CMPE 450

iOS Device Controlled
RC Car Capstone Project

Final Report

Group 1
Robert Hood rhood@ualberta.ca

Barry Peyton bpeyton@ualberta.ca

Max Marcus maxmarcus55@gmail.com

Preferred Lab Day: Wednesdays @ 2:00 p.m.
Other Available Lab Days: Mondays/Fridays @ 2:00 p.m.

Summary
A small RC car with an FPGA board, remotely controlled by an iOS device.

Table Of Contents

1. Declaration Of OFIZINAl CONTENTiiiiieiiieceeeeeetee ettt e st e sttt eeteesteeeteeessaeeseeesseesssaeasseeasseeasseeanseeanseeenseeesseesseessseessseeanseesnseeenseeesanensenennenn 3
B A ¢ 15 4T OO P OO TRS PSR SO ORI 4
oI ST Toru oY g Y I Y=Y TU =T 0 =T o1 USRS 5
F o D1 T d Yo Lo DT o g oY d o) g T e A @1 o T=T =Y o o USRS 7

4.1 Description of Operation

L0 DT = I (o o T 17T L) SRRSO 7

4.2 1 RN-174 Wi-Fi MOTUIE ...ttt st ettt e e e b e e bt et n e b s e e e s e et et e besaeeneenenne e 7

4.2.2 Altera DEO NANO FPGA BOAITccuiviiiiiiiieiieiieesit ettt ettt st e sttt b e b a e s et n e b s e e e et et eneeaeeneenenne e 7

4.2.3 RC Car Servo, Motor, and Electronic SPEEA CONTIOl.......ccuiiiiiiiiee e eieeceeeite et e et et eesae e st e e s te e ssteessteeesseeeseeessaeesssaessseesnseesnseean 8

4.3 DESIZN (SOTEWEIE) .eeeutieeuiieiieeiieeeteeetteette et eestee e s teeessteessteeasteeesseeesseeanseeessaeeasseesseessseeasseeanteeaaseeasseeenseeeasaeesseessseeasseesnseeanseeensaeensneensaeenseen 9

LT S T e LYY Tt ST TU T =T 41T USSR 10

6. Parts List

7. 50UrCeSs Of REUSADIE DESIGN UNITS ..iiuiiiieiieiiieiiieeieeeteeeteeetteestteesteeestteestteessteessteessteeasseeessaeassseesseeasseessseeasseeanseeaaseeanseeesseeesseensseesnseeanseesnsanensennn 11
LS Y | T IR =03 - Y L3S 11
Lo = =T 4= TU T o I 2= Vo T = £ USSR 12

10. Test Plan

F0.1 SOTEWAIE ...ttt ettt st h e b e e et R R R R SRt R e R R e e et R Rt R e e Rt eR e R et e e b ae e se et reerenne s 12
F0.2 HAPAWAIE ..ottt sttt b et e e b b se e e e s e e et et e et e et e b e e Rt sa e s e e R e R e s e e e R et R e Rt Re Rt bR e e e e b ne et reereene s 13
11. Results of EXperiments and CharaCteriZatioNnciccuieiieeiieeiieesieesiteetteeteeesteeestteesteeessseessseessseeasseeesseeesaeesseessseesssaessseesnseesnseeensneensneenssennes 13
12. Integrated CirCUIt DESIZN PrOPOSAl. .. . ii i iieiiie et ettt ettt e sttt e sttt e sttt esteesteeeteeeteeeseeeasaeeasseeasseeasseessseessseeanseeessaaessseensseeasseessseesnseesnseeensneesneenssennns 14
B TR 2= Tt g Lol PO T OO PRSP S P PTPOT 14
Yo o YT Vo 1RSSR 14

14.1 Quick Start Manual

14.2 FUtUre WOrk POSSIDIE EXEENSIONS:couiiuiiiiiiiiiieiteieee ettt sttt s e s ettt e et eb e b sa e sa et sae e e e neeneeneenesne s 14
14.3 Hardware DOCUMENTAIONc.eiuiiuiiiiiietiiieieee ettt sttt sttt et b bt sa e s e b s s s e e s e et et e bt e st eae b e e b e saese et e sae s e e snenteneeresnean 15
FIgUre 2: HardWare BIOCK DIGBIamcccuuiiiieeiieeiieesteesteesteesteeesteeeteeesseeessseesssesasseeasseessseesssaeansssensseesseessseeasseessseeanseeansesenseeensseenssessssessssensnsen 15
BT Yo TU T o= e e [PPSO P OO R PRSP TPSRTRRT 16
B @ L ' o] Lo 4T RSP SRUSUSRUSY 16
15.4.2 PWIM IMOTUIE....c.coiiiieeteeeee ettt st s ettt e b Rt s et s e e R s s e s e e e e et e s e bt e et ea e bt e b e sa e se e b e nne s e e seeateneenesaean 21
15.4.3 RC Car CONEIONIEN ..ottt ettt e bRt s et s e e R e s s e e s e et et e bt e st ea e bt e nesa e se et e nae e e e nneneeneenesnean 25

1. Declaration of Original Content

"The design elements of this project and report are entirely the original work of the authors and
have not been submitted for credit in any other course except as follows™:"

Name Signature Date
% a/14/]o
. Barry Peyton 6@‘,\»7/ S !

2. Max Marcus v Q/M// c

Iy~ Tprons
. Robert Hood W %ﬂfk 0d /}L[/(2

—

(9N

1. http://developer.apple.com/library/ios/navigation/http://developer.apple.com/library/ios/navigation

2. Multi_PWM from www.grigaitis.eu, green_leds.vhd
3. Quartus Files:

¢ Timer_0.vhd

¢ Sysld.vhd

¢ Sdram_0.vhd

* RS_232_UART.vhd

* On_chip_memory_2_0.vhd

* JTAG_UART_).vhd

* Green_LEDS.vhd

* GPIO_0O.vhd
¢ CPU_O.vhd
¢ Altpll.vhd

! Elliot Duncan http://www.ece.ualberta.ca/~elliott/cmped90/projectRequirements.html#Specification

2. Abstract

The goal of this design project is to interface a remotely controlled (RC) car to a handheld Apple iOS device via a
wireless connection. The RC car will respond to particular rotational movements of the iOS device detected by its
built in accelerometer, as well as button presses on the i0S device’s touchscreen. To achieve this functionality we
will be mounting the Altera DEO Nano FPGA board to the RC car and sending pulse width modulated control
signals from the board to the car over a wired interface. The DEO Nano Board will receive command signals from
the 10S device over a Wi-Fi interface. This wireless interface will implemented by connecting an RN-174 Wi-Fi
module to the DEO Nano FPGA Board using a wired RS-232 UART interface. These connections will act as our
data pipeline, allowing us to send directional commands from the i0OS device to the RC car.

3. Functional Requirements

Core Requirements:
o The movement of the RC car will be remotely controlled by the i0OS device.

o Steering is controlled by the built in accelerometer, while the speed will be controlled by the touch
screen.

Figure 1: i10S Device User Interface

=i TELUS 3G 8:13 PM 92 % [t
Connect Disconnect
Y:-0.053528
Y: @

Direction: Right

Current Speed: 24

e The iOS app will have three states: Drive Forwards, Drive_Reverse, and Park. The states can be modelled
using a Finite State Machine.

Figure 2: RC Car Movement Modelled As a Finite State Machine

Drive
Forwards

Drive
Reverse

motor_enable = park

motor_enable = drive

= motor_enable = drive
motor_direction = forwards

motor_direction = reverse

These states are based on two binary parameters: motor_enable (either Drive or Park) and motor_direction
(either Forwards or Reverse).

Park: This is the initial state. In this state, motor and servo movement (acceleration) is not allowed.
Switching between Forwards Mode and Reverse Mode is allowed.

Drive_Forwards and Drive Reverse: In these states, motor and servo movement is allowed. Switching
between Forwards Mode and Reverse Mode is not allowed. When the car is in the Drive states, it can only
move in the direction specified by motor_direction.

The user can switch the motor_direction parameter while the app is in the Park state, using a switch on the

iOS device screen.
When in the Drive states:

o The car will respond appropriately to the following movement commands from the iOS device:
Set Max_Speed, Turn_Wheels_Right, and Turn Wheels_Left.
o The user will issue the steering commands to the car by tilting the i0OS device away from its initial

orientation. By tilting the iOS device right or left, the user causes it to send the Steer Right or
Steer Left commands to the car.

o The user will set the maximum speed of the car using a slider on the screen. The car will
accelerate to that speed and attempt to maintain it. If the user sets the maximum speed to 0, or
pushes the button to move in the opposite direction then the car will come to a stop.

4. Design and Description of Operation

4.1 Description of Operation

When initiating control of the RC car, the user must hold the iOS device so that the screen is landscape and faces
horizontally (i.e. same orientation as a computer monitor). The user interacts with the i0OS app via the iOS device's
touchscreen and accelerometer. The user interface allows the user to send the following commands to the app:
Connect, Disconnect, Set Max_Speed, Forwards Mode, Reverse Mode, Turn_Wheels_Right, and
Turn_Wheels_Left.

Table 1: Summary of i0OS Device Ul

The i0S app interacts with the RN-174 Wi-Fi module wirelessly via the i0S device's Wi-Fi radio. The Wi-Fi
module should be configured to be in adhoc mode so that it creates an adhoc Wi-Fi network on power-up. The i0S
device can then detect this Wi-Fi network and request a connection. Upon accepting the iOS device's request, the
Wifi module begins receiving commands from the i0OS app via TCP packets.

The RN-174 Wi-Fi module interacts with the FPGA-implemented CPU via a wired UART RS-232 interface. The
movement commands, passed by the RN-174 module, are received by the CPU using a MicroC/OS-II message
queue. The CPU uses the control logic in the program code (written by us in NioslII IDE) to read the movement
commands from the message queue and then send the appropriate commands to the PWM generator.

The PWM generator sends Pulse Width Modulated (PWM) signals to the servo and motor on the RC car via six
wired connections.

4.2 Design (Hardware)

4.2.1 RN-174 Wi-Fi Module

The RN-174 Wi-Fi module receives TCP packets over an IEEE 802.11g adhoc Wi-Fi network. The module strips
the headers from the packets and echos their data to its RS-232 port. The Wi-Fi module is mounted on the perforated
development board and powered through its RS-232 port. We leave jumper J6 connected, which causes the module
to enter adhoc mode as soon as it is powered on. We configured the firmware wirelessly using an application called
Telnet, launched from a terminal on a Windows machine. We changed the following configuration settings from
their default values:

Probe = 60 [seconds]
Baud Rate = 19 200

The Wi-Fi module has a green LED indicator that is solid when the iOS device is connected to the adhoc Wi-Fi
network and blinking slowly when it is disconnected.

Figure 6: RN-174 Wi-Fi Module

4.2.2 Altera DEO Nano FPGA Board

The Altera DEO Nano board houses the following components used on our design:
e Altera Cyclone IV EP4CE22F17C6 FPGA
e 32MB SDRAM
e 8 green user LEDs

e USB Type mini-AB port (5V) (for programming only)
e 2-pin external power header (3.6-5.7V)

We used the SOPC Builder in Quartus II to generate the following modules from the Altera Library, which we
programmed onto the Cyclone IV FPGA:
e Niosll/e CPU
SRAM (16 384 bytes)
System ID Peripheral
Interval Timer
JTAG UART
Parallel IO (for green LEDs and GPIO headers)
Avalon ALTPLL
UART (RS-232 Serial Port)

Additionally, we added the two modules Steering PWM and Motor PWM which are based on our own VHDL
code. These modules generate PWM signals (at 50 Hz) to be sent to the electronic servo and motor on the RC car.

Data is received from the Wi-Fi module by the UART RS-232 core via the GPIO_0 12 pin (i.e. pin 17 on the
GPIO_0 header). The data packets are bytes sent using the RS-232 protocol. We do not use the RTS and CTS flow
control signals. The UART core sends these bytes, which are ASCII encoded chars, to the MicroC application on the
SDRAM. The application uses the chars to determine which command signals to send to the servo and motor. It uses
the Steering PWM and Motor PWM components to send these Pulse Width Modulated (PWM) command signals
over GPIO_1_30 (for motor) and GPIO_1 31 (for servo), corresponding to pins 37 and 38 on the GPIO_1 header.

4.2.3 RC Car Servo, Motor, and Electronic Speed Control

These electronic components are mounted on the RC car. They receive PWM signals from the DEO Nano board. The
motor causes the two rear wheels to rotate at variables speeds, either forwards of backwards. The servo causes the
two front wheels to angle leftwards or rightwards at varying degrees. The servo and the motor each take three wired
connections: POWR, GRND, and PWM signal. The servo and motor are connected to a common ground.

4.3 Design (Software)

Figure 2: Software Block Diagram

Accelerometer

TCP-IP
RN-174 WIFI
RC Car App ™| Module (Firmware)

Y

Nios Il uC
Program

V4 Na

Steering PWM Motor PWM

Using data received from the handheld device, the i0S application will create a TCP/IP packet to send over the Wi-
Fi network. Every 100ms the iOS application polls the device’s accelerometer and touch screen. This data is then
used to tell the car what to do from its current state. Using this most up-to date data from the device, the iOS
application creates a three one-byte data packets. The first packet contains a “control” character, the second packet
contains the direction character, while the last packet contain the cars speed character.

Within Nios there are two tasks; one which continuously polls the position data packets sent from the iOS device
and a second task which contains the control logic.

The first task fulfills two important requirements. First it extracts the iOS data packets off the WI-FI module and
secondly it filters the data packets to ensure that the data received is valid car control commands. Since the packets
are each one char, during the extraction process from the WIFI module, our program turns the three single chars into
one three char string. This new string is then put through a filtering process which ensures that the string contains
one and only one of each of the required chars: the control char, a valid steering char and a valid speed char. If it is
determined that the string does not contain all of these chars, this string is not sent to the control logic task.

Once the filtering process determines that the string contains the required data, it sorts the string, ensuring that the
first char is the control character, the second char is a steering command and the third char is the speed command.
Finally, after the string is sorted, it is sent via a message queue to the control task.

The second task (control task) processes the filtered string from the first task. The second task assumes that the data
it receives from the first task is a valid three char control string. From there the second char(steering) is compared to
the known steering char used for going straight. The difference of the two chars is whats used to actually update the
steering. Depending on if this evaluates to positive or negative(positive = greater than neutral char = turn right,
negative = less than neutral char = left) the car will turn a certain number of degrees from the neutral position
corresponding to the difference. The motor controller works in the same way, except switch turning right for moving
forward, and turning left to moving in reverse.

5. Hardware Requirements

The Altera DEO Nano board houses the following components used on our design:
e Altera Cyclone IV EP4CE22F17C6 FPGA

32MB SDRAM

8 green user LEDs

USB Type mini-AB port (5V) (for programming only)

2-pin external power header (3.6-5.7V)

We use the following interfaces for communication between various hardware components:
e Touchscreen - For the user interface between the user and the i0OS device
e TCP/IP - For the IEEE 802.11g adhoc Wi-Fi network, accross which the iOS device connects to the RN-
174
e RS-232 - For the wired connection between the RN-174 and the GPIO_0 header on the DEO Nano board
e PWM - For the wired connection between the GPIO 1 header on the DEO Nano and the servo and motor

We will be using the Altera DEO Nano FPGA Board as our primary hardware platform along with two Development
Environments (Quartus and NIOS) as our primary software development platform. The Altera board comes
equipped with a Cyclone IV FPGA that will contain the Pulse Width generator component used to control the on-
board motors and servo on the RC Car. The RC car has an 8.4V NiMH battery pack to power the motor and servo.
We will be using the RN-174 Wi-Fi Module to create a wireless ad-hoc connection between the i0S device and the
moving RC Car. This module has many built in features such as a 2.4GHz radio, processor, full TCP/IP stack and a
real-time clock. This module also supports a wide range of communication protocols such as: FTP, DHCP, DNS and
HTML client protocols. We will be using the built-in TCP/IP Stack to achieve a communication interface between
the 10S device and the Wi-Fi module. The iOS programming will be done on a 15 Apple Macbook Pro with 8GB
1067 MHz DDR3 Ram and a 2.8 GHz Intel Core i7 to power the Apple Xcode 4.3 IDE (personally provided).

6. Parts List

- Altera DEO Nano FPGA Board (Part has been received)

e Available from Digi-Key for $86.25/each
Requires voltage range between 3.6-5.7VDC to the 2-pin external power header
http://parts.digikey.com/1/parts/2398386-de0-nano-eval-board-p0082.html
http://www.terasic.com.tw/cgi-bin/page/archive.pl?No=593
http://www.terasic.com.tw/cgi-
bin/page/archive_download.pl?Language=English&No=593&FID=75023fa36c9bf8639384f942e¢65a46f3
- Roving Networks RN-174 Wi-Fi Module (Part has been received)

e Available from Digi-Key for $86.44/each

e Requires voltage range between 3.3-16 VDC via the RS-232 Interface to be powered

e http://www.rovingnetworks.com/resources/download/14/RN 174

e http://search.digikey.com/scripts/DkSearch/dksus.dl1?x=0&y=0&lang=en&site=ca&KeyWords=rn-174
- iPhone/iPad with accelerometer capabilities (student provided/Part has been received)
- Traxxas Slash Pro 2WD Short-Course Truck (student provided/Part has been received)

e Available from Hobby Wholesale for $240/cach

e http://traxxas.com/products/models/electric/5805slash

10

e http://traxxas.com/products/models/electric/5805slash-downloads

7. Sources of Reusable Design Units

We will be reusing the following FPGA components from the Quartus II library: NiosIl/e CPU, Avalon onchip

memory, and the System ID peripheral. We hope to find an open source implementation of PWM generator for the
FPGA. We also have access to sample code for programming the RN-174 module using the application TeraTerm
(which is free to download).

8. All 1O Signals

Type Of Signal Name Power Origin Pin Destination Pin
Signal Supplied & Number Number
Current
Drawn
Off-Board DEO-Nano 3.6-5.7 5.3V Battery VDD Pin | DEO-Nano 2-Pin | 2-Pin
Electronics | FPGA Board VDC Compartment on Perf External Power Power
Power Supply Draws 0.5A | Mounted on RC | Board Header Header
Car
GND Pin
on Perf
Board
Off-Board RN-174 Wi-Fi 3.3-16 VDC [5.3V Battery VDD Pin | RN-174 RS-232 VDC
Electronics | Module Power Draws Compartment on Perf Interface GND Pin 9
0.05A Mounted on RC | Board and VDC Pins
Car
GND Pin GND
on Perf Pin 5
Board
Off-Board MAX3232 Level | 3.3 VCC 5.3V Battery VDD Pin | GND VCC Pinon | VCC
Electronics | Shifter Power Compartment on Perf MAX3232 Level | Pin 16
Supply Mounted on RC | Board Shifter
Car GND
GND Pin Pin 15
on Perf
Board
Off-Board TCP Connection | N/A i0S Application | N/A RN-174 RS-232 UART RX
UART Receive TCP/IP Socket UART RX Pin 3
Signal SignalUART RX
Pin 3
Off-Board UART N/A RN-174 RS-232 | UART TX | DEO-Nano 40-Pin | Pin 17
Transmission UART TX Pin 2 GPIO-0 Header GPIO-12
Signal Signal
Off-Board Power Supply to | 8.4 NIMH RC Car Battery | VDC Pin | RC Car VDC Pin
Electronics | Motor and Servo | Battery Compartment Motors/Servo
GND Pin GND Pin

11

FPGA- DEO-Nano N/A DEO Nano Steering DEO-Nano 40-Pin | Pin 38

Board FPGA FPGA PWM GPIO-1 Header | GPIO-31
PWM Signal (PWM Module) | Motor Pin 37
Generator PWM GPIO-30

Off-Board PWM N/A DEO-Nano 40- | Pin 38 RC Car Signal White Wire
Signal to Pin GPIO-1 GPIO-31 | Wires on Motor
Motor/Servo Header Pin 37 & Servo

GPIO-30 Cable

9. Background Readings

AD-Hoc Networks

e http://www.cse.fau.edu/~jie/research/publications/Publication_files/adhoc.pdf
e http://www.sciencedirect.com/science/article/pii/5157087050300043X
Pulse Width Modulation

e http://www.sciencedirect.com/science/article/pii/S1383762105001049
TCP/IP
e http://books.google.ca/books?hl=en&lr=&id=-btNds68w84C&oi=fnd&pg=PR15&dq=TCP/IP&ots=e0s-
WSPtrs&sig=tB7DNFpANyX77cAmMg7N84wp9-Y

10. Test Plan
10.1 Software

We will perform various tests on the iOS device to ensure the correct functionality of the i0S app.
First we will configure the application to display information from the accelerometer in real-time. The next stage

will be converting this data into one of the two commands that will control the vehicle’s steering. To test this aspect
of the software, we will have the i0OS device display the current command on its screen and watch it change in real-
time as we tilt the device left and right. Then, we will configure the application to display whichever command
(Forward_Mode, Reverse Mode, Turn_Wheels_Right, and Turn Wheels_Left) was sent last.

To test the task which control the cars operation, we will set up defined duty cycles within the NIOS environment
(for example, on the current 8 bit counter, the value 24 corresponds to a full duty cycle, 18 corresponds to a half
duty cycle and 12 corresponds to a quarter duty cycle). Using these pre-defined duty cycles, we will update the
contents of the base address of the PWM generator. We will map out the output of the PWM module to output pin
17 of the GPIO_0 header. We will then able to verify the operation of the PWM by observing the wave it produced
on the oscilloscope.

The next step of our software test plan is to verify that the commands issued by the iOS device are received properly
by the RS-232 interface module on the DEO-Nano. By writing a simple program to display the characters received to

the NIOS console we can verify proper data transmission.

Now that we have verified the software portion of our Design we will move onto the Final Integration Testing of our
entire system.

12

10.2 Hardware

To begin testing our hardware in our design we will conduct separate Unit Tests to verify that each individual
component is functioning properly. The DEO Nano FPGA Board can be tested by loading a demo program onto it to
verify the proper functionality of the elements on the board. The Wi-Fi module will be tested using the program
provided by Roving Networks called TerraTerm. This program will allow us to configure the module and then we
will write a test program to display certain functionality such as blinking the built in LED’s on the Wi-Fi
Module.The RC car will be tested by using the stock remote control to complete a test drive. We will then be using
the DEO Nano FPGA Board to simulate commands passed to the RC Car. This will be accomplished via a test
program that will power the motors according to a strict path we will construct.

Once the separate units are tested individually, we will start to interface various components and test them together
(i.e. integration testing). To test whether the iOS device correctly passes commands to the Wi-Fi module, we will
configure the RN-174 to have certain LEDS blink for certain commands. We will also test the RN-174 by having it
echo the commands to a PC over RS-232. To test whether the Wi-Fi module correctly passes commands to the CPU,
we can download a simple program to the module which makes the LEDs on the DEO Nano board blink. We will
test whether the FPGA can correctly operate the motor and steering servo based on a list of commands downloaded
from a computer.

For system testing, we will replace the laptop with the iOS Application and repeat the previous testing strategy. The
car will be placed on top of a pedestal and a user will attempt to control the RC Car’s movement. The movement
will be analyzed to ensure proper functionality of the steering mechanism and motor in proportion to the requested
motion from the iOS application.

11. Results of Experiments and Characterization

At this time, we have not conducted any experiments on our system, apart from an iOS app that we wrote to test the
sensitivity and output of the accelerometer in both an iPhone and an iPad. The app generated the expected output
and the accelerometer sensitivity appears to be adequate for our design.

At this time, we have only tested the functionality of the iOS application and the PWM module. On the
iOS application side of things, we wrote an application to test the sensitivity and output of the
accelerometer in both an iPhone and an iPad. The app generated the expected output and the
accelerometer sensitivity appears to be adequate for our design.

For the PWM, we wrote a basic task that sends different duty cycles to the PWM module. The output from the
oscilloscope is what was expected from our calculations. The PWM also operates at the proper 1600 Hz frequency
needed to interact with the car.

13

12. Integrated Circuit Design Proposal

Due to a bug in the NioslI IDE that took 21 hours to identify, we have not begun the IC design process.

13. References

--References: Multi_PWM from www.grigaitis.eu, green_leds.vhd
14. Appendix
14.1 Quick Start Manual

1)Turn the battery pack switches to “ON”.

2) Launch the app on the iOS device.

3) Press the “Connect” button on the iOS screen.

4)Turn the switch on Electric Speed Controller on the RC Car to “ON” (Light turns Green then Red when ready).
5) Pick a drive direction, either Forward or Reverse.

6) Make the car move by dragging the “Speed” slider away from the stopped position.

7) Steer the car by tilting the i0S device to the left or right.

8) Make the car stop by dragging the slider back to the stopped position, or by selecting a different drive direction.

14.2 Future Work
Possible Extensions:

* The iOS device screen will display a live video feed that is sent from a front-facing digital camera,
mounted on the car. (Note: We will need to account for the delay in the video feed somehow. Otherwise,
we will be sending control signals to the car based on old info.)

¢ Use accelerometers on the DEO Nano to detect collisions and stop the motor.

* Proximity sensors, placed on four sides of the car, prevent the car from getting into collisions. When nearby
objects get too close, the CPU temporarily blocks the user from controlling the car and runs an obstacle-
avoidance subroutine, causing the car to stop and then drive a few centimeters away from the obstacle.

* Mount the digital camera on a platform that can rotate through a 180-degree horizontal viewing range. The
user can control this rotation using a button on the i0OS device screen.

* Add asecond rear-facing camera to the car and allow the user to switch between the front-facing and rear-
facing video feeds.

Possible Simplifications:

¢ Instead of controlling the movement of the RC car over a Wi-Fi network using an iOS device, the user
controls the car over a wireless ZigBee connection using a simple remote control comprised of two
joysticks and a second DEO Nano board (to interface the joysticks with the ZigBee modules).

* Only have one maximum speed that the car accelerates to and from. In this case, the Set Speed slider would
become a switch (Go and Stop).

* Instead of having the front wheels (the ones that control the steering) turn left and right by a degree that is
proportional to the rotation of the i10S device, the front wheels could simply have three positions: Straight,
Turned Right, and Turned Left.

14

Looking Forward:

* Market our product as a toy.

* Expand our controller system to RC Airplanes, Trains.

* Adapt our iOS application to replace current remote technologies. Perhaps a universal household remote.

* With the addition of a camera, our system could be used for survelance or in bomb squads, to go places
where human safety is perhaps an issue.

14.3 Hardware Documentation

Figure 2: Hardware Block Diagram

Touchscreen and

Accelerometer
User

Wi-Fi Network
Wi-Fi Module
(RN-174)
Altera DEO

Nano ‘

Niosll_e
SDRAM |«t+—"| Processor RAM

i

LEDs j .
PWM Signal PWM Signal
Generator Generator

15

15.4 Source Code:
15.4.1 i0S Application

MainViewController.m

// MainViewController.m
// Created by Barry Peyton on 12-02-05.
// Copyright 2012 University of Alberta. All rights reserved.

#import "MainViewController.h"

@implementation MainViewController
@synthesize labelX, labelY, labelZ,progressY,velocityValue,directionValue,iStream,oStream;
@synthesize sliderCtl,segControl,accelerometer,resultl, result2, result3;

- (void)viewDidLoad {

//create accelerometer object

self.accelerometer = [UIAccelerometer sharedAccelerometer];
self.accelerometer.updateInterval = 0.1;
self.accelerometer.delegate = self;

//create segmented control object
self.segControl = [[UISegmentedControl alloc] init];
[segControl addTarget:self action:@selector(segmentedControlIndexChanged:) forControlEvents:UIControlEventValueChanged];

//Set Default Direction to be Forward on Startup
direction = TRUE;

//Set Default Velocity to be 0
[self.sliderCtl setValue:0.0];

[super viewDidlLoad];
- (void)accelerometer: (UIAccelerometer x)accelerometer didAccelerate: (UIAcceleration x)acceleration {

//Display Accelerometer Data on Screen
self.labelY.text = [NSString stringWithFormat:@"%@%f", @"'Y: ", acceleration.yl;

//Determine Direction Label (Left or Right)
if (acceleration.y > 0) {

self.labelZ.text = [NSString stringWithFormat:@"%s@", @"'Left"];
} else if (acceleration.y < 0){

self.labelZ.text = [NSString stringWithFormat:@"%s@", @'Right"];

//Update Progress Bar & Rotate

CGAffineTransform trans = CGAffineTransformMakeRotation(M_PI * 0.5 % -1);
CGRect frame = CGRectMake(0.0, 50.0, 7.0, 20.0);

self.sliderCtl.transform = trans;

//Create Slider Speed Controller

if (sliderCtl == nil) {
self.sliderCtl = [[UISlider alloc] initWithFrame:framel;
[self.sliderCtl addTarget:self action:@selector(sliderChanged:) forControlEvents:UIControlEventValueChanged];
self.sliderCtl.backgroundColor = [UIColor clearColor];

self.sliderCtl.minimumValue = 0.0;
self.sliderCtl.maximumValue = 50.0;
self.sliderCtl.continuous = YES;

}

//Update Progress Bar to Direction Value
self.progressY.progress = ABS(acceleration.y);

//Control Logic for Steering and Motor Commands

// a b C d e f g h i j k 1 m n 0 p q r s t u Y w X y z /17177
/INNJA -5 -4 -3 -2 -1 6 1 2 3 4 5 NA NA -5 -4 -3 -2 -1 0 1 2 3 4 5 NAV//III
/1117 LEFT N RIGHT REVERSE N FORWARD /11117

if(running){

//

float roundedSteering = ((int)(acceleration.y * 100 + .5) / 100.0);
roundedSteering = roundf(10 * roundedSteering) / 10;
roundedSteering = roundedSteeringx10;

int steering = (int) roundedSteering;

//Set Steering Command
if (steering < 2 && steering >-2){
directionValue = [NSString stringWithFormat:@"g"];
Yelse if (steering >= 2 && steering < 3){
directionValue = [NSString stringWithFormat:@"f"];
Yelse if (steering >= 3 && steering < 4){
directionValue = [NSString stringWithFormat:@"e"];
Yelse if (steering >= 4 && steering < 5){
directionValue = [NSString stringWithFormat:@"d"];
Yelse if (steering >= 5 && steering < 6){

16

}

directionValue = [NSString stringWithFormat

Yelse if (steering >= 6 && steering < 7){

directionValue = [NSString stringWithFormat

Yelse if (steering <= -2 && steering > -3){

directionValue = [NSString stringWithFormat

Yelse if (steering <= -3 && steering > -4){

directionValue = [NSString stringWithFormat

Yelse if (steering <= -4 && steering > -5){

directionValue = [NSString stringWithFormat

Yelse if (steering <= -5 && steering > -6){

directionValue = [NSString stringWithFormat

}else if (steering <= -6 && steering > -7){

directionValue = [NSString stringWithFormat

int velocity = self.sliderCtl.value + 0.5f;

//Forward Operation
if(direction){
if (velocity == 0){

:@"c"l;
:@"b"1;
:@"h"];
@115
@1
:@"K"1;
@'

//Send Motor Neutral
velocityValue = [NSString stringWithFormat
Yelse if (velocity <= 10 && velocity > 0){
velocityValue = [NSString stringWithFormat
Yelse if (velocity > 10 && velocity <= 20){
velocityValue = [NSString stringWithFormat
Yelse if (velocity > 20 && velocity <= 30){
velocityValue = [NSString stringWithFormat
Yelse if (velocity > 30 && velocity <= 40){
velocityValue = [NSString stringWithFormat
Yelse if (velocity > 40 && velocity <= 50){
velocityValue = [NSString stringWithFormat

}//Reverse Operation
else if(!direction){

if (velocity == 0){

//Send Motor Neutral

velocityValue = [NSString stringWithFormat
Yelse if (velocity <= 10 && velocity > 0){

velocityValue = [NSString stringWithFormat
Yelse if (velocity > 10 && velocity <= 20){

velocityValue = [NSString stringWithFormat
Yelse if (velocity > 20 && velocity <= 30){

velocityValue = [NSString stringWithFormat
Yelse if (velocity > 30 && velocity <= 40){

velocityValue = [NSString stringWithFormat
Yelse if (velocity > 40 && velocity <= 50){

@"t"];
:@"u"l;
:@'v"l;
:@"w"l;
:@"x"1;
@'yl

@"t"];
:@"s"1;
@'r'l;
:@'9"1;
:@'p"l;

velocityValue =
}

//Send Command String via TCP Connection

resultl = [self sendText:self withValue:@"""];

NSLog(@"Result is:%@", resultl);

[NSString stringWithFormat:@"o"];

result2 = [self sendText:self withValue:directionValuel;

NSLog(@"Result is:%@", result2);

result3 = [self sendText:self withValue:velocityValuel;

NSLog(@"Result is:%@", result3);

- (void)sliderChanged: (id)sender{

}

//if slider value changes update label
int velocity = self.sliderCtl.value + 0.5f;
self.labelX.text =

-(void) segmentedControlIndexChanged: (id)sender{
//if segment control changes negate acceleration to invoke reverse

self.sliderCtl.value = 0;
int velocity = self.sliderCtl.value;
self.labelX.text =

[NSString stringWithFormat:@"%@%d",

[NSString stringWithFormat:@"%@%sd", @'Current Speed:

switch (((UISegmentedControlx) sender).selectedSegmentIndex) {

case 0:
NSLog(@"Segment Value is Forward");
direction = TRUE;
break;

case 1:
NSLog(@"Segment Value is Reverse");
direction = FALSE;

//Account for Switching into Reverse with ESC issue we resolved

//Send Command String via TCP Connection

resultl = [self sendText:self withvalue:@"""]1;

NSLog(@"Result is:%@", resultl);

result2 = [self sendText:self withValue:directionValuel;

NSLog(@"Result is:%@", result2);

result3 = [self sendText:self withValue:@"s"];

NSLog(@"Result is:%@", result3);
//Send Command String via TCP Connection

resultl = [self sendText:self withvalue:@"""];

@"Current Speed:

, velocityl];

, velocityl];

}

NSLog(@"Result is:%@", resultl);
result2 = [self sendText:self withValue:directionValuel;
NSLog(@"Result is:%@", result2);
result3 = [self sendText:self withValue:@"t"];
NSLog(@"Result is:%@", result3);
break;
default:
break;

-(void) connect {

}

//Close TCP/IP Connection

//Create read & write stream and set IP Address and Port parameters
CFReadStreamRef readStream = NULL;

CFWriteStreamRef writeStream = NULL;

CFStringRef host = CFSTR('169.254.1.1");

UInt32 port = 2000;

//Create Socket Connection with given HOST Address

CFStreamCreatePairWithSocketToHost (kCFAllocatorDefault, host, port, &readStream, &writeStream);

if (readStream && writeStream) {
CFReadStreamSetProperty(readStream, kCFStreamPropertyShouldCloseNativeSocket, kCFBooleanTrue);
CFWriteStreamSetProperty(writeStream, kCFStreamPropertyShouldCloseNativeSocket, kCFBooleanTrue);

iStream = (__bridge NSInputStream *)readStream;

[iStream setDelegate:self];

[iStream scheduleInRunLoop: [NSRunLoop currentRunLoop] forMode:NSDefaultRunLoopMode];
[iStream open];

oStream = (__bridge NSOutputStream x)writeStream;

[oStream setDelegate:self];

[oStream scheduleInRunLoop: [NSRunLoop currentRunLoop] forMode:NSDefaultRunLoopMode];
[oStream open];

if (readStream) CFRelease(readStream);
if (writeStream) CFRelease(writeStream);

//Start sending data
running = TRUE;

-(void) disconnect {

}

//Close TCP/IP Connection
[iStream closel;
[oStream closel;
[iStream removeFromRunLoop: [NSRunLoop currentRunLoop] forMode:NSDefaultRunLoopMode];
[oStream removeFromRunLoop: [NSRunLoop currentRunLoop] forMode:NSDefaultRunLoopMode];
[iStream setDelegate:nill;
[oStream setDelegate:nill;
iStream = nil;
oStream = nil;
//Stop Sending Data
running = FALSE;

(IBAction)connectCommand: (id)sender {

if(iStream != nil) return;
[self connect];

(IBAction) disconnectCommand: (id) sender {

if(iStream == nil) return;
[self disconnect];

(NSString *)sendText:(id)sender withValue: (NSString x) value {

//Encode Data to be sent
NSData x dataToSend = [value dataUsingEncoding:NSASCIIStringEncoding];

//If an output stream exists send data until the value is empty
if (oStream) {
int remainingToWrite = [dataToSend lengthl;
NSLog(@"Length of data: %d", remainingToWrite);
void * marker = (void) [dataToSend bytes];
while (@ < remainingToWrite) {
int actuallyWritten = 0;
actuallyWritten = [oStream write:marker maxLength:remainingToWritel;
remainingToWrite —= actuallyWritten;
marker += actuallyWritten;
}
}

return value;

- (void)stream: (NSStream x)theStream handleEvent: (NSStreamEvent)streamEvent

//Handle Events in regards to Stream Issues
NSString *xio;

18

if (theStream == iStream) io = @">>";
else io = @"<<";

NSString xevent;
switch (streamEvent)

case NSStreamEventNone:
event = @'NSStreamEventNone - Can not connect to the host!";
break;
case NSStreamEventOpenCompleted:
event = @'NSStreamEventOpenCompleted";
break;
case NSStreamEventHasBytesAvailable:
event = @'NSStreamEventHasBytesAvailable";
if (theStream == iStream)

//read data
uint8_t buffer[1024]

int len;

while ([iStream hasBytesAvailable])
{

encoding:NSASCIIStringEncoding];

b

default:

NSLog(@"%

}
break;
case NSStreamEventHasSpaceAvailable:

event = @"NSStreamEventHasSpaceAvailable";
break;
case NSStreamEventErrorOccurred:

event = @'NSStreamEventErrorOccurred";
break;
case NSStreamEventEndEncountered:

event = @'NSStreamEventEndEncountered";

[self disconnect];

break;

len = [iStream read:buffer maxLength:sizeof(buffer)];
if (len > 0)
{

NSString *input = [[NSString alloc] initWithBytes:buffer length:len
if (nil !'= input)
{

//do something with data
NSLog(@"%@", input) ;

event = @"*x Unknown";

: %@", io, event);

- (BOOL)shouldAutorotateToInterfaceOrientation: (UIInterfaceOrientation)interfaceOrientation {
//allow application to not rotate and be locked in one orientation
if (interfaceOrientation == UIInterfaceOrientationLandscapeRight){

return YES;
Yelse {

return NO;

}
- (void)didReceiveMemoryWarning {
[super didReceiveMemoryWarning];

- (void)viewDidUnload {

@end

self.
self.
self.
self.
self.
self.
self.

labelX =
labelY
labelz =
progressY
sliderCtl

ni
ni
ni

L

1

1
nil;
nil;

segControl = nil;
accelerometer = nil;

19

MainViewController.h

// MainViewController.h
// Created by Barry Peyton on 12-02-05.
// Copyright 2012 University of Alberta. All rights reserved.

#import <UIKit/UIKit.h>

@interface MainViewController : UIViewController <UIAccelerometerDelegate, NSStreamDelegate> {
IBOutlet UILabel xlabelX;
IBOutlet UILabel xlabelY;
IBOutlet UILabel xlabelZ;
IBOutlet UIProgressView *progressY;
IBOutlet UISlider *sliderCtl;
IBOutlet UISegmentedControl *xsegControl;
UIAccelerometer *accelerometer;
NSInputStream xiStream;
NSOutputStream *xoStream;
NSString *velocityValue;
NSString *directionValue;
NSString *resultl;
NSString *result
NSString *result3;
BOOL running;
BOOL direction;

b

//Components used to implement the .XIB file for the interface
@property (nonatomic, strong) IBOutlet UILabel xlabelX;
@property (nonatomic, strong) IBOutlet UILabel xlabelY;
@property (nonatomic, strong) IBOutlet UILabel xlabelZ;
@property (nonatomic, strong) IBOutlet UIProgressView xprogressY;
@property (nonatomic, strong) IBOutlet UISlider xsliderCtl;
@property (nonatomic, strong) IBOutlet UISegmentedControl xsegControl;
@property (nonatomic, strong) UIAccelerometer xaccelerometer;
@property (nonatomic, strong) NSString *velocityValue;

@property (nonatomic, strong) NSString xdirectionValue;
@property (nonatomic, strong) NSString *resultl;

@property (nonatomic, strong) NSString xresult2;

@property (nonatomic, strong) NSString xresult3;

@property (nonatomic, strong) NSInputStream xiStream;

@property (nonatomic, strong) NSOutputStream xoStream;

- (IBAction) connectCommand: (id)sender;

- (NSString *)sendText:(id)sender withValue: (NSString *) value;
- (IBAction) disconnectCommand: (id) sender;

—-(IBAction) sliderChanged:(id) sender;

-(IBAction) segmentedControlIndexChanged:(id) sender;

@end

15.4.2 PWM Module

--Editor: Robert Hood

--Group: iOS Remote Control Car

--References: Multi_PWM from www.grigaitis.eu, green_leds.vhd

library altera;

use altera.altera_europa_support_lib.all;

library ieee;
use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity pwm is

port(

csi_myclock_clk

csi_myclock_reset

avs_pwm_write_n

avs_pwm_chipselect

avs_pwm_address

avs_pwm_readdata

avs_pwm_writedata

1 in std_logic; --clk is standard for both PWM and Avalon memory slave

:in std_logic; --clk reset

:in std_logic; --write

:in std_logic; -- chip select

1 in std_logic_vector(1 downto 0); --address

:out std_logic_vector(15 downto 0); --Needed for the Avalon interface

1 in std_logic_vector(15 downto 0); -- Data to be input represents the duty cycle

coe_pwm_output_export : out std_logic-- Ouput either 1 (high) or 0 (low)

end entity;

architecture pwm_control of pwm is

21

signal pwm_signal : std_logic_vector(19 downto 0); --represents the duty cycle
signal counter : std_logic_vector(19 downto 0) := (others =>'0'); -- 20 bit counter

signal read_mux_out :std_logic_vector(19 downto 0);

--Following was manipulated from the green_leds.vhd generated by the SOPC builder

begin
--Create a 20 bit vector from the 16 bit input vector

read_mux_out <= A_REP(to_std_logic((((std_logic_vector'("000000000000000000000000000000") & (avs_pwm_address)) =
std_logic_vector'("00000000000000000000000000000000")))), 20) AND pwm_signal;

other_proc:process(csi_myclock_clk,csi_myclock_reset)

begin

--if reset than set the duty cycle to '0'

if csi_myclock_reset="'1" then

pwm_signal <= (others =>'0");

--If reset is not set to '1' and chipselect, write_n and address are the correct values

-- Then set the duty cycle to the value that was input by the user

elsif csi_myclock_clk'event and csi_myclock_clk = '1' then

if std_logic'(((avs_pwm_chipselect AND NOT avs_pwm_write_n) AND to_std_logic((((std_logic_vector'("000000000000000000000000000000") &
(avs_pwm_address)) = std_logic_vector'("00000000000000000000000000000000")))))) = '1' then

pwm_signal <= avs_pwm_writedata(15 DOWNTO 0) & "0000";
end if;

end if;

end process;

22

--end of code manipulated from green_leds.vhd

clk_proc:process(csi_myclock_clk)

-------- Increment the counter

begin

if csi_myclock_reset="1" then

counter <= (others =>"'0');

--At every rising clock edge, increment the counter

elsif rising_edge(csi_myclock_clk) then
counter <= counter +1;

end if;

--Note: In order to get a frequency of 50Hz, which is what the pwm_output to our car needs to be, both for
--steering and motor control, since we use a 50MHz clock, there had to 1,000,000 clock ticks per period.
--In order to get the required 1,000,000 clock ticks we needed to use a 20 bit counter, however a full

--20 bit counter would count up to 2,097,152, and since we only wanted it to count to 1,000,000 that is why

--you see "11110100001001000000" = 1,000,000 , as opposed to all "1's". This gives us

--the proper output frequency of 50Hz.

if(counter = "11110100001001000000") then
counter <= (others =>"'0');

end if;

--For as long as the "pwm_signal" value is greater than 0, and greater than the "counter" value,
--set the "pwm_output" to 1(high)

--Else set "pwm_output" it to O(low)

23

if ((pwm_signal>counter) and (pwm_signal>0))
then

coe_pwm_output_export<='1";

else coe_pwm_output_export<='0";

end if;

end process clk_proc;

end pwm_control;

--Editor: Robert Hood
--Group: iOS Remote Control Car

--References: Multi_PWM from www.grigaitis.eu, green_leds.vhd

24

15.4.3 RC Car Controller

JEERRRR AR A AR AR AR R A AR AT R E SRR A SR A SR AR AR
/*

* Title: RC Car Controller

* Authors: Robert Hood, Max Marcus, and Barry Peyton

* Course: CMPE 450 (CmpE Nano Design Project)

* Date: April 13, 2012

AR AR AR R AR A KRR AR AR AR KA AR AR IR AR KA KA KA K |

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>

#include "includes.h"

/* Definition of Task Stacks */
#define TASK_STACKSIZE 2048
0S_STK taskl_stk[TASK_STACKSIZE];
0S_STK task2_stk[TASK_STACKSIZE];

0S_STK task3_stk[TASK_STACKSIZE];

/* Definition of Task Priorities */
#define TASK1_PRIORITY 1
#define TASK2_PRIORITY 3

#define TASK3_PRIORITY 2

/* Base Addresses of LEDS and RS-232 */
#define LEDS (char *) GREEN_LEDS_BASE

#define RS232 (char *) "/dev/RS_232_UART"

/*Car Steering Variables*/

#define STEERING_BASE (char*)STEERING_PWM_BASE

25

#define CAR_STEERING_HALF_DUTY_CYCLE 18

/* Motor controls*/

#define MOTOR_BASE (char*)MOTOR_PWM_BASE

#define MOTOR_HALF_DUTY_CYCLE 18

/*Message Queue Instantiation*/

#define Q_SIZE 15

0S_EVENT* Cmd_Q;

void* StoarageBaseAddress[Q_SIZE];

#define BUFFER_SIZE 3

FILE* RS232_fp;

/*

* task1 simply blinks the 8 green LEDs once per second. This lets us know that the

* application is running on the FPGA.

*/

void task1(void* pdata)

char flip=0;

while (1)

if(flip){

*LEDS = Oxff;

Yelse {

*LEDS = 0x00;

flip = ~flip;

0STimeDlyHMSM(0, 0, 1, 0);

26

/*
* task2 uses fgets() to collect chars as they arrive at the RS-232 UART core. It then checks
* to make sure the three characters are valid command characters and if so, puts them into

* the string rx_msg_str. A valid sequence of command characters must consist of:

*1) The 'A' ASCII char
* 2) One ASCII char between 'b" and 'I'

* 3) One ASCII char between 'o' and 'y'

* If rx_msg_char is not loaded with a valid sequence by fgets(), the sequence is discarded and
* the loop begins again. If it is valid, it is posted the the Message Queue.
*/

void task2(void* pdata)

char* rx_msg_str = malloc(sizeof(char) * BUFFER_SIZE + 1);

char* tx_msg_str = malloc(sizeof(char) * BUFFER_SIZE + 1);

inti=0;

int j=0;

while (1){

if(RS232_fp 1= NULLK{

memset(rx_msg_str, "\0', BUFFER_SIZE + 1);

memset(tx_msg_str, '\O', BUFFER_SIZE + 1);

// Gets the command chars from the RS_232 file stream and stores them in rx_msg_str

fgets(rx_msg_str, BUFFER_SIZE + 1, RS232_fp);

// Ensures that all chars are of the correct type and then sorts the chars into
// the correct order to be read by task3.
if((rx_msg_str[0] =="A" || rx_msg_str[1] =="A" || rx_msg_str[2] == '"") &&
(((rx_msg_str[0] >="b') && (rx_msg_str[0] <="I')) || ((rx_msg_str[1] >="b") && (rx_msg_str[1] <="I')) | | ((rx_msg_str[2] >="b') && (rx_msg_str[2] <="'))) &&

(((rx_msg_str[0] >="0") && (rx_msg_str[0] <="y")) | | ((rx_msg_str[1] >="'0') && (rx_msg_str[1] <="y")) || ((rx_msg_str[2] >="'0') && (rx_msg_str[2] <="y"))))

27

tx_msg_str[0] ='7';

for(i=0; i<3; i++)

if((rx_msg_str[i] >="'b') && (rx_msg_str[i] <="I'))

tx_msg_str[1] = rx_msg_str[i];

for(j=0; j<3; j++)

if((rx_msg_str[j] >="0") && (rx_msg_str[j] <="'y"))

tx_msg_str[2] = rx_msg_str[j];

// Posts the sorted command sequence to Cmd_Q

0SQPost(Cmd_Q, tx_msg_str);

0OSTimeDlyHMSM(0, 0, 0.05, 0);

/*

* task3 pends command sequences from the Message Queue (cmd_Q) and sends them to the PWM modules,

* after converting them to the correct numeric constants for the appropriate duty cycles.

*/

//abcdefghijklmnopgrstuvwxy?z

//6-5-4-3-2-101234566-5-4-3-2-1012345686

void task3(void* pdata)

char* rx_msg_str = malloc(sizeof(char) * BUFFER_SIZE + 1);

memset(rx_msg_str, "\0', BUFFER_SIZE + 1);

INT8U err_code;

char steer_check=CAR_STEERING_HALF_DUTY_CYCLE;

char motor_check=MOTOR_HALF_DUTY_CYCLE;

while(1)

// Posts the command sequence from Cmd_Q

rx_msg_str = (char *) 0SQPend(Cmd_Q, 0, &err_code);

// Conversion to appropriate numeric constants for PWM duty cycles

steer_check = CAR_STEERING_HALF_DUTY_CYCLE + rx_msg_str[1] - 'g";

motor_check = MOTOR_HALF_DUTY_CYCLE + rx_msg_str[2] - 't';

// Sends the duty cycles to the PWM_Steering and PWM_Motor modules.

*STEERING_BASE = steer_check;

*MOTOR_BASE = motor_check;

0OSTimeDIyHMSM(0, 0, 0.05, 0);

/* The main function creates two task and starts multi-tasking */

int main(void)

/* Instantiation of Message Queue */

Cmd_Q = 0SQCreate(&StoarageBaseAddress[0], Q_SIZE);

/* Creates the three tasks */

29

OSTaskCreateExt(task1,

NULL,

(void *)&task1_stk[TASK_STACKSIZE-1],

TASK1_PRIORITY,

TASK1_PRIORITY,

task1_stk,

TASK_STACKSIZE,

NULL,

0);

OSTaskCreateExt(task2,

NULL,

(void *)&task2_stk[TASK_STACKSIZE-1],

TASK2_PRIORITY,

TASK2_PRIORITY,

task2_stk,

TASK_STACKSIZE,

NULL,

0);

OSTaskCreateExt(task3,

NULL,

(void *)&task3_stk[TASK_STACKSIZE-1],

TASK3_PRIORITY,

TASK3_PRIORITY,

task3_stk,

TASK_STACKSIZE,

NULL,

0);

RS232_fp = fopen(RS232, "r"); // The file pointer to the input stream from the RS-232 UART

OSStart(); // Starts the tasks

return 0;

30

