
APPLICATION NOTE MIKE PAPPAS
 ECE 492 WINTER 2015
 GROUP 2

Texas Instruments MSP430-FR5969 12-Bit
ADC Setup Guide

March 2015

2

Table of Contents
Preface .. 3

Pin Assignments .. 4

Configuring the ADC .. 4

Sampling from the ADC ... 5

ADC Interrupt Routine .. 5

Conversion Results .. 6

Example Code ... 6

References .. 8

3

Preface
The Texas Instruments MSP-EXP430FR5969 development board features a 12-bit resolution Analog to

Digital Converter (ADC) that is capable of performing both single and multiple channel conversions on up

to 16 external channel inputs. This guide is intended to outline the steps needed to get the ADC working

on both single and multi-channel conversions. For more MSP430 12-bit ADC information, including

information on the register information and autoscan functionality, consult Chapter 25 of the Texas

Instruments MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Family User’s Guide.

In addition, various ADC examples demonstrating different capabilities of the MSP430FR5969 hardware

can be found here. This application note assumes the user has Code Composer Studio (an Eclipse-based

development studio) installed, running on the Windows or Linux environment. Instructions for installing

Code Composer Studio on Linux can be found on the Texas Instruments Wiki page here.

http://www.ti.com/lit/ug/slau367f/slau367f.pdf
http://www.ti.com/lit/zip/slac536
http://processors.wiki.ti.com/index.php/Download_CCS
http://processors.wiki.ti.com/index.php/Linux_Host_Support_CCSv6#Installation_Instructions

4

Pin Assignments
In order to access the ADC using the MSP-EXP430FR5969 development board, the user must first select

an analog channel from the available pins. Unfortunately, only 6 of the available 16 analog channel are

accessible from the development board. The following table summarizes the available analog channels:

Channel Pin Mapping
BoosterPack
Pin Number

2 P1.2 19

3 P1.3 11

4 P1.4 12

5 P1.5 13

11 P4.3 5

12 P3.0 18
Table 1 - MSP-EXP430FR5969 ADC Pin Mappings [1]

Once the desired channels have been selected, they can be mapped in the program as follows:

 // Temperature Input Setup
 P1SEL1 |= BIT3; // Configure P1.3 for ADC
 P1SEL0 |= BIT3;

 // Light Sensor Input Setup
 P1SEL1 |= BIT4; // Configure P1.4 for ADC
 P1SEL0 |= BIT4;

Where the left hand side of the pin assignment refers to the decimal portion of the pin mapping, and

the right hand side refers to the fractional value. In this case, pins P1.3 and P1.4 are selected. Both

PxSELx assignments are required to enable GPIO on that pin. All macro values can be found in the

msp430.h header file.

Configuring the ADC
In order to configure the ADC12 to operate in a desired manner, three main registers must be

addressed: three ADC control registers, the desired interrupt registers, and the desired memory control

registers. The code below shows an example of a single channel configuration:

 // Configure ADC12
 ADC12CTL0 = ADC12SHT0_2 | ADC12ON; // Cycle Sample Time, ADC On
 ADC12CTL1 = ADC12SHP; // Source clock is sample timer
 ADC12CTL2 |= ADC12RES_2; // 12-bit conversion
 ADC12IER0 |= ADC12IE0; // Interrupt MEM0
 ADC12MCTL0 |= ADC12INCH_4 | ADC12VRSEL_3; // Select A4, Vref = 2.5V

The above code should be sufficient for any single channel sampling, however the final ADC12MCTL0

(which refers to memory channel 0) line may need to be modified depending on the selected input

channel and desired reference voltage. The ADC is capable of operating at internal reference voltages of

1.2V, 2.0V and 2.5V but external options are available should those prove insufficient [2]. As with the pin

assignments, all macro values can be found in the msp40.h header file.

For multi-channel sampling, some minor modifications are required. The following example shows the

configuration:

5

 // Configure ADC12

 // Turn on ADC and enable multiple conversions

 ADC12CTL0 = ADC12SHT0_2 | ADC12ON | ADC12MSC;

 // Sampling timer, single sequence

 ADC12CTL1 |= ADC12SHP | ADC12CONSEQ_1;

 // 12-bit conversion

 ADC12CTL2 |= ADC12RES_2;

 // Enable ADC interrupt on MEM1

 ADC12IER0 |= ADC12IE1;

 // A3 select, Vref=1.2V

 ADC12MCTL0 |= ADC12INCH_3 | ADC12VRSEL_1;

 // A4 select, Vref=1.2V, End of Sequence

 ADC12MCTL1 |= ADC12INCH_4 | ADC12VRSEL_1 | ADC12EOS;

The first difference between the single and multi-channel examples is the ADC12MSC option, which

notifies the ADC that more than one channel will be in use. The following ADC12CONSEQ_1 option sets

the ADC to single sequence mode – meaning the ADC will only perform one pass through the channels

before stopping. It is interesting to note that the interrupt is set to trigger on only the flag of memory

register 1 (even though both 0 and 1 are in use) – this is because the MSP430 interrupt only needs to

trigger once the final conversion is done, so an interrupt on the first register would be unnecessary. A

good rule of thumb is to enable the interrupt of the last memory channel that is to be sampled from.

Finally, the ADC12EOS on the final input channel informs the ADC to stop sampling after reaching that

channel. More information about the register values can be found in the user guide [2].

Sampling from the ADC
Once the ADC has been properly configured the analog sampling can take place. To do so, the ADC must

first be told to enable and start conversions. The following code example demonstrates this process:

 ADC12CTL0 |= ADC12ENC | ADC12SC; // Sampling and conversion start
 __bis_SR_register(LPM0_bits + GIE); // LPM0, ADC12_ISR will force exit
 __no_operation(); // For debug only

The__bis_SR_register() command enables the low power mode in the status register after returning

from the ADC interrupt routine, and enables the general interrupt to wake up the MSP430 upon another

ADC sampling.

ADC Interrupt Routine
In order to do work with the results from the ADC, a proper interrupt routine must be utilized. As

mentioned previously, it is only necessary to trigger on the flag of the last memory register to be

sampled from, however there is no harm from performing an action within each case. The following

code demonstrates how to save the conversion results from two input channels onto global values, then

exit the interrupt routine:

6

// ADC Vector function adapted from http://www.ti.com/lit/zip/slac536
// using MSP430FR59xx_adc12_01.c
// Written by: T. Witt / P. Thanigai, Texas Instruments Inc., November 2013
#if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)
#pragma vector = ADC12_VECTOR
__interrupt void ADC12_ISR(void)
#elif defined(__GNUC__)
void __attribute__ ((interrupt(ADC12_VECTOR))) ADC12_ISR (void)
#else
#error Compiler not supported!
#endif
{
 switch (__even_in_range(ADC12IV, ADC12IV_ADC12RDYIFG))
 {
 case ADC12IV_ADC12IFG1: // ADC12MEM1 Interrupt
 ADC_value = ADC12MEM0; // Save MEM0
 ADC_value2 = ADC12MEM1; // Save MEM1
 __bic_SR_register_on_exit(LPM0_bits | GIE); // Exit CPU, clear interrupts
 break;
 default: break;
 }
}

For performing multiple channel conversions it is important that the __bic_SR_register_on_exit()

command is only issued in the end of sequence channel interrupt defined in the configuration,

otherwise the conversion process will be truncated.

Conversion Results
Once the conversion results have been saved and stored, they must be manually converted by the user

back into meaningful results. To perform the conversion, the following formula can be used:

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 = 𝐴𝐷𝐶 𝑉𝑎𝑙𝑢𝑒 ∗
𝑉𝑟𝑒𝑓(𝑚𝑉)

2𝐴𝐷𝐶 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

For the case of this example, 12 bit ADC resolution was used making the denominator 4096. If more

precise values are needed (down to fractions) a more detailed formula can be found in the user’s guide

[2].

Example Code
The following example demonstrates how to perform multiple samples using the ADC12 on pins 1.3 and

1.4 of the MSP-EXP430FR5969 development board. Results will be stored in the ADC12MEM0 and

ADC12MEM1 registers, but can easily be viewed in debug by right clicking the global ADC values and

choosing “Add Watch Expression” while running the software in debug mode.

#include <msp430.h>

unsigned int ADC_value=0, ADC_value2=0;

int main(void)
{

7

 // Disable Watchdog
 WDTCTL = WDTPW | WDTHOLD;
 // Enable changes to port registers
 PM5CTL0 &= ~LOCKLPM5;

 // Temperature Input Setup
 P1SEL1 |= BIT3; // Configure P1.3 for ADC
 P1SEL0 |= BIT3;
 // Light Sensor Input Setup
 P1SEL1 |= BIT4; // Configure P1.4 for ADC
 P1SEL0 |= BIT4;

 // Configure ADC12
 // Turn on ADC and enable multiple conversions
 ADC12CTL0 = ADC12SHT0_2 | ADC12ON | ADC12MSC;
 // Sampling timer, single sequence
 ADC12CTL1 |= ADC12SHP | ADC12CONSEQ_1;
 // 12-bit conversion
 ADC12CTL2 |= ADC12RES_2;
 // Enable ADC interrupt on MEM1
 ADC12IER0 |= ADC12IE1;
 // A3 select, Vref=1.2V
 ADC12MCTL0 |= ADC12INCH_3 | ADC12VRSEL_1;
 // A4 select, Vref=1.2V, End of Sequence
 ADC12MCTL1 |= ADC12INCH_4 | ADC12VRSEL_1 | ADC12EOS;

 while (1){
 ADC12CTL0 |= ADC12ENC | ADC12SC; // Sampling and conversion start
 __bis_SR_register(LPM0_bits + GIE); // LPM0, ADC12_ISR will force exit
 __no_operation(); // For debug only
 }
}

// ADC Vector function adapted from http://www.ti.com/lit/zip/slac536
// using MSP430FR59xx_adc12_01.c
// Written by: T. Witt / P. Thanigai, Texas Instruments Inc., November 2013
#if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)
#pragma vector = ADC12_VECTOR
__interrupt void ADC12_ISR(void)
#elif defined(__GNUC__)
void __attribute__ ((interrupt(ADC12_VECTOR))) ADC12_ISR (void)
#else
#error Compiler not supported!
#endif
{
 switch (__even_in_range(ADC12IV, ADC12IV_ADC12RDYIFG))
 {
 case ADC12IV_ADC12IFG1: // ADC12MEM1 Interrupt
 ADC_value = ADC12MEM0; // Save MEM0
 ADC_value2 = ADC12MEM1; // Save MEM1
 __bic_SR_register_on_exit(LPM0_bits | GIE); // Exit CPU, clear interrupts
 break;
 default: break;
 }
}

8

References

[1] Texas Instruments Incorporated, "MSP-EXP430FR5969 LaunchPad™ Development Kit User's Guide,"

June 2014. [Online]. Available: http://www.ti.com/lit/ug/slau535a/slau535a.pdf. [Accessed 12 3

2015].

[2] Texas Instruments Incorporated, "MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and

MSP430FR69xx Family User's Guide," January 2015. [Online]. Available:

http://www.ti.com/lit/ug/slau367f/slau367f.pdf. [Accessed 12 3 2015].

