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Goal

A user-friendly MP3 player that can be controlled from any computer in your

home.

How?

Music playback: Decode and play MP3 files stored on an SD card.

Network Control: Integrate a web server and client API for controlling playback.
User-Friendliness: Design a user interface to bring these components together.




Motivation

> Practical and appealing to technical and non-technical individuals alike
> Well-defined subject matter with a clear end goal

° Interesting design challenges with streaming data, multitasking, and client-

server architecture
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High-Level Features We're Proud Of

> We wrote a lightweight ID3 parsing library using the ID3v1/v2 and MPEG Layer

Il encoding specifications.

> Hot-swapping SD cards during playback is supported, with asynchronous

client updating.
> Multiple web clients are supported and updated in real time.

° Clients connected to the internet will automatically download artist images,

album covers, artist biographies, and recommended artists.
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Multitasking Design

> We exploit interrupts on the audio codec’s FIFO buffer of output

samples to perform real-time task switching.

> When the FIFO runs low on data (25% full), the interrupt fires and its

ISR posts to a binary semaphore, dispatching further MP3 decoding.

> Once full, the decoder task pends on the semaphore, yielding the

CPU to the web server task.




Multitasking Performance

MP3 Decoder: Decode 1 second of audio Serve client requests
(~ 0.65 seconds) (~ 0.35 seconds)

Audio out: play 1 second of audio
(Signal decoder when running low)

—

1 Second




Web Task & Client-Server Architecture

> The web server task parses API calls and updates the server side state if

a control request has been made.

° Player state is a C structure that’s semaphore-protected to ensure there
are no race conditions or other undesirable behavior during state

changes.

> The player task checks the state during buffer re-loading and between

tracks to control the output of audio samples.




Web Task & Client-Server Architecture

° Client initially loads web application using HTTP GET requests.

o Status checks are done once per second (per client). Control API

requests are Instantaneous.

> The client makes API calls using jQuery’s AJAX methods. Exchanged data
is JSON formatted.




User Interface Design

° In industry, a user interface can mean the difference between a product’s

success or its failure.

> Qur goal: a pleasant, intuitive, and responsive Ul.

> Designed and coded from the ground up.
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