
1

CMPE 490/450 Project:
Fail-Safe Module for Autonomous Airplane

Lai Nguyen
lain@ualberta.ca

Jesse Xi Chen
jesse.chen@ualberta.ca

Preferred lab day: Wednesday
Also available: Monday

2

Declaration of original content

"The design elements of this project and report are entirely the original work of the
authors and have not been submitted for credit in any other course except as follows:"

Description of UAARGS[1]

Xilinx Data Sheets
Group 2 App notes
Schmitt Trigger for FPGA design

3

Table of Contents

p1. Title

p2. Description of original intent

p4. Abstract

p5. Functional requirements

p6. Future Work

p8. Design and Description of Operation

p12. Hardware Requirements

p13. Proposed Parts

p14. Table of all user IO signals

p15. Datasheet

p17. Software Design

p20. Test Plan

p21. Result of experiments and characterization

p22. Integrated Circuit Design

p25. Appendices

4

Abstract

The University of Alberta Aerial Robotics Group (UAARG) is a group of students with
various levels of experience with planes and from various fields. Their main goal is to
build autonomous airplanes to enter into competitions[1]. Currently the plane only has
rudimentary failsafe behaviour in case the auto-pilot fails.

The goal of this project is to:

Implement failsafe behaviour for the following two events:

1) RC receiver on the airplane experiences a loss of signal.

2) The autopilot fails.

We specify two operational modes: short and long-distance operation.

In short-distance operation mode (intended to be used if they are no urban areas close
around where a crash is undesirable):

On the event that 1) happens, the servos will be locked into a known good failsafe state
which will glide for a short amount of time and then attempt to perform a forced landing.

In long-distance operation mode (intended to be used when airplane is to be run outside
RC of range):

If 1) happens, then switch to auto-pilot.

If 1) and 2) happens , then glide for a short time and attempt a forced landing.

Other enhancements such as receiving some level of feedback from the system to observe
its status and the ability to monitor onboard systems in different manners (like sniffing
serial telemetry streams) will be considered

The VHDL codes for the hardware implementation are put through IC design process and
a chip is generated.

5

Functional Requirements

1)

All functionality shall be implemented on an FPGA

2)

Provide functionality of a Mux that switches between RC and AP mode.

3)

Provide the following functionality for short-distance operation:

1. Monitor RC line and if RC fails then go into fail-safe mode.
2. Fail-safe mode will lock servos into a glide for a timeout period.
3. After the timeout period it will attempt a forced landing.
4. If at any time during fail-safe mode RC signal is regained, then return to manual
control. 1

4) Provide a long-distance mode of operation to be used when there is little risk of plane
wandering into populated area. Tentatively will have the following behaviour:

1. Monitor RC line and if RC fails then go into auto-pilot mode.
2. If auto-pilot fails go into fail-safe mode.
2. Fail-safe mode will lock servos into a glide for a timeout period.
3. After the timeout period it will attempt a forced landing.
4. If at any time during fail-safe mode RC signal is regained, then return to

manual control. 2

5) Provide a hardware (only VHDL) and software (using a VHDL soft core)
implementation of the above.

6) VHDL codes for hardware version used to generate a chip.

1, 2, 3, 4 have been completed in the software implementation and 1 and 3 have been
completed in the hardware implementation. Therefore the hardware implementation
requirements were not met, however the software requirements were met. Additionally
the hardware implementation has issues with loss of signal (see Future Work).

1 Currently it's iffy if this is still a requirement by UAARGS. This is because they a good "fail-safe" servo-
lock position cannot presently be determined. As of now we do have the functionality to lock servos in a
given position, and, after a timeout, a second new position. An option we can explore is to provide a
software framework that the UAARGS can use to UAARGs can use to customize a failsafe state solution. i
2 See short-distance operation footnote on previous page

6

Future Work

Provide un-glitched input[2] using a median filter implemented in VHDL. Note that in the
original failsafe module from UAARGS used a Schmitt trigger on inputs to clean up
noisy signals as well; however, the development board (Virtex 2 Pro) currently used for
prototyping of this project does not provide hysteresis on inputs.

However the Spartan XC3000, XC4000, XC5000, XC9000 families do all have
hysteresis on input[3] and these are likely the family UAARGS will want to use on the
actual plane. Also, it is possible to provide hysteresis externally using the development
board using two resistors and an extra FPGA input pin[4] .

Optional:
- Integrate everything onto a single PCB
- Provide feedback systems to observe status and behaviour in fail-safe mode. This

would be useful in the case that locking the servos in a known-safe position is not
enough. e.g. if the plane is in the middle of a dive.

- Gather and use telemetric information from other plane systems
- Integrate auto-pilot onto FPGA
- Redundant system using majority voting. (maintain 3 copies of the system on the

FPGA and use majority to determine output)
- Integrate 3-8 demux for servo motors3 into FPGA to further reduce

weight/complexity of plane.
- Logging number of input glitches

Currently detecting LOS on the hardware implementation Is buggy. As mentioned in the
presentation, the hardware implementation works by looking at consecutive rising edges
and finding the time difference between them. If it is outside a certain range we say this
decision is a LOS and we input a ‘1’ inside a shift registers used to keep a history of the
last n decisions. We shift a ‘0’ if that decision is not a LOS. We then perform a majority
vote to determine if we have an actual LOS or not. The software implementation by
taking sum of the difference between consecutive past pulse widths of the last n pulse
widths. The software solutions seems to work properly(detects LOS correctly). Another
thing to explore is that we consider it a LOS in the software solution also if are out of
range (below .9 or above 2.1ms), the hardware implementation does not do this. Perhaps
this is the actual reason he software implementation works better.

Not detecting LOS properly is a big problem because every time we detect LOS we start
locking the servos into a glide position. This means the servos will be moving back and
forth from glide position even in normal operation. Additionally if we are in failsafe and
we LOS intermittently is not detected, the timer (to go into landing) resets. This means

3 Talk to UAARGS about what this was again exactly

7

we will never enter the landing state since the timer keeps resetting. To fix this currently
in the hardware solution we do a small hack by putting a timer on the timer such that the
timer only resets if it detects we have !LOS for a certain amount of time.

8

Design and Description of Operation

The device is intended to operate like a sophisticated multiplexer, choosing it servo
control signal from multiple inputs. How which input is chosen depends on the state
machine below:

9

Manual RCAuto-Pilot

Glide
Forced
Landing

!SW

SW

LOS

timeout

!LOS
!LOS

LOS

SW: Signal from RC to switch between Manual and Autopilot control4

LOS: Loss of signal. Line monitored from RC to determine if signal was lost5

Timeout: Signal asserted when a certain amount of time has passed in the glide
state and we haven't regained control of the plane

State Input chosen by Mux
Manual RC Servo Control from RC
Auto-Pilot Servo Control from autopilot
Glide Fail Safe

4 Obtained from one of the servo control lines but have to ask UAARGS how exactly we know when we
have LOS or when SW occurs, i.e. what kind of signals are we looking for here, constant 0 input when we
have LOS?.
5 Same as above

10

Forced Landing Fail Safe

Signal Descriptions
Servo Control from RC Input user signal
Servo Control from autopilot Input user signal
Fail Safe Signal generated internally by FPGA. The signal

generated depends on the current state the failsafe
module is in. Currently it is unknown what type of
signal UARRGS wants and if locking the servos in a
static position is good enough for them.

LOS Signal generated internally by FPGA derived from
Servo Control from RC. LOS shall be determined by
monitoring one of the RC Servo lines. If the pulse
width had a duty cycle of less than 0.9ms or larger
than 2.1ms, this shall indicate LOS.

SW Signal generated internally by FPGA derived from
Servo Control from autopilot. SW shall be determined
by monitoring the same RC Servo as described as
above. If the pulse width is from 0.9ms to 1.5ms, then
SW is 1 (RC is in control), if the pulse width is from
1.5ms to 2.1ms then SW is 0 (Autopilot is in control)

Autopilot Health Currently not used in short-distance mode FSM
diagram, but would be in long-distance operation.
Shall be determined by monitoring one of the Auto-
pilot servo lines. If from 0.9 to 1.5 means healthy. If
from 1.5 to 1.7 means unhealthy. From 1.7 to 2.1 is be
left in case UAARGS wants to use another state. 6

Since the signals from the autopilot, the exact values is
adjustable by the UAARGS.

It has also been proposed to use one of the serial lines
for Autopilot health monitoring. In which case
autopilot health is indicated by both the servo lines
and the serial line indicating unhealthiness.

The fail-safe control servo signal itself is will be generated by the FPGA, and depends on
whether we are in Glide or Forced Landing state.

SW and LOS signals are monitored and derived from the servo lines.

6 Double check these values again, forgot to take notes on this part

11

Currently three functionalities has been proposed:

1. Short-distance operation as described above
2. Long-distance operation as described above
3. If a failsafe generator can't be decided upon, the basic functionality of being able to
switch between RC and autopilot via the SW signal is all that is needed.

So it seems to be desirable to be able to change functionality via a recompile or a re-
configuration of parameters.

Optional:
In long-distance-mode a different transition diagram7 will be required. We will have to
also monitor and do some analysis from the Auto-Pilot line in order to figure out if it is in
some ‘bad’ state or not.

7 Todo: Add this transition diagram

12

Hardware Requirements

- The development FPGA8 provided in the lab will be adequate for now. Probably not
that many Configurable Logical Block(CLB) will need to be used which is optimal since
we want to be able to perhaps move to a smaller FPGA. Currently we are using a Virtex
II pro for development, but we will probably switch to a Spartan 3 starter.

- Servos for testing output. Currently we are using a FUTUBA S3102 given to us by
UAARGS for testing.

- An RC receiver for testing input. Currently we use a function generator for testing
input but this is somewhat unwieldy.

-To implement this outside of development, we'll need:9

- A breakout board for prototyping
- A Spartan 3 series FPGA (cheapest)
- PROM in order to configure FPGA on start up. (Assuming we don't want to
have to program the FPGA every time we power it up).

Optional:
- PCB or schematic capture of a working layout
- Since weight is a factor on the plane, using a smaller FPGA would be nice.

8 Virtex-II Pro FPGA board XUPV2P
9 Probably can just copy the same setup group 2 is doing on this. We're kind of behind on this since we
were under initial impression UAARGS that a prototype on a dev FPGA was okay for them.

13

Proposed parts, order list, supplier, cost

For now we may use the FPGA (Virtex II Pro[8]) provided by the lab.

Borrowed servo motors from the UAARG group.

RC controller and receiver from UAARG.

Spartan 3 series FPGA.[6]
, PROM, and breakout board for prototyping.

http://www.sparkfun.com/commerce/product_info.php?products_id=8458 has all of this
but we can probably just use the same one group 2 is getting. The less interfacing
headaches, the better. Cost: 100$

14

Table of all user IO signals between FPGA and IO and non-digital
world

All input/output signals are pulse-width modulated.

Required Power
Signals[7] for
Spartan 3

Nominal (V) Min(V) Max(V)

VCCINT 1.2 1.14 1.26
VCCO Probably want Max

in order to drive
servos

1.14 3.465

VCCAUX 2.375 2.5 2.625

The dev board we use takes 5V from the wall.

Signal Name Type Range
Servo Control from RC
lines(9)

Input->FPGA 0-2.7V10

Servo Control from autopilot
lines(9)

Input->FPGA 0-2.7V

Muxed Servo Control Line
(9)

FPGA->output Output signals to the Servos currently
operate at 5V.11 However current
testing on the Hitec HS-475HB and the
Futuba S3102 indicate that they will
operate anywhere from 800mV to 5V[5]

. So it seems that the output from
FPGA should be enough to drive the
servos.

(optional)
telemetry/feedback lines

Input->FPGA

Note: glitch detection and correction should be added for inputs.

10 From UAARGS. FPGA will accept this voltage.
11 Might still switch at 3.3V, so might be able to be used straight from FPGA output, double check with
UAARGS

15

Datasheet

Software Implementation:

Design Summary

Number of errors: 0
Number of warnings: 5
Logic Utilization:
 Total Number Slice Registers: 3,905 out of 27,392 14%
 Number used as Flip Flops: 3,904
 Number used as Latches: 1
 Number of 4 input LUTs: 5,044 out of 27,392 18%
Logic Distribution:
 Number of occupied Slices: 3,958 out of 13,696 28%
 Number of Slices containing only related logic: 3,958 out of 3,958 100%
 Number of Slices containing unrelated logic: 0 out of 3,958 0%
 *See NOTES below for an explanation of the effects of unrelated logic.
 Total Number of 4 input LUTs: 5,379 out of 27,392 19%
 Number used as logic: 4,612
 Number used as a route-thru: 335
 Number used for Dual Port RAMs: 384
 (Two LUTs used per Dual Port RAM)
 Number used as Shift registers: 48
 Number of bonded IOBs: 26 out of 556 4%
 Number of RAMB16s: 32 out of 136 23%
 Number of MULT18X18s: 3 out of 136 2%
 Number of BUFGMUXs: 6 out of 16 37%
 Number of DCMs: 1 out of 8 12%
 Number of BSCANs: 1 out of 1 100%

Clock to Setup on destination clock sys_clk_pin
---------------+---------+---------+---------+---------+
 | Src:Rise| Src:Fall| Src:Rise| Src:Fall|
Source Clock |Dest:Rise|Dest:Rise|Dest:Fall|Dest:Fall|
---------------+---------+---------+---------+---------+
sys_clk_pin | 13.039| | | |
---------------+---------+---------+---------+---------+

Design statistics:
 Minimum period: 13.039ns{1} (Maximum frequency: 76.693MHz)

Note this implies a maximum bus frequency of 76.693Mhz.

From Xilinx ISE Synthesis Report

Hardware Implementation:

Design Summary

Number of errors: 0
Number of warnings: 4
Logic Utilization:

Number of Slice Flip Flops: 214 out of 27,392 1%
Number of 4 input LUTs: 2,270 out of 27,392 8%

Logic Distribution:
Number of occupied Slices: 1,278 out of 13,696 9%

Number of Slices containing only related logic: 1,278 out of 1,278 100%

16

Number of Slices containing unrelated logic: 0 out of 1,278 0%
*See NOTES below for an explanation of the effects of unrelated logic.

Total Number of 4 input LUTs: 2,433 out of 27,392 8%
Number used as logic: 2,270
Number used as a route-thru: 163

Number of bonded IOBs: 27 out of 556 4%
IOB Flip Flops: 1

Number of BUFGMUXs: 2 out of 16 12%

Timing Summary:

Speed Grade: -6

Minimum period: 4.818ns (Maximum Frequency: 207.576MHz)
Minimum input arrival time before clock: 3.222ns
Maximum output required time after clock: 5.197ns
Maximum combinational path delay: 5.308ns

From Xilinx ISE Synthesis Report

17

Software Design (Implemented only in VHDL so far)
4 VHDL Components:
1. State Machine which changes state by monitoring RC and autopilot lines.
2. Mux which chooses input line depending on state of machine
3. Fail Safe Control generates fail-safe signal depending on state of machine
4. Timer for the timeout used to switch from glide to forced landing

Block Diagram

RC Switch

Loss of Signal
State bits

Failsafe Control

RC ControlAutopilot Control

Finite State
Machine

MUX

Output to
Servo Motors

Fail Safe
Control
Signal
Generator

Timeout
Generator

Timeout

18

Require additional pulse-width-checker component to be used to generate LOS/SW
signals by measuring pulse widths.
Also require an additional component to clean up glitches from inputs.

See Design and Description of Operation for FSM and Mux diagrams.

See Appendix A for VHDL code.

See Appendix B for prototype C code.

Autopilot Control and RC Control are inputs, Output to Servo Motors is output. How to
get RC switch and LOS signals has been determined but the components have not yet
been created in VHDL.

For software (C) implementation, we will have to compile cores using the EDK and
provide the ability to access pulse widths from inputs. Probably do this by writing
VHDL code which reads in pulse widths from the inputs and writes down the length (in
cycles) into a register somewhere accessible by memory map from C. Also allow C
code to write an integer to a memory mapped register and have VHDL code output that
integer as pulse width modulated signal. Also might want to use interrupts from VHDL
to indicate when new input comes in. Figuring out how to do this might take awhile.

We have managed to do everything described in the above paragraph, except for the
interrupts. The software architecture remains similar to the hardware architecture as
described in the diagram.

19

Full Schematic showing all components12

FPGA

Servo Control from RC

3.3V output to servo motor

Step up Voltage(if needed)Servo Control from autopilot

To servo motor

Servos

Feedback/telemetry
signals(optional)

Fail-Safe Module

Plane

Other Modules

...

12 Todo: Add VHDL component diagrams, and define their interfaces

20

Test Plan

RC Signals and Autopilot signals are generated by function generator and used as input to
the FPGA.
The Control signals SW and LOS will be generated using switches on the FPGA board.
Timeout will be generated when LOS is continuously on for a certain amount of time.
Different LED light will be turned on depending on what state the module is in.
LED1: Auto-Pilot, LED2: Manual RC, LED3: Glide, LED4: Forced Landing
We check the output servo motor behaves according to the corresponding input for each
state.

Test Cases Input to test case Expected Output
Current State:
Autopilot
LED1 on

!LOS & SW Next State: Manual RC.
LED1 off, LED2 on.

!LOS & !SW Next State: Autopilot.
LED1 stays on.
AP input get passed on to the output
pins

LOS Next State: Glide
LED1 off, LED3 on.

Current State:
Manual RC
LED 2 on

!LOS & SW Next State: Manual RC.
LED2 stays on.
RC input get passed on to the
output pins

!LOS & !SW Next State: Autopilot.
LED2 off, LED1 on.

LOS Next State: Glide
LED2 off, LED3 on.

Current State:
Glide
LED 3 on

!LOS Next State: Manual RC.
LED3 off, LED2 on.

LOS & Timeout Next State: Forced Landing
LED3 off, LED4 on.

LOS & !Timeout Next State: Glide
LED3 stays on.
The motor go to a predefined glide
position

Current State:
Crash
LED 4 on

!LOS Next State: Manual RC.
LED4 off, LED2 on.

LOS Next State: Forced Landing
LED4 stays on.
Motor switched to crashing pattern

21

Results of experiments and characterization:

Input servos operate from 800mV to 5V and with a pulse width period of 50ms to 400ms.

Pulse width resolution of 10ns (limited by clock frequency of Virtex 2 FPGA).

Frequency of RC receiver is actually 45mhz (22.2222ms Period).

Only short-distance operation implemented in hardware implementation as design effort
is a lot harder on hardware. Spartan 3 chosen to ideally to go on the airplane as it has
little cost (~10$).

Servo motor behaving correctly as stated in the expected output.

22

Integrated Circuit Design:

From Synopsis: with clock period of 6ns.
Using VHDL code for hardware implementation
Require modification to the top2_level.vhd to add pin pads.

**
Report : area
Design : fail_top
Version: Y-2006.06-SP4
Date : Mon Apr 12 18:02:39 2010
**

Library(s) Used:

 GSCLib_2.0 (File: /EDA/kits/gpdk18/GSCLib_3.0/timing/GSCLib_3.0.db)
 GSCLib_IO (File: /EDA/kits/gpdk18/GSCLib_IO_1.4/timing/GSCLib_IO.db)

Number of ports: 27
Number of nets: 67
Number of cells: 41
Number of references: 4

Combinational area: 675000.000000
Noncombinational area: 0.000000
Net Interconnect area: undefined (No wire load specified)

Total cell area: 675000.000000
Total area: undefined
Loading db file '/EDA/kits/gpdk18/GSCLib_3.0/timing/GSCLib_3.0.db'
Loading db file '/EDA/kits/gpdk18/GSCLib_IO_1.4/timing/GSCLib_IO.db'
Information: Propagating switching activity (low effort zero delay simulation). (PWR-6)
Warning: Design has unannotated primary inputs. (PWR-414)
Warning: Design has unannotated sequential cell outputs. (PWR-415)

**
Report : power
 -analysis_effort low
Design : fail_top
Version: Y-2006.06-SP4
Date : Mon Apr 12 18:02:40 2010
**

Library(s) Used:

 GSCLib_2.0 (File: /EDA/kits/gpdk18/GSCLib_3.0/timing/GSCLib_3.0.db)
 GSCLib_IO (File: /EDA/kits/gpdk18/GSCLib_IO_1.4/timing/GSCLib_IO.db)

Operating Conditions: typical Library: GSCLib_2.0
Wire Load Model Mode: top

Global Operating Voltage = 3
Power-specific unit information :
 Voltage Units = 1V
 Capacitance Units = 1.000000pf
 Time Units = 1ns
 Dynamic Power Units = 1mW (derived from V,C,T units)
 Leakage Power Units = 1nW

 Cell Internal Power = 65.6385 mW (98%)
 Net Switching Power = 1.4936 mW (2%)

23

Total Dynamic Power = 67.1321 mW (100%)

Cell Leakage Power = 910.6193 uW

**
Report : timing
 -path full
 -delay max
 -max_paths 1
Design : fail_top
Version: Y-2006.06-SP4
Date : Mon Apr 12 18:02:42 2010
**

Operating Conditions: typical Library: GSCLib_2.0
Wire Load Model Mode: top

 Startpoint: c1/c3/cnt_reg_0_
 (rising edge-triggered flip-flop clocked by padClk)
 Endpoint: c1/c3/cnt_reg_31_
 (rising edge-triggered flip-flop clocked by padClk)
 Path Group: padClk
 Path Type: max

 Point Incr Path
 --
 clock padClk (rise edge) 0.00 0.00
 clock network delay (ideal) 0.00 0.00
 c1/c3/cnt_reg_0_/CK (SDFFSRX1) 0.00 0.00 r
 c1/c3/cnt_reg_0_/Q (SDFFSRX1) 0.30 0.30 f
 c1/c3/add_115/A_0_ (failsafe_signal_gen_n7_DW01_inc_0)
 0.00 0.30 f
 c1/c3/add_115/U1_1_1/CO (ADDHX1) 0.10 0.40 f
 c1/c3/add_115/U1_1_2/CO (ADDHX1) 0.07 0.47 f
 c1/c3/add_115/U1_1_3/CO (ADDHX1) 0.07 0.55 f
 c1/c3/add_115/U1_1_4/CO (ADDHX1) 0.07 0.62 f
 c1/c3/add_115/U1_1_5/CO (ADDHX1) 0.07 0.70 f
 c1/c3/add_115/U1_1_6/CO (ADDHX1) 0.07 0.77 f
 c1/c3/add_115/U1_1_7/CO (ADDHX1) 0.07 0.84 f
 c1/c3/add_115/U1_1_8/CO (ADDHX1) 0.07 0.92 f
 c1/c3/add_115/U1_1_9/CO (ADDHX1) 0.07 0.99 f
 c1/c3/add_115/U1_1_10/CO (ADDHX1) 0.07 1.07 f
 c1/c3/add_115/U1_1_11/CO (ADDHX1) 0.07 1.14 f
 c1/c3/add_115/U1_1_12/CO (ADDHX1) 0.07 1.22 f
 c1/c3/add_115/U1_1_13/CO (ADDHX1) 0.07 1.29 f
 c1/c3/add_115/U1_1_14/CO (ADDHX1) 0.07 1.36 f
 c1/c3/add_115/U1_1_15/CO (ADDHX1) 0.07 1.44 f
 c1/c3/add_115/U1_1_16/CO (ADDHX1) 0.07 1.51 f
 c1/c3/add_115/U1_1_17/CO (ADDHX1) 0.07 1.59 f
 c1/c3/add_115/U1_1_18/CO (ADDHX1) 0.07 1.66 f
 c1/c3/add_115/U1_1_19/CO (ADDHX1) 0.07 1.74 f
 c1/c3/add_115/U1_1_20/CO (ADDHX1) 0.07 1.81 f
 c1/c3/add_115/U1_1_21/CO (ADDHX1) 0.07 1.88 f
 c1/c3/add_115/U1_1_22/CO (ADDHX1) 0.07 1.96 f
 c1/c3/add_115/U1_1_23/CO (ADDHX1) 0.07 2.03 f
 c1/c3/add_115/U1_1_24/CO (ADDHX1) 0.07 2.11 f
 c1/c3/add_115/U1_1_25/CO (ADDHX1) 0.07 2.18 f
 c1/c3/add_115/U1_1_26/CO (ADDHX1) 0.07 2.26 f
 c1/c3/add_115/U1_1_27/CO (ADDHX1) 0.07 2.33 f
 c1/c3/add_115/U1_1_28/CO (ADDHX1) 0.07 2.40 f
 c1/c3/add_115/U1_1_29/CO (ADDHX1) 0.07 2.48 f
 c1/c3/add_115/U1_1_30/CO (ADDHX1) 0.07 2.55 f
 c1/c3/add_115/U1/Y (XOR2X1) 0.08 2.63 f
 c1/c3/add_115/SUM_31_ (failsafe_signal_gen_n7_DW01_inc_0)
 0.00 2.63 f
 c1/c3/U43/Y (AND2X1) 0.05 2.67 f
 c1/c3/cnt_reg_31_/D (SDFFSRX1) 0.00 2.67 f
 data arrival time 2.67

24

 clock padClk (rise edge) 6.00 6.00
 clock network delay (ideal) 0.00 6.00
 c1/c3/cnt_reg_31_/CK (SDFFSRX1) 0.00 6.00 r
 library setup time -0.16 5.84
 data required time 5.84
 --
 data required time 5.84
 data arrival time -2.67
 --
 slack (MET) 3.17

From Encounter:
generated on Mon Apr 12 16:49:04
Top Cell: fail_top

--
timeDesign Summary

--

+--------------------+---------+---------+---------+---------+---------+---------+
| Setup mode | all | reg2reg | in2reg | reg2out | in2out | clkgate |
+--------------------+---------+---------+---------+---------+---------+---------+
WNS (ns):	2.700	2.700	4.150	N/A	N/A	N/A
TNS (ns):	0.000	0.000	0.000	N/A	N/A	N/A
Violating Paths:	0	0	0	N/A	N/A	N/A
All Paths:	265	230	97	N/A	N/A	N/A
+--------------------+---------+---------+---------+---------+---------+---------+

Density: 100.000%
Real DRV (fanout, cap, tran): (0, 15, 0)
Total DRV (fanout, cap, tran): (0, 16, 0)
--
generated on Mon Apr 12 16:49:10
Top Cell: fail_top

--
timeDesign Summary

--

+--------------------+---------+---------+---------+---------+---------+---------+
| Hold mode | all | reg2reg | in2reg | reg2out | in2out | clkgate |
+--------------------+---------+---------+---------+---------+---------+---------+
WNS (ns):	0.134	0.368	0.134	N/A	N/A	N/A
TNS (ns):	0.000	0.000	0.000	N/A	N/A	N/A
Violating Paths:	0	0	0	N/A	N/A	N/A
All Paths:	265	230	97	N/A	N/A	N/A
+--------------------+---------+---------+---------+---------+---------+---------+

Density: 100.000%
--

From Cadence: DRC
\o ********* Summary of rule violations for cell "fail_safe layout" *********
\o # errors Violated Rules
\o 219 WARNING: Gate used as conductor...
\o 219 Total errors found

Please see Appendix C for file used and generated in the IC design process.

25

Appendices

Quick Start Manual

For Software Implementation:

See
http://www.ece.ualberta.ca/~elliott/cmpe490/appnotes/2010w/edk_virtex2/Appnotes/app
notes.html for this

For Hardware Implementation:

Simply import all vhdl files and top2_level.ucf into a project. The top level file should be
set to top2_level.vhd. Test benches *.tbw are also provided though changing generics
defaults might be necessary for them to work as intended.

Files are here:

http://www.ece.ualberta.ca/~elliott/cmpe490/appnotes/2010w/edk_virtex2/Appnotes/File
s/Hardware%20Implementation

26

Graphical Hierarchy of Source Code

See:
http://www.ece.ualberta.ca/~elliott/cmpe490/appnotes/2010w/edk_virtex2/Appnotes/
Files/

Files/
|
|-->Hardware Implementation

|
--> top2_level.vhd –topmost level to synthesize with
--> *.vhd
--> *.tbw –testbenches
--> top2_leve.ucf – user constraint file

|-->Software Implementation
|
--> C code

|
--> *.c files

--> VHDL
--> system.ucf –user constraint
--> *.vhd

27

Citations

[1] http://www.ece.ualberta.ca/~uaarg/UAARGV3/index2.html
[2] http://www.markschulze.net/java/meanmed.html
[3] http://www.xilinx.com/support/documentation/application_notes/xapp097.pdf -
Xilinx FPGAs: A Technical Overview for first-time users
[4] http://www.datasheetarchive.com/datasheet-pdf/040/DSA00102215.html
[5]
http://www.ece.ualberta.ca/~elliott/cmpe490/appnotes/2010w/Hobby_Servo_Sig_and_co
ntroller/
[6] http://www.xilinx.com/support/documentation/spartan-3_data_sheets.htm
[7] http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf
[8] http://www.xilinx.com/support/documentation/virtex-ii_pro_data_sheets.htm

28

Appendix A: Hardware Implementation

See:
http://www.ece.ualberta.ca/~elliott/cmpe490/appnotes/2010w/edk_virtex2/Appnotes/
Files/Hardware%20Implementation/

Appendix B: Software Implementation

See
http://www.ece.ualberta.ca/~elliott/cmpe490/appnotes/2010w/edk_virtex2/Appnotes/
Files/Software%20Implementation/

Appendix C: IC design Files and Output

Code used and generated by the IC design process can be found from :
http://www.ece.ualberta.ca/~elliott/cmpe490/projects/2010w/g8_failsafe/

Include codes:
1. VHDL codes for Synopsys: fail_safe_VHDL.tar
2. Script for running Synopsys: compile_fail.tcl
3. Synthesized files from Synopsys: synopsys_output.tar
4. Script for running Encounter: encounter_script
5. DEF file from Encounter: fail_top.def

