
Page 1

NFC Smart Door
Near Field Communication Smart Door Lock and Web Interface

An NFC door lock with a web interface for remote control and monitoring.

Daniel Fiske | dfiske@ualberta.ca
Michael Lam | michael.lam@ualberta.ca

Daniel Tiam | tiam@ualberta.ca

Page 2

Abstract
The Near Field Communication (NFC) Smart Door involved designing, integrating, and creating
components to enhance a simple door lock using a Terasic DE2 Board. While still supporting
standard keys the door also reads NFC devices including Android devices with NFC to
electronically control access using a powered door strike. A web server provides a browser
independent interface used for administration, status monitoring and remote lock control. All
door events are also logged with timestamps from a Real Time Clock (RTC) module and are
viewable via the web interface. The registered keys and history are backed up periodically to an
SD card for data persistence.

Page 3

Table of Contents

Functional Requirements
Design and Description of Operation

System Architecture
Data Flow Diagram
Web Server Request Diagram

Bill of Materials
Reusable Design Units

SD Controller
Near Field Communication Library
Database Library
I2C Controller
Altera IP Cores

Datasheet
Component Voltage Requirements
Power Consumption
SD Card Performance
Web Server Performance
GPIO protection
I2C Pull up Resistors
FPGA Pinout Map

Background Reading
Representational State Transfer (REST)
NFC Technology and Mobile Phone Services
Long-range NFC Reading
NFC Interfacing and ISO 14443
Android NFC Interfacing

Software Design
Overview
Model Data
History Data
Door Controller Task
NFC Interfacing Task
GPIO Tasks
Backup Task
Web Server Tasks
Hardware Interfacing
REST Interface
Webserver
Web User Interface Design

UI Screen 1: Old Main Page

Page 4
UI Screen 2: Old History Tab
UI Screen 3: Old Key Administration
UI Screen 4: Main Page
UI Screen 5: History Tab
UI Screen 6: Key Administration
UI Screen 4: Clock Administration

Android Application
Test Plan

Hardware and Device Interface Testing
Software Testing
Web Server Testing
JavaScript Testing

Experiments and Characterization
Android NFC Experiments
SD Card and Database Characterization
CPU Speed and Web Server Performance
GPIO Debouncing and Timeout
GPIO Door Status Characterization

Safety
Environmental Impact
Sustainability
References
Appendices

A. Quick Start Manual
B. Future Work
C. Hardware documentation
D. Source Code

Android Application
VHDL
H
C
HTML
JS
Code Folders

Page 5

Functional Requirements
The NFC Smart Door can be summarized in the following use cases:

1. The user unlocks the door with a registered NFC key.
2. The user controls the current status of the lock using the web interface.
3. The user monitors the current and past status of the door and lock using the web

interface.
4. The user manages the registered keys using the web interface.

Design and Description of Operation
The following list outlines the operational feature set:

● Electronic Door Access:
The door lock is electronically controlled by the system. It fails secure which means the
door locks when power is lost. For safety, the door can be manually unlocked to exit.

● NFC Device Support:
The system supports ISO 14443 compatible NFC devices including credit cards, ID
cards, stickers, and Android phones as keys to unlock the door. Up to 20 keys are
allowed.

● Remote Web Interface:
The system web server provides an interface to:

○ View the current door status
○ Unlock and lock the door
○ View and clear history
○ Add and remove keys
○ Set the RTC

● Track Status and History:
The system stores the last 200 events. The following are valid events:

○ Unlocked by NFC key
○ Unlocked by web
○ Locked by web
○ Doorbell ring
○ Invalid NFC key used
○ Door opened
○ Door closed

● Persistent Data:
The historical data and registered keys are stored on the SD card as persistent data.

● Accurate Timestamps:
In order for the system to have accurate timestamps after power or internet loss, an RTC
module is used to keep time.

● Android App:
An app was created that uses Host Card Emulation to enable Android devices as keys.

Page 6

System Architecture

Figure 1: Hardware Block Diagram

Data Flow

Figure 2: Use Case Data Flows

Page 7
Web Server Request Sequence

Figure 3: Representative Web Server Request Diagram with API Call

Bill of Materials

Product Description
Unit
Cost

($CAD)
Qty Cost

($CAD)

Terasic Altera DE2 Development Board
Vendor:

U of A
Datasheets:

ftp://ftp.altera.com/up/pub/Altera_Material/12.1/Boards/DE
2/DE2_User_Manual.pdf

$495 1 $495

Seco-Larm SK-990AQ Enforcer Electric Door Strike
Vendor:

http://www.amazon.ca/Seco-Larm-SK-990AQ-Enforcer-
Electric-Fail-Secure/dp/B0032UYTQ6/ref=sr_1_10?
ie=UTF8&qid=1390854068&sr=8-
10&keywords=door+strike

Datasheets:
http://www.seco-larm.com/pdfs/PI-SD-990A.pdf

$29.95 1 $29.95

http://www.seco-larm.com/pdfs/PI-SD-990A.pdf
http://www.amazon.ca/Seco-Larm-SK-990AQ-Enforcer-Electric-Fail-Secure/dp/B0032UYTQ6/ref=sr_1_10?ie=UTF8&qid=1390854068&sr=8-10&keywords=door+strike
http://www.amazon.ca/Seco-Larm-SK-990AQ-Enforcer-Electric-Fail-Secure/dp/B0032UYTQ6/ref=sr_1_10?ie=UTF8&qid=1390854068&sr=8-10&keywords=door+strike
http://www.amazon.ca/Seco-Larm-SK-990AQ-Enforcer-Electric-Fail-Secure/dp/B0032UYTQ6/ref=sr_1_10?ie=UTF8&qid=1390854068&sr=8-10&keywords=door+strike
http://ftp.altera.com/up/pub/Altera_Material/12.1/Boards/DE2/DE2_User_Manual.pdf
http://ftp.altera.com/up/pub/Altera_Material/12.1/Boards/DE2/DE2_User_Manual.pdf

Page 8

PN532 RFID (NFC) R/W Module with Mifare 1k Classic Tag
Vendor:

http://www.adafruit.com/products/364
Datasheets:

http://www.adafruit.com/datasheets/pn532ds.pdf
http://www.adafruit.com/datasheets/pn532um.pdf
http://www.adafruit.com/datasheets/PN532C106_Applicati
on%20Note_v1.2.pdf
http://www.adafruit.com/datasheets/S50.pdf

$39.95 1 $39.95

RTC Module BOB-00099
Vendor:

https://www.sparkfun.com/products/99
Datasheets:

http://www.sparkfun.com/datasheets/Components/DS130
7.pdf

$16.68 1 $16.68

2GB Sandisk SD Card $5.99 1 $5.99

Linksys E1200 Wireless N Router
User Manual:

http://downloads.linksys.com/downloads/userguide/E_Seri
es_UG_E900Rev_3425-01486_Web.pdf

$39.99 1 $39.99

Ribbon Cable $0.49 2 $0.98

NPN BJT TIP41C $0.39 1 $0.39

Diode 1N4002 $0.21 1 $0.21

Zener Diode Fairchild 1N5248B $0.14 1 $0.14

Resistor 4k7 Ohm $0.10 4 $0.40

Resistor 2k Ohm $0.10 1 $0.10

Total Cost $629.39

Reusable Design Units
SD Controller
Either the University Program SD Card IP Core or the EFSL plus Nios II Endpoint could be used
for the Fat file system and SD card access. Based on suggestions in the SD Card Interfacing
application notes [2], the EFSL plus Nios II Endpoint was used for SD Card access.

Near Field Communication Library
The initial thought was to integrate an open source NFC library to control the NFC reader/writer
module. Both openNFC[22] and libnfc[14] were researched as options. However due to the

http://downloads.linksys.com/downloads/userguide/E_Series_UG_E900Rev_3425-01486_Web.pdf
http://downloads.linksys.com/downloads/userguide/E_Series_UG_E900Rev_3425-01486_Web.pdf
http://www.sparkfun.com/datasheets/Components/DS1307.pdf
http://www.sparkfun.com/datasheets/Components/DS1307.pdf
https://www.sparkfun.com/products/99
http://www.adafruit.com/datasheets/S50.pdf
http://www.adafruit.com/datasheets/PN532C106_Application%20Note_v1.2.pdf
http://www.adafruit.com/datasheets/PN532C106_Application%20Note_v1.2.pdf
http://www.adafruit.com/datasheets/pn532um.pdf
http://www.adafruit.com/datasheets/pn532ds.pdf
http://www.adafruit.com/products/364

Page 9
small NFC requirements of this project and the difficult process involved in porting either library,
both libraries were deemed unnecessary. Instead, code was written directly for the popular
PN532 NFC chip used in this project to implement only the features required.

Database Library
As registered keys and door event history is logged and stored on the SD Card a database
would be useful for managing the data. SQLite [13] is a compact open source database engine
library with a C API meant for embedded systems use. Similar to SQLite, Berkeley DB[23] could
also be used. In order to keep transactions with the SD card small and limit the size of code,
data is instead being stored and managed in delimited flat text files on the SD card. An attempt
to integrate SQLite with the NiosII environment ultimately failed, but could potentially work given
more time.

I2C Controller
This project used 2 GPIO pins to serve as the SCL and SDA lines in an I2C bus. The GPIO lines
were then bit banged in software. The software for reading/writing with I2C was based off code
found in the SD Card Audio demonstration project from Altera’s DE2 CD-ROM. Instead, an open
source I2C core could have been used to handle I2C. Considering the implementation used was
both simple and fast, there was no reason to explore an alternative.

Altera IP Cores
The following default cores provided by Altera’s Qsys program were used:

● Nios II/f core
● SPI (3 wire)
● PIO (GPIO)
● DM9000A Interconnect (Ethernet)
● Ethernet Drivers

Datasheet
The project was built on the Terasic Altera DE2 Board.

Component Voltage Requirements

Component Voltage Source Amperage
(Sleep, Active)

Power Usage
(Sleep, Active)

DE2 Board 9V Power Supply 700mA 6.3W

PN532 NFC
Module

5V Onboard 5V pin 140 mA 0.7W

Electronic Door
Strike

10 - 14Vdc Bench Power
Supply

400mA 0, 4.8W

RTC Module 5V or 3V
Lithium Cell

Onboard 5V pin
& Lithium
onboard

200uA, 1.5mA 0.001W, 0.0075W

Page 10
Power Consumption
The power consumption of the system has two components the DE2 Board with all attached
hardware and the door strike. The values for the board were not measured. The values for the
door strike are included in the following table:

Device Voltage (DC) Current Power

Door Strike (Active) 12.0V (Fixed from
Power supply)

305mA 3.66W

SD Card Performance
The SD card is used to store the registered keys and history files. While limiting file sizes in an
embedded system is considered good practice, file sizes were also limited to increase system
performance. The system allows for 20 registered keys and holds the last 200 door events in
history. The performance of the SD card was tested by writing 200 history entries to file. This
produced an actual file size of 7.63 KB in 3 seconds. The write speed is therefore only 2.54
kBps. To further increase system responsiveness, history is backed up only every 10 minutes.

Web Server Performance
The web server is stateless and sessionless so there are no large memory concerns. However
there is approximately 500kB of HTML, CSS, and JavaScript that needs to be loaded initially to
populate the website. The browser will be caching the web response of these files after initial
load so this isn’t a large concern. The webserver runs from flash memory using the rozipfs
supplied by Altera and uses the fast CPU core running at 75MHz to enhance performance as
outlined in the Experiments and Characterization section.

GPIO protection

Figure 4: Door Latch Protection Circuit
The BJT is rated for 100 V
Diode D2 is rated for 1 Amp
Zener Diode D1 breaks down at 18V

Page 11
I2C Pull up Resistors
The 2 I2C busses are open-drain and thus require external pull-up resistors. A single resistor is
attached to the SDA and SCL lines. The resistance is = 4.7K

FPGA Pinout Map
Pinout Map:

device
Pinout A (closest
to CPU)

Pinout B (furthest
from CPU) interface interface subname

Electrical GPIO 0 Pin 29 Common 3.3V Electrical Vcc3.3V
Electrical GPIO 0 Pin 11 Common 5V Electrical Vcc 5V
Electrical GPIO 0 Pin 12 Common Gnd Electrical Gnd
Electrical GPIO 0 Pin 30 Common Gnd Electrical Gnd

Ethernet onboard Ethernet

Door bell GPIO 0 Pin 14 GPIO
Door bell KEY3 GPIO IRQ
Door latch GPIO 0 Pin 16 Latch pin GPIO
Door status GPIO 0 Pin 26 GPIO
extra out 1 GPIO 0 Pin 20 GPIO extra out 1

extra out 2 GPIO 0 Pin 22 GPIO extra out 2

gpio interrupt 2 GPIO 0 Pin 28 GPIO
NFC GPIO 0 Pin 18 NFC Cable A Pin 07 GPIO RSTOUT_N
NFC GPIO 0 Pin 24 NFC Cable A Pin 05 GPIO IRQ

extra GPIO 0 Pin 09 I2C sda

extra GPIO 0 Pin 13 I2C scl

NFC GPIO 0 Pin 01 NFC Cable A Pin 11 I2C MOSI/SDA/TX
NFC GPIO 0 Pin 03 NFC Cable A Pin 09 I2C SSEL/SCL/RX

RTC GPIO 0 Pin 05 I2C sda

RTC GPIO 0 Pin 07 I2C scl
extra GPIO 0 Pin SPI SCLK
extra GPIO 0 Pin SPI MOSI
extra GPIO 0 Pin SPI SS
extra GPIO 0 Pin SPI MISO
SD card onboard SPI SCLK
SD card onboard SPI MOSI
SD card onboard SPI MISO
SD card onboard SPI SS

Wifi GPIO 0 Pin 15 SPI SCLK

Wifi GPIO 0 Pin 17 SPI MOSI

Wifi GPIO 0 Pin 19 SPI MISO

Wifi GPIO 0 Pin 21 SPI SS

Page 12

Wifi GPIO 0 Pin UART Dout

Wifi GPIO 0 Pin UART nCTS

Wifi GPIO 0 Pin UART Din

Wifi GPIO 0 Pin UART nRTS
Camera onboard USB
NFC Common 5V NFC Cable A Pin 01 5.0V
NFC Common Gnd NFC Cable A Pin 03 GND
NFC n/c NFC Cable A Pin 13 MISO
NFC n/c NFC Cable A Pin 15 SCK
NFC Common 3.3V NFC Cable A Pin 17 3.3V
reset KEY0

None KEY1

None KEY2

LED onboard GPIO Red LED

LED onboard GPIO Green LED

IRQ Hardware Priorities.
Software Device IRQ Device IRQ
ucos Timer Interval Timer 0

second Timer Interval Timer 1
JTAG Uart JTAG Uart 3

USB hc USB 4
USB dc USB 5

Ethernet Ethernet 6
Wifi SPI 7
SD SPI 8

Extra SPI 9
Wifi UART 10

doorbell GPIO doorbell 11
NFC interrupt GPIO int0 12

Doorstatus GPIO int1 13
GPIO int2 GPIO int2 14

extra 0 GPIO extra 0 15
extra 1 GPIO extra 1 16
extra 2 GPIO extra 2 17

Page 13

Background Reading
Representational State Transfer (REST)
REST is a design paradigm that allows data to be transferred between systems and was
created by Roy Fielding [29]. It is commonly applied to websites and services and relies on
some functions of HTTP. REST was chosen to unify the models between the web client in
JavaScript and the web server in C.

NFC Technology and Mobile Phone Services
The paper “NFC Technology in Mobile Phone Next-Generation Services” by Aziza, H. [26]
presents a mobile phone application that uses NFC tags to communicate with a remote social
networking service. The system uses the tags to identify an entity and its location which is then
sent to the social network service with additional action commands. Such a system allows the
benefits of NFC tags to be realized without relying on a large infrastructure to be built on the
NFC devices. A similar system could be used to authenticate the smartphones used as keys in
our NFC smart door if they are on the same wireless network, or even if they are both internet
enabled. Such a system could allow the NFC authentication to be an extension of future HTTPS
web authentication unifying the systems.

Long-range NFC Reading
Long-range NFC was researched and it was determined that it’s not feasible due to the size and
required orientation of the antenna [11]. It states that the read range is proportional to the
antenna size. Using sample value, for example, reading a perfectly positioned tag from 1m
away, would require a coil with a radius of 1.41m (~3m diameter) which is unfeasibly large.
Increasing the power of the remote NFC tag would not be feasible without potentially damaging
the device, so increasing the power in an attempt to increase range is also not an option. The
research paper does not.

Page 14

NFC Interfacing and ISO 14443
The NFC standard that we plan to use is ISO 14443. It consists of 4 different layers that handle
the physical[17], RF[18], initialization[19], and transmission[20] of data using the protocol. The
application specific communication is not provided by ISO 14443 however. Since different
devices will use different application specific communications, it is not feasible to have support
for all of them. Also, adding application specific communications would not be possible in some
cases if there are proprietary systems that must be licensed or registered with. For example, in
order to interface with Visa payWave[21], the following procedure must be followed in order to
gain access to the SDK and communicate with the cards. The goal is to have universal
communication with NFC tags so this would not be feasible

.
Figure 5: NFC 14443 Communication Stack

Android NFC Interfacing
Unfortunately, Android devices return a randomized Unique ID (UID) unless application code is
written using Host Card Emulation[12]. HCE allows an Android application to emulate an ISO
14443 card and communicate with an NFC reader using ISO 7816 Application Protocol Data
Units (APDUs). An HCE application runs as a service on the Android phone. When an NFC
reader initiates communication with the phone, the CPU directs traffic to the selected
application. Applications are selected using a Select Application ID (AID) APDU where the AID is
defined for the given application. All communication is then routed to this application for the
duration of the transaction.

Page 15

Software Design
Overview

Figure 6: Task and Data Interaction

The main software is event driven. The door control task will handle all events triggered by the
surrounding events. All other tasks will feed the door control task events to register and process.
Model and history data is mainly compiled by the door control task and is used by the web
server tasks to serve content to the door administrative website. In the background, the backup
task is responsible for periodically backing up data to the SD card.

Model Data
The model is a globally accessed struct containing the current status of the door, valid keys,
invalid keys available for registration, and the last 200 history events. Access to the model is
controlled using a mutex since multiple tasks will be reading and updating the data model. The
DoorModel and NFCKey structs used are defined as:

typedef struct DoorModel{
/* Control task info */
NFCKey lastNFCKey;
NFCKey lastWebKey;

/* Door status */
bool doorOpened;
bool doorUnlocked;

/* Memory array of keys */
int keyCount;
NFCKey keys[MAX_KEYS];

Page 16

/* Last Access History */
int historyCount;
StatusHistory* lastAccess;
StatusHistory history[MAX_HISTORY];

} DoorModel;

typedef struct NFCKey{
char id[MIFARE_CHAR_LEN];
char note[MAX_CHAR];
bool isRegistered;

} NFCKey;

History Data
The following struct is used to define a history entry:

typedef struct StatusHistory{
struct StatusHistory* nextNode;
NFCKey key;
time_t timeStamp;
char eventSource[MAX_EVENT_SOURCE_CHAR];
char eventOutcome[MAX_EVENT_OUTCOME_CHAR];

} StatusHistory;

Door Controller Task

Figure 7: Door Control Flow Diagram

The door control task is controlled by a message queue. The queue resolves into an enum of
possible events in which the door control task will execute in order. An easy to use event
registrar is provided for other tasks to queue new events. The use of the door controller task is
used to centralize all event handling and keep code easy to maintain. Events can be easily
modified and added when necessary.

A switch statement is then used to determine how to process the current event as shown in the
figure above.

Page 17

Event Trigger Operation

NFC NFC task,
card scanned
and identified

Will complete an NFC interaction. Will unlock or register key
depending on key validity. A history of the event is then saved

Web
Unlock

Website
Unlock

Will unlock door and log an entry of the event.

Web
Lock

Website Lock Will lock door and long an entry of the event.

Door
Status

Door Status
Interrupt

Determines the new door status and records the history event and
sets status LEDs

Doorbell Doorbell
Interrupt

Saves doorbell event into history

Register
Key

Website
button

Will register the desired key specified by the website to be a valid
key

Remove
Key

Website
button

Will remove the desired key from the list of valid keys

Clear
History

Website
button

Will clear all history from data.

Lock
Timeout

Lock Timeout
has occured

Will lock doors, set status LEDs and update model

Page 18
NFC Interfacing Task

Figure 8: NFC Flow Diagram

The PN532 NFC module includes an IRQ pin. The IRQ is pulled low to alert the host that the
PN532 has data to transmit in response to the last command received. The ISR associated with
this IRQ will post to a semaphore used by the NFC task to wait for responses. This task uses
code written for the PN532 to tell the module to look for NFC targets. When a target is found,
the IRQ fires and the task reads back information about the target. This information includes
data responses outlined in the NFC Forum specification such as the Select Acknowledgement
and the device UID. If the sixth bit of the Select Acknowledgement is a 1, then the device is fully
ISO 14443 compliant and is assumed to be an Android device. Otherwise, the device does not
fully comply to the ISO 14443 protocol and is assumed to be a MIFARE card. These are the two
types of keys supported by the system. A MIFARE UID is used as a MIFARE key identifier.
However, since Android devices return a random UID, an additional command is sent to our app
running on the target Android device. The Android app will then return the device’s 8-byte
unique Android ID. This will be used as the identifier for Android keys. The NFC task then posts
to the door control queue to process the key.

Page 19
GPIO Tasks
This project contains 2 GPIO tasks to control debouncing and prevent flooding to the history
data. The GPIOs are in its separate task to prevent blocking on the door control task. When the
GPIO interrupts are fired, a wait time will be triggered before the GPIO can be read. This is to
ensure a proper read of the GPIO. A door control event is then sent to the door control task to
handle the event.

The 2 GPIO are:
- Door Status, with a debounce time of 500 us
- Doorbell, with a debounce time of 100us

Backup Task
To provide data persistence, the keys and history are backed up to the SD Card and can be
restored upon initialization. The backup task is responsible for saving the model and history
data to the SD card periodically. The backup period is set to 5 minutes.

Web Server Tasks
The web server tasks consist of 2 main web tasks and other Interniche specific tasks. The
Interniche Stack was not modified and is outlined in their documentation [28]. The two web
server tasks are the WSInitialTask() and the WSTask(). The WSInitialTask() initializes the web
server and starts the WSTask() which is the main web server task that accepts incoming HTTP
socket connections on port 80. The web server and web api component are outlined below in
their given sections.

Hardware Interfacing
The following table outlines the software drivers and subsystems created to communicate with
particular hardware elements:

Hardware Element Software Description

Ethernet Provides an interface for the dm9000a for the webserver to use.

I2C Provides I2C interface for the RTC and NFC modules.

GPIO Provides GPIO interfacing. Includes interfaces for door status, doorbell,
door latch, registration switch, NFC interrupt pin and the red and green
status LEDs.

RTC Provides access to and control of the RTC module.

NFC Provides basic PN532 communication and sam configuration.

SD Handles the SD card interfacing and file system functionality.

Page 20

REST Interface
A Representational State Transfer (REST) architecture is a web based system for transferring
data between internet connected servers and clients. For the scope of this project a standard
client-server model will be used. REST consists of a standardized interface that allows clients to
synchronize and change the state of data on the server using HTTP packets. The methods
implemented are not fully symmetric because the web interface does not need full model
control. All responses return JSON objects that match the model data used internally.

The following table outlines which REST interfaces were implemented:

Model Type Method Example URL (ip/api/…) Function

Status POST /api/status Lock/Unlock the door

Status GET /api/status Get the lock and door status

Status History GET /api/statushistory Get all history

Status History DELETE /api/statushistory Delete all history

Keys GET /api/key Get all keys

Keys DELETE /api/key?id=[#id] Delete 1 key with specified
id

Keys POST /api/key Update 1 key with specified
id

Image GET /api/image Gets a new image from the
camera

Webserver
The Web Server is based on the embedded MP3 player project from Winter 2013 [3] which is
based on the NIOS II web server template from Altera. This streamlines the integration and
design of the web component which will speed up development through code reuse. The server
was modified to support REST interfaces with PUT, DELETE, and OPTIONS methods as
needed. The existing music player API was removed and replaced with the REST Door API
outlined above.

Page 21
Web Interface JavaScript Architecture
The following web libraries were used:

Library Function License Version

Bootstrap Web UI Framework MIT 3.0.3

Knockout.js Javascript MVVM MIT 3.0.0

jQuery Javascript Library MIT 2.1.0

Dark Bootstrap Theme Theme Apache 2.0 3.0.3

The web interface uses jQuery as a base with the Bootstrap and Knockout.js libraries utilizing it.
jQuery is JavaScript library with many helpful functions that helps streamline and simplify
JavaScript web development. Bootstrap is a UI framework that includes reuseable CSS styles
and JS utilities that aid in web UI design. The UI uses default Bootstrap elements and integrates
them into a simple but functional design. Knockout.js is a Model-View-ViewModel JavaScript
library that helps with viewmodel based development which is the core of REST web interfaces.
The Knockout viewmodel is a direct mapping of the model implemented on the DE2 board. It is
synchronized and controlled through the REST interface and is used by the UI to display and
update information from the model.

Page 22

Web User Interface Design
The web interface is designed for ease of use and is platform independant utilizing HTML5 and
CSS3 web standards. It is also responsive to the width of the browser which means full mobile
support with any HTML5 browser. There are two sets of screens, the old and final screens. The
old represents the first iteration of the UI and features a camera image placeholder. The final
screens are of the final UI which has the same general layout, some new features, and no
camera image placeholder to account for the removal of the camera from the project scope. The
following screens are outlined below:

UI Screen 1: Old Main Page
This page contains the latest web camera image which is refreshed on page load, and the
status of the door. It also has buttons to lock/unlock the door.

Page 23

UI Screen 2: Old History Tab
This page contains the history list of the door’s last statuses. It also contains a button to remove
all history entries.

UI Screen 3: Old Key Administration
This page contains the list unregistered and registered keys. It also contains buttons to register,
or remove those keys.

Page 24

UI Screen 4: Main Page
This page contains the status of the door and buttons to lock/unlock the door.

Page 25

UI Screen 5: History Tab
This page contains the history list of the door’s last statuses. It also contains a button to remove
all history entries.

UI Screen 6: Key Administration
This page contains the list unregistered and registered keys. It also contains buttons to register,
or remove those keys.

Page 26
UI Screen 7: Clock Administration
This page contains the current door time, the current browser time and a button to update the
board time which will resynchronize the board clock.

Android Application

Figure 9: NFC Smart Door Android App Preview with Phone View

The android application is based on the Card Emulation Sample application by Google [30]. It
has modifications for work with the system and sends android IDs which are used as keys.
There are also modifications to remove the debug log, change the app name and add a name
field for easy identification.

Page 27

Test Plan
Hardware and Device Interface Testing
A test framework was written to unit test IO hardware in a single project. As components were
built, the multimeter was used to ensure proper connection between hardware components.

Using test.c and disabling main.c via a macro define, hardware components can be unit tested
independently. The following test cases were created and run successfully:

1. Door Open Detector (GPIO)
a. Double-edge interrupt and ISR function correctly

2. Door Bell (Onboard key)
a. Interrupt and ISR function correctly

3. Electric Door Strike
a. Lock state of the electric door strike controlled correctly

4. Ethernet
a. Successfully served custom 404 page defined in the web server code

5. RTC Module
a. Time was set and read back by the second correctly

6. NFC Module
a. Properly initialized with ISO 14443 card UIDs read back correctly

7. SD Card
a. Files removed and created on the SD card correctly

8. Registration Switch (Onboard switch)
a. On/Off position read correctly

9. USB Camera
a. USB controller registers can be accessed

10. DE2 Red and Green LED
a. LEDs were turned on and off in the correct manner.

11. A Heartbeat task with a low priority was created to ensure the system had not crashed

Software Testing
Events such as door open and NFC tag reading triggered LEDs in the door control task. The
LEDs give confirmation that the main door control task is running and accepting tasks.

Web Server Testing
Web Server Testing was completed through the integration of ethernet as a unit test. Full web
GET request tests were performed in addition to full REST API testing.

JavaScript Testing
Javascript unit testing was accomplished using the Knockout.js viewmodel and redirecting the
AJAX api calls to a test function. The test function would use 2 sets of test data to simulate data
updates, additions and deletions from the viewmodel independent of a web server. All of the
computations are performed on a client machine and are highly susceptible to changes in
hardware, software and browser versions on the device so performance measurements were
not taken. Additionally the JavaScript is not computationally heavy and did not show slow
performance throughout any of the testing so there shouldn’t be any issues with performance.

Page 28

Experiments and Characterization
Android NFC Experiments
Basic technological feasibility experiments were performed with an Android Smartphone as an
NFC reader. The smartphone used was a Nexus 4 with 4.4 KitKat that is compatible with ISO
14443-3 tags. The tag was successfully read and interfaced. The tag contains an application
specific interface which could not be interfaced without reverse engineering, but the tag itself
contained a static UID (4 bytes) that could be used for identification. This experiment shows that
it is possible to interface and identify relatively unique ISO 14443-3 tags but security could not
be guaranteed using this method.

SD Card and Database Characterization
Tradeoffs between storing data as delimited flat text files versus using a database such as
SQLite or Berkeley DB were investigated. While using a database to store and compare keys
would likely be faster for a large set of keys, the number of keys was limited to 20. Furthermore,
the size of the database would add overhead when backing up to the SD card. Since SD card
performance is already very slow, delimited flat text files were used. Integrating SQLite or
Berkeley DB would also take significant effort and therefore this design decision makes sense in
terms of effort, size and speed.

CPU Speed and Web Server Performance
Initially, certain processes such as web page delivery took far too long. It took approximately 90
seconds to deliver the web page from the SD card to a client. This long wait time was
unacceptable, thus investigation to improving the upload rate was performed.

The following configurations were done to improve performance.

Load Times for the Smart Door web application (917KB)

Core type, Core speed, Content location Page Load time and Results

NIOS II Economic, 50Mhz, SD card 90 Seconds = 10.2 KB/s

NIOS II Economic, 50Mhz, Flash memory 32 Seconds = 28.6 KB/s

NIOS II Fast core*, 50Mhz, Flash memory 18 Seconds = 50.9 KB/s

NIOS II Fast core*, 100Mhz, Flash memory Board does not run software.

NIOS II Fast core*, 75Mhz, Flash memory 12 Seconds = 76.3 KB/s

*The Fast core also has 8kB data and instruction caches, and burst mode enabled.

Running the NIOS II fast core improves page load times, however the quicker core speeds may
have introduced system instability.

Page 29
GPIO Debouncing and Timeout
Physical GPIO switches such as the doorbell and door status were prone to bouncing signals.
Thus to prevent multiple event triggers and to prevent blocking on the main event handler, each
Physical GPIO were placed into a separate task.

Bouncing Times for Doorbell and Door Status

GPIO Maximum measured bounce time.

Door status 189 us

Doorbell 20 us

To ensure proper GPIO values were measured, additional time was added to the measured
debouncing. In the software, Door status has a timeout of 500 us and 100us for the doorbell.

GPIO Door Status Characterization
In order to control the door latch, the GPIO must be able to control 12V at 400mA. This is done
by controlling the latch using a BJT. Configured as a Common emitter amplifier, the
configuration will amplify input voltage. In order to reduce GPIO current as well as provide the
proper level shifts, the base resistor is set at 2k Ohm. Experiments show that the latch turns on
when base voltage rises beyond 2.4V and turns off when base voltage falls below 1.8V. These
voltage provide a reasonable threshold between the GPIO high of 3.3V and low of 0V.
Additionally, since the BJT is driving an inductive load, protection diodes have been installed. A
diode parallel to the door latch is rated 1 Amp and will dissipate any voltages higher than 12V. A
Zener diode is also parallel with the BJT for added protection. The BJT is rated for 100V, while
the Zener diode will breakdown at voltages greater than 18V. See the data sheet for Door status
wiring diagram.

Safety
RTC Module - Contains a coin battery - (3V). If the battery is puncture or broken acid could be
spilled on the user.

Door - Potential pinching hazard. Users will exercise caution to not close doors on others or
their own appendages.

Page 30

Environmental Impact

The project does not contain any specific hazardous materials for operation. The following list
outlines which devices are RoHS compliant, and which are not.

RoHS Compliant Non-Compliant

PN532 NFC Module Altera DE2

RTC Module Resistors

Door Strike Solder

Sustainability
The project is currently separate IO components that do not function together. Therefore power
consumption will be assumed to be the sum of each individual component’s power usage in
sleep or active mode.

Sleep mode represents the lowest power state that the system can be in while still responding
to input requests. For simplicity, the active state will be the normal event of scanning a key tag,
opening the door, and taking a picture. The duty cycle will be approximately 6 events/day.

Power Sleep = 6.3 + 0.7 + 0.001 = 7.001W
Power Active = 6.3 + 0.7 + 0.0075 = 7.0075W
Power Door Strike = 3.66W

An event will run for approximately 1 second, and afterwards, the door strike will be powered for
15 seconds to unlock the door. Therefore the average power usage in a day would be:

3600s/hour sleep - 6s/hour active = 3554s/hour sleep
Average Power Usage =(3554s * 7.001W + 6events * (1s*7.0075W+15s*3.66W))/3600s =
7.0147Wh

In Edmonton, it costs 8.7cents per kWh. Assuming the device is running for 1 year:

24hours/day * 365days/year * 7.0147Wh=61.449kWh/year
8.7cents * 61.449kWh/year= $5.35/year

In Edmonton the majority of electricity is coal generated which produces 0.989kg CO2/kWh.

61.449kWh/year * 0.989CO2/kWh = 60.77kg CO2/year

Page 31

References
[1] B. Jongerius, M. Jun and S.Hewson. (2013). I2C Device Integration [Online] Available:

http://www.ece.ualberta.ca/~elliott/ece492/projects/2012w/g4_motion_detection/

[2] J.Brown, and B. Thornton (2013, February 21) SD Card Interfacing [Online] Available:
https://www.ualberta.ca/~delliott/local/ece492/appnotes/2013w/SD_card_interfacing/

[3] J.Brown, and B. Thornton. (2013, February 21) Network-Controllable Embedded MP3
Player
https://www.ualberta.ca/~delliott/local/ece492/projects/2013w/g12_EmbeddedMP3/

[4] T. Kaddoura and J. Nahar. (2013, February 27) DM9000A Ethernet Controller
Application Notes
https://www.ualberta.ca/~delliott/local/ece492/appnotes/2013w/Ethernet_DM9000A/

[5] T. Kaddoura and J. Nahar. (2013, February 27) ISP1362 USB Controller Application
Notes https://www.ualberta.ca/~delliott/local/ece492/appnotes/2013w/USB_ISP1362/

[6] R. T. Fielding, “Architectural Styles and the Design of Network-based Software
Architectures,” Ph.D. dissertation, Univ. California, Irvine., 2000.

[7] M Otto, and J. Thornton, et al. (2014, January 20) Bootstrap [Online]
http://getbootstrap.com/

[8] S. Sanderson (2014, January 20) Knockout.js [Online] http://knockoutjs.com/

[9] The jQuery Foundation (2014, January 20) jQuery [Online] http://jquery.com/

[10] T. Park. (2014, January 20) Bootwatch [Online] http://bootswatch.com/

[11] Y. Lee, “Antenna Circuit Design for RFID Applications”, Microchip Technology Inc.
2003. http://ww1.microchip.com/downloads/en/AppNotes/00710c.pdf

[12] “Host-based Card Emulation” Google. [Online]
http://developer.android.com/guide/topics/connectivity/nfc/hce.html

[13] R. Hipp, D. Kennedy, and J. Mistachkin. (2013, December 6) SQLite [Online]
http://www.sqlite.org/

[14] Libnfc Developer Community. (2013, September 3) Libnfc [Online]
http://nfc-tools.org/index.php?title=Libnfc

[15] L. Ysboodt, and M. De Nil. (2013, April 24) Embedded File Systems Library [Online]
http://sourceforge.net/projects/efsl/

[16] M. Troccoli. (2007, November 7) Nios2 Endpoint [Online]
http://www.ohloh.net/p/efsl/commits/68269113

[17] Intl. Standards Org. (2013, Sept. 19) ISO/IEC 14443-4:2008 Identification cards --
Contactless integrated circuit cards -- Proximity cards -- Part 1: Physical characteristics
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?

http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=39693
http://www.ohloh.net/p/efsl/commits/68269113
http://sourceforge.net/projects/efsl/
http://nfc-tools.org/index.php?title=Libnfc
http://www.sqlite.org/
http://developer.android.com/guide/topics/connectivity/nfc/hce.html
http://ww1.microchip.com/downloads/en/AppNotes/00710c.pdf
http://bootswatch.com/
http://jquery.com/
http://knockoutjs.com/
http://getbootstrap.com/
https://www.ualberta.ca/~delliott/local/ece492/appnotes/2013w/USB_ISP1362/
https://www.ualberta.ca/~delliott/local/ece492/appnotes/2013w/Ethernet_DM9000A/
https://www.ualberta.ca/~delliott/local/ece492/projects/2013w/g12_EmbeddedMP3/
https://www.ualberta.ca/~delliott/local/ece492/appnotes/2013w/SD_card_interfacing/
http://www.ece.ualberta.ca/~elliott/ece492/projects/2012w/g4_motion_detection/

Page 32

csnumber=39693

[18] Intl. Standards Org. (2010, Aug. 19) ISO/IEC 14443-2:2010 Identification cards --
Contactless integrated circuit cards -- Proximity cards -- Part 2: Radio frequency power
and signal interface
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=50941

[19] Intl. Standards Org. (2011, April 12) ISO/IEC 14443-3:2011 Identification cards --
Contactless integrated circuit cards -- Proximity cards -- Part 3: Initialization and
anticollision http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?
csnumber=50942

[20] Intl. Standards Org. (2013, Dec. 18) ISO/IEC 14443-4:2008 Identification cards --
Contactless integrated circuit cards -- Proximity cards -- Part 4: Transmission protocol
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?
csnumber=50648

[21] Visa. (2014, Feb 9) Visa payWave for Mobile
https://developer.visa.com/paywavemobile/docs

[22] The Open NFC Project. (2013, April 25) openNFC [Online] http://open-nfc.org/wp/

[23] Oracle. (2013, May 31) Berkeley DB [Online]
http://www.oracle.com/technetwork/database/database-
technologies/berkeleydb/overview/index-085366.html

[24] L. Fried (Ladyada), and K. Townsend. (2013, October) Adafruit NFCShield I2C [Online]
https://github.com/adafruit/Adafruit_NFCShield_I2C

[25] Nathan Seidle (Sparkfun.com). (2004, Nov. 23) Example 16F88 Code [Online]
http://www.sparkfun.com/datasheets/Components/rtc-demo.zip

[26] Aziza, H., "NFC Technology in Mobile Phone Next-Generation Services," Near Field
Communication (NFC), 2010 Second International Workshop on , vol., no., pp.21,26,
20-20 April 2010 doi: 10.1109/NFC.2010.18

[27] Web UI Door Background Image [Online]
http://www.interiordev.com/imagedir/awesome-wooden-front-door-with-fancy-two-lamp-
on-the-wall.jpg

[28] Altera. “Ethernet and the NicheStack TCP/IP Stack - Nios II Edition”
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf

[29] Fielding, R.T.; Taylor, R.N., "Principled design of the modern Web architecture,"
Software Engineering, 2000. Proceedings of the 2000 International Conference on ,
vol., no., pp.407,416, 2000 doi: 10.1109/ICSE.2000.870431

[30] Google. “CardEmulation”
https://developer.android.com/samples/CardEmulation/index.html

[31] Altera. “DE2_NIOS_HOST_MOUSE_VGA”

https://developer.android.com/samples/CardEmulation/index.html
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf
http://www.interiordev.com/imagedir/awesome-wooden-front-door-with-fancy-two-lamp-on-the-wall.jpg
http://www.interiordev.com/imagedir/awesome-wooden-front-door-with-fancy-two-lamp-on-the-wall.jpg
http://www.sparkfun.com/datasheets/Components/rtc-demo.zip
https://github.com/adafruit/Adafruit_NFCShield_I2C
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index-085366.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index-085366.html
http://open-nfc.org/wp/
https://developer.visa.com/paywavemobile/docs
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50648
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50648
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=50942
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=50942
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=50941
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=39693

Page 33

Appendices
A. Quick Start Manual

1. Program the board with the .pof/.sof file as outlined in the ECE 492 tutorials.
2. Program the website found in “~/software/system/WebUI.zip” into flash memory with

memory offset 0x200000.
3. Open the NIOS II Eclipse IDE and import an existing project. Choose the project folder

“~/software/NFCProject/”.
4. Follow the wizard entering in values as outlined in the ECE 492 tutorials.
5. Add a new NIOS II Board Support Package using the “~/niosII_system.sopcinfo” file.
6. Name the BSP project to NFCProject_bsp.
7. Right click on the bsp project and click NIOS II -> BSP Editor.
8. Go to the software packages tab and enable the “altera_ro_zipfs” and “altera_iniche”

components.
9. The project is setup to use a static IP of 192.168.1.111 on the 192.168.1.0/24 subnet. If

needed, change the static IP or remove it completely to fallback to DHCP by editing
“~/software/NFCProject/webserver/web_server.h” line 64 to 77.

10. Build both projects.
11. Right click on NFCProject and choose Run as -> NIOS II Hardware.
12. Visit the site using a network connected device by entering the IP into the browser.

B. Future Work
The following is a list of future additions to the project:

Feature Description

More statistics and analytics In addition to history, have a statistics page that outlines
information and graphs with relevant data that users would
want to see.

Camera with live streaming Initial plans were to use a camera for images. This is still a
potential feature and could be extended to live streaming.

HTTPS and NFC security Standard HTTPS and NFC security could be implemented.

User accounts User accounts could be implemented to allow keys to be
linked to uses and users to be allowed different levels of
access.

Time restricted access Using the current time of day and a predetermined schedule,
restrict or allow access to a key.

Google Glass Integration Since the JSON REST API is accessible from any web
enabled device on the same network, google glass integration
could be as simple as making an app that uses the API
directly.

Pet door support Develop a version of the system to work with pet doors and
pets.

Page 34
C. Hardware documentation

Figure 10: Hardware Block Diagram

Page 35

D. Source Code
The project software has been Doxygened. See software/NFCProject/Doxygen/html/files.html
for full call stack. This is the main() call stack.

Page 36
The files listed below are authored solely by us or else the original author will be mentioned. Any
files not mentioned were not authored by the group.

The Status legend is {Not compiled successfully, Compiled without errors, Executed or
otherwise demonstrated, Tested and passed}.

Android Application
The android application is based on the Card Emulation Sample project from Google [30]. There
are 34 files and listing each of them is unfeasible. The following list contains all of the modified
files:

File Description Status

src\main\res\values\strings.
xml

String resource file, added some fixed strings,
removed others that weren’t needed.

T

src\main\res\values\base-
strings.xml

Other string resource file, changed the app name T

src\main\java\com\example\
android\cardemulation\Acco
untStorage.java

This file contains the data storage class and was
modified to handle the name string and to get and
store the Android ID.

T

src\main\java\com\example\
android\cardemulation\Card
EmulationFragment.java

This file contains the view fragment for the card and
was modified to have a name field.

T

src\main\java\com\example\
android\cardemulation\Card
Service.java

This file contains an Android HCE Service and was
modified to work with the PN532, and send the
Android ID as a hex string.

T

src\main\java\com\example\
android\cardemulation\Main
Activity.java

This file contains the main activity and was modified
to remove the log.

T

VHDL

File Description Status

DM9000A_IF.v Ethernet interconnect. From Altera T

ISP1362_IF.v USB interconnect. From Altera T

niosII_NFCProj
ect.vhd

Top level, FPGA interconnect. Modified from ECE 492 Lab1 T

H

File Description Status

web_api.h This is the api handler header file. Modified from the MP3
player project [11]

T

Page 37

http.h This is the http implementation header file. Modified from the
MP3 player project [11]

T

web_server.h Modified version of the web_server.h from Altera T

jsonConverter.c This is the header for the helper methods to convert model
objects to json

T

database.h Declarations and definitions for database.c T

model.h Defines the data model struct and all substructures. T

doorcontrol.h Declarations for door control T

camera.h Declarations for camara Task C

gpio.h Declarations for gpio service routines T

nfc.h Holds the NFC task and hardware interface T

i2c.h Header file for i2c.c T

test.h Contains test framework for unit testing T

rtc.h Declarations and definitions for rtc.c T

pn532.h Declarations and definitions for pn532.c T

C

File Description Status

web_api.c This is the api handler that implements the REST interface.
Modified from the MP3 player project [11]

T

http.c This is the http implementation file. Modified from the MP3
player project [11]

T

web_server.c Modified version of the web_server.c from Altera T

jsonConverter.c This file holds helper methods to convert model objects to json T

network_utilities
.c

This file is from Altera and was modified to use a fixed serial
number.

T

camera.c Holds the camera task and hardware interface, potentially uses
USB interface from Altera Mouse demo.

C

gpio.c Holds the gpio interrupt routines and interface T

nfc.c Holds the NFC task and hardware interface T

Page 38

database.c Handles reading/writing files on the SD card. T

model.c Initializes and maintains the data model. T

doorcontrol.c Controls and responds to door hardware events. T

i2c.c A general i2c driver rewritten to support clock stretching and
communication with devices not utilizing internal registers

T

test.c Contains test framework for unit testing T

rtc.c Methods for reading/writing the time from/to the RTC module T

pn532.c Methods for sending commands and reading responses from
the PN532 NFC module

T

hce.c Methods for communicating with an Android device using Host
Card Emulation

T

HTML

File Description Status

index.html This is the html page with styles that contains the full markup for
the web UI. The file does not contain any comments since the
full file is sent to the user.

T

JS

File Description Status

index.js This is the JavaScript that is used by the index.html page and is
loaded with it in the browser.

T

Code Folders

Folder Description Status

/hw/usb Code here is used to potentially control the USB, Code is
originally sourced from Altera Mouse Demo.

C

/sd This folder contain code to control and use the SD card. Code
sourced from 2013w G12 SD card interfacing.

T

/hw/ethernet Used to interface with the dm9000a chip, Code from Altera
demo.

T

~/software/We
bUI/

This folder contains bootstrap, the bootstrap theme, jquery, and
knockout. It also contains some authored code files which were
outlined above.

T

