‘Network Controllable MP3 Player

BRADY THORNTON & JASON BROWN (GROUP 12)




Goal

A user-friendly MP3 player that can be controlled from any computer in your

home.

How?

Music playback: Decode and play MP3 files stored on an SD card.

Network Control: Integrate a web server and client API for controlling playback.
User-Friendliness: Design a user interface to bring these components together.




Motivation

> Practical and appealing to technical and non-technical individuals alike
> Well-defined subject matter with a clear end goal

° Interesting design challenges with streaming data, multitasking, and client-

server architecture




System Boundary -

Audio Codec

|2C & Data Bus

Hardware Design

Leverages built-in Altera
DE2 components with

NIOS II/f CPU Ethernet i\ Ethernet
@ 100MHz :
Controller

some interfacing glue in
the FPGA

Use of open IP cores Avalon Bus

wherever possible (SD IP
core, audio codec)

SPI Interface

Communication between
blocks occurs on the
Avalon bus

SD Card Out “




High-Level Features We're Proud Of

> We wrote a lightweight ID3 parsing library using the ID3v1/v2 and MPEG Layer

Il encoding specifications.

> Hot-swapping SD cards during playback is supported, with asynchronous

client updating.
> Multiple web clients are supported and updated in real time.

° Clients connected to the internet will automatically download artist images,

album covers, artist biographies, and recommended artists.




Software Overview

Hardware
Audio Buffer Y12 DRESEIR] BUElS SRR API calls
Task Task
Interrupts

Player State data

uC/OS-Il operating system




Multitasking Design

> We exploit interrupts on the audio codec’s FIFO buffer of output

samples to perform real-time task switching.

> When the FIFO runs low on data (25% full), the interrupt fires and its

ISR posts to a binary semaphore, dispatching further MP3 decoding.

> Once full, the decoder task pends on the semaphore, yielding the

CPU to the web server task.




Multitasking Performance

MP3 Decoder: Decode 1 second of audio Serve client requests
(~ 0.65 seconds) (~ 0.35 seconds)

Audio out: play 1 second of audio
(Signal decoder when running low)

—

1 Second




Web Task & Client-Server Architecture

> The web server task parses API calls and updates the server side state if

a control request has been made.

° Player state is a C structure that’s semaphore-protected to ensure there
are no race conditions or other undesirable behavior during state

changes.

> The player task checks the state during buffer re-loading and between

tracks to control the output of audio samples.




Web Task & Client-Server Architecture

° Client initially loads web application using HTTP GET requests.

o Status checks are done once per second (per client). Control API

requests are Instantaneous.

> The client makes API calls using jQuery’s AJAX methods. Exchanged data
is JSON formatted.




User Interface Design

° In industry, a user interface can mean the difference between a product’s

success or its failure.

> Qur goal: a pleasant, intuitive, and responsive Ul.

> Designed and coded from the ground up.




Demo

WEB APPLICATION




