PS/2 KEYBOARD INTERFACE

Interfacing a PS/2 keyboard with an Altera DE2 board

Nelson Stoik

Table of Contents

2ol <=4 o TU T o U SPP 3
Caution Regarding INTEITUPLSiiiiciiie ittt ee ettt e et e e s eate e e e esabaeeessnteeeesansaeeesansseeesansseeeenn 3
o Co) =Tt AN Y= (o F P PPPPPPPPPPRY 4
Sy S e tieitteiiesieeeessse s e e s s e s e e s e e e e s e s s e e e e s e e e e e e e e e e e s e e e e e e e e e e e e e e e aeaaaaaaaaaaaaaaaaaaaaaaaaeaaaaeaaaaaeaaaaaaeaaaaaaaaaaeeeaaaaaaaaaaaeaeaanaaaaaans 4
(0 T o dU OO RO SRR 5
Lo Y 21 I o T gl =l [T 1Y PSSR 5
SOTEWAIE APttt ettt sttt e sttt e bt e e s aee e s bt e e sabeesabe e e beeesabeeesab e e s abeeabbeesabee e nbeenabeeeaneeesabeeenn 6
VoY Lo I o Ly A oY1 a1 17 Y o TSP 6
VoY Lo ol L=F- Y T 0] 1V PRSP 6
AV o) e =T o T 1 o LT or=Ta Lo 11 V-) SRS PSPRNS 6
Vo] Te I [E=Y o] =T Yeor=1 o Y 0= (ISR 6
Void input_monitoring_task(void * pdata)........cccceeiiieeeiiieiiie ettt ree e s rae e aee e 6
Int read_and_decode(char *decoded StriNg)ccoocuieeiiiiiii i e e 6
=10 0] o] L=l o B o o PSR 7
B A oY [Tt el o =1 | Fo U o 1Y | ol SRR 7
INPUL IMONTEOTING TASK..utiiiiiiiiie ittt ceitee ettt e et e s et e e e st ee e e e st e e e seabeee e esabeeeeesbaeeeesnsaeessnnseeeesnsenas 8

R =Y L=] L= PR 9

Background

The Altera DE2 board has a 6-pin mini-DIN connector PS2 serial port on it. The PS2 port is most
commonly used for interfacing with a PS2 mouse or keyboard. Altera provides a PS2 controller
component in the University Program section that is able to interface with the PS2 serial port and
provide an easy-to-use communication [1]. There are also driver files created by Altera that are
automatically added to the board support package once the PS2 component has been added to the
hardware. PS2 keyboards work by outputting a unique make code for each key when pressed and then
outputting another unique break code for each key when released [2]. The PS2 Controller reads these
make and break codes and stores them in its buffer. These make and break codes can then be read and
decoded into their ASCIl equivalent.

To fully use this Appnote, a working PS2 keyboard is required. It is assumed that you already have a
working Nios Il system created to which this tutorial builds upon. Once this tutorial is complete, keys
pressed on an attached PS2 keyboard will be displayed on the Eclipse console that is connected to the
Altera DE2 board.

Caution Regarding Interrupts

Although the Altera PS2 Controller does have an IRQ signal to enable interrupts, they are not used in this
particular setup. The PS2 Controller requires the use of legacy interrupts and there was some trouble
getting the legacy interrupts to co-exist with the non-legacy interrupts used by other components. It is
possible to use the PS2 Controller interrupts but that is not covered in this application note.

Project Setup

The following describes how to add the Altera provided PS2 Controller to an already existing Nios Il
system. First the core is added to the Nios Il system using Qsys. Next the signals are connected in the top
level file of the system in Quartus and the DE2 board is programmed. Finally the demo files are loaded
into an Eclipse project. This tutorial assumes that you already have a basic Nios Il system configured.

To fully use this Appnote, a working PS2 keyboard is required. Once this tutorial is complete, keys
pressed on an attached PS2 keyboard will be displayed on the Eclipse console that is connected to the
Altera DE2 board.

Qsys

First you need to add a PS2 controller to your NIOS Il system.

1. Adda PS2 instance from the component library found under: University Program > Generic 10 >
PS2 controller
a. Setthe Avalon Type as: Memory Mapped
b. Set the Incoming clock rate as: 50000000
c. Click finish
d. You can rename the controller to something more descriptive if desired (for this tutorial
the default ps2_0 name was used)
e. Connect the PS2 controller to the rest of the NIOS Il system, remembering to export the

conduit.
| _ PS2 Controller
L J. clock_reset Clock Input altpll_0_c1
L -+ clock_reset_reset Reset Input [clock_reset]
avalon_ps2_slave Avalon Memory Mapped Slave [clock_reset] 0x0130_35070 0x0150_3%077
external_interface Conduit ps2_0_external_interface

I

2. If you have conflicting addresses, generate new base addresses by clicking System > Assign Base
Addresses.
3. Save your changes and generate the SOPC.

Quartus

Next you need to connect the new signals from the NIOS Il system to the pins of the FPGA board. In your
top level .vdh files:

1. Add the following to the top level entity:
a. PS2_CLK:inout std_logic
b. PS2_DAT : inout std_logic
2. Add the following to the niosll_system component declaration (this information is from the HDL
Example tab auto generated in Qsys):
a. ps2_0_external_interface_CLK : inout std_logic
b. ps2_0_external_interace_DAT : inout std_logic
3. Finally connect the newly added signals in the niosll_system component instantiation:
a. ps2_0 external_interface_CLK => PS2_CLK
b. ps2_0_external_interfcae_DAT => PS2_DAT
4. Compile the design
5. Program the DE2 board with the newly generated .sof file.

Nios Il SBT for Eclipse

1. Create a new Nios Il Application and BSP from Template using the newly created .sopcinfo file
from Quartus.

2. Download and add the PS2_Controller.c and PS2_Controller.h files and add them to your
project.

3. Replace the contents of the auto generated hello_ucosii.c with the downloaded hello_ucosii.c
file that contains the setup for the task and a small test program that enables and disables input

Software API

The following functions are implemented in the PS2_Controller.c and PS2_Controller.h files

Void ps2_initialisation

Inputs None
Returns None
Description Set all variables to their starting values and starts the ps2 monitoring task.

This function can only be called once. In the current configuration, this function is called first thing by
the input_monitoring_task upon being started.

Void clear_input()

Inputs None
Returns None
Description Clears all input from the ps2 controller

Void enable_scanning()

Inputs None
Returns None
Description Enable the task to scan for data from the ps2 device

Note: Scanning is enabled by default after ps2_initialisation is run

Void disable _scanning()

Inputs None
Returns None
L. Set all variables to their starting values and starts the ps2 monitoring task. Call
Description . .
once before starting the main program

Void input_monitoring_task(void * pdata)

Inputs Data that may be passed to any running task. Not used for this task
Returns None
A task that polls the ps2 controller for available input and prints it to the
Description console. It is paused by calling disable_scanning() and resumed by calling

enable_scanning()

Int read_and_decode(char *decoded_string)

A string containing the data read from the ps2 controller. The parsed input is

Inputs returned with this string as well
Returns None
Description Read the codes from the ps2 controller and convert them to ASCII characters

Sample APl Code

Test Project — hello_ucosii.c
The hello_ucosii.c file contains some sample code to show how to enable and disable scanning from the
PS2 Controller. It also sets up the input_monitoring_task to run in the main program.

#tinclude <stdio.h>
#include "includes.h"
#tinclude "PS2_Controller.h"

/* Definition of Task Stacks */

#tdefine TASK_STACKSIZE 2048
0S_STK taskl_stk[TASK_STACKSIZE];
0S_STK ps2_task_stk[TASK_STACKSIZE];

/* Definition of Task Priorities */
#tdefine TASK1_PRIORITY 2
#tdefine PS2_TASK_PRIORITY 1

void task1(void* pdata) {

while (1) {
0STimeDIyHMSM(0, 0, 15, 0);
printf("Turning off input\n");
disable_scanning();
0STimeDIyHMSM(0, 0, 15, 0);

printf("Turning on input\n");
enable_scanning();
OSTimeDIlyHMSM(0, 0, 15, 0);

printf("Turning off input again\n");
disable_scanning();
OSTimeDlyHMSM(0, 0, 15, 0);

printf("Clearing and turning on input\n");
clear_input();
enable_scanning();

}

/* The main function creates two task and starts multi-tasking */
int main(void) {
INT8U err;

//create the input_monitoring_task

err = OSTaskCreateExt(input_monitoring_task, NULL,
(void *) &ps2_task_stk[TASK_STACKSIZE - 1], PS2_TASK_PRIORITY,
PS2_TASK_PRIORITY, ps2_task_stk, TASK_STACKSIZE, NULL, 0);

err = OSTaskCreateExt(taskl, NULL, (void *) &task1_stk[TASK_STACKSIZE - 1],
TASK1_PRIORITY, TASK1_PRIORITY, task1_stk, TASK_STACKSIZE, NULL, 0);

OSStart();
return O;

Input Monitoring Task

The following code shows how the input_monitoring_task works in the PS2_Controller.c file

void input_monitoring_task(void* pdata)
{
//message read from the ps2 controller
char message_received[DECODE_STRING_LENGTH];
int read_return = READ_BAD;
INT8U err;
ps2_initialisation();
memset(message_received, 0, DECODE_STRING_LENGTH);

while (1){
//reset the variable and attempt to read from PS2
memset(message_received, 0, DECODE_STRING_LENGTH);
read_return = read_and_decode(message_received);

//good read from PS2, parse it
if (read_return == READ_AND_DECODE_GOOD){
//ignore blanks; these are the break codes from the keyboard
if(strncmp(message_received, "",sizeof("")) 1= 0){
printf("%s\n", message_received);

}
}
//bad read, wait and try again
else {
//printf("bad read\n");
OSTimeDIyHMSM(0, 0, 0, 500);
}

//check if the input has been disabled, wait until it has been enabled again
OSMutexPend(input_mutex, 0, &err);
if(input_enabled == PS2_INPUT_DISABLED){
OSMutexPost(input_mutex);
0OSSemPend(wait_for_input_enabled, 0, &err);
1
else{
OSMutexPost(input_mutex);
}

References

[1] PS2 Controller
Altera IP Core - PS2 Controller - 02/02/2015
http://www.altera.com/education/univ/imaterials/comp org/ip-cores/unv-ip-cores.html

[2] Keyboard Make and Break Codes
Keyboard Scan Codes: Set 2 — 02/02/2015
http://www.computer-engineering.org/ps2keyboard/scancodes2.html

http://www.altera.com/education/univ/materials/comp_org/ip-cores/unv-ip-cores.html
http://www.computer-engineering.org/ps2keyboard/scancodes2.html

