Stimulus phase duration, not waveform, influences the relative recruitment of sensory and motor axons in a human peripheral nerve

Brendan Kelly¹, João Luiz Quagligio Dutigan², Monika Djak³, David F Collins¹,³

¹Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada. ²Graduate Program in Rehabilitation Sciences, University of Brasilia, Federal District, Brazil. ³Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada

INTRODUCTION

Electrical stimulation is used to evoke reflexes for clinical exams and research studies and to produce contractions and facilitate motor function for rehabilitation. When delivered over a mixed peripheral nerve electrical stimulation recruits motor and sensory axons, producing M-waves and H-reflexes, respectively (Fig. 1).

Figure 1. Electrical stimulation over a peripheral nerve recruits both a motor and sensory axon.

Motor and sensory axon recruitment can be studied using M-wave/H-reflex recruitment curves (Fig. 2). Relatively long monophasic pulses (up to 1 ms) selectively recruit sensory axons, over motor axons. The effect of longer monophasic pulses, or different waveforms has not been studied. Understanding how phase duration and waveform influence axonal recruitment has implications for reflex studies and rehabilitation.

OBJECTIVE

Assess the influence of stimulus phase duration and waveform on the relative recruitment of sensory and motor axons in the human tibial nerve.

METHODS

• participants (n=20): 8 female, 12 male; 28 ± 9 years; no injury or disease

• seated in a Biodex dynamometer, ankle and knee secured at 90°
• tibial nerve stimulated via electrodes over popliteal fossa
• electromyography recorded from soleus muscle
• stimulation was varied from below threshold required to elicit a response, up to 1.4X the intensity that produced a maximal M-wave (Mmax)

M-wave – H-reflex recruitment curves

- recruitment curves were collected using three waveforms (monophasic, biphasic, and kHz frequency) delivered using each of two phase durations (0.5 ms, 0.1 ms; biphasic pulses were 0.125 ms)
- 1 and 2 ms phases were also tested in the monophasic condition

100 or 500 µs
125 or 500 µs
100 µs (4 kHz)
500 µs (1 kHz)

Figure 2. An example M-wave/H-reflex recruitment curve recorded from the soleus muscle.

Fig 4. Illustration of the wave forms and phase durations that were studied.

- n=8 recruitment curves per participant, tested in random order
- for each recruitment curve, 40 stimuli were delivered with 8-10 s between pulses while participants remained relaxed

Outcome measures

- Mmax/Mmax ratio: a larger Mmax/Mmax ratio indicates preferential recruitment of sensory axons.
- H-reflex size at 5% Mmax, a larger H-reflex indicates a leftward shift of the H-reflex curve and preferential recruitment of sensory axons.
- M-wave size at Hmax: a smaller M indicates a leftward shift of the H-reflex curve and preferential recruitment of sensory axons.

RESULTS

- Fig 5. Interpretation of outcomes measured.

CONCLUSIONS

- Longer phase durations recruited more sensory axons, relative to motor axons, in the human tibial nerve.
- There was no effect of stimulus waveform on motor or sensory axon recruitment when waveforms were matched for phase duration.
- Longer phase durations are recommended to maximize the activation of sensory axons for clinical tests, research studies or to generate contractions or modulate neural circuits for rehabilitation.

FUTURE DIRECTIONS

Investigate how phase duration, waveform and stimulation intensity influence contraction fatigueability and corticospinal excitability during neuromuscular electrical stimulation.

ACKNOWLEDGMENTS

The authors thank Alberta Innovates - Health Solutions, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, and the University of Alberta Human Performance Fund for funding, as well as Mr. Alejandro Ley for his technical support.