
Network Controllable MP3 Player
BRADY THORNTON & JASON BROWN (GROUP 12)

Goal

A user-friendly MP3 player that can be controlled from any computer in your

home.

How?

Music playback: Decode and play MP3 files stored on an SD card.

Network Control: Integrate a web server and client API for controlling playback.

User-Friendliness: Design a user interface to bring these components together.

Motivation

◦ Practical and appealing to technical and non-technical individuals alike

◦ Well-defined subject matter with a clear end goal

◦ Interesting design challenges with streaming data, multitasking, and client-

server architecture

Hardware Design
- Leverages built-in Altera

DE2 components with
some interfacing glue in
the FPGA

- Use of open IP cores
wherever possible (SD IP
core, audio codec)

- Communication between
blocks occurs on the
Avalon bus

Out In InOut

System Boundary

NIOS II/f CPU
@ 100MHz SDRAM

Audio Codec

LCDSPI Interface

Avalon Bus

I2C & Data Bus

SD Card

Audio Out

Ethernet

Controller
Ethernet

High-Level Features We’re Proud Of

◦ We wrote a lightweight ID3 parsing library using the ID3v1/v2 and MPEG Layer

III encoding specifications.

◦ Hot-swapping SD cards during playback is supported, with asynchronous

client updating.

◦ Multiple web clients are supported and updated in real time.

◦ Clients connected to the internet will automatically download artist images,

album covers, artist biographies, and recommended artists.

uC/OS-II operating system

Software Overview

MP3 Decoder
Task

Web Server
Task

Hardware
Audio Buffer

Interrupts

Player State data

API calls

Multitasking Design

◦ We exploit interrupts on the audio codec’s FIFO buffer of output

samples to perform real-time task switching.

◦ When the FIFO runs low on data (25% full), the interrupt fires and its

ISR posts to a binary semaphore, dispatching further MP3 decoding.

◦ Once full, the decoder task pends on the semaphore, yielding the

CPU to the web server task.

Multitasking Performance

MP3 Decoder: Decode 1 second of audio
(~ 0.65 seconds)

Serve client requests
(~ 0.35 seconds)

1 Second

Audio out: play 1 second of audio
(Signal decoder when running low)

Web Task & Client-Server Architecture

◦ The web server task parses API calls and updates the server side state if

a control request has been made.

◦ Player state is a C structure that’s semaphore-protected to ensure there

are no race conditions or other undesirable behavior during state

changes.

◦ The player task checks the state during buffer re-loading and between

tracks to control the output of audio samples.

Web Task & Client-Server Architecture

◦ Client initially loads web application using HTTP GET requests.

◦ Status checks are done once per second (per client). Control API

requests are instantaneous.

◦ The client makes API calls using jQuery’s AJAX methods. Exchanged data

is JSON formatted.

User Interface Design

◦ In industry, a user interface can mean the difference between a product’s

success or its failure.

◦ Our goal: a pleasant, intuitive, and responsive UI.

◦ Designed and coded from the ground up.

Demo
WEB APPLICATION

