
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      
 
 
 
 
ECE 492 Capstone Project  
2013W 
 

Virtual Guitar Gloves 
 
 
Summary: Play a virtual guitar in the air by using two gloves fitted with tactile sensors 
and an accelerometer.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Group Members:  

Elysia Jong  ejong@ualberta.ca 
Qingyue Zhou  qingyue@ualberta.ca 

 
 
 
 



Abstract  
 

Terasic’s V.1.6 DE2_SD_Card_Audio demonstration was used as a base for this 
project. By default, it waited for an SD card to be inserted into the FPGA’s port, then 
played all the files within it in sequence through audio out. The files are assumed to be 
of .wav format with a 48 kHz sampling rate. It also displayed on the 7-segment and LEDs. 
The project had no documentation and the files were written in Verilog.  

This demo project was modified to only play one file at a time, depending on 
which tactile sensor was pressed and only if the accelerometer detected a strum action 
from the user. The LCD was programmed to display whether the system was in note or 
chord mode and which octave scale was selected. The tactile sensors, in essence, were 
simple on/off switches with hardware debouncing implemented. The digital 
accelerometer communicates through the onboard GPIO pins to a second I2C bus, 
separated from the I2C bus used for the audio CODEC to avoid any possibility of conflict. 
All sounds played are pre-recorded files stored in the SD card. External components are 
all wired to the Altera DE2 via the GPIO pins.    
 



Table of Content 
FUNCTIONAL REQUIREMENT ............................................................................................................ 3 

SPECIFICATION: ......................................................................................................................................... 3 
HOW TO USE: ............................................................................................................................................. 3 
GOALS ACHIEVED: .................................................................................................................................... 3 

DESIGN AND DESCRIPTION OF OPERATION ................................................................................. 4 
FLOW CHART: ............................................................................................................................................ 5 
INPUT TO OUTPUT FUNCTIONALITY:.......................................................................................................... 5 
ALGORITHMS/TASKS: ................................................................................................................................ 5 

BILL OF MATERIALS ............................................................................................................................. 6 

REUSABLE DESIGN UNITS ................................................................................................................... 7 

DATASHEET .............................................................................................................................................. 8 
USER PERSPECTIVE DIAGRAM .................................................................................................................. 8 
USER I/O SIGNALS: ................................................................................................................................... 8 
RIBBON HEADER MAPPING ..................................................................................................................... 10 
ACCELEROMETER INTERFACE: ................................................................................................................ 11 
SD CARD INTERFACE: ............................................................................................................................. 11 
EXTERNAL CIRCUITRY SCHEMATIC: ....................................................................................................... 12 
POWER:.................................................................................................................................................... 12 

BACKGROUND READING ................................................................................................................... 12 

SOFTWARE DESIGN ............................................................................................................................. 15 
BLOCK DIAGRAM: .............................................................................................................................. 16 
LIST OF LIBRARIES: ................................................................................................................................. 17 

TEST PLAN .............................................................................................................................................. 18 
SOFTWARE: ............................................................................................................................................. 18 
HARDWARE: ............................................................................................................................................ 18 

RESULTS OF EXPERIMENTS AND CHARACTERIZATION ........................................................ 19 
STRUM DETECTION: ................................................................................................................................ 19 
CPU CLOCK/PERFORMANCE: .................................................................................................................. 19 

REFERENCES .......................................................................................................................................... 20 

APPENDICES ........................................................................................................................................... 22 
QUICK START MANUAL .......................................................................................................................... 22 

Hardware: ........................................................................................................................................... 22 
Overview: ............................................................................................................................................ 22 
Steps to start from flashed board: ....................................................................................................... 22 
Software: ............................................................................................................................................. 23 
How to play: ........................................................................................................................................ 23 

FUTURE WORK ...................................................................................................................................... 23 

1 
 



BACKUP PLANS/OPTIONS: ....................................................................................................................... 23 
EXTENSIONS: ........................................................................................................................................... 24 

HARDWARE DOCUMENTATION....................................................................................................... 25 
BLOCK DIAGRAM OF INTERACTIONS BETWEEN PROCESSES: ................................................................... 26 
INDEX TO SOURCE CODE: ........................................................................................................................ 26 

 

  

2 
 



Functional Requirement  

Specification: 
 Our virtual guitar consists of 2 gloves. There are 7 tactile sensors on the left hand, which 
are used for 7 notes (A to G). There are 4 sensors on the right: 2 used to go up/down octaves, 1 to 
switch from playing notes to chords or vice versa, and a reset to the original mode (notes with 
default octave). There is also one accelerometer on the right hand to detect a strum from the 
player. By combining the glove’s tap sensor and accelerometer signals, we can realize a guitar 
playing without an actual guitar. 
  The player is assumed to be right-handed. Once the player is touching their left thumb to 
a left sensor and a strum action from the right hand is detected, the speakers will then play the 
certain note/chord the player intended to play. This is meant to reflect the playing of an actual 
guitar, where the player would hold the fretboard with their left hand and play the strings with 
their right. If the player waves his/her right hand, but no tap sensor is engaged, nothing will 
happen.  
 The 2 gloves have a wired connection to the Altera DE2 FPGA board through the GPIO 
pins. Speakers are connected to Line Out for audio output. The guitar sounds (A-G, notes/chords) 
are saved in an SD card. Filtering is to be applied to the sound files to obtain the different 
octaves. 

How to use: 
1 Playing a note: 

a user must press and hold their left thumb to 1 left finger note (“A” - “G”) 
i this is to mimic holding the fretboard on a real guitar 

b user moves right hand downward in a strumming action 
c simultaneous combination of both a. and b. required 

2 Changing between single notes and chords: 
a user needs to press right thumb to “MS” and release (no hold)  

3 Changing octaves: 
a user must press their right thumb (no hold) to either: 

i ↓: octave down 
ii ↑: octave up 

b play a note normally as in 1. 
4 Resetting to default octave and note mode: 

a user needs to press right thumb to “R” and release (no hold) 

Goals achieved: 

3 
 



The tactile sensors, combined with hardware debouncing, had no issues. The left hand 
sensors correspond to the correct notes/chords and the right hand’s mode switch (for selecting 
notes/chords), octave up, octave down, and reset buttons were functional. The LCD also 
correctly displayed whether the user was in note or chord mode and which octave. The threshold 
on the accelerometer was set so that it would not recognize motion if the user moved their hand 
too slowly. Due to the significant amount of time it took to interface the accelerometer, the 
filtering used to achieve the octaves was not done. The original sound files were run through an 
audio editor called Audacity 2.0.3, where the frequencies were changed, new sound files 
generated and then stored in the SD card. This meant there were 42 files instead of the intended 
14 files for guitar sounds.    

The loading time required for the SD card is not noticeable. When running from flash 
memory, powering up the FPGA and instantly attempting to play a sound will work without any 
apparent delay. Originally, there was noise in the output sound. The saved .wav files are from an 
acoustic guitar, but the output from the FPGA sounded synthesized and in a minor scale. This 
was corrected by changing the Nios II processor clock from 50 MHz to 100 MHz. 

Design and Description of Operation 
There are 11 tap sensors for the 7 notes (A-G) and 4 modes (R, MS, Octave ↑, Octave ↓) 

placed as shown in the image below. Each sensor is located on a finger joint section, so that the 
player may bend their fingers. All unused finger joints may be used for future expansion. The 
accelerometer will be attached on the back of the right hand near the wrist.  

 
 Image 1: Placement of sensors modified from http://media.npr.org/assets/news/2010/01/27/hands-

ef12ac2473025791c19e4478b5ca0078c2fa1942-s6-c10.jpg 

4 
 

http://media.npr.org/assets/news/2010/01/27/hands-ef12ac2473025791c19e4478b5ca0078c2fa1942-s6-c10.jpg
http://media.npr.org/assets/news/2010/01/27/hands-ef12ac2473025791c19e4478b5ca0078c2fa1942-s6-c10.jpg


Flow chart: 

 
Image 2: Software design flow 

Input to output functionality: 
1 Tap sensor and accelerometer signals detected from GPIO pins 
2 Based on input, read sound file from SD card 
3 Output sound file to speakers connected to FPGA 

Algorithms/Tasks: 
 “task_which_note” simply polls for user input on the left glove through an infinite while 
loop. It keeps track of the BASE_ADDRESS of the tactile sensors using IORD_PIO_DATA 
(BASE_ADDR,0) on the GPIO pins. The tactile sensors, using the internal ~25kohm resistors on 
the DE2, are wired to be active high. Therefore, once a 0 value is detected in the 

5 
 



BASE_ADDRESS, it corresponds to a tactile sensor being depressed. The sector that should be 
read from the SD card is then updated depending on which sensor it was. While polling is 
generally wasteful for CPU cycles, this system has no need to do any other critical computation 
or tasks other than to respond to the user’s actions. 

Interrupts and queues are used to handle the signals from the right glove, as these are 
used to change the modes of play available, versus the actual selection of notes. The thought was 
that these buttons will be less often pressed and so there is less need for polling. The current state 
of the system is displayed on the LCD by “taskModeDisplay.” 

“task_accelerometer” initializes the I2C bus as well as initializing the accelerometer 
registers. The values in these registers configure how it will function. For this project, it is set to 
detect freefall in the x-axis (1D) from the accelerometer’s point of view. This corresponds to the 
axis perpendicular to the earth’s surface.  

   “task_sd_play” gathers all the information from the other tasks and actually plays 
the .wav file from the SD card to the Line Out audio jack. The range of sectors to play, 
determined from “task_which_note,” is read one sector at a time and stored in a FIFO buffer that 
is fed to audio out.  

Bill of Materials 
Other than the items listed below, a standard wall outlet (120 V, 60 Hz) is required to 

power the Altera DE2 board and external speakers if headphones are not used. 
 

Qty Part Name Unit Cost 
(CAD) 

Total Cost 
(CAD) 

1 Altera/Terasic DE2 development board 
http://www.altera.com/education/univ/materials/boards/de2
/unv-de2-board.html 

$517.72 $517.72 

2 Ribbon cable (40 & 50-pin) $10.00 $20.00 

1 Perf board $7.50 $7.50 

1 roll Wire wrap  $10.00 $10.00 

4 Capacitors (0.1 uF) $0.25 $1.00 

1 kit Resistors (used 4x 180 ohm, 4x 1 kohm) $7.95 $7.95 

2 Headers (40 & 50-pin) $0.20 $0.40 

1 Speakers/headphones $20.00 $20.00 

1 Thin wool gloves (pair) $5.00 $5.00 

6 
 

http://www.altera.com/education/univ/materials/boards/de2/unv-de2-board.html
http://www.altera.com/education/univ/materials/boards/de2/unv-de2-board.html


1 2GB SD Card $10.00 $10.00 

1 Accelerometer (MMA8452Q)  
Digital output via I2C bus. Low voltage to interface (1.6-
3.6V). ±2g/4g/8g 3-axis. Package is about the size of a 
quarter. 1.95-3.6V supply. 2 programmable interrupt pins. 
 
Supplier: https://www.sparkfun.com/products/10955 
Datasheet: 
http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Sensors/Ac
celerometers/MMA8452Q.pdf 

 $9.95 $9.95 

11 Tactile sensor (450-1649-ND) 
Non-illuminated, top-actuated, 6.00mm x 6.00mm, off-
mom micro switch. Actuator height is 4.30mm with 
0.25mm switch travel and through-hole mounting. Max 
contact rating at 0.05A @ 12VDC, minimum at 10uA @ 
1VDC. 
Supplier: http://www.digikey.ca/product-
detail/en/FSM2JH/450-1649-ND/1632535 
Datasheet: 
http://www.te.com/commerce/DocumentDelivery/DDECon
troller?Action=srchrtrv&DocNm=1825910&DocType=Cus
tomer+Drawing&DocLang=English 

$0.05 $0.55 

 TOTAL  $610.07 

  

Reusable Design Units 
1. The Altera DE0-Nano board could be used in place of the Altera DE2. There is an 

accelerometer already built into the DE0 FPGA and it is only 3x2 inches compared to the 8x6 
inches DE2. However, it does not have a audio out jack or an SD card port. A USB-bus can be 
attached to the USB port for more connections. The DE0 also only has a 2-pin external header 
for power which can be subject to a lot of movement, especially if the board is attached directly 
to our glove. The DE2 has many more features and functions that could be additions to our 
project, or they may be unused. If the latter, the DE0 may be a more appropriate choice. 

2. The Terasic Technologies Inc.V.1.6 “DE2_SD_Card_Audio” demonstration project 
contains solutions for both the SD card and audio out. The SD card portion can be substituted 
with reusable design  unit 3. The audio can be substituted with Altera University’s Audio IP 
Core. An application note has been written for it here: 
https://www.ualberta.ca/~delliott/local/ece492/appnotes/2013w/audio_altera_university_ip_cores
/ 

7 
 

https://www.sparkfun.com/products/10955
http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Sensors/Accelerometers/MMA8452Q.pdf
http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Sensors/Accelerometers/MMA8452Q.pdf
http://www.digikey.ca/product-detail/en/FSM2JH/450-1649-ND/1632535
http://www.digikey.ca/product-detail/en/FSM2JH/450-1649-ND/1632535
http://www.te.com/commerce/DocumentDelivery/DDEController?Action=srchrtrv&DocNm=1825910&DocType=Customer+Drawing&DocLang=English
http://www.te.com/commerce/DocumentDelivery/DDEController?Action=srchrtrv&DocNm=1825910&DocType=Customer+Drawing&DocLang=English
http://www.te.com/commerce/DocumentDelivery/DDEController?Action=srchrtrv&DocNm=1825910&DocType=Customer+Drawing&DocLang=English
https://www.ualberta.ca/%7Edelliott/local/ece492/appnotes/2013w/audio_altera_university_ip_cores/
https://www.ualberta.ca/%7Edelliott/local/ece492/appnotes/2013w/audio_altera_university_ip_cores/


3. For the SD card, the application note “SD_Card_Interfacing” created by Jason Brown 
& Brady Thornton (Group 12) of  Winter 2013 can be used as a substitute plan: 
https://www.ualberta.ca/~delliott/local/ece492/appnotes/2013w/SD_card_interfacing/ 

Datasheet 

User Perspective Diagram 

 
Image 3: User perspective diagram 

User I/O Signals: 
All GPIO inputs are driven by +3.3 V and are active low.  

Signal GPIO 
Pin 

Description Type 

8 
 

https://www.ualberta.ca/%7Edelliott/local/ece492/appnotes/2013w/SD_card_interfacing/


GPIO_0[10] 13 Note A tactile sensor on left index tip Input 

GPIO_0[12] 15 Note B tactile sensor on left middle tip Input 

GPIO_0[14] 17 Note C tactile sensor on left ring tip Input 

GPIO_0[16] 19 Note D tactile sensor on left pinky tip Input 

GPIO_0[18] 21 Note E tactile sensor on left index tip below Note A Input 

GPIO_0[20] 23 Note F tactile sensor on left middle tip below Note B Input 

GPIO_0[22] 25 Note G tactile sensor on left ring tip below Note C Input 

GPIO_0[6] 7 Reset tactile sensor on right pinky tip Input 

GPIO_0[4] 5 Mode Switch tactile sensor on right ring tip Input 

GPIO_0[0] 1 Octave Up tactile sensor on right index tip Input 

GPIO_0[2] 3 Octave Down tactile sensor on right middle tip Input 

GPIO_0[11] 14 SDA of accelerometer (communicate with I2C bus) Input 

GPIO_0[13] 16 SCL of accelerometer (communicate with I2C bus) Output 

GPIO_0[15] 18 INT2 of accelerometer (communicate with I2C bus) Input 

SD Card  N/A Holds .wav files  Input 

Line-Out N/A Audio out (green) Output 

LCD N/A Display the current mode (note/chord) Output 

7-Segment  N/A SD card sector display (right-most 4) Output 
 

9 
 



 
Image 4: GPIO pin schematic 

Ribbon Header Mapping 

 
Image 5: Ribbon Header Mapping 

10 
 



Accelerometer Interface: 

Signal Description Type 

sda_padoen_o data enable in 

scl_i2c_to_accel i2c clock to accelerometer out 

sda_i2c_to_accel i2c data to accelerometer inout 

scl_i2c_to_bus i2c clock to i2c bus in 

sda_i2c_to_bus i2c data to i2c bus inout 

interrupt2 int2 on accelerometer in 

avalon_slave_address avalon_slave.address in 

avalon_slave_readdata avalon_slave.readdata out 

avalon_slave_writedata avalon_slave.writedata in 

avalon_slave_write_n     avalon_slave.write in 

avalon_slave_chipselect  avalon_slave.chipselect in 

avalon_slave_byteenable  avalon_slave.byteenable in 

avalon_slave_read avalon_slave.read in 

SD Card Interface: 

Signal Description Type 

Data2 Data signal 1 out 

Data3 Data signal 2 out 

CMD I/O Input and output command  inout 

GND Supply voltage negative  in 

VDD Supply voltage positive  in 

CLK  Clock signal  in 

Data0 Data signal 0 out 

Data1 Data signal 1 out 

11 
 



External Circuitry Schematic: 

 
Image 6: Schematic 

Power: 
 The below values were obtained with a DE2 power measurement wiring harness 
connected to the system: 
  
Idle: 0.447A, 9.10V 
Peak: 0.457A, 9.10V 
Power = I2R =  (0.447 to 0.457)2 9.10 =  1.818 to 1.901 [W]  

Background Reading 
 
1. Implementation of SD card music player using Altera DE2-70: 
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5957486&contentType=Confere
nce+Publications&searchField%3DSearch_All%26queryText%3DAltera+de2 
 This article is dedicated to show the implementation of a music player build based on 
Altera DE2-70 board. It shows us very detailed design procedures and requirements. Although it 
is built on a different board, we can still get some decent ideas from it. For instance, their project 
is using I2C protocol to configure the audio chip working in master mode. The SD card must be 
16-bit FAT format system, and for each sector, it has 512 bytes data. Therefore the main 

12 
 



program is going to read 512 bytes each time, write the data to the DAC FIFO in the audio 
controller, and then enter the next loop. In our design, we should know base/starting address of 
each sound file, and how many loops we are going to read for each of them.  
 
2. The Reading/Writing SD Card System Based on FPGA 
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5635615&contentType=Confere
nce+Publications&searchField%3DSearch_All%26queryText%3DSD+card 
 The information provided in this article explains how to interface the SD card to an 
FPGA, specifically the Altera DE2-70 using QuartusII and NiosII. The pins of the SD card are as 
follows: 

 
Image7: SD card interface 

http://3.bp.blogspot.com/_8JZhVVmpICU/TH_Pxa19MHI/AAAAAAAAApg/pgSppwx0gY8/s1600/SD+card+pinout.jpg 
 

 These pins are interfaced in Quartus II as memory-mapped slaves. The article also 
discusses the FAT16 file system as well as the commands for the SD card operation: 

13 
 

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5635615&contentType=Conference+Publications&searchField%3DSearch_All%26queryText%3DSD+card
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5635615&contentType=Conference+Publications&searchField%3DSearch_All%26queryText%3DSD+card
http://3.bp.blogspot.com/_8JZhVVmpICU/TH_Pxa19MHI/AAAAAAAAApg/pgSppwx0gY8/s1600/SD+card+pinout.jpg


 
http://dcodelab.files.wordpress.com/2012/11/command.jpg 

Furthermore, SD card initialization, data reading, data writing, and data erasing, were 
explained. The information was extremely similar to what we are doing for our project (based of 
off Terasic’s demo.) and multiple example projects we have found have used the same methods 
for SD card communication (1-bit SPI). Most examples only did reading, so the data writing and 
data erasing details could possibly be utilized for further functional expansion of our guitar 
gloves.  
 
3. 基于 FPGA 的 I_2C 控制器的实现及其在音频解码中的应用 (The application of I2C 
controller, based on FPGA, in audio codec perspective) 
http://read.pudn.com/downloads143/doc/comm/624483/基于 FPGA 的 I_2C 控制器的实现及其

在音频编解码中应用.pdf 
 In our project, we are playing sound files from the SD card to the audio codec, and the 
transmission is realized by I2C bus. This article provides the information about how to realize 
communication by using I2C bus in DE2 board. It explains how I2C controller work in detail by 
commenting the verilog codes provided by Altera. Thus this article is really helpful for us to 
understand the functionality, and performance of I2C bus so that we can embed our 
accelerometer into our design.  
 
4. Altera Quartus II Tutorial 

14 
 

http://dcodelab.files.wordpress.com/2012/11/command.jpg
http://read.pudn.com/downloads143/doc/comm/624483/%E5%9F%BA%E4%BA%8EFPGA%E7%9A%84I_2C%E6%8E%A7%E5%88%B6%E5%99%A8%E7%9A%84%E5%AE%9E%E7%8E%B0%E5%8F%8A%E5%85%B6%E5%9C%A8%E9%9F%B3%E9%A2%91%E7%BC%96%E8%A7%A3%E7%A0%81%E4%B8%AD%E5%BA%94%E7%94%A8.pdf
http://read.pudn.com/downloads143/doc/comm/624483/%E5%9F%BA%E4%BA%8EFPGA%E7%9A%84I_2C%E6%8E%A7%E5%88%B6%E5%99%A8%E7%9A%84%E5%AE%9E%E7%8E%B0%E5%8F%8A%E5%85%B6%E5%9C%A8%E9%9F%B3%E9%A2%91%E7%BC%96%E8%A7%A3%E7%A0%81%E4%B8%AD%E5%BA%94%E7%94%A8.pdf


http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6278363&contentType=Books+
%26+eBooks&searchField%3DSearch_All%26queryText%3DAltera+Quartus+II+Tutorial 
 This is a tutorial article for Altera Quartus II. It includes several functions of Quartus II. 
We found it is very useful under the section “B6. Making Pin Assignment”. It helped us to 
complete our application notes, which is about applying internal weak pull-up resistor in Quartus 
II.  

Software design 
The software design is based on Nios II, uC/OS-II. All the signals are coming from the 

GPIO on the DE2 board, and interrupt handlers are used to deal with the different signals. In 
addition, we need 2 tasks to manage the filtering and sound playing. The following is the task 
and interrupt descriptions: 
 

Interrupt name Description 

isr_Rst It will handle the RESET signal comes from the right pinky tip sensor. 
Inside this interrupt handler, the mode, octave flags would be reseted to 
default values. Post a message queue, which TaskModeDisplay would 
pending, so that TaskModeDisplay can display correct MODE and 
OCTAVE LEVEL on the LCD. 

isr_Octup Increasing the octave level by 1. Post a message queue, which 
TaskModeDisplay would pending, so that TaskModeDisplay can display 
correct MODE and OCTAVE LEVEL on the LCD. 

isr_Octdown Decreasing the octave level by 1. Post a message queue, which 
TaskModeDisplay would pending, so that TaskModeDisplay can display 
correct MODE and OCTAVE LEVEL on the LCD. 

isr_ModeSwitch In this interrupt handler, it would raise a flag for a specific MODE and post 
a message queue, which TaskModeDisplay would pending, so that 
TaskModeDisplay can display correct MODE on the LCD. 

Table 2: Interrupt description 
 

Task name Description 

task_which_note This task has task priority 1. Pending on a message queue, which would 
be posted once the strumming signal detected by the accelerometer. It 
also monitor which note/chord in which octave level the user pressed, if a 
strumming signal detected without any note/chord pressing, then do 
nothing.  

task_sd_play This task has task priority 4. Its main responsibility is going to receiving 

15 
 

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6278363&contentType=Books+%26+eBooks&searchField%3DSearch_All%26queryText%3DAltera+Quartus+II+Tutorial
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6278363&contentType=Books+%26+eBooks&searchField%3DSearch_All%26queryText%3DAltera+Quartus+II+Tutorial


all the messages from other tasks and analyze the signals to perform the 
next correct move. It is going to monitor the sensors’ signals from the 
player’s left hand by polling. There are seven tap sensors/switches on the 
left hand glove. We could distinguish all those signals by assigning them 
to different pins on the GPIO on  DE2 board. It must be able to detect the 
“useless” signals from other tasks. For instance, if the player only press 
one of the note sensors on left hand glove without any strumming 
movement on the right hand glove, SD_Play should never play a note or 
chord in this case.  
The SD card is formatted as 16-bit FAT, and it has 512 bytes for each 
segment of memory. 

TaskModeDisplay This task has task priority 2. It display whatever current mode and octave 
level on the LCD. 

task_acceleromete
r 

This task has task priority 3. This task would keep monitoring the status 
of the accelerometer. If it detects the strumming signal, then it would 
post to a message queue, which is pending in task_which_note.  

Table 3: Task description 
 

BLOCK DIAGRAM: 

 
Image 8: Software block diagram 

 

 

16 
 



List of Libraries: 

Name Description 

"altera_avalon_pio_regs.h" Provides a hardware interface that allows software to 
access the PIO.  

"altera_avalon_lcd_16207_regs.h" 
"altera_avalon_lcd_16207.h" 

Provides a hardware interface that allows software to  
access the two (2) internal 8-bit registers in an Optrex  
 model 16207 (or equivalent) character LCD display (the 
kind shipped with the Nios Development Kit, 2 rows x 
16 columns). 

"basic_io.h" Basic I/O. 

"LCD.h" User defined functions/macros for LCD. For example, 
LCD_Init(); lcd_wirte_cmd(base, data). 

"SD_Card.h" User defined functions/macros for SD Card, and some 
commands for SD Card.  
The macros contains SD card set I/O directions, output 
High/Low, and input read. Functions: 
SD_card_init(void)//initialize SD card. 
SD_read_lba(BYTE *buff, UINT32 lba, UINT32 
seccnt)//reads seccnt number of sector in SD card. 
send_cmd(BYTE *in)//sends the commands *in. 
Predefined commands: 
const int  cmd0 [5] = {0x40,0x00,0x00,0x00,0x00}; /* 
Reset SD Card */ 
const int  cmd55[5] = {0x77,0x00,0x00,0x00,0x00}; /* 
Next CMD is ASC */ 
const int  cmd2 [5] = {0x42,0x00,0x00,0x00,0x00}; /* 
Asks to send the CID numbers */ 
const int  cmd3 [5] = {0x43,0x00,0x00,0x00,0x00}; /* 
Send RCA */ 
const int  cmd7 [5] = {0x47,0x00,0x00,0x00,0x00}; /* 
Select one card, put it into Transfer State */ 
const int  cmd9 [5] = {0x49,0x00,0x00,0x00,0x00}; /* 
Ask send CSD */ 
const int  cmd10[5] = {0x4a,0x00,0x00,0x00,0x00}; /* 
Ask send CID */ 
const int  cmd16[5] = {0x50,0x00,0x00,0x02,0x00}; /* 
Select a block length */ 
const int  cmd17[5] = {0x51,0x00,0x00,0x00,0x00}; /* 
Read a single block */ 
const int acmd6 [5] = {0x46,0x00,0x00,0x00,0x02}; /* 
SET BUS WIDTH */ 

17 
 



const int  cmd24[5] = {0x58,0x00,0x00,0x00,0x00}; /* 
Write a single block */ 
const int acmd41[5] = {0x69,0x0f,0xf0,0x00,0x00}; /* 
Active Card's ini process */ 
const int acmd42[5] = {0x6A,0x0f,0xf0,0x00,0x00}; /* 
Disable pull up on Dat3 */ 
const int acmd51[5] = {0x73,0x00,0x00,0x00,0x00}; /* 
Read SCR(Configuration Reg) */ 
note: we are not using all of these commands. 

Test plan 

Software: 

Test Complete/Results 

Detect SD card Yes 

Detect speakers Yes 

Memory leaks after 30 minutes Yes - No leaks 

Polling works/sufficient on A-G signals Yes - Immediate 
response 

ISR works on single press signals (chord change, octave up/down, 
reset) 

Yes 

ISR works on accelerometer Yes 

Able to flash project to board Yes 
Table 5: Software test plans 

Hardware: 

Test Complete/Results 

Notes A-G play Yes 

Chords A-G play Yes 

Increase octave works on all notes Yes 

18 
 



Decrease octave works on all notes Yes 

Reset sends system to note mode and default octave Yes 

No sound plays if no tactile sensors are engaged but accelerometer 
detects  

Yes 

No failure if user holds the chord/up octave/down octave/reset buttons 
instead of pressing them 

Yes 

Playing one note and another in quick succession should cut off the 
first note (no overlap) 

Yes 

Response time and performance Yes - Note selection 
is instant to a 
human’s reaction 
time. Accelerometer 
threshold may need to 
be varied slightly per 
user for comfort. 

Table 6: Hardware test plans 

Results of Experiments and Characterization 

Strum Detection: 
Due to the difficulty in interfacing the accelerometer, a backup distance sensor was used 

in its place temporarily. The sensor had a maximum 30 cm range for detection of movement. It 
was still small and light enough for the purpose of this system, but had to be positioned more 
specifically to catch the user’s right arm strums. There is also the option of attaching the sensor 
to the player’s waist. An issue is that sensor will not differentiate between up and down arm 
movements, and so a user may unintentionally play twice as they raise their arm to strum again. 
However, the delay required between detections is extremely small and not noticeable even when 
one is waving their arm as fast as possible. 

In the end, the accelerometer was chosen as the detection device because it had a myriad 
of extra features the distance sensor did not. This is discussed in the Appendix - Future Work. 
The accelerometer also did not need special positioning or have any range issues as it was 
attached and wired directly onto the right glove. For the I2C interfacing to work with the DE2 
board, however, there is a 150 ms delay between the interrupts fired upon detection. 

CPU Clock/Performance: 

19 
 



A major issue noted during testing was that the sound coming out from the speakers was 
distorted. For example, what should have been a major “C” note came out as a minor “A.” 
The .wav files were acoustic guitar sounds, but most notes sounded synthesized. The audio 
CODEC was configured for a 48 kHz playback, and so the .wav files were generated as such. 
Changing the playback frequency on both the files and the CODEC either made the output worse, 
or did not have any noticeable effect. The FIFO buffer size for playing the sounds was also 
investigated. No overflow/underflow was found and changing the size of the buffer had no 
noticeable effect. 

The Nios II processor was running on a 50 MHz clock. It was found that using a 100 
MHz clock for the CPU and all components, except for the SDRAM, solved the audio distortion 
issue. Also, when flashing the project to the DE2 board, all *_syslib items must go to SDRAM. 
Placing the .text and .rodata sections into flash will significantly slow down the audio output.  

References 
[1] E. Lunty, K. Brooks, P. Roland. “Audio_Codec_G2/.” Internet: 
http://www.ece.ualberta.ca/~elliott/ece492/appnotes/2012w/Audio_Codec_G2/, Apr. 13, 2012 
[Jan. 28, 2013]. 
 
[2] Altera Corporation. “Altera University Program Secure Data Card IP Core.” Internet: 
ftp://ftp.altera.com/up/pub/Altera_Material/12.0/University_Program_IP_Cores/Memory/SD_Ca
rd_Interface_for_SoPC_Builder.pdf, May 2012 [Jan. 26, 2013]. 
 
[3] Altera Corporation. “Audio Core for Altera DE-Series Boards.” Internet: 
ftp://ftp.altera.com/up/pub/Altera_Material/12.0/University_Program_IP_Cores/Audio_Video/A
udio.pdf, May 2012 [Jan. 26, 2013]. 
 
[4] Altera Corporation. “Audio/Video Configuration Core for DE-Series Boards.” Internet: 
ftp://ftp.altera.com/up/pub/Altera_Material/12.0/University_Program_IP_Cores/Audio_Video/A
udio_and_Video_Config.pdf, May 2012 [Jan. 26, 2013]. 
 
[5] R. Wong, V. Santhanagopalan. “ECE 5760 - Final Project Music Player.” Internet: 
http://people.ece.cornell.edu/land/courses/ece5760/FinalProjects/f2010/vs327_rw363/WAV_pla
yer/ECE%205760.htm, 2010 [Jan. 27, 2013]. 
 
[6] Z. Lai, Z. Liu, M. Li, Q. Yuan. “MP3 Player.” Internet: 
http://www.cs.columbia.edu/~sedwards/classes/2010/4840/reports/KH.pdf, 2010 [Jan. 27, 2013]. 
 
[7] Terasic Technologies. “DE2 Music Synthesizer Source Code.” Internet: 
http://www.terasic.com.tw/cgi-

20 
 

http://www.ece.ualberta.ca/%7Eelliott/ece492/appnotes/2012w/Audio_Codec_G2/
http://ftp.altera.com/up/pub/Altera_Material/12.0/University_Program_IP_Cores/Memory/SD_Card_Interface_for_SoPC_Builder.pdf
http://ftp.altera.com/up/pub/Altera_Material/12.0/University_Program_IP_Cores/Memory/SD_Card_Interface_for_SoPC_Builder.pdf
http://ftp.altera.com/up/pub/Altera_Material/12.0/University_Program_IP_Cores/Audio_Video/Audio.pdf
http://ftp.altera.com/up/pub/Altera_Material/12.0/University_Program_IP_Cores/Audio_Video/Audio.pdf
http://ftp.altera.com/up/pub/Altera_Material/12.0/University_Program_IP_Cores/Audio_Video/Audio_and_Video_Config.pdf
http://ftp.altera.com/up/pub/Altera_Material/12.0/University_Program_IP_Cores/Audio_Video/Audio_and_Video_Config.pdf
http://people.ece.cornell.edu/land/courses/ece5760/FinalProjects/f2010/vs327_rw363/WAV_player/ECE%205760.htm
http://people.ece.cornell.edu/land/courses/ece5760/FinalProjects/f2010/vs327_rw363/WAV_player/ECE%205760.htm
http://www.cs.columbia.edu/%7Esedwards/classes/2010/4840/reports/KH.pdf
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=165&No=30&PartNo=4


bin/page/archive.pl?Language=English&CategoryNo=165&No=30&PartNo=4, Nov. 16, 2006 
[Feb. 2, 2013] 
 
[8] N. Minderman. “niosII_microc_lab1.vhd.” Internet: 
https://eclass.srv.ualberta.ca/mod/resource/view.php?id=529057, Jan. 8, 2013 [Jan. 26, 2013] 
 
[9] Terasic Technologies. “DE2_system_v1.6.zip.” Internet: 
https://eclass.srv.ualberta.ca/mod/resource/view.php?id=232128, July 19, 2006 [Feb. 3, 2013] 
 
[10] C. Smart, T. Davis. “G8_Accelerometer/.” Internet: 
https://www.ualberta.ca/~delliott/local/ece492/appnotes/2013w/G8_Accelerometer/, Mar. 25, 
2013 [Apr. 10, 2013] 
 
[11] The Audacity Team. “Audacity 2.0.3” Internet:  
http://audacity.sourceforge.net/about/credits, Mar. 20, 2013 [Jan. 21, 2013] 
 

  

21 
 

http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=165&No=30&PartNo=4
https://eclass.srv.ualberta.ca/mod/resource/view.php?id=529057
https://www.ualberta.ca/%7Edelliott/local/ece492/appnotes/2013w/G8_Accelerometer/
http://audacity.sourceforge.net/about/credits


Appendices 

Quick Start Manual 

Hardware: 

 
Image 9: Placement of sensors modified from http://media.npr.org/assets/news/2010/01/27/hands-

ef12ac2473025791c19e4478b5ca0078c2fa1942-s6-c10.jpg 

Overview: 
 Left-hand: 7 notes/chords (depending on which MODE) A-G. 
 Right-hand:  
  - Reset: reset to default setting (note mode with 0 octave). 
  - Mode Switch: switch between note and chord mode. 
  - Octave Up: increasing the octave by 1 level. 
  - Octave Down: decreasing the octave by 1 level. 
  - Accelerometer: strumming detection. 

Steps to start from flashed board:  
1. Plug in power block to Altera DE2 Board. 

 2. Connect the 40-pin (grey) header to the GPIO_0 port on the DE2 board. 
 3. Connect the speaker to the line-out port on the DE2 board and power on the speaker. 

4. Turn on the DE2 board (red button). 
5. Follow steps in “Overview” and “How to play” sections 

22 
 

http://media.npr.org/assets/news/2010/01/27/hands-ef12ac2473025791c19e4478b5ca0078c2fa1942-s6-c10.jpg
http://media.npr.org/assets/news/2010/01/27/hands-ef12ac2473025791c19e4478b5ca0078c2fa1942-s6-c10.jpg


Software: 
Steps for non-volatile version: 
 1. Navigate to the directory of this project. 
 2. Run ./scripts/launch_quartus.sh in the terminal. 
 3. Compile the code in Quartus task section. 
 4. Flash the compiled .sof file to the DE2 board (JTAG port).  
 5. Run ./scripts/launch_niosII.sh in the terminal. 
 6. Run the project as NIOS II Hardware. 
 
Steps for volatile version: 
 1. Navigate to the directory of this project. 
 2. Run ./scripts/launch_quartus.sh in the terminal. 
 3. Compile the code in Quartus task section. 
 4. Turn the board off and move switch 19 on the DE2 from RUN to PROG 
 4. Flash the compiled .pof file to the DE2 board (Active Serial Programming).  
 5. After the DE2 has been flashed, turn off the board. 
 6. Move SW19 to RUN and turn on the DE2 board again. 
 7. Run ./scripts/launch_niosII.sh in the terminal. 
 8. In *_syslib, ensure all components in System Library - Linker Script are pointing to 
SDRAM 
 9. Flash the project to the Cyclone-II processor 

How to play: 
Steps are the same for both non-volatile and volatile versions:  

1. Put on the gloves - accelerometer is on the right hand. 
 2. Hold one of the notes/chord (depending on which mode) on the left hand. 

3. Strum the right hand, there should be output to the speaker. 
4. Press once the octave up/down to increase/decrease the octave. 
5. Press reset once to reset the guitar to default setting (note mode with 0 octave level). 
6. Enjoy the virtual guitar gloves.  

  

Future Work 

Backup Plans/Options: 
There was much difficulty with interfacing the digital accelerometer (MMA8452Q). It 

communicates to an I2C bus, of which there is one on the DE2 board. This bus is physically 
wired to the audio CODEC (Wolfson WM8731) on the board, which uses I2C as well. As 
including an external component to the I2C bus proved to be troublesome, a distance sensor 

23 
 



(SHARP GP2D15 F 52) was successfully implemented as a backup. This sensor requires a 5V 
power supply and outputs a digital signal (0 for non-detection, 1 for detection). Thus, it was very 
easy to interface and power it through the GPIO pins on the DE2. The accelerometer was still 
chosen as the main option for strumming detection as it provided much more features that can be 
used to extend upon this project. 

Due to the accelerometer delay, there was not enough time to implement filtering on the 
saved .wav files to achieve different octaves. Doing so would have saved much more space in the 
SD card. The backup plan implemented was to use an audio editor (Audacity 2.0.3) to change the 
frequency of the original files and generate new .wavs to be saved. 

Extensions: 
For further development, a wireless implementation can be applied for the two gloves via 

Bluetooth or some other transmitter. Additional features can include modes for sharp and/or flat 
notes, different instrument sounds, and consideration for left-handed players. The accelerometer 
has many more features that can be taken advantage of as well. For example, it is capable of 
detecting negative and positive acceleration, which can be used to differentiate between an up-
strum and a down-strum. These sound different on a guitar. Future work can aim to 
accommodate having multiple note buttons pressed at once. One may wish to also completely 
remove the need for tactile sensors and use some sort of resistive or capacitive touch detection.  

 

 

 

 

 

 

 

24 
 



Hardware documentation 

 
Image 10: Hardware block diagram 

 

 
 
 
 
 
 
 
 
 
 
 

25 
 



Source code section: 

Block diagram of interactions between processes: 

 
Image 11: Software block diagram 

Index to source code: 
 Status: -Not compiled successfully 

-Compiled without errors 
-Executed or otherwise demonstrated 
-Tested and passed 

 

Source File (Created) Description Status 

hello_ucosii.c Main C file modified from Terasic’s 
“DE2_SD_Card_Audio.” Plays particular sound on 
particular tap sensor press and accelerometer signal. 

T 

basic_io.h From Terasic’s demo. Holds functions for GPIO, 7-
segment display, and sleep/delays. 

T 

LCD.h/LCD.c From Terasic’s demo. Contains code for initializing and 
controlling the LCD. 

T 

SD_Card.h From Terasic’s demo. Contains code for initializing and 
reading from the SD card.  

T 

26 
 



terasic_includes.h From Terasic’s demo. Links to other header files. T 

i2c_ctrl.h/i2c_ctrl.c From Reference [10], controller for the accelerometer 
I2C bus. 

T 

accelerometer.h/ 
accelerometer.c 

From Reference [10], controller for the accelerometer. T 

DE2_SD_Card_Audio.v Top level Verilog file modified from Terasic’s 
“DE2_SD_Card_Audio.” 

T 

opencores_i2c_master.vhd Top level VHDL file of i2c bus modified by Troy. T 
Table 7: Created source files 

 

Source File 
(Auto-
Generated)  

Description Status 

Accel_Control.v SOPC builder - accelerometer component T 

Audio_0.v from Terasic T 

AUDIO_DAC_FIFO.v from Terasic T 

Audio_PLL.v from Terasic T 

button_pio.v from Terasic T 

clock_0.v from Terasic T 

clock_1.v from Terasic T 

cpu_0.v from Terasic T 

FIFO_16_256.v from Terasic T 

I2C_AV_Config.v from Terasic T 

I2C_Controller.v from Terasic T 

I2C_to_GPIO.v from Terasic T 

jtag_uart_0.v from Terasic T 

MReset.v SOPC builder - reset tap sensor T 

MS.v SOPC builder - mode switch tap sensor T 

noteA.v SOPC builder - tap sensor T 

27 
 



noteB.v SOPC builder - tap sensor T 

noteC.v SOPC builder - tap sensor T 

noteD.v SOPC builder - tap sensor T 

noteE.v SOPC builder - tap sensor T 

noteF.v SOPC builder - tap sensor T 

noteG.v SOPC builder - tap sensor T 

Oct_DOWN.v SOPC builder - octave down tap sensor T 

Oct_UP.v SOPC builder - octave up tap sensor T 

SD_CLK.v from Terasic T 

SD_CMD.v from Terasic T 

SD_DAT.v from Terasic T 

sdram_0.v from Terasic T 

SDRAM_PLL.v from Terasic T 

SEG7_Display.v from Terasic T 

SEG7_LUT.v from Terasic T 

sram_0.v from Terasic T 

SRAM_16Bit_512K.v from Terasic T 

switch_pio.v from Terasic T 

system_0.v from Terasic T 

timer_0.v from Terasic T 

system_0_clock_0.v from Terasic T 

onchip_memory2_0.v SOPC builder - onchip memory. T 
Table 8: Auto-generated source files 

 

28 
 


	Title
	FinalReportDraft
	Functional Requirement
	Specification:
	How to use:
	Goals achieved:

	Design and Description of Operation
	Flow chart:
	Input to output functionality:
	Algorithms/Tasks:

	Bill of Materials
	Reusable Design Units
	Datasheet
	User Perspective Diagram
	User I/O Signals:
	Ribbon Header Mapping
	Accelerometer Interface:
	SD Card Interface:
	External Circuitry Schematic:
	Power:

	Background Reading
	Software design
	BLOCK DIAGRAM:
	List of Libraries:

	Test plan
	Software:
	Hardware:

	Results of Experiments and Characterization
	Strum Detection:
	CPU Clock/Performance:

	References
	Appendices
	Quick Start Manual
	Hardware:
	Overview:
	Steps to start from flashed board:
	Software:
	How to play:


	Future Work
	Backup Plans/Options:
	Extensions:

	Hardware documentation
	Block diagram of interactions between processes:
	Index to source code:



