Online]. Available:

http://www.sanwebe.com/2013/05/chat-using-websocket-php-socket

[8] Terasic Technologies Inc. (2003-2013). DE0-Nano Development and Education Board [Online].

Available: https://www.terasic.com.tw/cgi-

bin/page/archive.pl?Language=English&CategoryNo=165&No=593&PartNo=1

[9] World Wide Web Consortium. (2012, September 20). The WebSocket API [Online]. Available:

http://www.w3.org/TR/websockets/

[10] Wout Fierens. (2012-2014). svg.js [Online]. Available: http://www.svgjs.com/

http://caniuse.com/#feat=websockets
http://jquery.com/
http://www.emb4fun.com/fpga/nutos1/index.html
https://developer.mozilla.org/en/docs/WebSockets
http://www.php.net/manual/en/book.sockets.php
http://srchea.com/build-a-real-time-application-using-html5-websockets
http://www.sanwebe.com/2013/05/chat-using-websocket-php-socket
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=165&No=593&PartNo=1
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=165&No=593&PartNo=1
http://www.w3.org/TR/websockets/
http://www.svgjs.com/

13 Appendix A Quick Start Manual
1. Statically assign the server an IP address. (Say, 192.168.0.101)
2. Install any web server stack such as WAMPP or XAMPP.
3. Copy contents of www folder to web folder of your server. (For example: www if using WAMPP

or httpdocs if using XAMPP)
4. Start WAMPP and make sure server is running.
5. In WifiHandler.h modify the SSID to the Service Set ID of your network.
6. Change the SSID_KEY to the password of your network.
7. Change SERVER_ADDRESS to 192.168.0.101.
8. Change ROVER_ID in Messages.h to “r1” if programming Rover 1 or “r2” if programming Rover

2.
9. Save, clean and build the code.
10. Program ARCAP.elf and de0_nano_system.sof file into FPGA’s non-volatile memory.
11. In the terminal, go to the directory www/arcap/socket and execute “php socket.php”
12. Turn on both the battery power packs.
13. Wait until the red LED stops blinking. (Blinking represents trying to connect, if does not connect

check socket.php is running and all verify all network ID’s are correct)
14. Open web browser and connect to “192.168.0.101”. The following webpage is displayed and

select the Rover you want to control.

15. The following is the control interface for the rover. The right button represents shoot. The left
button is to control the direction of the rover.

SHOOT STOP

Direction

14 Appendix B Future Features:

14.1 Future Feature 1:

The first feature to add would be to encode the infrared signals in order to achieve greater range.

Encoding the signals will also allow us to have different types of shots that will have different effects. For

example; one type of shot could freeze the opponent, and one type of shot could cause the opponent to

drop the flag.

14.2 Future Feature 2:

Another goal is to transition from a web app to an Android app. This would allow for players to operate

more flexibly, and in a larger game space, moving around with the cars that they’re controlling.

14.3 Future Feature 3:

After the above additions, we would want to add a real-time video feed of the car’s view and perhaps of

the game map as well, so that remote gameplay can be achieved. We would likely do this by interfacing

a camera through USB.

14.3.1 Details of Operation with GPIO Camera

Figure 1 Integration of network communications with GPIO camera

Terrasic provides a 5 MP Digital Camera Development kit, the TRDB D5M, which interfaces to several

Alterra boards, including the DE2 and DE0 Nano, over GPIO. This camera provides a maximum data rate

of 96 Mp/s at a master clock rate of 96 MHz with a programmable frame rate of 15 fps at maximum

resolution increasing to 70 fps when the resolution is reduced to VGA (640 x 480). These specifications

suggest that transfer of data from the camera to the board may approach rates feasible for our

application, particularly as resolution is reduced, but transfer between the board and the Wi-Fi module,

Wi-Fi module

remote server

player browser

board

camera

controller

camera

UART

GPIO

UDP

and then between the Wi-Fi module and the remote server, creates another bottleneck since the RN

171 EK Wi-Fi module claims data rates up to 500 Kbps over UART. In this setup, the live camera feed is

streamed, over GPIO, to the board, and then, over UART, to the Wi-Fi module, were it is transmitted

using either TCP or UDP to the remote server (UDP trades an increased probability of data loss for

throughput). Image processing is applied at the server to identify targets, using either preexisting

libraries for QR code recognition or OpenCV for more general object recognition, and positive results are

recorded and pushed to the players.

14.3.2 Details of Operation with IP Camera

Figure 2 Integration of network communications with IP camera

As an alternative to routing the camera feed through the microcontroller, which introduces several

bottlenecks, one potential design uses a separately networked recording device such as an internet

protocol (IP) camera. IP cameras, which widely used in security applications, come prepackaged with the

ability to stream over Ethernet or Wi-Fi and to view the stream remotely. IP cameras typically need to be

paired with a dedicated router and come in varying ranges in terms of their maximum distance from

that router, where increasing range comes with increasing price. IP cameras are often linked to

proprietary end-user software, which is of limited use for our project; however, with appropriate use of

port forwarding, it may be possible to access the raw camera feed and extract frames for image

processing.

In a design using an IP camera, the board maintains a network connection solely for commands; as in

the infrared case, this results in a significantly smaller data throughput requirements for our

microcontroller which is more appropriate to its resources.

router

remote server

player browser

IP camera

Wi-Fi module

board

15 Appendix C Hardware Documentation

15.1 Top-Level

15.2 Wi-Fi

3.3 V
VCC 29 1 VCC

uart_wifi_txd 4

10 GND

2 DOUT

3 DIN

5 nRESET pio_wifi_reset_n_export 6

uart_wifi_rxd 2

GND 30

GPIO 1

Xbee S6 Wi-Fi Module

10 uF

100 nF
+

15.3 Infrared

15.3.1 Emitters

15.3.2 Receivers

15.3.3 Motor

16 Appendix D Source Code

16.1 Index to Source Code

Module Description

Status

(T = Tested &

Passed)

InfraredReceiver.cpp

InfraredReceiver.h

Reads input from the infrared receivers through the

analog-to-digital converter (ADC) and posts infrared

hit events to a listener.

T

InfraredSender.cpp

InfraredSender.h

Listens for send commands on a queue and applies

them to the infrared emitters.
T

Listener.cpp

Listener.h

The bridge abstract class provides a common

structure for classes that listen to data sources and

forward relevant events to recipients.

T

MotorHandler.cpp

MotorHandler.h

Listens for commands on a queue and uses them to

control the motor. The command must specify: (a)

which motor to run {l(eft), r(ight)}, (b) the direction

to run the motor in {(f)orward, (b)ackward}, (c) the

speed to run the motor at [0 to 127].

T

NetworkReceiver.cpp

NetworkReceiver.h

Listens for messages from the server using a wifi

handler and forwards them to handlers that execute

the corresponding effects on the rover.

T

NetworkSender.cpp

NetworkSender.h

Listens for events from handlers on the rover and

forwards them to the server using a wifi handler.
T

Status.h
Contains status info for the project, such as classes

of exceptions that may occur.
T

Tasks.h
Contains definitions of tasks, stack sizes and

priorities.
T

WifiHandler.cpp

WifiHandler.h

The wifi handler provides a high-level view of the

interfacing to the Xbee wifi module.
T

16.2 Data Flow

is (infrared shoot)

Wi-Fi Handler
(synchronized)

ih (infrared hit)

Network
Sender

Update Task

Infrared
Receiver

Update Task

Network
Receiver

Update Task

Infrared
Sender

Update Task

mbf120 (move)

TCP

ih

is

mbf120

nd

nd (network disconnect)

Network
Receiver Ping

Task

Wi-Fi Handler
Start Task

queue

queue

Motor
Handler

Update Task

queue

+r1 (rover connect)

nd

+r1

+r1
:ok

:ok

:ok

:ok

