
1

SMART – AKK

The SMART-AKK is a small radio transmitter which grants remote
access to your vehicle using a biometric verification module and a
Feistel encryption scheme.

April 12, 2010
Anita Has ahas@ualberta.ca
Kristina Suen suen@ualberta.ca

2

Declaration of Original Content

"The design elements of this project and report are entirely the original work of the authors and
have not been submitted for credit in any other course except as follows:"

- Suggestion of using a level transceiver when interfacing the biometric module was by Dr. Duncan Elliot
- Format on how to connect RS232 was referenced from:

http://www.ece.ualberta.ca/~cmpe401/fall2004/labs/lab2/CMPE401Fall2004Lab2.pdf
- Block diagram of connecting the fingerprint module to the ARM via RS232 was originally drawn by

Nancy Minderman.

_________________________ _________________________
Anita Has Kristina Suen

http://www.ece.ualberta.ca/~cmpe401/fall2004/labs/lab2/CMPE401Fall2004Lab2.pdf

3

I. ABSTRACT

The SMART-AKK is aimed at automotive manufacturers looking for enhanced security in today’s
SmartKeys. The SMART-AKK is a small radio transmitter which grants remote access to a user’s
vehicle. The need for this product stems from the security vulnerability involved with a lost or
stolen SmartKey and eavesdropping on a line of communication. If a professional auto thief is able
to eavesdrop on the line and replicate the signals from transmitter to receiver, there is nothing
stopping them from driving away with your vehicle.

The SMART-AKK was designed to lower those security vulnerabilities involved in lost or stolen keys
as wells as eavesdropping. Our design lowered those security vulnerabilities by using cutting edge
biometric technologies and encryption of a synchronized serial number. This is done by using a
combination of Tiny Encryption Algorithm (TEA) block cipher over the wireless communication line
and an ARA-ME-01 biometric fingerprint scanner. SMART-AKKs main feature, the biometric
fingerprint scanner introduces a new layer of protection by incorporating different levels of access
for the vehicle.

To demonstrate the proper functionality of the SMART-AKK, a vehicle simulator (AKV) was included
in the design. The AKV communicates with SMART-AKK via a wireless link using two X-Bee wireless
modules.

SMART-AKK, and the vehicle simulator and all features have been tested individually as well as
collectively and have produced expected results. This document will carry out a design review of
the requirements and specifications.

II. DEFINITIONS, ACRONYMS AND ABBREVIATIONS

ABBREVIATION DEFINITION

AKV Vehicle Simulator

TEA Tiny Encryption Algorithm

Atmel55 AT91EB55 Microchip

4

TABLE OF CONTENTS

1 FUNCTIONAL REQUIREMENTS . 5

2 DESIGN & DESCRIPTION OF OPERATION .

6

3 PARTS LIST .

9

4 DATA SHEET .

11

5 SOFTWARE DESIGN .

14

6 TEST PLAN .

17

6.1 SOFTWARE . 17
6.2 HARDWARE . 18

7 RESULTS OF EXPERIMENTS .

20

8 REFERENCES .

22

9 APPENDICES .
 I QUICK START MANUAL .
 II FUTURE WORK .

BACK UP PLANS .
OPTIONS / EXTENSIONS .

 III HARDWARE DOCUMENTATION .
 IV SOURCE CODE .
 V X-BEE CONFIGURATION APPLICATION NOTE .
 VI TEA CIPHER TEST PROGRAM .

VII X-BEE TEST PROGRAM .

23
23
27
27
27
28
32
34
35
37

5

1 FUNCTIONAL REQUIREMENTS

SMART - AKK is required to grant a valid user remote access to a vehicle through the use of a

biometric verification module that is capable of adding/removing and verifying at least 40 human

fingerprints. The remote access is required to be via a wireless link with a minimum range of 10

meters. AKK must significantly decrease security vulnerability caused by eavesdropping through the

implementation of a block cipher and synchronized serial counter.

The AKK has three push buttons to allow the user the following functionality:

I. Lock/Unlock All Doors
II. Engine On/Off
III. Panic

The ARA-ME biometric module that was chosen for SMART-AKK is capable of storing 120 finger
prints, including one master fingerprint. It is able to perform all finger print scanning and matching
on chip in less than 3 seconds. SMART-AKK is able to use ARA-ME to enroll more fingerprints,
remove all stored fingerprint and reset a master fingerprint by pressing a sequence of buttons.

The wireless module chosen for SMART-AKK was the X-Bee. It is able to transmit and receive 32-bit
packets with a range of at least 10 meters. If the SMART-AKK and AKV are out of range of each
other, the SMART-AKK will fail on transmitting packets and AKV will not execute any command.
Additionally, if packets were not received correctly or if packets were lost on the AKV side, AKV will
simply treat the received packet as an invalid command and not execute any action.

To guarantee a decrease in security vulnerability by eavesdroppers, both SMART-AKK and AKV use
the Tiny Encryption Algorithm on 64-bit packets with a 128-bit key. This block cipher was chosen for
its simplicity in implementation, speed and cryptographic strength. It achieves complete diffusion
after only six rounds and therefore is a strong encryption format for SMART-AKK.

The synchronized serial counter is another way SMART-AKK reduces eavesdropping. Both the AKV
and the SMART-AKK have serial number counters that increment every time a packet is sent or
received. If AKV receives a packet with a lower serial number than its counter, it will discard the
packet and treat it as invalid. It will not execute a command if the same packet was sent twice.

6

2 DESIGN & DESCRIPTION OF OPERATION

SMART-AKK uses LEDs on its development board as verification indicators. This can be seen in Table
2.1 below.

LED NUMBER LED STATE

 ON BLIKING

LED1 fingerprint valid finger print invalid

LED2 button sequence valid button sequence
invalid

LED3 encryption completed successfully encryption failed

LED4 sent packet successfully packet sending failed

LED8 timeout ready

 Table 2.1: SMART-AKK LED Indicator’s

A user will commence interaction with the SMART-AKK by scanning their fingerprint on the ARA-ME
module for authentication. The module will then verify the validity of the presented fingerprint.

A user will then press one of 3 buttons in a sequence on the SMART-AKK that they wish AKV to
execute (Table 2.2 and Table 2.3 below show valid biometric and button sequences for the AKV,
respectively). ARA-ME-01 will process the fingerprint and Atmel55 will verify and validate the
button press.

 Table 2.2: Biometric Command Request

Valid ARA-ME Commands Atmel55 Button Sequence

Enroll Finger Prints Button4 – Button3 – Button2 – Button1

Remove Finger Prints & Enroll Master Button3 Button4 Button3 Button4

7

Valid AKV Commands Atmel55 Button Sequence 32-bit Action

Unlock All Doors Button 1 0x11111111

Lock All Doors double click Button 1 0x11112222

Engine On Button 2 0x22222222

Engine Off double click Button 2 0x22223333

Panic Button 3 0x33333333
Table 2.3: Valid AKV Commands with respect to SMART-AKK Button Sequences

SMART-AKK will increment the 32-bit serial number counter by a hexadecimal value of 0x8 and
append it with the 32-bit AKV Command (as seen in Figure 2.1 below), creating a 64-bit packet. The
64-bit packet is then encrypted using TEA.

The packet will be appended with a start byte of 0xAA and an end byte of 0xFF. These will act as a
signal for a transmission request to AKV.

0xAA AKV Action Serial Number 0xFF
 Figure 2.1: SMART-AKK Packet Format

Once the packet has been received by the X-Bee wireless module on the AKV will first decrypt the
packet. AKV will then compare the SMART-AKK Serial Number. If it is less than its local serial
number AKV does nothing (in the possibility that an eavesdropper replicated the signal). Otherwise,
it increments the local serial count by a hexadecimal number of 0x8. Then it proceeds to check if
the requested AKV Action was valid.

If AKV received a valid command it will execute the respective command with the following LED
sequences as listed in Table 2.4.

Requested AKV Command AKV Execution

Unlock All Doors MASK blink once

Lock All Doors MASK blink twice

Engine On MASK light sequentially from left to right, three times

Engine Off MASK light sequentially from right to left, once

Panic MASK blink four times
 Table 2.4: AKV LED Execution Patterns

The platform chosen for both SMART-AKK and AKV is the Atmel AT91E55 Single Board Computer

8

(Atmel55). Various modules will be connected and interfaced with the board to implement specific
features of SMART-AKK as shown in Figure 2.2 below.

To implement the biometric authentication of the SMART-AKK, the ARA-ME-01 will be used.
Authentication of fingerprints is done on the module’s microchip. It has the ability to store 120
fingerprints and perform fingerprint scanning and matching is less than 3 seconds. To communicate
to the biometric module, a series of commands and responses will be sent and received from the
module in hexadecimal format. Please refer to the software design section for a more detailed
description.

Communication between the SMART-AKK and AKV will be done wirelessly using the X-Bee ZB
embedded RF module. Two modules will be required; one mounted on the AKK and the other
mounted on the AKV.

Both ARA-ME-01 and X-Bee are connected to the Atmel55 development board via USART1 and
USART2 respectively. It is to be noted that ARA-ME-01 is connected to USART1 via an RS232 level
transceiver chip to account for voltage differences between the Atmel55 serial port and the module
and possible contention issues with connecting directly to USART1.

Figure 2.2: Hardware Layout

Please refer to Appendix III for a more detailed design of the hardware connections.

9

3 PARTS LIST

Part Name SKU Number Supplier Cost

CDN $

Documentation

Fingerprint Slide Scanner
ARA-ME-01

SEN-08881 Sparkfun 79.95 Specification

Fingerprint Slide Scanner
Interface Cable

SEN-08941 Sparkfun 1.95 N/A

XBee 1mW Chip Antenna
(x2)

WRL-08664 Sparkfun 22.95 Data Sheet

Atmel AT91E55 Single Board
Computer (x2)

N/A ECE Parts

Store

N/A N/A

RS232 Converter
DIP - MAX232 MAX3232

COM-00316 Sparkfun 1.95 Data Sheet

1 uF Capacitor (x4)
ECA-1HM010I

P10421TB-ND DigiKey 0.03 N/A

DB9 Female Serial Header

N/A ECE Parts

Store

N/A N/A

Table 3.1: SMART-AKK hardware parts

Note: The XBee development kit contains RS-232 interface boards.

http://www.sparkfun.com/
http://www.sparkfun.com/datasheets/Sensors/Biometric/ARA-ME-2510.pdf
http://www.sparkfun.com/
http://www.sparkfun.com/
http://www.sparkfun.com/datasheets/Wireless/Zigbee/XBee-Datasheet.pdf
http://www.sparkfun.com/
http://www.sparkfun.com/datasheets/Components/General/sp3222_3232e.pdf
http://www.digikey.com/ca/en/digihome.html

10

Detailed hardware specification for SMART-AKK can be seen in the table below:

Part Name Supply

Voltage

 [V]

Supply

Current

[mA]

Interface Other

ARA-ME-01 5 60 9600bps TTL Serial

3.3V CMOS UART

3.3V CMOS DIGITAL

I/O

Resolution:

500 DPI

X-Bee 3.3 50 250kbps Serial

3.3V CMOS UART

2.4 GHz

Range: 100 [m]

128-bit encryption

6 10-bit ADC input pins

MAX232 2.7 - 6 0.3 Minimum 120kbps

Serial

Output Resistance: 300 Ω

Requires 4 external

capacitors

 Table 3.2: detailed SMART-AKK hardware parts

11

4 DATA SHEET

ARA-ME-01 Connection on ARM

Name Pin Input /
Output

Function Name Pin

GND 1 - Ground - -

Reset 2 Input Module
reset
control

PA23 95 (16 on
JPCOMM)

TXD 3 Output Serial
sender

PA19/RXD1
*

91 (9 on
JPCOMM)

RXD 4 Input Serial
receiver

PA18/TXD1
*

86 (10 on
JPCOMM)

Vcc 6 - Power
supply 5V

- -

 Table 4.1: connections of the fingerprint slide scanner

These are the final pins that the ARA-ME-01 module is connected to. It does however connect to these pins
through a level transceiver. Please refer to Appendix III (3/4) for more details.

X-Bee Connection on ARM

Name Pin Input /
Output

Function Name Pin

Vcc 1 - Power
supply 3.3V

- -

DOUT 2 Output UART Data
out

PA22/RXD2 94 (14 on
JPCOMM)

DIN/CONFIG 3 Input UART Data
in

PA21/TXD2 93 (11 on
JPCOMM)

GND 10 - Ground - -
 Table 4.2: connections of the X-Bee Module

X-Bee configuration settings

Setting SMART-AKK AKV

Baud rate 38400 38400

PAN ID 0x6666 0x6666

DL 0 1

MY 1 0
 Table 4.3: X-Bee configuration settings

12

Note: X-Bee modules are initialized using the development kit. Please refer to Appendix V on how to
configure the X-Bee modules.

For both the AKK and AKV, the X-Bee module is connected to UART2 of the Atmel board. Commands
are passed to the X-Bee for transmission and retrieving data using serial at91 commands.

 Switch buttons
To accommodate the functionality of the AKK, the four switches (available directly on the
Atmel55) will be used. Button presses are detected using polling and by checking the status of the

PIOA (for button 2) and PIOB (for button1, 3 and 4) bus using at91_pio_read.

Push button ARM PIN

Button1 PB20

Button2 PA9

Button3 PB17

Button4 PB19
 Table 4.4: pin numbers of push buttons on the ARM board

 LEDs
To display the action requested by a user on the AKV, LEDs on the Atmel55 will be used to display
the requested functionality as described in our functional requirements. LEDs are turned on/off
using the at91_pio_open and at91_pio_write functions.

LED Pin on ARM

LED1 PB8

LED2 PB9

LED3 PB10

LED4 PB11

LED5 PB12

LED6 PB13

LED7 PB14

LED8 PB15
 Table 4.5: pin numbers of LEDs on the ARM board

13

 Power Draw

 Biometric module

Measurement Theoretic
al

Measured Unit

Idle voltage (module
powered but not
working)

5 4.9 V

Working voltage (ie.
When biometric module
is receiving/sending
commands)

5 4.93 V

Idle current 10 6.8 mA

Working current 60 56.8 mA

Working power (P=IV) 0.3 0.28 W

Idle power (P=IV) 0.05 0.033 W

Table 4.6: power measurements of ARA-ME-01 biometric module

Working voltage and current was measured when commands and responses were being

sent and received to and from the biometric module. Idle voltage and current were

measured when the biometric module was powered and running, however, however no

commands or responses were being sent or received.

 X-Bee

Measurement Theoretical Measured Unit

Voltage (when idle,
transmitting and receiving)

3.1 3.061 V

Transmit current 35 20.3 mA

Receive current 38 24.3 mA

Transmit power (P=IV) 0.1085 0.062 W

Receive power (P=IV) 0.1178 0.074 W

 Table 4.7: power measurements of the X-Bee module

Transmit current was measured on the SMART-AKK X-Bee when transmitting packets to

AKV. Similarly, receive current was measured on the AKV X-Bee when receiving packets

from SMART-AKK.

14

5 SOFTWARE DESIGN

The software components are divided in two sections; software relating to SMART-AKK and
software relating to the AKV. The software flow of the SMART-AKK and AKV can be seen in Figure
5.1 and 5.2 below. Please refer to Appendix IV for a block diagram of software interactions.

Note: The solid dark blue arrows signify valid or normal flow.

 Figure 5.1: SMART-AKK Software Data Flow

SMART-AKK will be retrieving data from the fingerprint scanner and button presses, generating a
code and serial number, encrypting data packets, and sending them via wireless module. SMART-
AKK first initializes the LEDs and buttons. Then it opens the USARTs necessary to communicate with
the external modules (USART2 and USART1 for X-Bee and the fingerprint module, respectively). If a

15

fingerprint was scanned, it will validate the fingerprint and check if a button was pressed. If any of
these actions fail, it will go back and poll for another fingerprint. Otherwise, it will create and
encrypt an action/serial packet. Then, it will begin sending the packets to AKV starting with a start
transmit byte, 0xAA, and ending with an end transmit byte, 0xFF. Once this has finished, SMART-
AKK will begin polling for a new fingerprint yet again.

To communicate with the biometric module Atmel55 must send and receive a sequence of
commands and replies in hexadecimal format. Table 5.1 below, is an example packet to read an
image from the sensor, and the associated response that one would receive from the module. The
response shown is a standard packet that the module sends when a command was executed
successfully.

Brief Summary of Packet
The packet head and device address is the same for the request and response. The 01 in the packet
flag denotes a command packet and 07 denotes a reply from the module. The packet length is the
length in bytes of the command and checksum. Checksum is the sum of the packet flag, length and
command. There is an entire list of commands that can be sent to the biometric module (please
refer to reference [4]). In this case however, 01 is to read an image from the sensor.

 Packet
head

Device
address

Packet
flag

Packet
length

Command Checksum

Request EF01 FFFFFFFF 01 0003 01 0005

Response EF01 FFFFFFFF 07 0003 00 000A
Table 5.1: Sample ARA-ME-01 instruction

16

 Figure 5.2: AKV Software Data Flow

Similarly to the SMART-AKK, AKV initializes the LEDs and opens the USART2 for communication. AKV
begins to poll for a start transmit byte, 0xAA, from SMART-AKK. If received, it will receive the entire
packet until an end transmit byte, 0xFF, is received or if a buffer overflows occurs. If all is successful,
it continues to decrypt the packet and checks its validity. If it is valid, it executes the command using
an LED sequence. If it is not valid, it then it goes back and polls for a start transmit byte.

The libraries, m55800_lib16 and lib_drv_16, were used in both the AKK and AKK project files.

Please Appendix IV for the source code.

17

6 TEST PLAN

6.1 SOFTWARE TEST PLAN

Unit tests will be performed on the AKK and AKV ARM micro controllers respectively. Testing of
hardware-independent software components include:

 TEA cipher
We will create a secure communication channel between two terminals (server and client
based). The test program will prompt the user to enter four 64-bit hexadecimal numbers to
be encrypted. The test program will then encrypt the numbers and show the user the
encrypted versions of their input and store them to a file. The user will be able to either
encrypt that file again or decrypt it. Upon decryption, the program will compare the original
input to the decrypted version. If there are any variations (i.e. the comparison was not
equal) the TEA cipher was incorrect and will fail the test. Otherwise, the implementation
was successful and the TEA cipher has passed the test. Please see Appendix VI for TEA
Cipher test program.

Testing of hardware-dependent software components include:

 Buttons and LEDs
Tests were done to ensure button presses were being detected correctly as well as LEDs
were lighting properly. A function was written to poll for button presses, store the buttons
that were pressed within a specified time into an array and output the buttons that were
pressed to the screen. This allows us to see if the software is correctly detecting all buttons
that are pressed, if any were missed, or possibly if any buttons are not working properly.
Likewise, another function was written to light LEDs. This function initially each LED on and
off individually, which can be confirmed visually. This test ensures that the correct functions
are being called to turn on and off the LEDs and that each LED is working.

 Biometric module
Software components relating to the biometric module includes functions that need to
send and receive commands and responses from the module.

 First, a serial port sniffer program was used to aid in understanding the communication

that takes place between the test program and the biometric module. This also helped in
determining the commands necessary to send to the biometric module and the associated
response that would be received.

Next, functions were written to send a command to the biometric module and to receive a
response back from the module. We determined if we were sending the command correctly
by comparing the response received (if any) to what would have been received if the test

18

program was used. We then test to see if individual commands are working by executing the
command through our software then connecting to the module back to the provided test
software to see if the change has taken place. For example, after enrolling some fingerprints
using the test software, we connect it to SMART-AKK, and send the command to delete all
fingerprints. We then connect it back to the test software and see if all fingerprints have
really been deleted or not.

 X-Bee wireless module
Once the wireless modules are wired to the Atmel55 boards, each XBee can also be tested
to see if they are correctly transmitting and receiving data.
Please refer to Appendix VII for the corresponding code.

These tests also overlap into the hardware test since it will also allow us to see if hardware
components are working correctly.

6.2 HARDWARE TEST PLAN

Each hardware and software component is tested independently. Afterwards, each component is
interfaced one by one with the Atmel55 to ensure that the addition of each component work and
do not interfere with the pre-existing system. This method will also allow us to track down any
errors (if any) more easily.

In particular, the following hardware will be tested:

 Biometric module
A demo application obtained from the manufacturer can be used to ensure that the
hardware is in working condition and that it works independently before it is interfaced with
the Atmel55.

 X-Bee wireless modules

The software included in the X-Bee development kit provides a range test. Clearly, this test
will allow us to see the range of communication between the X-Bees but it will also allow us
to test if each X-Bee is in working condition.

The functional tests in Table 6.1 describe the performed tests in more detail, which also allows us
to ensure that SMART-AKK is working correctly:

19

Test

Test Action Expected Result

Biometric Module

Invalid fingerprint swipe Swipe finger that has not yet been
enrolled

Biometric module should not
find a match

Valid fingerprint swipe Swipe finger that has been enrolled Biometric module should return
the id of the fingerprint (id it
was stored as)

Enroll fingerprint Send command to enroll fingerprint Fingerprint is enrolled (verify
with test application)

Delete fingerprints Send command to delete fingerprints All fingerprints are deleted
from memory (verify with test
application)

ARM Board

Polling for button press Press two buttons consecutively Two buttons are detected

Stick buttons Press and slightly hold one button Program only detected as one
button press

Valid sequence Press a valid sequence of buttons (IE.
Double press button 1)

Sequence detected as valid

Invalid sequence Press an invalid sequence of buttons
(IE. Double press button 4)

Sequence detected as invalid

LED verification Perform a number of steps on
SMART-AKK (swipe finger, press
button etc).

LEDs light accordingly as each
step is executed successfully
(refer to Table 2.1)

TEA

Encryption and
decryption

SMART-AKK sends an encrypted
packet to AKV and AKV decrypts the
packet

The decrypted packet on AKV’s
side should be the same as the
packet before encryption on
SMART-AKK’s side.

Wireless

Range test Use the development kit to test the
range of the X-Bees

A range of approximately 10m
should be allowed

Working condition Power using the development kit to
determine if X-Bees are in working
condition

Light on the development kit
should be blinking

Table 6.1 functional tests performed

20

 7 RESULTS OF EXPERIMENTS

In terms of the functional tests that were described above, all tests produced expected results.

Additional results are as follows:

 Biometric module
 Commands sent to the biometric module needed to be sent byte by byte so that

there was no confusion detected by the biometric module with the packet format.
 To enroll a fingerprint, it is necessary to continuously send the ‘get image from

buffer’ command to the module until it detects a finger swipe. Once the command
is sent, the module will immediately carry out the command; there cannot be a
delay between the sent command and finger swipe. Therefore, it is necessary to
continuously send the command until the module accurately detects the image
from the sensor.

 When swiping your fingerprint, it is necessary to swipe in the same direction and
format as when it was enrolled. Otherwise, even if an enrolled finger is being
swiped, the module will not detect a match.

 From our own trial runs:
1. 9/10 times, a valid fingerprint was detected as invalid.
2. 10/10 times, an invalid fingerprint will be detected as invalid.

 Sometimes when swiping your finger, the biometric module will get ‘stuck’ (the
module would stop responding to any requests). The actual cause of this problem
has not been fully determined; however, we believe it to be associated with the way
the finger is swiped on the sensor (IE. The finger was swiped at an angle).

 Push buttons

We had hoped to get button presses using internal interrupts on the Atmel55, but due to
problems with setting up the interrupt service routine and after consulting with the lab
instructor, we resorted to polling. In reality however, we would want to use interrupt
driven button presses to have a more efficient product.

With polling, we initially had a problem with sticky button presses; a single button press
was sometimes detected as two button presses because the USART status did not change
fast enough or because the button was held down too long (while the software was
checking for a second button press). As a result, we implemented a short delay factor after
each button was pressed just to account for these ‘sticky’ buttons (after one button was
pressed, it would wait a little while before looking for the next button press). Because this
delay is fairly short, it did not affect the accuracy in obtaining button presses, it only aided
in removing the problem of ‘sticky’ buttons. Having LED indicators when a button was
pressed helped in determining if a button press was detected or not.

21

 X-Bee
Wireless communication has been successfully achieved. One of the first experimentations
done with the X-Bees included the range test using the software included in the
development kit. We were able to have a distance of approximately 10m between the two
X-Bees before the program occasionally complained of lost packets. Once the X-Bees were
configured and integrated onto SMART-AKK and AKV, the functions in Appendix VII were
written to help test the X-Bee functionality. These functions allowed us to test if there were
any problems in transmitting and receiving data and/or if the functions were correctly
written. No problems were detected; data that was sent and received were identical.
Additionally, testing also indicated that the X-Bee is able to receive up to 256 in
hexadecimal.

 TEA
The TEA functions use a Feistel Cipher which uses operations from the following orthogonal
algebraic groups – XOR, ADD and SHIFT. It encrypts 64-data bits at a time using a 128-bit
key. The TEA functions performed exactly as planned. The algorithm achieves complete
diffusion because through one change in plain text it generates 32-bit differences in cipher
text in six rounds. Please refer to Appendix VII.

22

8 REFERENCES

[1] Shephard, Simon J. The Tiny Encryption Algorithm. Taylor & Francis.

[2] Minderman, Nancy. CMPE 490 Resources. [Online] Available:

http://www.ece.ualberta.ca/~CMPE490/winter2010/resources.html Accessed 2010.

[3] Aratek Biometrics Technology Co. Ltd. Fingerprint module specification. [Online] Available:

http://www.sparkfun.com/datasheets/Sensors/Biometric/ARA-ME-2510.pdf
Accessed January 2010.

[4] Aratek Biometrics Technology Co. Ltd. Fingerprint module specification. [Online] Available:

http://www.sparkfun.com/datasheets/Sensors/Biometric/fingerprint%20module-2510.doc
Accessed January 2010.

[5] Digi.com. (2009). XBee & XBee-PRO ZB. [Online] Available:

http://www.digi.com/pdf/ds_XBeezbmodules.pdf Accessed January 2010.

[6] MaxStream. (2006, October 13). XBee / XBee-PRO OEM RF Modules. [Online]. Available:

http://www.libelium.com/squidbee/upload/3/31/Data-sheet-max-stream.pdf
Accessed January 2010.

[7] Sparkfun Forum. (2008) Fingerprint Slide Scanner. [Online]. Available:

http://forum.sparkfun.com/viewtopic.php?f=14&t=12432&start=60 Accessed March-April 2010.

[8] Minderman, Nancy. CMPE490 Project – FLASH Tutorial. [Online] Available:
http://www.ece.ualberta.ca/~cmpe490/winter2009/project/flash.html Accessed April 8, 2010.

http://www.ece.ualberta.ca/~CMPE490/winter2010/resources.html
http://www.sparkfun.com/datasheets/Sensors/Biometric/ARA-ME-2510.pdf
http://www.sparkfun.com/datasheets/Sensors/Biometric/fingerprint%20module-2510.doc
http://www.digi.com/pdf/ds_xbeezbmodules.pdf%20Accessed%20January%202010
http://www.libelium.com/squidbee/upload/3/31/Data-sheet-max-stream.pdf
http://forum.sparkfun.com/viewtopic.php?f=14&t=12432&start=60
http://www.ece.ualberta.ca/~cmpe490/winter2009/project/flash.html

23

Quick start manual

Necessary parts:

i. 2 Power supplies

ii. 2 ARM boards & power cables

iii. 5 Power cables (3 red, 2 black)

iv. Smart-AKK prototype board (serial and header cable attached)

v. AKV prototype board (header cable attached)

Setup:

Flash Projects

 Follow the flash instructions indicated in the FLASH tutorial (Reference section [8]).

 The SMART-AKK ARM board should be flashed with project SMART, and the AKV board with project

VEHICLE.

APPENDIX I QUICK START GUIDE

24

Assembling Projects (After projects have been flashed)

SMART-AKK (AKK)

1. Connect the serial cable of AKK to serial port A of the ARM board

2. Connect the header cable of AKK to the JP COMM buffer on the ARM board. Ensure that the arrow

on the cable connects to pin 1 of the board.

3. Connect power cables of AKK. From left to right, the board should be powered as follows: 3V, 5V,

GROUND.

4. Ensure that the JPBoot jumper is switched to USR.

5. Power the ARM board. You should see all (with the exception of one) of the LEDs flash

simultaneously.

6. Turn on the power supply for the AKK.

Your set up should look similar to the following:

25

AKV

1. Connect the header cable of AKV to the JP COMM buffer on the ARM board. Ensure that the

arrow on the cable connects to pin 1 of the board.

1. Connect power cables of AKV. From left to right, the board should be powered as follows: 3V,

GROUND.

2. Ensure that the JPBoot jumper is switched to USR.

3. Power the ARM board. You should see all (with the exception of one) of the LEDs flash

simultaneously.

4. Turn on the power supply for the AKV.

Your set up should look similar to the following:

26

Demonstration

1. Begin by powering both the SMART-AKK and AKV (This should have already been done if you

followed the ‘Setup’ instructions).

2. Review LED indicators in Table 2.1

3. Ensure that SMART-AKK is ready; LED8 should be on.

4. Ensure that the biometric module is ready; the light on the biometric module is blinking.

5. Swipe an enrolled finger on AKK.

6. Press a valid command sequence.

7. If you pressed an action command, watch the associate LED sequence play on AKV.

8. If you pressed the enrolment sequence, swipe the new fingerprint when the biometric light starts

blinking. Swipe the same finger a second time when the light starts blinking again.

9. If you pressed the command to delete all fingerprints, continue to enroll the new master.

27

i BACKUP PLANS

There exist two major parts of the design with the possibility of failing: biometric authentication
and wireless communication.

If there is a biometric failure, (i.e. module is unable to communicate with the SMART-AKKs Atmel55)
the security feature of the SMART-AKK will still be maintained. The user can be authenticated by
entering a pre-determined password on SMART-AKK. If the password passes, the AKK will proceed
as previously described to generate a code and prepare the packet for wireless transmission. AKV
would not be affected by the change in authentication method.

If wireless communication fails, the user can us a manual key to control the vehicle.

ii OPTIONS / EXTENSIONS

To make the interaction between the SMART-AKK and the vehicle simulator more realistic,
additional features to the project could include sound functionality, through horns or beeps to
confirm AKK button presses. The AKV can be made to work (i.e. Able to turn the ignition on/off,
drivable vehicle) between a certain time period, when this time period expires the AKV goes into a
sleep mode. AKV can be awoken from sleep mode when it receives a predetermined sequence of
button presses from SMART-AKK.

The SMART-AKK is not limited to communication with an AKV. The SMART-AKK can be applied to
any situation requiring greater access security. For example, it can be used to secure a wireless
channel in an office building’s security system or to provide additional security when opening a
safe.

Since SMART-AKK and AKV are prototypes, the size of the development boards and modules are
extremely large to be convenient. Therefore, a more exciting extension would be to modify SMART-
AKK so that it would be the size of a regular SmartKey.

APPENDIX II FUTURE WORK

28

1

CIRCUIT DIAGRAM OF HARDWARE

Figure III.1 Circuit diagram of AKV

APPENDIX III HARDWARE DOCUMENTATION 1/4

29

Figure III.2 Circuit diagram of SMART-AKK

APPENDIX III HARDWARE DOCUMENTATION 2/4

30

Push Buttons configuration on Atmel55

APPENDIX III HARDWARE DOCUMENTATION 3/4

31

The 8 LEDs connect to PB [8 .. 15] on ATMEL55

APPENDIX III HARDWARE DOCUMENTATION 4/4

32

Source code is attached in a .zip file.

BLOCK DIAGRAM OF INTERACTIONS

APPENDIX IV SOURCE CODE

33

SMART - AKK
(Status for all: Tested and passed)

File Name Description

smartAKK.c Main program of SMART-AKK

smartAKK.h Header for main function of SMART-AKK

XBee.c Contains the necessary functions to communicate
with the XBee module and send data to AKV

tea.c Encrypts data using TEA

biometric.c Contains the necessary functions to communicate
with the ARA-ME-01 module

biometric.h Header file for biometric module

akvActionCommand.c Valid AKV action command numbers and serial
number information

AKV
(Status for all: Tested and passed)

File Name Description

akv.c Main program of AKV

XBee.c Contains the necessary functions to communicate
with the XBee module and receive data to AKV

tea.c Decrypts data using TEA

34

Please refer to the application notes posted here:
http://www.ece.ualberta.ca/~elliott/cmpe490/appnotes/2010w/XBee_Wireless_Communication/

For a detailed instruction on how the XBees were configured.

APPENDIX V XBee CONFIGURATION APPLICATION NOTE

http://www.ece.ualberta.ca/~elliott/cmpe490/appnotes/2010w/XBee_Wireless_Communication/

35

/* teaTEST.c */

int main(void)

{

 unsigned int aPacket = 0x11111111;

 unsigned int addPacket = 0x4;

 unsigned int VIN0 = 0xAA;

 unsigned int VIN1 = 0x11;

 unsigned int VIN2 = 0xBB;

 unsigned int VIN3 = 0x22;

 unsigned int serialNum = 0x12345678;

 unsigned int serialCount = 0x8;

 unsigned int buttonV0 = aPacket;

 unsigned int buttonV1 = serialNum;

 unsigned int encV0 = 0x0;

 unsigned int encV1 = 0x0;

 unsigned int decV0 = 0x0;

 unsigned int decV1 = 0x0;

 while(1)

{

 buttonV0 = buttonV0 + addPacket;

 encV0 = buttonV0;

 buttonV1 = buttonV1 + serialCount;

 encV1 = buttonV1;

 printf("BEFORE ENCRYPTION\t\t[%X %X]\t", buttonV0, buttonV1);

 encV0 = encipherA(buttonV0, buttonV1, VIN0, VIN1, VIN2, VIN3);

 encV1 = encipherB(buttonV0, buttonV1, VIN0, VIN1, VIN2, VIN3);

 if((encV0 == buttonV0) || (encV1 == buttonV1))

 {

 printf(“\t\tTEA ENCRYPTION TEST FAILED\n”);

 break;

 }

APPENDIX VII TEA CIPHER TEST PROGRAM

36

 else

 printf(“\t\tTEA ENCRYPTION PASSED\n”);

 printf("TEA ENCRYPTED\t[%X %X]\n", encV0, encV1);

 decV0 = decipherA(encV0, encV1, VIN0, VIN1, VIN2, VIN3);

 decV1 = decipherB(encV0, encV1, VIN0, VIN1, VIN2, VIN3);

 if((decV0 != buttonV0) || (decV1 != buttonV1))

 {

 printf(“\t\tTEA DECRYPTOPN TEST FAILED\n”);

 break;

 }

 else

 printf(“\t\tTEA DECRYPTION PASSED\n”);

 printf("AFTER ENCRYPTION\t[%X %X]\n", encV0, encV1);

}

 return(0);

}

37

/* akkTESTXBee.c */

#include <string.h>

#include <time.h>

#include "parts/m55800/eb55.h"

#include "parts/m55800/lib_m55800.h"

#include "periph/stdc/std_c.h"

#include "periph/usart/usart.h"

define BAUDS38400 (32000000 / (16 * 38400))

int main(void)

{

 unsigned int command = 0x5;

 at91_usart_open(&USART2_DESC, (u_int) US_ASYNC_MODE, (u_int) BAUDS38400, 0);

 while(1)

 {

 //Check uart status and get transmit status to see if its ready

 if (at91_usart_get_status(&USART2_DESC) & US_TXRDY)

 {

 if(at91_usart_write(&USART2_DESC, command))

 printf(“SMART-AKK XBee PASSED TEST\n”);

 else

 printf(“SMART-AKK XBee FAILED TEST\n”);

 }

 }

 return(0);

}

APPENDIX VIII XBee TEST PROGRAM

38

/* akvTESTXBee.c */

#include <string.h>

#include "periph/stdc/std_c.h"

#include "parts/m55800/lib_m55800.h"

#include "drivers/capture/capture.h"

#include "drivers/wait/wait.h"

#include "parts/m55800/eb55.h"

#include "periph/usart/usart.h"

#define BAUDS38400 (32000000 / (16 * 38400)) //* CD = 52

int i;

int main(void)

{

 unsigned int command = 0x5;

 unsigned int aByte = 0x0;

 at91_usart_open(&USART2_DESC, (u_int) US_ASYNC_MODE, (u_int) BAUDS38400, 0);

 while(1)

 {

 aByte = retrieveData();

 if(aByte != 0x0)

 {

 if(aByte != command)

 {

 printf("AKV XBee FAILED TEST\n”);

 break;

 }

 else

 printf(“AKV XBee PASSED TEST\n”);

 }

 }

 return(0);

}

