
i | P a g e

Voice Controlled Helicopter
Summary: The goal of this project is to design a voice
recognition system that is capable of controlling a
radio-controlled helicopter.

Preferred Lab Days: Wednesdays

Authors: Jonathan Lam (jwlam@ualberta.ca), Mian Zhu
(mian1@ualberta.ca)

ii | P a g e

Abstract

The purpose of this project is to design an interface between the Altera DE2 and a radio-controlled
helicopter such that the helicopter itself could be controlled solely through voice commands. In other
words, if the words “Up” and “Down” are spoken then the helicopter itself will move up and down
respectively. Our system is comprised of five major components, which include a microphone, an Altera
DE2 board, an IO Circuit containing a digital-to-analog (DAC) converter and an operational amplifier (Op-
Amp), an infrared controller and a mini helicopter. Users will speak one of the above 2 words into a
microphone, which is connected to the MIC input jack on the Altera DE2 board. Depending on the word
that is spoken, a corresponding digital signal will be generated by the Altera DE2 and sent to the DAC in
our IO circuit. The DAC will then translate this digital signal into a corresponding voltage, which is then
fed-in to an Op-Amp to control the base voltage of the npn transistor. This, in turn, will drive the npn
transistor to either an on or off state depending on the voltage and, therefore, will allow us to control
the various speeds of the helicopter.

Until now, we have managed to accomplish many of the goals that were planned earlier. These include:
building an interface between the Altera DE2 and the radio-controlled helicopter via an IO Circuit,
having the Altera DE2 recognize 4 different voice commands (Up, Down, Land and Start) and being
capable of controlling the helicopter via the usage of these commands, as well as, the buttons and
switches on the Altera DE2.

iii | P a g e

Table of Contents

ABSTRACT ... ii

1. INTRODUCTION ... 1

2. BODY ... 1-16

2.1 FUNCTIONAL REQUIREMENTS ..1-2

2.2 DESIGN/DESCRIPTION OF OPERATION ...2-4

2.2.1 VOICE RECOGNITION ALGORITHM ... 4

2.3 HARDWARE REQUIREMENTS ..4-6

2.4 PARTS LIST ... 7

2.5 AVAILABLE SOURCES .. 8

2.6 DATASHEET .. 9-11

2.7 BACKGROUND READING ... 11

2.8 SOFTWARE DESIGN .. 12-14

2.9 TEST PLAN ... 14-15

2.10 RESULTS OF EXPERIMENTS AND CHARACTERIZATION...................................... 16-17

2.11 INTEGRATED CIRCUIT DESIGN .. 17

3. REFERENCES ... 18

4. APPENDIX ... 19-44

1 | P a g e

1. Introduction
Until this day, voice recognition remains a crucial technology in our society and as time progresses

we observe more and more devices holding the capability of being controlled via voice. Therefore, we
believe that designing a voice-controlled helicopter would be quite interesting and unique.

2. Body

 2.1 Functional Requirements
Our system contains many functional requirements (i.e. items that need to be operational

upon its completion). Some of its many requirements include the ability of the Altera DE2 to
recognize voice commands coming from the microphone and output digital signals to the digital-
to-analog converter (DAC) only when the spoken commands are correct and have the DAC
convert these digital signals to analog signals, which the helicopter’s infrared controller
recognizes. Overall, we have managed to accomplish all of these functional requirements to a
great extent. At present, our system is capable of recognizing 4 different voice commands and
digital signals are only inputted to the DAC if the commands are valid. Perhaps if the commands
are invalid, then our system would simply filter them out and no signals will be sent to the
converter. Moreover, the accuracy of our system in distinguishing between valid and invalid
commands is fairly impressive. When testing the performance of our system in the laboratory,
our system had an overall accuracy of 90-100% when distinguishing between the valid
commands “up” and “down” and the invalid commands “left” and “right.” Nonetheless, before
migrating to our new algorithm, which involves measuring the length and the maximum positive
and negative amplitudes of the commands in determining the validity of the commands, we
have made attempts to use more advance algorithms such as the Fast Fourier Transform and
Mel Scale to assist us in distinguishing the different voice commands. We were able to execute
and run the algorithms without issues and obtain results from them, however, the results
weren't as we expected. The output for each of the valid commands from FFT and Mel Scale
were too similar and, hence, we were unable to use these algorithms in our design to distinguish
the commands and had to adopt a new algorithm, which we are currently using in our system.

Components Functional Requirement(s)
Microphone Receives audio signals and feeds it to the Altera DE2 board for analysis.
Microprocessor Analyses the voice commands coming from the microphone and converts

them into digital form. If the commands are valid, then digital signals will
be outputted to the DAC in our IO Circuit, otherwise, the commands will
be filtered out by the system.

IO Circuit The DAC converts digital signals outputted by the Altera DE2 and maps
each of them to a corresponding output voltage (Refer to Table 2 for
mapping of digital inputs to output voltages). This voltage is then fed-in to
an Op-Amp, which amplifies the output drive current of the DAC to drive
the npn transistor and infrared controller.

Helicopter Receives infrared signals from the infrared controller and moves
accordingly.

 Table 1 - Functional Requirements

2 | P a g e

Digital Input to DAC (Hex) Output Voltage from DAC (V)
0x0013FD2 0.13

0x0013BD2 1.67
0x0013AD2 1.75

0x0013A92 1.82

0x0013A82 1.89
0x0013A02 2.00

0x0013802 2.19

0x0013002 2.59
0x0011002 3.15

 Table 2 - Digital Input and Voltage Output of DAC (Voltage values are measured using a Beckman voltmeter)

 2.2 Design/Description of Operation

Figure 1 - Block Diagram of Hardware Interface [9]

3 | P a g e

 Figure 2 - A Block Diagram of Operation
[1]

 Figure 3 - Block Diagram for Audio Core on DE2
[2]

4 | P a g e

Figure 4 - System Architecture Block Diagram

 2.2.1. Voice Recognition Algorithm:

1. We use a noise threshold to check each audio sample. Samples that are above the

threshold are considered as valid samples, otherwise, they are considered as blanks.

2. If a valid sample is detected, then we decide it to be the beginning to a word. Each

valid sample after that is then considered to be part of that word and, therefore, we

increase the length of that word as more valid samples are processed.

3. The end of a word is decided by detection of blanks. If the number of continuous

blanks is over a threshold, then we decide that the current word has ended.

4. After a word has ended, it would be matched against the voice commands’

acceptable range. Beside the word’s length, its maximum positive value and

maximum negative value are also used for command matching. If two out of the

three criteria match a command, then we have a match and a digital signal is sent to

the DAC in the IO Circuit.

5 | P a g e

 2.3 Hardware Requirements

Component Requirements

Microphone Standard Microphone:
Frequency Response: 100 Hz - 16 kHz
Input Sensitivity: 67dbV/ubar, 47dBv/Pa +/- 4db
Connectors: TRS (tip, ring sleeve)

Digital-to-Analog
Converter

Name: DAC0832 Texas Instrument
of Bits: 8
Supply Voltage (Vcc): 8.3V
Output Voltage (Iout2): 0-3.15V

NpN Transistor

Name: 2N3691
Collector-emitter voltage: 0-5V
Emitter-base voltage: 0-1V

Op-Amp Name: LM324N
Supply Voltage (Vcc): 8.3V
Input Voltage: 0-3.15V
Output Voltage: 3.3-5.2V

Helicopter Name: 6026-1
Type: 3.5 CH Alloy RC Helicopter with GYRO
Size: 23cm (L) x 5.1cm (W) x 12.3cm (H)
Wing(L/W): 21.5cm/ 2.2cm
G/N Weight:19/15
Battery: 3.7V 280mAh
Flying Time: 7-8 minutes
Control Distance: 6m
Control by: infrared

Table 3 - External Hardware Requirements

6 | P a g e

 Figure 5 - Screenshot of SOPC Design
[9]

Components Description/Functionality/Requirements
LEDs

(Red_LEDs, Green_LEDs)
Displays the amplitude of the command.

Seven Segment Display
(HEX3_HEX0,
HEX7_HEX4)

Displays the current status of the system. Refer to Table 23 for a
summary of the messages displayed.

LCD
(Char_LCD_16x2)

Displays details regarding to the status of the system, as well as,
other user interactive messages. Refer to Table 23 for a summary
of the messages displayed.

Buttons
(Pushbuttons)

KEY3 is used for emergency safe landing. KEY2 is used for
decreasing helicopter speed. KEY1 is used for increasing
helicopter speed. KEY0 is used for resetting the system.

Switches
(Slider_Switches)

SW0 is used for turning the system ON/OFF. SW1 is used for
switching between Up/Down mode control and Idle/Land mode
control.

SDRAM Total of 8MByts used, with data width of 16 bits. Used as CPU
memory.

Audio Codec
 (Audio)

Decodes the voice input signal from mic-in and outputs an audio
data signal that is then fed back into the codec through line-out.

Expansion Header JP0
(pio_0)

Output digital signals (0V, 3.3V) to DAC in IO circuit.

JTAG Port
(JTAG_UART)

"Implements a communication link between the DE2 board and
its host computer" [9]

CPU "Nios II/s", RISC, 32-bits with Integrated Floating Point Multiplier,
Instruction Cache - 4 Kb, Data Cache - 2 Kb, JTAG Debug Module
- Level 2, SDRAM - 8 Mb

Tasks/Processes:
 - Calculations:48K Samples/Sec

Table 4 - Summary of Hardware Interface

7 | P a g e

 2.4 Parts List

Part Qty. Supplier Cost Specs/ Datasheet Status

Altera DE2
Board

1 ECE
Department

$279 https://eclass.srv.ual
berta.ca/mod/resour
ce/view.php?id=826
94

Received

Helicopter /
Infrared
Controller

1 Home $25 Name: 6026-1
Type: 3.5 CH Alloy
RC Helicopter with
GYRO
Size: 23cm (L) x
5.1cm (W) x 12.3cm
(H)
Wing(L/W): 21.5cm/
2.2cm
G/N Weight:19/15
Battery: 3.7V
280mAh
Flying Time: 7-8
minutes
Control Distance:
6m
Control by: infrared

Received

DAC0830,DAC08
32 Texas
Instrument DAC

1 ECE
Department

$7 http://www.ti.com/li
t/ds/symlink/dac083
0.pdf

Received

Op-Amp 1 ECE
Department

$0.48 http://www.datashe
etcatalog.org/datash
eet2/9/0oa8seftq8d
6peigox0lrx6e9wwy.
pdf

Received

2N3691
Transistor

1 Home $0.5 http://alltransistors.c
om/transistor.php?tr
ansistor=3469

Received

1K Resistor 2 ECE
Department

$0.20 Resistance: 1 Kohm Received

5k Variable
Resistor

1 Home $0.25 Resistance: 5 Kohm Received

 Table 5 - Parts List

https://eclass.srv.ualberta.ca/mod/resource/view.php?id=82694
https://eclass.srv.ualberta.ca/mod/resource/view.php?id=82694
https://eclass.srv.ualberta.ca/mod/resource/view.php?id=82694
https://eclass.srv.ualberta.ca/mod/resource/view.php?id=82694
http://www.ti.com/lit/ds/symlink/dac0830.pdf
http://www.ti.com/lit/ds/symlink/dac0830.pdf
http://www.ti.com/lit/ds/symlink/dac0830.pdf
http://www.datasheetcatalog.org/datasheet2/9/0oa8seftq8d6peigox0lrx6e9wwy.pdf
http://www.datasheetcatalog.org/datasheet2/9/0oa8seftq8d6peigox0lrx6e9wwy.pdf
http://www.datasheetcatalog.org/datasheet2/9/0oa8seftq8d6peigox0lrx6e9wwy.pdf
http://www.datasheetcatalog.org/datasheet2/9/0oa8seftq8d6peigox0lrx6e9wwy.pdf
http://www.datasheetcatalog.org/datasheet2/9/0oa8seftq8d6peigox0lrx6e9wwy.pdf
http://alltransistors.com/transistor.php?transistor=3469
http://alltransistors.com/transistor.php?transistor=3469
http://alltransistors.com/transistor.php?transistor=3469

8 | P a g e

2.4 Alternative Resources

Voice Recognition:
http://www.eecg.toronto.edu/~aamodt/ece341/speech-recognition/

The above link brings us to an existing voice recognition algorithm that could be
referenced off of when implementing our system. This particular algorithm uses the FFT
mythology to compare the various voice signals coming from the microphone.

Audio Driver:
http://code.google.com/p/snake-for-altera-vhdl/downloads/detail?name=audio.vhd

The above link brings us to an existing audio driver for the Altera DE2 that we could use
for the implementation of our system. Using this driver, we could read audio signals
from the microphone into the Altera DE2 and sample it at 48kHz with 16 bit samples,
one 8 bit sample for the left channel and one 8 bit sample for the right channel.

Audio Cores:
The Altera Audio Cores will provide us with access to the bits that are stored within the
audio registers (i.e. Control, FIFO Space, Left Data and Right Data Registers). By
accessing these bits, we are then capable of using our voice recognition algorithm to
determine whether or not the voice commands are valid.

However, in order to use the Audio Core we need two other Altera University Program
IP Cores, the Development Board External Interface and the Audio/Video Configuration
Core. The Development Board External Interface will help us create the necessary clock
signals needed for the Audio Core and the Audio/Video Configuration Core will help us
set the necessary registers for the Audio Core in the audio chip. Moreover, it is
recommended by Altera that we use either the standard or fast versions of Altera’s
Niosll processor. This will allow “the program running on the processor to keep up with
the generation of audio data. [2]

http://www.eecg.toronto.edu/~aamodt/ece341/speech-recognition/
http://code.google.com/p/snake-for-altera-vhdl/downloads/detail?name=audio.vhd

9 | P a g e

2.5 Datasheet

 2.5.1. User IO:

FPGA <-> WM8731 Signal Name

FPGA <-> WM8731 I2C_SDAT

FPGA -> WM8731 I2C_SCLK

FPGA -> WM8731 AUD_BCLK

FPGA <- WM8731 AUD_ADCDAT

FPGA -> WM8731 AUD_DACDAT

FPGA -> WM8731 AUD_DACLRCK, AUD_ADCLRCK

FPGA -> WM8731 ADCDATA
 Table 6 - User IO between FPGA and WM8731

Mic -> WM8731 Signal Name

Mic -> WM8731 MICIN
 Table 7 - User IO between MIC and Audio Codec

WM8731 -> GPIO 0 Signal Name

WM8731 -> GPIO 0 IO A4-A20
 Table 8 - User IO between Audio Codec and GPIO

GPIO 0 -> DAC Signal Name

GPIO 0 -> DAC IO A4-A20
 Table 9 - User IO between GPIO_0 and DAC

GPIO_0 -> DAC Pin Mapping

GPIO_0 Pin # DAC Pin #

5 1

6 19

7 2

8 18

9 4

10 17

13 6

14 16

15 5

16 15

17 7

18 14

19 9

20 13

21 8
Table 10 - Mapping of GPIO_0 and DAC Pins

10 | P a g e

Slide Switches -> CPU Signal Name

Slide Switches -> CPU Switch
Table 11 - User IO between Slide Switch and CPU

Pushbuttons -> CPU Signal Name

Pushbuttons -> CPU KEY_ptr
Table 12 - User IO between Pushbuttons and CPU

CPU -> LCD Signal Name

CPU -> LCD LCD_display_ptr
Table 13 - User IO between CPU and LCD

CPU -> LEDs Signal Name

GPIO 0 -> LEDs green_LED_ptr, red_LED_ptr
Table 14 - User IO between CPU and LEDs

CPU -> Seven Segments Signal Name

GPIO 0 -> Seven Segments SvnSegU, SvnSegL
Table 15 - User IO between CPU and Seven Segments

 2.5.2. Measured Voltages:

DAC -> Op-Amp Special Levels

DAC -> Op-Amp Logical (0-3.15V)
 Table 16 – User IO between DAC and Op-Amp

Op-Amp -> 2N3692 Transistor Special Levels

Op-Amp -> 2N3696 Logical (3.36-5.17V)
 Table 17 - User IO between Op-Amp and 2N3696

2N3692 Helicopter

When VCE = 5.0V Motor On

When VCE = 3.5V Full Speed

When VCE = 0V Motor Off
 Table 18 - Relationship between 2N362 Transistor and Helicopter

DAC0830 Voltage (V)

Supply Voltage (Vcc) 8.19
Vref 4.05

 Table 19 - Measured Voltages of DAC

Op-Amp Voltage (V)

Supply Voltage (Vcc) 8.19
 Table 20 - Measured Supplied Voltage to Op-Amp

IO Circuit Power Source Voltage (V)

Supply Voltage (6 x 1.2V AA Battery
Cell)

8.19

 Table 21 - Measured Supplied Voltage to IO Circuit

 Note: Please refer to Figures 14 and 15 in the Appendix for the location of each signal.

11 | P a g e

Comments:
The voltage values in Tables 17-22 were all measured using a Beckman 3020 voltmeter. The fact

that we had to modify an existing infrared controller to suite our needs in this project, made it

extremely difficult to calculate these values by hand. Therefore, we had to rely on the usage of a

voltmeter to ensure that all components within our IO circuit is inputting and outputting the

correct voltages, otherwise, our components may not operate as intended. Moreover, we made

sure that when obtaining these values, we use the same voltmeter. This ensures that our results

are almost always the same with very little discrepancies between the first and subsequent

measurements.

2.6 Background Reading
Article 1 (Scholarly Journal):

In An FPGA-based embedded wideband audio codec system, the authors highlight the usage of a

finite impulse response (FIR) filter in their Wideband audio codec (WAC) hardware design. This

article provided us with insight to the fact that the inclusion of such a filter in our system could

help improve the voice command qualities by reducing the amount of noise that gets fed into

our system. This, in effect, would improve the overall accuracy of our system, especially, when

determining the validity of a particular voice command. [6]

 Article 2 (Non-Scholarly Journal):

In SOPC-based Voiceprint Identification System, the authors described the inclusion of an

AUDIO_ADC_FIFO_0 module “to convert serial data to parallel audio samples (16 bits).”[8] We

believe that such a module is also necessary in our system. However, instead of designing our

own module, perhaps we could use Altera’s Audio Core to simulate the same functionalities as

their AUDIO_ADC_FIFO_0 module. We believe that using Altera’s Audio Core is much safer than

designing our own module, since we know that such a Core has been tested thoroughly by

Altera and has been proven to work on the DE2 by various DE2 users.

12 | P a g e

 2.7 Software Design

Figure 6 – Software Design Block Diagram

Our software project is designed and implemented through the usage of the “NIOS II Software

Build Tools for Eclipse” version 11.1 software program and is divided into four modules: main,

recognize, LEDs, LCD.

The main module hosts an infinite while loop, which fetches voice samples from the audio

registers in the audio core and processes them. During each iteration of the loop, our algorithm

checks for changes in the position of slide switches since the last iteration and updates the

system accordingly. The SW0 switch turns the system on and off and the SW1 switch switches

between the Up/Down control mode and the Idle/Land control mode. After the check, voice

samples are then fetched from the audio codec and stored into left_buffer and right_buffer,

both of type Integer.

If the system is on, then we move onto processing the sample. Samples that are less than the

NOISE_THRESHOLD (Date type: constant variable) are recorded as blanks (Data type: Integer),

otherwise, they are considered as valid samples. If we are still trying to get a new word and the

current sample is valid, then we decide that the beginning of a new word is detected. If the

beginning of a word is already detected and the current sample is valid, then we increment the

current word’s length and reset the blank length. If the current sample is a blank, then we

increment the current blank length. If consecutive blanks with length longer than

BLANK_LENGTH_THRESHOLD (Date type: constant variable) are detected, then we decide the

current word has ended. Upon the completion of the word, its length, maximum positive value

and maximum negative value is sent to the recognize module.

13 | P a g e

The Recognize module will attempt to match the word length, maximum positive and negative

values with the values in our acceptable range. If two out of the three values fall within our

acceptable range, then we decide we have a match. The ID of the matching command is

returned to the main module and used to determine the instruction (digital signal) to send to

the helicopter.

After the sample has been processed, it is sent to the LEDs module. The LEDs module takes the

sample and evaluates its value to determine the LEDs to light up. The red LEDs represent the left

channel and the green LEDs represent the right channel. The sample is also fed back into the

audio codec and outputted through the LINE-OUT.

Lastly the values of the pushbuttons are checked. KEY3 will initiate a landing command, while

KEY2 and KEY1 decrement the current speed of the helicopter, and KEY0 will reset the DE2

board.

The LCD module and seven segment displays are invoked whenever there’s an update in the

system status. That information is displayed on to the LCD and the seven segment display.

(Refer to Tables 22 and 23)

Voice Commands Message displayed on LCD

Up “Up”

Down “Down”
Start “Idle”

Land “Land”

Switches

SW0 toggled to Low and SW1 toggled to Low “System Off”
SW0 toggled to High and SW1 toggled to Low “Control Mode” or “UP/DOWN CONTROL”

SW0 toggled to High and SW1 toggled to high “IDLE/LAND CONTROL”
Table 22 - User Interactive Messages Displayed on LCD

Voice Commands Seven Segment Display

Up “Up”

Down “Down”
Start “Idle”

Land “Land”

Switches
SW0 toggled to Low and SW1 toggled to Low “OFF”

SW0 toggled to High and SW1 toggled to Low “ON”

SW0 toggled to High and SW1 toggled to high “ON”
Table 23 - User Interactive Messages displayed on Seven Segment Display

Libraries Used: Description:

time.h Definition of functions to get date and time information

stdlib.h Standard General Utilities Library
stdio.h Standard Input/Output Library

math.h Standard Math Library for mathematical operations

System.h System Routines (Used for accessing timers, queues, etc.)

14 | P a g e

Project.h Header file containing constants that are needed for
recognition algorithm.

LCD.h Header file containing constants to display to LCD.

LEDs.h Header file containing LCD function declarations.
recognize.h Header file containing constants that are needed for

recognition algorithm.
 Table 24 - Summary of C Libraries Used for Recognition Algorithm

[10]

 2.8 Test Plan

 Hardware:

Tests Methodology
Test GPIO Measure the voltages being outputted by the GPIO

pins. The voltages should appear as either 0V (digital
low) or 3.3V (digital high) when the pins are being
written to.

Test DAC Measure the waveform using an oscilloscope of the
DAC's input and output signals and see if they are the
same.

Test Op-Amp Compare the Op-Amp's input and output voltages to
determine if the output voltages are reasonable.

Test IO Circuitry Measure the voltage of every wire to ensure that
every component in the circuitry is connected
correctly.

Test IO Circuitry when interfaced
with the Altera DE2 board

Feed in random digital signals to the DAC and see if
the DAC outputs reasonable voltages.

Test responsiveness of helicopter Feed in digital signals to DAC and see if the helicopter
responses or not.

Test functionality of microphone
when connected to the Altera DE2
board

Feed in audio signals to microphone and check to see
if bits are being stored correctly in the audio registers
of the Audio Core.

Test responsiveness of helicopter by
speaking into microphone

Feed into the microphone "Up", "Down", "Land" and
"Start" and see if the helicopter responds or not.

Test responsiveness of onboard
controls

Pressing Key1 should decrement the speed of the
helicopter. Pressing Key2 should increment the speed
of the helicopter. Pressing Key3 should trigger a
continual decent of the helicopter. Pressing Key0
should reset the system. Toggling SW0 and SW1
should enable us to switch between "Up/Down" mode
and "Start/Land" mode. In order to test the
functionality of each of these buttons/switches, we
would need to trigger each one individually and
observe for responsiveness.

Test the overall functionality of the
system (Final Testing)

Feed in both valid and invalid commands into the
microphone and see if the system will filter out invalid
commands and process only the valid commands.

 Table 25 - Hardware Test Plan

15 | P a g e

Software:

Tests Methodology
Test audio driver for
correctness

Speak into the microphone and see if we could record/playback the
spoken audio signals.

Test the extraction
of data from audio
registers

Copy the individual audio samples that are stored in the audio
registers on the audio codec into a variable and display their values to
console and see if the stored values are reasonable.

Test voice
recognition
algorithm for a single
command

Speak into the microphone "Up" and see whether or not our system
responds. (i.e. LEDs flash)

Test voice
recognition
algorithm for two
different commands

Speak into the microphone "Up" and "Down" and see whether or not
our system could distinguish between the two commands. If
"Up"/"Down" is spoken and is recognized by our system, then we
should see the word "Up"/"Down" displayed on the LCD and the
Seven Segment Display.

Test voice
recognition
algorithm for three
different commands

Speak into the microphone "Up", "Down" and "Start" and see whether
or not our system could distinguish between the three different
commands. If "Up"/"Down"/"Start" is spoken and is recognized by our
system, then we should see the word "Up"/"Down"/"Start" displayed
on the LCD and the Seven Segment Display.

Test voice
recognition
algorithm for four
different commands

Speak into the microphone "Up", "Down", "Start" and "Land" and see
whether or not our system could distinguish between the four
different commands. If "Up"/"Down"/"Start"/"Land" is spoken and is
recognized by our system, then we should see the word
"Up"/"Down"/"Start"/"Land" displayed on the LCD and the Seven
Segment Display.

Test voice
recognition
algorithm to see if it
could distinguish
between valid and
invalid commands

Speak into the microphone "Up", "Down", "Left" and "Right" and see
whether or not our system could filter out "Left" and "Right" and
respond to only "Up" and "Down".

Table 26 - Software Test Plan

16 | P a g e

 2.9 Results of experiments and characterization
After many trail runs, we obtained the data summarized in Table 24 regarding the

characteristics of each of the four voice commands when spoken into the microphone. These
values are extremely useful to us as they provide us with insight to the upper and lower bounds
of the four commands. Knowing these boundaries allow us to accurately configure our system
such that it could only recognize “Up”, “Down”, “Start” and “Land” and no other commands.

Command Length

(Upper/Lower Bound)
Negative Amplitude
(Upper/Lower Bound)

Positive Amplitude
(Upper/Lower Bound)

Up 3000/1000 -1000000000/-2147483648 2147483392/1000000000

Down 99999/4000 -100000000/ -500000000 700000000/300000000

Land 99999/4000 -100000000/ -500000000 700000000/300000000
Start 3000/1000 -1000000000/-2147483648 2147483392/1000000000

 Table 27 - Summary of Voice Command Characteristics

 From Table 27, it is evident that the characteristics for "Up"/"Down" are identical to those of

"Start"/"Land". Therefore, in order to separate the two sets of commands and have our system

be capable of distinguishing between the two sets, we had to incorporate an additional switch

into our system to assist us in selecting the correct set of commands to activate at any given

time. Perhaps if one of the two switches is set to "high", then our "Up" and "Down" command

set would be activated. Otherwise, if both of the switches are set to "high", then our "Start" and

"Land" command set would be activated. Table 26, provides a summary of the operation of the

two switches.

State of SW1 State of SW0 Result
Low Low System is turned off

Low High Up/Down command set
activated

High Low System is turned off

High High Start/Land command set
activated

 Table 28 - Operation of SW0 and SW1

When testing the performance/accuracy of our system in the laboratory we obtained the results
highlighted in Tables 29 and 30.

Valid Commands # Trials # Success Match Accuracy

Up 10 9 90%

Down 10 10 100%
Start 10 10 100%

Land 10 10 100%
Table 29 - Accuracy of System When Handling Valid Commands

Invalid Commands # Trials # False Match Error Rate

Left 10 0 0%

Right 10 0 0%
Table 30 - Accuracy of System When Handling Invalid Commands

17 | P a g e

From Tables 27 and 28, it is evident that our system is extremely accurate in distinguishing

between valid and invalid commands. As depicted in the tables, our system had an overall

accuracy of 90-100% when handling valid commands and 100% accuracy when handling invalid

commands. We believe that such high percentage values are quite convincing that our system is

functioning as designed and not behaving erratically.

2.10 Integrated Circuit Design
We build our project on top of the Altera DE2 Media Computer, so all the VHDL code are either

interfaces that are already provided to us through the SOPC builder or exist as proprietary IP

cores that can be imported into our project. So we did not need to write any VHDL code. So for IC

design, I pick the sysid.vhd file generated by the SOPC build to work on.

The sysid.vhd has relatively simple logic. However, it requires Altera libraries and a function from

those libraries to work, so I modified the file, removed the Altera libraries and declared the

function inside the file for it to work with the design process.

The results, however, is not quite satisfactory at all. Even though sysid passed the simulation, its

timing report (Attached in appendix with area and power report) from synthesis (Fig. 16)

indicates that its path is unconstrained and when in place & route (Fig. 17), it is shown that sysid

contains no path.

18 | P a g e

3. References

[1] M.T. Bala Murugan and M. Balaji, "SOPC-Based Speech-to-Text Conversion,"
 National Institute of Technology, Trichy. 2006. [Online]. Available:
 http://www.altera.com/literature/dc/2006/i2.pdf. [Accessed Feb. 2, 2012]

[2] “Audio Core for Altera DE2/DE1 Boards” Altera Corporation. 2006. [Online].
Available: ftp://ftp.altera.com/up/pub/University_Program_IP_Cores/Audio.pdf.

[Accessed Mar. 7, 2012]

[3] "A Simple Speech Recognition Algorithm for ECE341...," The University of British

 Columbia. 2003. [Online]. Available:
 http://www.eecg.toronto.edu/~aamodt/ece341/speech-recognition/. [Accessed
 Feb. 4, 2012].

[4] “2N3691 Transistor Datasheet. Parameters and Characteristics.” ALL Transistors

Datasheet. [Online]. Available:
http://alltransistors.com/transistor.php?transistor=3469. [Accessed Mar.7, 2012].

[5] “FFT Megacore Function User Guide.” Altera Corporation. [Online]. Available:

http://www.altera.com/literature/ug/ug_fft.pdf. [Accessed Mar 7, 2012].

[6] Chang Choo, Bambhania, B, Woon Seob So, In Ki Hwang, Do Young Kim. “An

FPGA-based embedded wideband audio codec system,” in Field Programmable

Logic and Applications, 2009,pp. 587-590.

[7] “DE2 Schematics.” Altera Corporation. 2006. [Online]. Available:

https://eclass.srv.ualberta.ca/mod/resource/view.php?id=88127. [Accessed Mar 7,

2012].

[8] F. Huan, L. Xin, “SOPC-based Voiceprint Identification System.” Internet:

http://www.altera.com/literature/dc/2007/in_2007_voice_rec.pdf. [Accessed Mar

11, 2012].

[9] “Media Computer System for the Altera DE2 Board.” Altera Corporation. [Online].

Available:ftp://ftp.altera.com/up/pub/Altera_Material/9.1/Computer_Systems/DE2/

DE2_Media_Computer.pdf. [Accessed Apr. 10, 2012].

[10] “cplusplus.com” cplusplus.com. [Online]. Available:

http://www.cplusplus.com/reference/clibrary/. [Accessed Apr. 12, 2012].

file:///O:/Users/Jonathan%20Lam/Dropbox/Winter%202012/CMPE490/Documents/%09http:/www.altera.com/literature/dc/2006/i2.pdf
ftp://ftp.altera.com/up/pub/University_Program_IP_Cores/Audio.pdf
http://www.eecg.toronto.edu/~aamodt/ece341/speech-recognition/
http://alltransistors.com/transistor.php?transistor=3469
http://www.altera.com/literature/ug/ug_fft.pdf
https://eclass.srv.ualberta.ca/mod/resource/view.php?id=88127
http://www.altera.com/literature/dc/2007/in_2007_voice_rec.pdf
ftp://ftp.altera.com/up/pub/Altera_Material/9.1/Computer_Systems/DE2/DE2_Media_Computer.pdf
ftp://ftp.altera.com/up/pub/Altera_Material/9.1/Computer_Systems/DE2/DE2_Media_Computer.pdf

19 | P a g e

Appendices
Quick Start Manual

1. Have Quartus II 11.1 Web Edition for Windows installed on PC.

2. Double click on the Quartus II executable and open application.

3. Open the project named "DE2_Media_Computer".

Figure 7 - Screenshot of Quartus II Application Window

20 | P a g e

4. Double Click on "Program Device (Open Programmer)" under the task menu and the

programmer window will appear.

 Figure 8 - Screenshot of Programmer Window

5. Have the Altera DE2 connected to PC via an USB cable and powered up. Note: Ensure that the

USB cable is connected to the "Blaster" port on the Altera DE2.

6. In the "Programmer" window, click on "DE2_Media_Computer_time_limited.sof" and click

"start". If the download is successful, then the "Progress" bar should display "100% Successful".

7. Install "Nios II 11.1 Software Tools for Eclipse" for windows and open application.

21 | P a g e

8. In Eclipse, click File -> Import -> Existing Projects into Workspace. Click "Browse" and import the

"UpdatedDemo2" project file. Click "Finish". Right-Click on "UpdatedDemo2" in Project Explorer

and click "Clean Project" -> “Build Project" -> "Run As" -> "Hardware Application".

 Figure 9 - Screenshot of Nios II Application

9. Connect the IO Circuit to the Altera DE2 board via a 40-pin header cable. Note: Ensure that you

connect the header cable to the GPIO_0 expansion header on the Altera DE2 with PIN #1 starting

at the top left corner of the expansion header, otherwise, no signals will be sent to the IO Circuit.

 Figure 10 - Picture of Connection between Altera DE2 and IO Circuit

22 | P a g e

10. Toggle all switches on the Altera DE2 to a "downward" position. This will ensure that the system

is turned OFF.

 Figure 11 - Picture of Onboard Switches

11. Toggle "SW0" (rightmost switch) on Altera DE2 to an "upward" position to turn on system.

12. Toggle "SW1" on Altera DE2 to an "upward" position to use "Land" and "Start" commands.

Otherwise, the only available commands would be "Up" and "Down".

13. Connect the microphone to the MIC-in port on the Altera DE2.

14. Power up the IO Circuit via the onboard power switch and turn on helicopter.

15. If in "Land/Start" mode, speak into the MIC "Land" or "Start" and the helicopter should respond.

(Note: if the helicopter has already landed, then speaking “Land” into the MIC will trigger no

response from the helicopter)

16. If in "Up/Down" mode, speak into the MIC "Up" or "Down" and the helicopter should respond.

23 | P a g e

Future Work

Backup Plan:
1. If all goes wrong in controlling the helicopter due to its irrational behaviours, then our backup plan
would be to use a car in replacement of the helicopter.
2. If voice recognition does not work, then our backup plan would be to use the onboard controls
(buttons, switches) on the Altera DE2 to control the helicopter (car).

Extensions:

1. Add additional voice commands. (Achieved – We added the “Start” and “Land” commands)
2. Allow users to control the helicopter via onboard switches and buttons. (Achieved – We added

buttons that control the speed of the helicopter)
3. Display user interactive messages when the system is turned ON/OFF and when a valid

command is spoken into the MIC. (Achieved – Our current system displays “Up”, “Down”, “Idle”
or “Land” when these words are spoken into the microphone)

4. Inserting a sdcard that contains pre-programmed flight patterns to the Altera DE2 will allow
users to see the helicopter fly different flight patterns. Note: the helicopter will fly these patterns
automatically and with no control by the users. The only form of user interaction with the system,
in this case, would be to use voice commands to trigger the various flight patterns to be
performed by the helicopter. (Not achieved due to insufficient time)

5. Dropping a payload on a pressure scale while the helicopter is in motion. The pressure scale will
output digital signals which will be converted into signals that an attached speaker could
recognize. (Not achieved due to insufficient time)

Overall, we have managed to achieve beyond our pre-set goals and have incorporated 3 additional
features (Extensions 1-3) into our system. These features play a crucial role in enhancing the overall
performance in our system as they not only add safety to our system, but they also intensify user-
system interactions.

 Hardware Block Diagram

Figure 12 - Hardware Block Diagram
[2]

24 | P a g e

IO Circuitry Block Diagram

Figure 13 - Breadboard Block Diagram (Note: VR- 5K Variable Resistor)

GPIO_0 Interface with IO Circuits

 Figure 14 - A Schematic of GPIO 0 on Altera DE2
[7]

 (Note: Pins 5-21 were used in our design)

25 | P a g e

Figure 15 - Schematic of Audio IO on DE2
[7]

26 | P a g e

Integrated Circuit Design

a) Area Report

**

Report : area

Design : sysid_top

Version: Y-2006.06-SP4

Date : Fri Apr 13 14:38:07 2012

**

Library(s) Used:

 GSCLib_2.0 (File:

/EDA/kits/gpdk18/GSCLib_3.0/timing/GSCLib_3.0.db)

 GSCLib_IO (File:

/EDA/kits/gpdk18/GSCLib_IO_1.4/timing/GSCLib_IO.db)

Number of ports: 35

Number of nets: 71

Number of cells: 37

Number of references: 4

Combinational area: 945000.000000

Noncombinational area: 0.000000

Net Interconnect area: undefined (No wire load specified)

Total cell area: 945000.000000

Total area: undefined

b) Power Report
**

Report : power

 -analysis_effort low

Design : sysid_top

Version: Y-2006.06-SP4

Date : Fri Apr 13 14:40:16 2012

**

Library(s) Used:

 GSCLib_2.0 (File:

/EDA/kits/gpdk18/GSCLib_3.0/timing/GSCLib_3.0.db)

 GSCLib_IO (File:

/EDA/kits/gpdk18/GSCLib_IO_1.4/timing/GSCLib_IO.db)

Operating Conditions: typical Library: GSCLib_2.0

Wire Load Model Mode: top

Global Operating Voltage = 3

Power-specific unit information :

 Voltage Units = 1V

 Capacitance Units = 1.000000pf

 Time Units = 1ns

 Dynamic Power Units = 1mW (derived from V,C,T units)

 Leakage Power Units = 1nW

 Cell Internal Power = 48.4833 mW (100%)

 Net Switching Power = 46.5480 uW (0%)

Total Dynamic Power = 48.5299 mW (100%)

Cell Leakage Power = 151.6945 uW

27 | P a g e

c) Timing Report
**

Report : timing

 -path full

 -delay max

 -max_paths 1

Design : sysid_top

Version: Y-2006.06-SP4

Date : Fri Apr 13 14:41:10 2012

**

Operating Conditions: typical Library: GSCLib_2.0

Wire Load Model Mode: top

 Startpoint: padADDR (input port)

 Endpoint: padRDDATA_30_

 (output port)

 Path Group: (none)

 Path Type: max

 Point Incr Path

 input external delay 0.00 0.00 f

 padADDR (in) 0.00 0.00 f

 inpADDR_0/Y (PDUDGZ) 0.06 0.06 f

 U1/Y (CLKBUFX1) 0.18 0.24 f

 coreG/address (sysid) 0.00 0.24 f

 coreG/readdata_30_ (sysid) 0.00 0.24 f

 opRDDATA_30/PAD (PDO12CDG) 0.69 0.93 f

 padRDDATA_30_ (out) 0.00 0.93 f

 data arrival time 0.93

 (Path is unconstrained)

28 | P a g e

Figure 16 - Schematic of IC in Design Vision

Figure 17 - Layout of IC in Encounter

29 | P a g e

Source Code

Figure 18 – Software Design Block Diagram

Source Code File Description Status

Sysid.vhd System ID T

SDRAM.vhd Used for the operation of SDRAM Memory T
pio_0.vhd GPIO header T

nios_system.vhd Used for the operation of JTAG Port T

nios_system_clock_2.vhd System clock T
nios_system_clock_1.vhd System clock T

nios_system_clock_0.vhd System clock T

JTAG_UART.vhd Used for the operation of JTAG Port T
Interval_Timer.vhd Interval Timer T

DE2_Media_Computer.vhd Top Level T

CPU_mult_cell.vhd Used for the operation of CPU T
CPU_jtag_debug_module_wrapper.vhd Used for the operation of CPU T

CPU_jtag_debug_module_tck.vhd Used for the operation of CPU T

CPU_jtag_debug_module_sysclk.vhd Used for the operation of CPU T

CPU_fpoint.vhd Used for the operation of CPU T
CPU.vhd Used for the operation of CPU T

Slider_Switches.v Used for the operation of Switches T

Red_LEDs.v Used for the operation of Red LEDs T
Pushbuttons.v For the operation of Key0-key3 T

HEX7_HEX4.v Used for the operation of Seven Segment T

30 | P a g e

Display

HEX3_HEX0.v Used for the operation of Seven Segment
Display

T

Green_LEDs.v Used for the operation of Green LEDs T
External_Clocks.v Clocks T

Char_LCD_16x2.v For the operation of LCD display T

AV_Config.v For the operation of audio codec T
Audio.v For the operation of audio codec T

altera_up_sync_fifo.v For the operation of audio core T

altera_up_slow_clock_generator.v Used for the operation of audio core T
altera_up_clock_edge.v Used for the operation of audio core T

altera_up_character_lcd_initialization.v Used for the operation of LCD Display T

altera_up_character_lcd_communication.v Used for the operation of audio core T
altera_up_av_config_serial_bus_controller.v Used for the operation of audio core T

altera_up_av_config_auto_init_ob_de2_35.v Used for the operation of audio core T

altera_up_av_config_auto_init_ob_audio.v Used for the operation of audio core T

altera_up_av_config_auto_init_ob_adv7181.v Used for the operation of audio core T
altera_up_av_config_auto_init.v Used for the operation of audio core T

altera_up_audio_out_serializer.v Used for the operation of audio core T

altera_up_audio_in_deserializer.v Used for the operation of audio core T
altera_up_audio_bit_counter.v Used for the operation of audio core T

LCD.c Displays user interactive messages when
turning the system ON/OFF and when a
valid command is detected.

T

LEDs.c Turns on LEDs when a valid command is
detected

T

Main.c Main project file for voice recognition
algorithm

T

Recognize.c Compares the inputted voice command
parameters (positive/negative amplitude,
wordlength) with matching range.

T

LCD.h Contains defined constants for LCD.c T

LEDs.h Contains defined constants for LEDs.c T

Main.h Contains defined constants for main.c T

Recognize.h Contains defined constants for Recognize.c T
Table 31 - Description/Status of Source Code Files

31 | P a g e

C Code:

LCD.c__

#include <string.h>
#include "system.h"
#include "LCD.h"

void showLCD(char * newDisplay, char * display, char row){
 volatile char * LCD_display_ptr = (char *)CHAR_LCD_16X2_BASE;

 if(strcmp(newDisplay, display)){
 int i;
 strcpy(display, newDisplay);

 if (row == 'u'){
 *LCD_display_ptr = LCD_ADDR_U;
 }
 else if (row == 'l'){
 *LCD_display_ptr = LCD_ADDR_L;
 }
 else return;

 for(i = 0; i <16; ++i){
 *(LCD_display_ptr+1) = ' ';
 }

 if (row == 'u'){
 *LCD_display_ptr = LCD_ADDR_U;
 }
 else if (row == 'l'){
 *LCD_display_ptr = LCD_ADDR_L;
 }
 else return;

 while(*display){
 *(LCD_display_ptr+1) = *display;
 ++display;
 }
 }
}

32 | P a g e

LEDs.c__

#include "LEDs.h"

// Show the amplitude of the data on the LEDs
void showLEDs(int buf, unsigned int * leds){
 *leds = OFF;

 if(buf < 0){
 buf *= -1;
 }
 if(buf > 0){
 *leds |= 0x01;
 }
 if(buf/(MAX_VALUE/32 * 1)){
 *leds |= 0x02;
 }
 if(buf/(MAX_VALUE/32 * 2)){
 *leds |= 0x04;
 }
 if(buf/(MAX_VALUE/32 * 3)){
 *leds |= 0x08;
 }
 if(buf/(MAX_VALUE/32 * 4)){
 *leds |= 0x10;
 }
 if(buf/(MAX_VALUE/32 * 5)){
 *leds |= 0x20;
 }
 if(buf/(MAX_VALUE/32 * 6)){
 *leds |= 0x40;
 }
 if(buf/MAX_VALUE){
 *leds |= 0x80;
 }
}

33 | P a g e

Main.c__

#include <time.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>

#include "system.h"
#include "project.h"
#include "LCD.h"
#include "LEDs.h"
#include "recognize.h"

int main()
{
printf("System Start!\n\n");

 // audio port address
 volatile int * audio_ptr = (int *)AUDIO_BASE;
 // pio port address
 unsigned int * pio = (unsigned int *)PIO_0_BASE;
 // green LED address
 unsigned int * green_LED_ptr = (unsigned int *)GREEN_LEDS_BASE;
 // red LED address
 unsigned int * red_LED_ptr = (unsigned int *)RED_LEDS_BASE;
 // upper seven segment address
 unsigned int * SvnSegU = (unsigned int *)HEX7_HEX4_BASE;
 // lower seven segment address
 unsigned int * SvnSegL = (unsigned int *)HEX3_HEX0_BASE;
 // slide switch address
 unsigned int * Switch = (unsigned int *)SLIDER_SWITCHES_BASE;
 // string buffer for LCD upper row
 char * displayUpper = calloc(LCD_BUFFER_SIZE, sizeof(char));
 // string buffer for LCD lower row
 char * displayLower = calloc(LCD_BUFFER_SIZE, sizeof(char));

 int system_on = 0; // flag for the power of the system
 int word; // flag for detection of a word
 int idleland = 0;
 int left_buffer, right_buffer; // buffer for the two channels of the CoDec
 int key_up = 0, key_down = 0, key_off = 0; // flag for the three pushbuttons
 int lengthCount = 0, blankCount = 0; // counters for the length of the current word or blank
 int peak, valley; // The maximum positive/negative values from the CoDec

 int currentSpeed = SPEED_0;
 int currentSwitch;

34 | P a g e

 // Turn off the seven segments and the LEDs
 *SvnSegU = OFF;
 *SvnSegL = OFF;
 *green_LED_ptr = OFF;
 *red_LED_ptr = OFF;

 *pio = currentSpeed;

 // The main while loop
 while(1)
 {
 // Check if there was any change in the switches
 if (*Switch != currentSwitch){
 currentSwitch = *Switch;
 // Check the slide switch to see if the system is turned on
 if (currentSwitch%2){
 system_on = 1;
 *SvnSegU = OFF;
 *SvnSegL = HEX_ON;

 showLCD(LCD_ON_U, displayUpper, 'u');

 // Check 2nd switch to see which control mode is turned on
 if (currentSwitch/2%2){
 // Idle/Land Mode is turned on
 idleland = 1;
 showLCD(LCD_ON2_L, displayLower, 'l');
 }
 else{
 // Up/Down Mode is turned on
 idleland = 0;
 showLCD(LCD_ON_L, displayLower, 'l');
 }
 }
 else {
 system_on = 0;
 *SvnSegU = OFF;
 *SvnSegL = HEX_OFF;
 *green_LED_ptr = OFF;
 *red_LED_ptr = OFF;

 showLCD(LCD_OFF_U, displayUpper, 'u');
 showLCD(LCD_OFF_L, displayLower, 'l');

 currentSpeed = SPEED_0;
 *pio = currentSpeed;
 }
 }

35 | P a g e

 // Store the values from the Audio CoDec
 left_buffer = *(audio_ptr + 2);
 right_buffer = *(audio_ptr + 3);

 if (system_on)
 {
 if (!word){
 // If no word was detect, then try to detect the beginning of a word
 if (fabs(left_buffer)>NOISE_THRESHOLD){
 // Value passed the threshold level
 word = 1;
 lengthCount = 1;
 peak = valley = left_buffer;
 }
 }

 if (word){
 // If a word was detected, then check new data
 if (fabs(left_buffer)>NOISE_THRESHOLD){

 // If new data is still above the noise threshold, then increment the
word length, reset the blank count and update the peak and valley

 lengthCount++;
 blankCount = 0;
 if (peak < left_buffer){
 peak = left_buffer;
 }
 else if (valley > left_buffer){
 valley = left_buffer;
 }
 }
 else {

 // If new data is below the noise threshold, then increment the blank
count

 blankCount++;
 if (blankCount >= BLANK_LENGTH_THRESHOLD){

/* If blank count has go over the threshold, then the current
word is finished
 * try to match the word, and reset the flags and counters */

 // Debugging Outputs
 if (lengthCount > 1000)

printf("Length: %d, Peak: %d, Valley: %d\n",
lengthCount, peak, valley);

 // Command Matching

36 | P a g e

int command = matchCommand(lengthCount, peak,
valley, idleland);

 if (command == STATUS_UP){
 showLCD(LCD_UP_L, displayLower, 'l');
 *SvnSegL = HEX_UP;

 currentSpeed = SPEED_7;
 *pio = currentSpeed;

 wait(WAIT_TIME);

 showLCD(LCD_ON_L, displayLower, 'l');
 *SvnSegL = HEX_ON;

 currentSpeed = SPEED_6;
 *pio = currentSpeed;
 }
 else if(command == STATUS_DOWN){
 showLCD(LCD_DOWN_L, displayLower, 'l');
 *SvnSegL = HEX_DOWN;

 currentSpeed = SPEED_5;
 *pio = currentSpeed;

 wait(WAIT_TIME);

 showLCD(LCD_ON_L, displayLower, 'l');
 *SvnSegL = HEX_ON;
 }
 else if(command == STATUS_IDLE) {
 showLCD(LCD_IDLE_L, displayLower, 'l');
 *SvnSegL = HEX_IDLE;

 currentSpeed = SPEED_1;
 *pio = currentSpeed;

 wait(WAIT_TIME);

 showLCD(LCD_ON2_L, displayLower, 'l');
 *SvnSegL = HEX_ON;
 }
 else if(command == STATUS_LAND) {
 showLCD(LCD_LAND_L, displayLower, 'l');
 *SvnSegL = HEX_LAND;

 while(speedGear(¤tSpeed, 'd')){
 *pio = currentSpeed;
 wait(WAIT_TIME);

37 | P a g e

 }

 showLCD(LCD_ON2_L, displayLower, 'l');
 *SvnSegL = HEX_ON;
 }

 // Reseting flags and counters
 word = 0;
 lengthCount = 0;
 blankCount = 0;
 }
 }
 }
 }

 // LEDs to show the amplitude of the data
 showLEDs(left_buffer, red_LED_ptr);
 showLEDs(right_buffer, green_LED_ptr);

 // Pass the sound data back into the CoDec and output through line out
 *(audio_ptr + 2) = left_buffer;
 *(audio_ptr + 3) = right_buffer;

 // Check for emergency safety pushbuttons
 check_KEYs (&key_up, &key_down, &key_off);
 if (key_up){
 // Increment Speed
 printf("safe down\n");
 speedGear(¤tSpeed, 'i');
 *pio = currentSpeed;
 *SvnSegU = HEX_SAFE;
 *SvnSegL = HEX_UP;
 key_up = 0;
 wait(WAIT_TIME);
 }
 else if (key_down){
 // Decrement speed
 printf("safe down\n");
 speedGear(¤tSpeed, 'd');
 *pio = currentSpeed;
 *SvnSegU = HEX_SAFE;
 *SvnSegL = HEX_DOWN;
 key_down = 0;
 wait(WAIT_TIME);
 }
 else if (key_off){
 // Emergency shut down
 *red_LED_ptr = OFF;

38 | P a g e

 *green_LED_ptr = OFF;
 *SvnSegU = HEX_SAFE;
 *SvnSegL = HEX_OFF;

 while(speedGear(¤tSpeed, 'd')){
 *pio = currentSpeed;
 wait(WAIT_TIME);
 }
 while(1);
 }
 }
 return 0;
}

// Make the program stall for a few seconds
void wait (int seconds)
{
 clock_t endwait;
 endwait = clock () + seconds * 3/4 * CLOCKS_PER_SEC/100;
 clock_t c;
 while ((c = clock()) < endwait){
 }
}

// Check the key to see if any button was pushed
void check_KEYs(int * KEY1, int * KEY2, int * KEY3)
{
 volatile int * KEY_ptr = (int *) PUSHBUTTONS_BASE; // pushbutton KEY address
 int KEY_value;

 KEY_value = *(KEY_ptr); // read the pushbutton KEY values);
 while (*KEY_ptr); // wait for pushbutton KEY release

 if (KEY_value == 0x2) // check KEY1
 {
 *KEY1 = 1;
 }
 else if (KEY_value == 0x4) // check KEY2
 {
 *KEY2 = 1;
 }
 else if (KEY_value == 0x8) // check KEY3
 {
 *KEY3 = 1;
 }
}

// Change the speed of the helicopter

39 | P a g e

int speedGear(int * speed, char inc){
 int gear = -1;

 switch(*speed){
 case SPEED_0:
 if(inc == 'i'){
 *speed = SPEED_1;
 gear = 1;
 }
 else gear = 0;
 break;

 case SPEED_1:
 if(inc == 'i'){
 *speed = SPEED_2;
 gear = 2;
 }
 else if(inc == 'd'){
 *speed = SPEED_0;
 gear = 0;
 }
 break;
 case SPEED_2:
 if(inc == 'i'){
 *speed = SPEED_3;
 gear = 3;
 }
 else if(inc == 'd'){
 *speed = SPEED_1;
 gear = 1;
 }
 break;
 case SPEED_3:
 if(inc == 'i'){
 *speed = SPEED_4;
 gear = 4;
 }
 else if(inc == 'd'){
 *speed = SPEED_2;
 gear = 2;
 }
 break;
 case SPEED_4:
 if(inc == 'i'){
 *speed = SPEED_5;
 gear = 5;
 }
 else if(inc == 'd'){

40 | P a g e

 *speed = SPEED_3;
 gear = 3;
 }
 break;
 case SPEED_5:
 if(inc == 'i'){
 *speed = SPEED_6;
 gear = 6;
 }
 else if(inc == 'd'){
 *speed = SPEED_4;
 gear = 4;
 }
 break;
 case SPEED_6:
 if(inc == 'i'){
 *speed = SPEED_7;
 gear = 7;
 }
 else if(inc == 'd'){
 *speed = SPEED_5;
 gear = 5;
 }
 break;
 case SPEED_7:
 if(inc == 'd'){
 *speed = SPEED_6;
 gear = 6;
 }
 else gear = 7;
 break;
 default:;
 }
 return gear;
}

41 | P a g e

Recognize.c___

#include "recognize.h"

// Match and return the command
int matchCommand(int length, int peak, int valley, int landingSwitch){
 int up = 0, down = 0, idle = 0, land = 0;

 if (landingSwitch){
 switch(checkLength(length, landingSwitch)){
 case STATUS_IDLE:
 idle++;
 break;
 case STATUS_LAND:
 land++;
 break;
 default:
 ;
 };

 switch(checkPeak(peak, landingSwitch)){
 case STATUS_IDLE:
 idle++;
 break;
 case STATUS_LAND:
 land++;
 break;
 default:
 ;
 };

 switch(checkValley(valley, landingSwitch)){
 case STATUS_IDLE:
 idle++;
 break;
 case STATUS_LAND:
 land++;
 break;
 default:
 ;
 };
 }
 else{
 switch(checkLength(length, landingSwitch)){
 case STATUS_UP:
 up++;
 break;
 case STATUS_DOWN:

42 | P a g e

 down++;
 break;
 default:
 ;
 };

 switch(checkPeak(peak, landingSwitch)){
 case STATUS_UP:
 up++;
 break;
 case STATUS_DOWN:
 down++;
 break;
 default:
 ;
 };

 switch(checkValley(valley, landingSwitch)){
 case STATUS_UP:
 up++;
 break;
 case STATUS_DOWN:
 down++;
 break;
 default:
 ;
 };
 }

 if(up >= 2){
 return STATUS_UP;
 }
 else if (down >= 2){
 return STATUS_DOWN;
 }
 else if (idle >= 2){
 return STATUS_IDLE;
 }
 else if (land >= 2){
 return STATUS_LAND;
 }
 else {
 return -1;
 }
}

// Match the length of the command
int checkLength(int length, int landingSwitch){

43 | P a g e

 if (landingSwitch){
 if (length >= IDLE_LENGTH_LOWER && length < IDLE_LENGTH_UPPER){
 return STATUS_IDLE;
 }
 else if (length >= LAND_LENGTH_LOWER && length < LAND_LENGTH_UPPER){
 return STATUS_LAND;
 }
 }
 else {
 if (length >= UP_LENGTH_LOWER && length < UP_LENGTH_UPPER){
 return STATUS_UP;
 }
 else if(length >= DOWN_LENGTH_LOWER && length < DOWN_LENGTH_UPPER){
 return STATUS_DOWN;
 }
 }
 return -1;
}

// Match the positive maximum value of the command
int checkPeak(int peak, int landingSwitch){
 if (landingSwitch){
 if (peak >= IDLE_PEAK_LOWER && peak < IDLE_PEAK_UPPER){
 return STATUS_IDLE;
 }
 if (peak >= LAND_PEAK_LOWER && peak < LAND_PEAK_UPPER){
 return STATUS_LAND;
 }
 }
 else {
 if (peak >= UP_PEAK_LOWER && peak < UP_PEAK_UPPER){
 return STATUS_UP;
 }
 else if (peak >= DOWN_PEAK_LOWER && peak < DOWN_PEAK_UPPER){
 return STATUS_DOWN;
 }
 }
 return -1;
}

// Match the negative maximum value of the command
int checkValley(int valley, int landingSwitch){
 if (landingSwitch){
 if (valley >= IDLE_VALLEY_LOWER && valley < IDLE_VALLEY_UPPER){
 return STATUS_IDLE;
 }
 if (valley >= LAND_VALLEY_LOWER && valley < LAND_VALLEY_UPPER){
 return STATUS_LAND;

44 | P a g e

 }
 }
 else {
 if (valley >= UP_VALLEY_LOWER && valley < UP_VALLEY_UPPER){
 return STATUS_UP;
 }
 else if (valley >= DOWN_VALLEY_LOWER && valley < DOWN_VALLEY_UPPER){
 return STATUS_DOWN;
 }
 }
 return -1;
}

