RFID Reading App-note

This tutorial explains how to take the ID-20LA made by ID-Innovations and
read the tag numbers through RS-232-UART, routed through GPIO, to the monitor.
Note: This tutorial is not 100% complete, as the tag numbers being read in currently
are not consistent, although this will be worked out shortly.

Brief Outline:

[0] Hook up all pins from GPIO to reader
[1] Set up Q-sys components

[2] Modify Generated VHDL top-level code
[3] Write C-code for testing

[4] Run/Test with RFID tag

Details:

[0] Hook up all pins from GPIO to reader

M=
m ] 10m
m 2 Onm
=3 8=
m 4 7 =
m 5 6 m

Bottom View

.GND

. RES (Connect to pin 11[VCC])

. No Connection

. No Connection

. No Connection

. Tag in Range (No Connection needed)

. Format Select (Connect to pin 1[{GND] to select ASCII format.)
. Data 1 (Connect to GPIO pin [IO_B33]. Physically, pin 38.)

. No Connection

10. No Connection
11.3.3V VCC

O 0 J O LUt & W =

—> Using the ribbon cable and a header, connect all pins as described above.



[1] Set up Q-sys components

- You will need to set up the Altera DE2 board with the components you will be
using. We have chosen to use the Nios Il /e (efficient) processor, although you may
choose any one you would like. This can be found in the Embedded Processor
library.

- You will also need many of the same components used in the Lab1/2 in the
beginning of this course.

— Add the RS-232 UART component, found in: University Program ->
Communications library. Make sure you change the Baud Rate to 9600, as this is
the same rate as the RFID reader we are using here.

- Once these have been added, continue as usual by clicking the Generate button
in the generate tab.

[2] Modify Generated VHDL top-level code

- Move over to the HDL tab, and copy the port lines for the RS-232 receiver over to
the Quartus VHDL top-level, which looks similar to this:

rs232_0_external_interface_.RXD : in std_logic :=X;

This needs to be added to the niosii_system component port, as well as the port map
in the architecture.

—> Once these lines have been added you will need to add a GPIO entity. You may
choose to use GPIO_0 or GPIO_1; it doesn’t matter, as long as you're consistent. The
entity will be added exactly like this:

GPIO_1 : inout std_logic_vector(35 downto 0);

- You then need to re route the UART to utilize the GPIO rather than the RS-232
since we are using a component that requires 2.8-5V inputs, whereas the RS-232
DB-9 cables can range in voltage from 3-15V. The GPIO output is 3.3V, which is
within spec for the reader. To set up the GPIO to be the receiver of the UART, change
the signal in the port map to look this this. This uses pin 33 in the GPIO map
(physically pin 38).

rs232_0_external_interface. RXD => GPIO_1(33);
- Then you will compile the code and program the board.
[3] Write C-code for testing
—> Create a new “NIOII Application and BSP from Template”. Then select the SOPC

file generated from the Quartus top-level code. Name it, and choose the
“Hello MicroC/0OS-II" Template.



—> The following C-code was used to receive data from the reader:

#include <stdio.h>
#include "includes.h"
#include "sys/alt irqg.h"
#include "alt types.h"
#include "altera_up_avalon rs232.h"
#include "altera_up_avalon_rs232 regs.h"

/* Definition of Task Stacks */

#define

TASK_STACKSIZE

2048

OS_STK taskl stk[TASK_STACKSIZE];
OS_STK task2 stk[TASK_STACKSIZE];

/* Definition of Task Priorities */

#define TASK1 PRIORITY
#define TASK2 PRIORITY

#define Q SIZE 30

1
2

#define WRITE FIFO EMPTY 0x80
#define READ FIFO_EMPTY 0x0

OS_EVENT* queue_handler;
void* queue[Q SIZE];

void taskl(void* pdata) {

alt_ulé read FIFO_used;
alt_u8 data_r8;
int enter = 0;
unsigned p_error;

alt_up rs232 dev* rs232_dev;

rs232 dev = alt up rs232 open dev("/dev/rs232 0");
if (rs232_dev == NULL)

printf("erro

else

printf("no e

r\n");

rror\n");

alt _up rs232_enable read_interrupt(rs232_dev);

while (1) {

read_FIFO_us

ed =

alt_up rs232_get used_space_in read FIFO(rs232_dev);

&p_error);

if (read_FIF

int i;
for (i

}
printf

O_used > READ_FIFO_EMPTY) {

= 0; i1 < read_FIFO used; i++) {
alt up rs232 read_data(rs232_dev, &data_r8,

printf("%x", data r8);
int i = OSQPost(queue_handler, data r8);
if (1 < 0) {

printf("Error posting");

}
("\n");



}

void task2(void* pdata) {
while (1) {
int err;
char a = 0OSQPend(queue_handler, 0, &err);
printf("%x\n", a);
}
}

/* The main function creates two task and starts multi-tasking */
int main(void) {

queue_handler = OSQCreate(queue, Q SIZE);

OSTaskCreateExt(taskl, NULL, (void *) &taskl_stk[TASK_STACKSIZE
- 1]!
TASK1 PRIORITY, TASK1l PRIORITY, taskl_stk,
TASK_STACKSIZE, NULL, 0);

OSTaskCreateExt(task2, NULL, (void *) &task2_stk[TASK_STACKSIZE
- 1]!
TASK2_PRIORITY, TASK2_ PRIORITY, task2_stk,
TASK_STACKSIZE, NULL, 0);
OSStart();
return 0;

[4] Run/Test with RFID tag

- To ensure no issues, Generate BSP before you build and compile the code.

—> After it has been built and compiled, simply press the Run button in eclipse and
place a tag within range of the reader, and you can see the ASCII values received

from the reader, output to the console.

Repeat Note: This tutorial is not 100% complete, as the tag numbers being read in
currently are not consistent, although this will be worked out shortly.

[Appendix]

The data output by the reader is a total of 16 bytes with a Start Transmit byte of
0x02, 10 ASCII bytes for data and 2 ASCII bytes for checksum, 2 bytes we don’t need
to worry about, and an End Transmit byte of 0x03.



The tag ID’s look similar to this: 0C000621A58E, where the last byte (8E) is the
checksum.

0C =00001100
00 =00000000
06 =00000110
21 =00100001
A5 =10100101

CHECKSUM = 10001110 (8E) — Therefore the data was received without
corruption.

—> This is a link to the ID low voltage reader series:
http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Sensors/ID/ID-2LA, ID-12LA, ID-
20LA(2013-4-10).pdf




