MIDI Standard for Dummies - Implementing MIDI Out
Qiushi Jiang
ECE 492 Group 7 Winter 2015

Purpose of This Tutorial:

MIDI short for Musical Instrument Digital Interface is the most widely used standard for
storing and communicating digital music data. If you are working on any music related
projects, it very likely you will be running into MIDI. This tutorial will show you the basic
specification of MIDI standard and guide you through a simple implementation of a MIDI
output jack.

MIDI Standard Crash Course:

Overview:

MIDI is the digital representation of traditional music notation. It records the essential
information about each music note such as duration, pitch and velocity.

Data Format:

A single MIDI message contains three bytes: status byte, pitch byte and velocity byte.
Additionally there are two separator bits wrapping around each byte, 0 at the front and 1
at the back.

0 [status byte] 1 0 [pitch byte] 1 0 [velocity byte] 1

[Status byte]:

The left 4 bits of the status byte defines the note type, and the lower 4 bit defines which
MIDI channel is used. Two most important types are: “note on” (1001) and “note off”
(1001). There are total 16 channels you can select, from “channel 1” (0000) to “channel
16” (1111). For example: “10010000” means note on signal on channel 1.

[Pitch byte]:

Pitch byte defines the pitch of the note. Figure 1 shows the mapping between the pitch
byte and piano keyboard. For example: C4 is represented as 60 (00111100) inside the
pitch byte.

Humber — Hame Hz
A 27.500

2 v anass 29.133

a4 o1 32.703

6 23 o1 g6 708 34045

a5 27 El Alans 3EE81

ag Fl 435 .654

21 30 a1 Angon 46249

3 32 A1 55000 1215

= 34 El 1755 J8270

35) 635,408

= 37 o2 T54lg 09286

a 39 B2 g any TTUEL

41 B2 &7.307

45 42 an g7 oon 92489

45 44 e 11000 1053683

47 4 B2 12547 ll6a4

45 o5 13051

=0 43 o= 14g 85 138.02

=2 51 ES 16451 13396

=3 I 17461

5= o4 o3 100 15000

=7 36 A% 220,00 %5 08

=9 3 B3] 246 .84 :

&0 4 - 1 26163

o 61 D4 29547 277.18

a4 a3 E4 2965 51113

&5 F4 348235

s a1} o4 oa0n 56892

&0 i Ad 44000 413.30

71 T B4 405 55 46616

T3 o5 34323

74 73 o5 Sg7 5y 0457

76 T3 ES g5 2g 02225

77 5 69546

79 8 a5 TEs9p 732599

a1 &0 55 ganon G30.61

a3 &2 ES 9a7 77 93233

54 o 10465

a6 &5 o 11747 11087

a8 a7 EE 15185 124435

g9 B 13969

a1 a0 ag 15g5.0 1400

a5 2 BE 1700 leal2

P P E& 1oy55 1647

98 o7 20930

P a7 o7 25455 22173
100 a5 ET 26370 24850
101 F7 27930
103 102 o7 51560 22600
105 104 AT g5ag 0 35224
107 106 BT go51.1 3TA83
108 o5 T Wolte, UREW| 41860

Figure 1: MIDI Pitch Byte Mapping

[velocity byte]:
velocity byte defines how hard the note is played. With 8 bits the velocity can range
from 0 to 127.

Transmitting MIDI signal
e MIDI operates on 31250 Hz clock.
e MIDI signal uses 5V as digital 1 and 0V as digital 0.
e When sending MIDI signal, the bytes’ least significant bit are sent first.

For example: When transmitting “note on /channel 1/ C4/ 64 velocity” (0
10010000 1 000111100 1 0 10000000 1) the actual signal sent to the MIDI jack
will be (0 00001001 1 0 00111100 1 0 00000001 1).

MIDI out is fixed at 5V when there is no signal.

Connecting to MIDI Out Jack:

A standard MIDI Out Jack has 5 pins as shown in Figure 2.

PIN 1: Unused

PIN 2: Connects to ground

PIN 3: Unused

PIN 4: Connects to 5V voltage supply
PIN 5: Connects to MIDI signal

MIDI data +5V

220

Figure 2. MIDI Out Pins

Setting Up The MIDI Out Demo Project

The demo project servers as an example of what we have introduced above. It has a
MIDI Out custom VHDL components receiving MIDI data from Avalon MM, and a
software component constructing MIDI data and sending it down to the MIDI Out Avalon
MM interface.

aosr0Dbd =

Download and extract the project zip file.

Connect DE2 Board to the computer using USB.
Double click “niosll_microc_lab1.gpf” to open “Quartus”.
Once inside “Quartus” click on “Program Device”.
Select “output_files/niosll_microc...” and click Start.

File Edit View Processng Tools Window Hep = Search altera.com

j. Hardware Setup...| USE-Blaster [USE-0] Mode: ’JT#\G "] Progress: D

[Enable real-time ISP to allow background programming (for MAX II and MAX V devices)

File Device Checksum Usercode
Bl start

= Stop Eoumut_ﬁlesfniosll_microc...E EP2C35F572 00523823 FFFFFFFF

[save File
i up
Jﬂﬂ Down

After the board is flashed, click on Tools>Nios || Software Build for Eclipse. Set
the Eclipse workspace to “software” folder under the project root folder.

Create a new project inside Eclipse. File>New>Nios Il Application and BSP from
Template.

Set the SOPC Information File to “niosll_system.sopcinfo” under the project root
folder, select “Hello MicroC/OS-II” as our template. Follow the screenshot below
and click finish.

2 Nios I Application and BSP from Template [ST =

|I

Nios II Software Examples

Create a new application and board support package based on a software example template

Target hardware information

SOPC Information File name: Ch\Users\gsjiangDesktop\MIDL Interfacingtniosll_system.sopcinfo B

CPU name: nios2_gsys_0 v

Application project

Project name: MIDIOutDemo

Uze default location

Project location: | C:\Users\gsjiang'Desktop\MIDI_Interfacing\software\MIDIOutDemo

Project template
Temnplates Temnplate description
Blank Project Helle MicroC/05-1 uses the MicreC/OS-I1 RTOS. You can -
Board Diagnostics use this example as a starting point for developing Mios II il
Count Binary MicroC/O5-T applications.
Hello Freestanding
For details, click Finish to create the project and refer to the | _
Hello Werld readme.tdt file in the project directory. 3
Helle Werld Small
Memory Test The BSP for this template is based on the Micrium
Memory Test Small MicroC/O5-T operating system. i
Simple Socket Server
Simple Socket Server (RGMI) For information about how this software example relates to
Web Server Mios I hardware design examples,
Web Server (RGMII) -
@ < Back Mext =] [Einish] [Cancel

9. Copy and paste the code from “/MIDI_Interfacing/software/demo.c” to
“hello_ucosii.c” under the newly created project.

10.Right click on the “MIDIOutDemo” inside the navigator and select “Run As> Nios

[l Hardware”.

11. After the software starts, it will send out MIDI signals on GPIO_0[0] PIN every 1

second.

12.To see the actual MIDI signal, connect an oscilloscope probe to GPIO_0[0] and

its ground to GPIO_0[12]. Then set the oscilloscope trigger level anywhere

between 0V - 3.3V to capture the MIDI signal.

CH1
Coupling
{ BOMHz

Wolts/Div
Coarse]

Additional Voltage Level Shifting Circuit

Since DE2 board’s GPIO pin only outputs 3.3V signal, the voltage needs to be shifted to
5V before connecting to MIDI Out Jack. To achieve this you can implement a
comparator circuit using op-amp. As shown in Figure 3. Vin is the input voltage, and
Vref is the threshold voltage. When Vin > Vref, Vo = VDD. When Vin<Vref, Vo = VEE.
For shifting the DE2 GPIO pin to 5V, you can connect VDD to 5V, VEE to ground and
Vref to any reasonable threshold between 0 and 3.3V. Then when Vin goes high to
3.3V, the Vo will be 5V, and when Vin in goes low, the Vo will be 0V.

Vbp

VEE

Figure 3. Op-amp comparator circuit

Other Implementation Details

1.

MIDI standard actually supports two ways of implementing “note off” signal. One
way is setting the top 4 bits of the status byte to “1000”, the other way is setting
velocity to 0 and keeping the status byte as “note on”. After reverse engineering
several MIDI keyboards, we found that most companies actually use the second
approach. That doesn’'t mean the first approach is invalid, it just means second
approach are probably better supported by other third party devices.

. Always remember to send “note off” signal after sending the “note on” signal,

otherwise the receiving instrument will be stucked on the previous note.

MIDI is serial signal, that means technically multiple notes can never be played at
the same time, but since each note only takes (1/31250) second/bit * (8 + 2) bit =
0.96ms. You can simply send one right after the other, and human ear would not

be able to detect the delay between them.

/[For example sending a C major Chord
*midiOutPointer = getMidiData(0x90,0x3c,0x40);
/l wait 1 before sending the next note
OSTimeDIyHMSM(O, 0, 0, 1);.

*midiOutPointer = getMidiData(0x90,0x40,0x40);
I/l wait 1 before sending the next note
OSTimeDIyHMSM(O, 0, 0, 1);

*midiOutPointer = getMidiData(0x90,0x43,0x40);

Reference:

MIDI 1.0 Detailed Specification
http://oktopus.hu/uploaded/Tudastar/MIDI1%201.0%20Detailed%20Specification.pdf
Accessed on: April 7, 2015.

Figure 1: MIDI Pitch Byte Mapping retrived from
http://newt.phys.unsw.edu.au/jw/notes.html Accessed on: April 7, 2015.

Figure 2. MIDI Out Pins retrived from http://tryndelka.narod.ru/ Accessed on: April 7,
2015.

Figure 3. Op-amp comparator circuit retrieved from
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/ Accessed on:
April 7, 2015.

http://oktopus.hu/uploaded/Tudastar/MIDI%201.0%20Detailed%20Specification.pdf
http://newt.phys.unsw.edu.au/jw/notes.html
http://tryndelka.narod.ru/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/

