
1

ECE 492
Ball Tracking and Trajectory Prediction

Final Report

 Group Members (Group G13):

Shenhao Li -- shenhao@ualberta.ca
Paolo Villadarez -- villadar@ualberta.ca

Preferred lab: Thursday

Embedded video processing system which tracks ball movements,
predicts trajectory paths, and outputs simulations via VGA.

2

Abstract

This report documents the development of a video processing system, which aims to track
spherical objects and predict movement trajectories. This project was created on an Altera DE2
development FPGA board, using a combination of custom written VHDL hardware tracking
components, Quartus SOPC generated FPGA configuration files, and software written for the
uC/OSII RTOS. Our project features an orthogonal overhead and side-facing double-camera
system with a VGA user interface that operates on button interrupts in two completed modes,
tracking mode and prediction mode. In tracking mode, our system is capable of detecting the
centroid of spherical objects in real time (using both cameras), with simulated visualizations
outputted to VGA. In prediction mode, pre-calibrated parameters allow the user to roll a ball
through the camera view, and have the system predict the ball’s 2D impact point with a preset
target using image processing and software physical calculations. Again, the outputs are
simulated via VGA. We implemented DE2 switches to modify the most significant bits of red,
green and blue values in the RGB color space to allow run-time input for user desired tracking
color. We were successful in meeting our proposed functional requirements, with the exception
of utilizing our side-facing camera for triangulation and 3D impact prediction.

3

Table of Contents

Functional Requirements 4

Design and Description of Operation 5

Bill of Materials 9

Reusable Design Units 10

Datasheet 11

Background Reading 13

Software Design 15

Test Plan 18

Test Results 20

References 23

Appendix 24

4

Functional Requirements

Ultimately, we are building an orthogonal double camera system to track and predict trajectories
of spherical objects passing through its field of view. Aside from calibrating overhead and side-
facing cameras for optimal viewing area and lighting, we proposed two core components as
functional requirements of the project.

Ball Tracking:
We require that our system be capable of successfully capturing and processing a video stream
to track the centroid of a spherical object whose color is defined by the user, and to be capable
of performing correct software calculations to predict the impact location of a thrown projectile.
The whole process flow of the system must be performed within a specific time interval bounded
by the time the first sample of the projectile’s position is taken and the instant the projectile
collides with the preset target. To achieve the rapid execution of the path prediction calculations,
the system must perform the video processing and object tracking function without the use of
any buffers. Doing so would cut the buffer read/write time from the total processing time,
thereby reducing the time delay for the output of an object’s coordinates. The time interval
between coordinate sampling times must also minimized to further reduce the overall delay.
Two Altera DE2 boards are used in order to utilize their individual ADV7181 video-in decoders
for each camera, as each decoder only allows one input. Detailed description of our tracker
design and tracking algorithm can be found in the Design and Hardware sections.

VGA:
Furthermore, we require that a functional VGA controller be implemented to regulate the
creation, buffering and syncing of VGA video frames to complement the project functionality via
visual display of tracking simulations and user interface. Specifically, a dartboard simulation is
projected to emulate the preset target. Impact animations should be drawn as projectile balls
pass through the active viewing areas. A simple UI must be implemented to aid users in
navigating through project functional modes. Video frames must also be displayed in a fashion
which minimizes visual lag and meets timing requirements described in the ball tracking section
above. Detailed description of our VGA controller and frame creation process can be found in
the Design and Software sections.

We have achieved all of the functional requirements set out during our project proposal to a
satisfactory degree, with the exception of utilizing the second side-facing camera to correctly
calculate the height of a projectile’s impact point. Although we have completed the integration of
a second camera and synchronized its data accordingly, we were unable to resolve bugs in y-
axis calculations. We attribute this to errors in conversion of required parameters needed for the
projectile motion equation in question, and perhaps to failure of the system to meet timing
requirements for accurate physics.

5

Design and Description of Operation

An overview of our integrated system is shown in Figure 1. Our system utilizes the NIOS II/F
processor, running off a PLL at 50 MHz. At this speed, we achieved acceptable performance
while maximizing system efficiency. Both our software source files and the output video frame
buffer utilizes the 8MB SDRAM. DE2’s onboard SRAM is used to feed the ADV7123 DAC for
universal VGA output. Video-in data from both cameras are processed by various hardware
components, including the ADV7181 ADC, and are connected to NIOS via the PIO interface. An
elaboration follows.

Hardware
The sampling of an object’s position is performed by two orthogonally place cameras which
covers both the x-y plane and y-z plane in the sampling zone. The Altera DE2 board that was
used for this project has only one video decoder so two interconnected DE2 boards must be
utilized. The communication between the boards only goes one way; data signals from the
sender board are connected to GPIO pins while the receiver board connects its GPIO pins to a
PIO interface of its CPU. Connecting the boards in this way allows simultaneous access to both
camera’s information directly by the CPU.

The conversion and object tracking performed by the FPGA hardware is described in detail in
the following Hardware Design section. The calculation of the projected impact point and
simulation output to a VGA display is described in the Software Design section.

6

Video Signal Decoding and Object Tracking

Camera signals undergo various hardware modules during processing. Figure 2 shows the data
flow of our hardware component that inputs ITU-R 656 encoded data from the video decoder
and outputs the current coordinates of an object to the CPU. Pixel data from the video decoder
uses YCbCr formatting which consists of an 8-bit luma component (forms black and white
images) and two 8-bit chroma components. We converted YCbCr data into RGB format before
we perform pixel tracking for two reasons: better colour selectivity and increased tolerance to
colour fluctuations. Colour selectivity refers to the ability to distinguish two different colours from
one another by using only the provided colour bits of each pixel. YCbCr provides limited
selectivity because red, green, and blue colours are distributed out in each component resulting
in primary colours, which are easily distinguished by the human eye, having moderate bit values
in each component. RGB formatting, on the other hand, will have high bit values in one or two
components and lower bit values for the other components for primary colours and their
complements. For instance, an orange pixel will have high red and green value but low blue
value allowing us to easily pick out this colour from a frame. RGB formatting also provides
increased resistance to colour fluctuations because each color component consists of 10 bits of
data as opposed to the 8 bit wide components of YCbCr. The increased width of each
component means that the most significant bits, which are sampled during tracking, are less
likely to change when a slight colour fluctuation occurs. This is important for accurate tracking
as our cameras are sensitive to even the slightest lighting changes and tend to self-adjust if and
when this happens.

The conversion of YCbCr to RGB requires the use of several modules placed sequentially along
a pipelined data path. Pipelining ensures that we keep a high throughput to allow the system to
keep up with the output frequency from the TV decoder. ITU-R 656 conversion is performed first
to combine the YCbCr components that are delivered separately over the 8-bit bus into
alternating YCb and YCr packets over a 16-bit bus. The ITU-R 656 also performs a secondary
function of providing the 10-bit coordinates of each bit in the frame. A conversion to YUV 4:4:4
is performed afterwards to combine the alternating YCb and YCr packets into a single 24-bit
YCbCr packet. The YCbCr data is then converted into 30-bit RGB format which will be used by
the tracking module.

A SDRAM buffer is normally placed in between the ITU-R 656 Decoder and the YUV 4:4:4
converter since decoding to RGB usually involves the output of the video images to a VGA

7

display. Because we require video processing with minimum delay, the buffer is omitted and all
the modules are programmed to use the same clock as the TV decoder. We didn’t perform any
downsampling in the hardware so that we can provide high precision values for the software
calculations.

The tracking algorithm is done within a single module that takes in pixel data in RGB format and
its respective coordinates within the frame and outputs a 20-bit coordinate to the CPU (10-bits
for x value and 10-bits for y-value). Each pixel is compared to a user-defined colour that is set
using the switches on the DE2 Board. Only the three most significant bits of the three colours
are compared because lower significant bits are prone to fluctuations from slight changes in
colour. Some matching pixels that may not belong to the projectile may be detected by our
system so it will only take into account consecutive matching pixels. The coordinates of the
center of a line of matching pixels will be saved as the module scans an entire frame. The saved
coordinates gets replaced with a new set if a longer matching line is found within the same
frame. The longest line of matching pixels should correspond to the middle of a spherical
projectile so we should end up with the coordinates of the projectile’s center by the end of the
frame which is marked by an input coordinate of (0,0). The camera’s output images are a
superimposition of an odd frame with an even frame that have different images between each
other due to the interlacing of Raster scan, and the output coordinate will rapidly switch between
two values if we scan every frame. We made a conscious design decision to update coordinates
only on odd frames - this reduces the amount of inevitable fluctuation in the coordinates.

Video Output
The video output portion of our project uses design cues as well as custom components
described by Billy Kozak and Jeff Theriault in their CMPE 490 2011 application notes [3]. The
Altera provided VGA controller proved to lack support and presented many bugs during
interfacing.

Figure 3: VGA Controller from CMPE 490 G5 Final Report [11]

This VGA controller design utilizes a sequential data flow that is highlighted in Figure 3. Two
RAM memories, a SDRAM and SRAM, along with a direct memory access (DMA) module, are
used to write to DE2’s ADV7123 DAC converter before outputting via universal VGA.

8

As our software component receives coordinates from the Ball Tracker via the PIO interface,
new graphical frames are created and saved to a temporary buffer frame inside the 8MB
SDRAM. The DMA module can then pass the buffer frame to the SRAM, bypassing the CPU.
This “active frame” in SRAM is then read by reader and syncer components to continuously
display updated frames to a connected VGA external display. By separating the active frame
and the next-frame-to-be, any changes made between the active frame and the next frame
(drawing, erasing, redrawing) will not show up in the form of real-time flickering and inconstancy
[11]. By placing DMA memory transfers in parallel with CPU tasks, instruction and data caches
prevent competition between SDRAM and DMA, and the result is increased output stability, and
minimized performance impact [11].

Our VGA controller also makes liberal use of the components described in the VHDL frame
reader and VGA syncer application notes [3]. The frame reader acts as an Avalon memory
mapped master interface to the SRAM [11]. It reads pixel data from the SRAM as fast as
possible, buffering reads and writes accordingly without errors. It is needed because the SRAM
is too slow for the VGA syncer to read pixels on demand without errors [11]. When a swap
signal is received from syncer, read and write buffers are swapped, allowing the syncer to read
already buffered lines in a fashion that is faster than could be achieved by reading directly from
SRAM. The VGA syncer generates RGB, horizontal sync, and vertical sync signals at precise
timings to produce an image on the screen [11]. The frame reader also performs resolution
division, from 640x480 to 320x240, which is the resolution of our output frames. Additional
information on either of these custom components can be found in the original documents in [3]
and [11].

Software
The software portion of our project uses uC/OS II RTOS in the Nios II IDE. Its main focus is to
create a UI that can navigate a user through the functional modes of the system, and to output
relevant VGA frames during runtime execution of such a mode. It is also responsible for
calculating the necessary kinematic functions when executing predictor mode.

Frames are created by writing to 320x240 sized arrays. Pixel color is depicted in hexadecimal.
For example, writing 0xFFFF to every member of a 320 by 240 short int array would be
equivalent to creating an all-white frame. By utilizing the “sys/alt_dma.h” library, we are able to
control DMA write operations to transfer frames to SRAM for output.

Our UI alerts the user to the current system state by using 3x5 pixel text frames, and switches
between states based on two button interrupts, for KEY1 and KEY3 respectively on the DE2
board. During tracker mode execution, a circle is drawn around a calculated centroid position in
real-time for every frame outputted, simulating successful tracking of a spherical object in
display. During predictor mode, several coordinates are saved after KEY3 is pressed. A
kinematic calculator function then calculates impact point based on calibrated parameters. A
detailed description of software design can be found in the software design section.

9

Calibration
Calibration must be performed to ensure that the projected point of impact displayed by the
VGA display matches the actual collision point of the projectile within the display. The software
calculation will be performed using pixels as units so we have to convert real world
measurements of distances into pixels perceived by the camera. We will setup an appropriate
sampling are by running the tracking function of our system to find the viewing limits of the
camera. Once the sampling area is set, we would measure the dimensions of the viewing area
to get a conversion parameter for converting inches into pixels. This is needed because our
calculations are done in pixel units. Once we have the conversion parameter, we can set the
display at a set distance from the sampling area and hard code this distance measurement and
display dimensions into the software in pixel units.

Bill Of Materials

Parts List

CMOS Camera Module
Robust camera used as our source of path detection and provides the data necessary to
compute path prediction. The 2 cameras will be placed to detect 3 dimensional path traversal by
thrown projectiles.

Power Supply 12 V
Current Comsumption 150 mA
Video Bandwidth: 4.2 MHz
Frame rate: (H)15.734 KHz (V)59.94 Hz

Units Ordered: 2
Unit Cost: $34.95 (not including shipping)
Website: https://www.sparkfun.com/products/8739

Altera/Terasic DE2 development board
Units Used: 2
Unit Cost: $517.72

40 Pin Ribbon Cable
Units Used: 1
Unit Cost $10

Wooden Support
Units Used: 1

10

Unit Cost: $2.99

Irwin Corner Clamp
Used to hold the horizontal beam which supports the overhead camera.

Item Depth 9 In.
Item Height 1.938 In.
Item Weight 0.75 lbs
Item Width 6 In.

Units Ordered: 1
Unit Cost: $12.69
Website: http://www.homedepot.ca/product/irwin-corner-clamp-3-in/904190

Irwin Quick-Grip 990 Degree Angle Clamp
Holds the vertical beam that supports the overhead camera in place

Item Depth: 11.875 In.
Item Height 3 In.
Item Weight 2.5 lbs.
Item Width 4.75 In.

Units Ordered: 1
Unit Cost: $27.99
Website: http://www.homedepot.ca/product/irwin-quick-grip-90-degree-angle-clamp/904202

Reusable Design Units

frameReader.vhd and vga_syc.vhd from 2012 winter application notes by Billy Kozak and Jeff
Theriault
Modules that takes images drawn by the CPU and prints it unto a VGA display

I2C_AV_Config.v and I2C_Controller.v from Altera DE2_demonstrations
I2C interface and controller for initializing the ADV7181 Video Decoder

SEG7_LUTv and SEG_LUT_*.v from Altera DE2_demonstrations
Modules that outputs hex digits to the 7-segment display on the DE2 board

ITU_656_Decoder.v, MAC_3.v, DIV.v, Reset_Delay.v, YCbCr_to_RGB.v, and
YUV422_to_444.v
Modules for converting YCbCr in ITU-R 656 encoding into RGB format

11

DataSheet

User	 Controls	

Inputs	

Control	 Name	 Function	

Analog	 Video	 In	 (Board	 1)	 Video	 input	 	 from	 the	 top	 camera	

Analog	 Video	 In	 (Board	 2)	 Video	 input	 from	 the	 side	 camera	

KEY(0)	 Hardware	 Reset	

KEY(1)	 Start	 /	 Switch	 Modes	

KEY(3)	 Start	 path	 Prediction	

SW(17)	 to	 SW(15)	 Sets	 the	 3	 most	 significant	 bits	 of	 the	 red	 colour	 to	 match	

SW(14)	 to	 SW	 (12)	 Sets	 the	 3	 most	 significant	 bits	 of	 the	 green	 colour	 to	 match	

SW(11)	 to	 SW(9)	 Sets	 the	 3	 most	 significant	 bits	 of	 the	 blue	 colour	 to	 match	

Outputs	

VGA	 port	 Displays	 the	 position	 of	 the	 tracked	 object	 and	 the	 predicted	 point	 of	 contact	

LEDG(7)	 TO	
LEDG(0)	

Shows	 the	 output	 of	 Video	 Decoder	

	

Ball	 Tracker	 Interface	

Inputs	

Port	 name	 Function	 Signal	 Width	

CLK_50	 50	 MHz	 clock	 input	 1	

RESET	 Hardware	 Reset	 1	

TD_DATA	 Data	 input	 from	 the	 Video	 Decoder	 8	

TD_HS	 Horizontal	 Sync	 from	 the	 Video	 Decoder	 1	

TD_VS	 Vertical	 Sync	 from	 the	 Video	 Decoder	 1	

12

TD_CLK	 27	 MHz	 clock	 input	 used	 by	 the	 Video	 Decoder	 1	

Outputs	

HEX7	 to	 HEX0	 Output	 to	 the	 7-‐segment	 displays	 7	 ×	 7	

TD_RESET	 Reset	 signal	 for	 the	 video	 decoder	 1	

TRACKED_x	 X	 coordinates	 of	 object	 being	 tracked	 10	

TRACKED_y	 Y	 coordinates	 of	 object	 being	 tracked	 10	

	

	 I2C	 Interface	 	

Inputs	

Port	 Name	 Function	 Signal	 Width	

iCLK	 50	 MHz	 clock	 input	 1	

iRST_N	 Hardware	 reset	 1	

I2C_SDAT	 Serial	 input/output	 data	 port	 to	 	 I2C	 module	 1	

Outputs	

I2C_SCLK	 Clock	 output	 to	 syncrhonize	 data	 signals	 with	 I2C	 module	 1	

	

Top	 Camera	

Voltage	 5V	

Current	 150	 mA	

Data	 1	 bit	 data	 stream	 to	 video	 decoder	

	

Board	

Standby	 Mode	

Voltage	 9.07	 V	

Current	 3.6	 mA	 -‐	 4.3	 	 mA	 	 Average:	 4.95	 mA	

13

Power	 44.9mW	

Tracking	 Mode	

Voltage	 9.07	 V	

Current	 5.95	 mA	

Power	 54mW	

Prediction	 Mode	

Voltage	 9.07	 V	

Current	 7.35	 mA	

Power	 66.7	 mW	

Background Reading

Due to the nature of our project, we began our search of background reading material with the
methods employed by the Hawk-Eye tennis system. We took special interest in Hawk-Eye’s
impact-point determination method, 3D path reconstitution using 2D tracklets, and the use of a
Kalman Filter for improving the path prediction [8]. In Hawk-Eye, upwards of 10 high speed
cameras are calibrated to track the tennis ball on each frame of a 2D image plane. Because the
Hawk-Eye project must take noise into heavy consideration for use in live sporting events, they
employ spatially adaptive thresholding through the use of a Local Mean Removal algorithm to
extract straight lines (the lines of the tennis court) as control points in the image plane [8]. With
many 2D tracklets created, say after a rally, triangulation combines the 2D tracklets into several
3D partial tracks. A quadratic model is then used to find approximate joint points between 3D
partial track pairs. Finally, a Kalman Filter is applied to these initial estimates, which produces
the best prediction of projectile path and impact point possible [8]. In our project, we did not plan
to implement our overhead camera’s image processing with heavy noise mitigation, as we have
a fairly controlled environment. As it stands, the heavy computation and complex calculations
required by the methods employed by Hawk-Eye would not suit this task. However, the use of a
Kalman Filter may provide us with a great alternative to our initial implementation-plan of our
side-facing camera. Unlike the overhead camera, the side-facing camera will not be pointed
towards a stationary tabletop or floor. Given that the Kalman Filter requires an initial
measurement, or “given region” in one frame, and responds by finding the corresponding region
in the next frame by finding the maximum correlation score in a search region, we may perhaps
be able to utilize a Kalman Filter to accurately track our ping pong ball in a potentially noisy
picture. An initial plan would be to use a constant velocity model for the motion model required
by the Kalman Filter for estimation.

14

Further exploration of this possibility was researched through Hosie and West [9], where the
prediction of a projectile ball’s trajectory was explored in an uncontrolled environment. Here, a
generalized behaviour model of a ball projectile was developed, and a Kalman Filter was used
to refine parameters of the ball projectile’s flight. Furthermore, path trajectory was calculated
using iterative prediction using the last known velocity and position [9]. Although most of this
article depicted the errors arising from uncontrolled, generalized environments of the projectile,
it gave a clear description of the steps taken to apply a Kalman Filter for tracking a ball projectile.
The ball tracking algorithm used depicts a 3 stage process - boot, update, extrapolate [9]. In the
boot stage, the initial position and velocity of the ball is determined and a Kalman filter is
initialized. Both the position and velocity are used to initialize the parameter prediction. An
estimate of the state parameter error and measurement error are also determined in the boot
stage [9]. A Kalman filter loop is used in the update stage to iterate the steps in the boot stage
from remaining frames in the sequence, and extrapolation is performed after analysis of all
image frames [9]. If we have time, we will refer to the technical specifics in this article to attempt
to initialize our own Kalman Filter for implementation of the side camera.

15

Software Design

The software architecture for this project was written in uC/OSII RTOS, via Nios II IDE. The final
integrated Nios project consists of 3 source files, main.c, screen.c and fontGraphics.c along with
their corresponding header files. Main contains the project’s main function, its primary FSM,
and interrupt service routines. Screen contains DMA control functions, frame manipulation
functions, as well as kinematic calculation functions. fontGraphics contain all alpha-numeric
character array declarations used for the user interface, as well as some other UI specific state
declaration graphic frames. Important color information, parameters, and structs reside within
screen.h. Other than the standard <io.h>, <stddef.h>, <stdio.h>, <stdlib.h>
and <string.h> C headers, we also used the Altera PIO interface library,
altera_avalon_pios_regs.h, as well as their interrupt and DMA libraries,
sys/alt_irq.h, sys/alt_dma.h. These libraries allowed us to interface correctly with
hardware generated data, as well as control the operation of our DMA. The main purpose of
software in our project is to draw relevant frames in response to tracking data, and also present
a UI that can navigate through the functional states of the project.

Pixel frames, drawing functions, DMA writes:
Pixel frames are created using short int arrays. The main array representing the entirety of
the screen, pixelMap, is declared as a 320x240 large array in which each member represents
a color pixel to be outputted to VGA. Frame drawing functions are declared in screen.c and
fontGraphics.c. Functions manipulating the main pixelMap frame receive the pixelMap as
an argument, and manipulate its pixel members, essentially “drawing” on a blank array canvas.
For example, the simple function drawBkgnd simply iterates through pixelMap using a for
loop, writing a specific hexadecimal color representation to all of its members. This essentially
draws a blank frame of a specific color.

With the exception of a big smiley face in the middle of our simulated dartboard graphic, all of
the frame drawings modifications made in the main pixel map are done either via for-loop
iterations for changing background color, alphanumeric shape drawing functions declared in
fontGraphics.c, or a smart circle drawing function in screen.c. Alphanumeric characters
are declared as 3 by 5 pixel graphics, and alphanumeric drawing functions simply iterate
through the vertical dimension of the alphanumeric shape rather than drawing all of its members
as a straight line. Our circle drawing function utilizes a double nested for-loop to iterate through
the outer radius of a circle, and then fills it with a desired color. Simulated ping pong balls in
tracking mode as well as the dartboard graphic in prediction mode are all created using this
function.

Manipulations of integer arrays are not enough to output images to the external VGA display -
they merely store the buffered frame into the SDRAM, from which the CPU is operating. In order
for the frame reader, the VGA syncer, and the ADV7123 ADC to synchronize video output, we
need to control DMA to write an active frame into the SRAM. This is done in three parts. First,
we declared a “dmaState” struct to represent the receive and transmit channels statuses of the

16

DMA. Next, this variable is initialized via the initVGAwrite() function in screen.c, via DMA
functions provided in the sys/alt_dma library. Finally, the copyScreen() takes a pixelMap
as argument, and on return copies the pixelMap over to the SRAM, effectively writing the active
frame. Notable operations in this function include flushing the DMA cache, the DMA functions
alt_dma_txchan_send to queue sends, and alt_dma_rxchan_prepare to queue receives.
In summary, a frame is displayed by initializing an array, initializing the DMA’s state, and then
calling copyScreen to copy SDRAM contents to the SRAM.

User interface, system states, state switching:
We created our system using one main task, with state switching based on using an
interconnected series of button interrupts. Figure 4 shows the data flow diagram for the
operation of software within our CPU.

As you can see, the main finite state machine of our CPU undergo various state changes
pending on variables controlled via pointers by interrupt service routines. For example, when the
system initially begins execution, the pointer KEY1 points to a value of 2, allowing the start
screen to be displayed. If button1 is pressed, its ISR will flip the pointer value between 1 and 0,
effectively controlling system operating mode. In predictor mode, a similar philosophy is
employed with KEY3 to control the beginning of a impact prediction run. A key press is required

17

to regulate the start of tracking as the system needs to differentiate random tracked coordinates
from actual coordinates tracked from a user’s ball toss. This allows correct path calculation to
take place.

Impact Calculations:

Figure 5: Path Prediction Calculations

Our software module is also responsible for employing the kinematics required to predict the
impact point of our spherical object with a preset target. As described in the functional
requirements section, we were unable to use the side camera to calculate 3D impact points. To
calculate the x-coordinate of the impact point, we utilized the equation below.

18

This equation is implemented in the function, predictX, in screen.c. There are several
considerations for this calculation. First of all, the hardware tracker performs tracking in 720 by
240 resolution. This is because the camera is outputting data in 720 by 480 resolution, but as
mentioned in the design section, we only take the odd raster frames to reduce centroid
coordinate jitter. Because of this, we need to size the received x-coordinate of the centroid down
to the correct 320x240 resolution. This is done by a conversion to double for accurate division,
and cast back to integer for use in the drawing functions responsible for the predictor mode
animations. Secondly, because the ball tracker does not guarantee accurate centroid
coordinates due to the camera’s sensitivity to lighting changes, and because coordinates
received in predictor mode can be extremely close to each other when a ball is thrown slowly,
we need a method to increase accuracy. If two coordinates are received which are extremely
close to each other, the calculated impact point based on their centroid may be very inaccurate
due to flutter from the ball tracker. To increase accuracy, we take multiple centroid coordinates
until the ball passes a threshold distance on the viewing area, at which point we compute the
impact point. At this distance, the jitter becomes negligible, and accuracy is increased.

Test plan

Software Test Plan:

Image display to VGA
We tested the frame drawing capabilities of our software by initially drawing simple shapes such
as circles and squares unto the VGA display. Simple animations were successfully performed to
ensure the projected impacts points and the position of an object can be printed when they are
available.

Calculation of projected path:
The coordinate samples taken by the CPU for trajectory calculation was tested by printing the
coordinates of the sample to the console every time the CPU records the object’s position. The
results of the experiment showed us that two samples that are at an appropriate distance from
one another were able to be successfully taken. The equations that would be used to calculate
the future impact point is tested by printing the input coordinates and output results to the
console. Calculation by hand verified that the software was performing the calculations correctly.

19

Hardware:
In order to have a successful project, we must ensure that all our components are working. The
components that we need to test include the CMOS Camera, SDTV Video Decoder, the 512KB
SRAM, and the VGA controller:

Component to Test Test Method and Results

CMOS Camera Connect the camera to a power source and connect the data wire
of the camera to an oscilloscope. Move the camera around and
look for any changes in oscilloscope screen

SRAM We will run a customized memory test application through NIOS
II. The provided memory test application tests the data bus,
address bus, and whether each bit can store 1 and 0. We plan on
customizing the code so that it tests half-word access since
pixels would be stored as half-words. This test will be run on the
entire span of the SRAM

TV Decoder We will connect the decoder data bus to the CPU and plug in a
functioning camera to the video port. In the CPU, we will poll the
data lines and output to console while the camera is on and look
for any changes in the data stream.

VGA VGA was tested by running the DE2 demonstration which takes
in a video input, converts it to RGB, and displays the image using
the VGA.

ITU-R 656 Decoder +
Resizer

We will connect the camera, the video decoder, the FPGA cores,
and the CPU together. We will then poll the data stream lines
from our decoder and resizer cores using the CPU to ensure that
they are working properly

Object tracker The 7-segment display on the DE2 board was used to display the
recorded coordinates of an object.Some preliminary tests were
performed to test the colour sensing and selection capability of
the tracker by positioning object with different colours in front of
the camera. This would tell us whether the pixel comparing
algorithm is working or not. Once we confirmed that this is
working, we will test the whole module using stationary objects,
then slow moving objects, and then finally, fast moving objects to
finish the test.

Integrated Testing:
After thoroughly testing the hardware and software components separately as described in the
previous section, we will perform integration testing after combining the software and hardware

20

modules. Much calibration work is expected from the VGA output integration with the flight path
calculator, to simulate the point of contact via VGA precisely where the projectile
is expected to actually make contact with the wall. Also in need of calibration will be the
placement of the cameras. We will find an optimal position for the cameras through trial and
error. Integration testing is also where we will be testing the performance of the system as a
whole. We may experiment with resolution of video input used to analyze the delay gain and the
resulting path prediction accuracy. Final functional testing will follow to determine whether all
functional requirements previously stated were met.

Testing	 Results	

Tracking	 Mode	

The	 system	 was	 able	 to	 successfully	 track	 an	 orange	 ball	 and	 display	 its	 position	 relative	 to	 the	
camera	 on	 a	 display	 screen.	 Using	 the	 tracking	 mode,	 we	 were	 able	 to	 set	 up	 the	 cameras	 to	 get	 an	
acceptable	 size	 for	 the	 sampling	 area.	 The	 following	 table	 shows	 the	 relevant	 measurements	 that	
will	 be	 sued	 for	 path	 prediction	 calculations	

Unit conversion y-axis: 7.752 pixels/inch
Unit conversion x-axis: 6.803 pixels/inch

Measurements	 for	 Calculation	

Measurement	 Value	

	 Inches	 Pixels	

Sampling	 Area	 Width	 47	 320	

Sampling	 Area	 Length	 31	 480	

Sampling	 Area	 Height	 47	 480	

Display	 to	 Sampling	 Area	 47	 480	

Display	 Width	 14	 95	

Display	 Height	 11	 85	

	

Prediction	 Mode	

The	 following	 table	 shows	 the	 results	 of	 running	 the	 collision	 point	 prediction	 function	 on	 our	
system.	 It	 is	 important	 to	 note	 that	 the	 coordinates	 that	 come	 from	 the	 overhead	 camera	 and	 the	
resulting	 position	 of	 the	 point	 of	 contact	 and	 are	 in	 pixel	 units.	 The	 result	 column	 displays	 where	

21

the	 point	 of	 impact	 will	 be	 displayed	 along	 the	 x-‐axis	 of	 the	 VGA	 display.	 Any	 projectile	 that	 yields	 a	
result	 below	 0	 or	 above	 320	 will	 be	 met	 with	 an	 out	 of	 bounds	 message	 because	 the	 display	 is	
unable	 to	 show	 the	 point	 of	 contact.	 Cases	 1	 to	 3	 shows	 cases	 where	 the	 projectile	 falls	 within	 the	
bounds	 of	 the	 display	 while	 cases	 4	 to	 5	 shows	 cases	 when	 the	 projectile	 fails	 to	 hit	 the	 display.	 Case	
6	 results	 from	 the	 ball	 being	 thrown	 away	 from	 the	 screen	 so	 an	 out	 of	 bounds	 message	 is	
displayed.	 The	 final	 case	 involves	 a	 slow	 moving	 projectile.	 As	 one	 can	 see	 from	 the	 result,	 the	
algorithm	 which	 prevents	 coordinate	 samples	 from	 being	 taken	 too	 close	 together	 was	 successful	
since	 the	 samples	 are	 41	 pixels	 apart	 along	 the	 y-‐axis.	 The	 system	 however	 cannot	 predict	 the	
collision	 point	 of	 projectiles	 that	 are	 moving	 too	 fast	 because	 the	 perceived	 color	 of	 fast	 projectiles	
are	 different	 from	 stationary	 or	 slow	 moving	 ones.	

	

Prediction	 Mode	 Results	

Case	
Number	

	

Coordinate	 1	 Coordinate	 2	 Result	 Out	 of	 Bounds	

x	 y	 x	 y	

1	 153	 251	 137	 15	 135	 No	

2	 92	 196	 196	 15	 204	 No	

3	 244	 223	 68	 15	 55	 No	

4	 108	 177	 27	 102	 -‐83	 Yes	

5	 132	 222	 316	 132	 585	 Yes	

6	 92	 15	 140	 240	 88	 Yes	

7	 108	 199	 108	 158	 108	 No	

22

23

References

[1] Multiformat SDTV Video Decoder, Analog Devices Inc., Feb. 2013.

http://www.analog.com/static/imported-files/data_sheets/ADV7181B.pdf

[2] CMOS, 240 MHz Triple 10-Bit High Speed Video DAC, Analog Devices Inc. Feb.

2013.
http://www.eecg.toronto.edu/~tm4/ADV7123_a.pdf

[3] Billy Kozak, Jeff Theriault, “VHDL frame reader and VGA syncer,” Univ. Alberta,

Edmonton, AB, App Note, Feb. 2013.
http://www.ece.ualberta.ca/~elliott/ece492/appnotes/2012w/VGA_frameReader/g5_
appnote.docx.pdf

[4] YUV Pixel Formats, FourCC, Feb. 2013.

www.fourcc.org/yuv.php

[5] TERASIC CYCLONE II EP2C35 Development & Education BOARD, Terasic, Hsinchu,
Taiwan, Feb. 2013.
https://eclass.srv.ualberta.ca/mod/resource/view.php?id=232127

[6] Altera Embedded Design Handbook, Altera, San Jose, CA, Feb. 2013
 https://eclass.srv.ualberta.ca/mod/resource/view.php?id=232123

[7] Altera Avalon Interface Specifications, Altera, San Jose, CA, Feb. 2013

https://eclass.srv.ualberta.ca/mod/resource/view.php?id=232125

[8] Jordan Tymburski and Rachita Bhatiat, “TV Decoder ADV7181B Chip,” Univ. Alberta,
Edmonton, AB, App Note, Mar. 2013.
http://www.ece.ualberta.ca/~elliott/ece492/appnotes/2012w/TV_Decoder_ADV7181
B/

[9] N. Owens, C. Harris, and C. Stennett, “Hawk-Eye Tennis System,”

Proc. Int’l Conf. Visual Information Eng. (VIE ’03), 2003

[10] R. Hosie, G. West, “Predicting Ball Trajectories in Uncontrolled Environments”,

Curtin University of Technology, 1994

[11] Billy Kozak, Nathan Sinnamon, Jeff Theriault, “Video Game with Wireless
Accelerometer-Based Controls”, Univ. Alberta, Edmonton, AB, April 2013.
http://www.ece.ualberta.ca/~elliott/ece492/projects/2012w/g5_video_game/g5_final
_v2.docx.pdf

24

APPENDIX A: Quick Start Manual

Initial Setup:

With the FPGA design flashed on the board, the setup of the project is fairly easy
1. Flash the design with project_top_level.vhd set as the top level to the first board and
project_top_level_to_gpio.vhd to the second board.
2. Connect the boards to each other using a 40-pin rainbow cable.
3. Connect the top view camera to the board with the glowing red LED light using an RCA cable.
4. Connect the side view camera to the board with no glowing red light using an RCA cable.
5. Connect a VGA cable from the board to an external display.
6. Position the cameras and the display such that the cameras are orthogonal to each other and
the display is perpendicular to the cameras.
7. Place an object to detect in front of the cameras and position the switches until the HEX
display shows the correct coordinate of the object.

Controls:
1. Switches 17 to 9 are the colours to match.
2. Key 1 switches modes between tracking and path prediction.
3. Key 3 starts initializes the path prediction mode.
4. Key 0 is the hardware reset button.

25

APPENDIX B Future Work

We are keen on making the second camera functional in the prediction mode. We will look into
increasing timing performance of the system to 100MHz from 50MHz, and test the timing
accuracy. Another method we will investigate is to integrate an external timer via SOPC. By
applying an interrupt ID to it, we may be able to gain important timing information for the
projectile motion equation that is the source of our problems.

Furthermore, we want to implement a full, score-based dartboard game to complement our
predictor mode implementation, rather than the simulation that we have right now. Not only will
this be fun and challenging, it will make our system more complete functionally.

A final future endeavor would be the ability to function without highly contrast background. This
will be extremely challenging as we will need to implement complex tracking algorithms such as
the Kalman Filter, but it would allow our system to be used in actual real-life applications rather
than set environments.

APPENDIX C Block Diagrams

Diagrams:

26

Figure 3: VGA Controller from CMPE 490 G5 Final Report [11]

27

Figure 5: Path Prediction Calculations

28

APPENDIX D: Source Code

The code can be found tarballed on the server webpage. Here is an index to our source files:

Hardware:
Project_top_level_to_gpio.vhd
Hardware/I2c_av_config.v
Hardware/I2c_controller.v
Hardware/YUV422_to_444.v
Hardware/YCbCr_to_RGB.v
Hardware/Tracker.VHD
Hardware/TD_Detect.v
Hardware/SEG7_LUT_8.v
Hardware/SEG7_LUT.v
Hardware/Reset_Delay.v
Hardware/MAC_3.v
Hardware/ITU_656_Decoder.v
Hardware/DIV.v
Hardware/BALL_TRAJECTORY.v
Project_top_level.vhd
Onchip_memory2_0.vhd
niosII_system.vhd

Software:
Software/main.c
Software/screen.c
Software/screen.h
Software/fontGraphics.c
Software/fontGraphics.h

