Recruitment of human motor units during low current electrical stimulation

Dean J.C., Clair J.M., Lagerquist O., Collins D.F.
Centre for Neuroscience, Human Neurophysiology Laboratory,
Faculty of Physical Education and Recreation
University of Alberta, Edmonton, AB, Canada

Introduction

- Continuous electrical stimulation of peripheral nerves can produce muscle contractions that develop over several seconds (Lang and Vallbo 1967, Collins et al. 2001) with a time course of motor unit recruitment that is too slow for a simple reflexive pathway (Lang and Vallbo, 1967).
- Persistent inward currents (PICs) in motor neurons can develop over several seconds and produce sustained firing in response to excitatory synaptic input.
- We propose that peripheral nerve stimulation activates sensory axons, providing excitation to spinal neurons and activating PICs.

Project hypotheses

- Motor units will fire asynchronously from the stimulation pulses, with firing sustained after stimulation ends.
- The electrically-evoked synaptic activation will recruit the same low threshold motor units as weak voluntary contractions.
- The time course of motor unit recruitment will be consistent with PIC activation.

Experimental Methods

- 9 subjects
- Surface tibial nerve stimulation
 - 1 ms pulses, 30 seconds at seven constant frequencies (10-100 Hz)
- Slow-rising voluntary contractions
- Measured variables:
 - Soleus EMG – surface electrodes
 - Soleus motor unit EMG – fine wire electrodes
 - Plantarflexion torque

Low current stimulation evokes asynchronous, sustained motor unit firing

- Single pulses do not activate motor units
- Recruitment latency will depend on stimulation frequency
- We activated the lowest threshold motor units, which may have a slower time course than other motor units
- Other factors including post-tetanic potentiation and changes in axonal properties could affect motor unit recruitment, contributing to the slow time course

The same motor units are recruited in stimulated and weak voluntary contractions

- Asynchronous, sustained motor unit firing would be expected if PICs are activated.
- Recruitment order is consistent with synaptic excitation.
- Recruitment time course is slower than expected.
- Higher stimulation frequencies recruit motor units with a shorter latency.

Summary

- Low current stimulation can produce asynchronous, sustained motor unit activity.
- Motor unit activity develops with a slow time course (~15 sec).
- Consistent with PICs?

A simple model fits the recruitment latency data

- Average time constant = 15.3 ± 10.4 seconds

References

Acknowledgements

NSERC CRG
CIHR IRSC
AHFMR