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flexes), while NMES over the muscle belly generated contrac-
tions primarily through a peripheral pathway (M waves). For
stimulation at both locations, the central contribution increased
over time and could be augmented following a brief period of
NMES at 100 Hz.

Torque

Torque was not significantly different during NMES over
the nerve trunk compared with NMES over the muscle belly
for both stimulation patterns and intensities. During low-
intensity, constant-frequency stimulation, torque did not
change from the beginning (Time,) to the end (Time,) of the
stimulation. The “extra torque” we did observe after brief
periods of 100-Hz stimulation during low-intensity stimulation
and over time during the high-intensity stimulation has been
attributed to multiple central mechanisms (see Central Mech-
anisms below).

Pathways During NMES Over the Nerve Trunk vs. Over the
Muscle Belly

Although torque did not differ between stimulation locations,
different neural pathways contributed to contractions generated
when NMES was applied over the tibial nerve compared with
over the TS muscles. Consistent with our first hypothesis and
previous work in our laboratory (5), contractions evoked by
NMES over the tibial nerve had significantly smaller M waves

Fig. 5. Torque and EMG responses evoked by
stimulation over the tibial nerve (A and B)
and the TS muscles (C and D) to evoke
~40% MVIC torque at Time; in a single
participant. A and C: responses to the 20-Hz
constant-frequency pattern are displayed.
B and D: responses to the 20-100-20-Hz
pattern are displayed. In the fop of each panel,
torque profiles represented by the solid black
lines are averages of 5 shaded lines in re-
sponse to 5 trains of NMES, and the symbols
represent the average EMG data over 5 rep-
etitions during a single trial. The bottom of
each panel shows EMG recorded at Time;
(left trace) and Time, (right trace) during a
single train of NMES. Solid black lines rep-
resent the average of 20 single responses
(shaded lines) to NMES. A and B are shown
on the same scale, as indicated by the cali-
bration bars in A. C and D are shown on the
same scale, as indicated by the calibration
bars in C.

and significantly larger H reflexes compared with NMES over the
TS muscles. M waves were five to six times larger during NMES
over the TS muscles compared with NMES over the tibial nerve.
H reflexes were evident in the EMG during NMES at both
locations, but were two to three times larger during NMES over
the nerve trunk compared with NMES over the muscle. In line
with our second hypothesis, NMES over the muscle produced
more asynchronous activity than NMES over the nerve trunk,
regardless of the stimulation pattern. Asynchronous activity was
low at the beginning and increased over several seconds for
NMES at both locations. Together, these results support previous
assertions that NMES over the muscle belly can produce contrac-
tions with a significant central contribution (5, 17, 18, 40) and
shows that this contribution is in the form of H reflexes and
asynchronous activity. The contribution of asynchronous activity
to the evoked torque, however, may be less than that of the H
reflex. The extra torque generated by NMES over the nerve trunk
was accompanied by enhanced H reflexes, whereas equal levels of
extra torque generated by NMES over the muscle belly were
generated by enhanced asynchronous activity and enhanced M
waves. Thus a portion of the extra torque during NMES over the
muscle belly may originate from a peripheral mechanism. In
general, NMES over the nerve trunk generated contractions with
a greater contribution through central pathways, whereas NMES
over the muscle belly generated contractions with a greater pe-
ripheral contribution.
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A: torque. B: M waves. C: H reflexes.
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effects and two-way interactions identified by 35 1
statistical analyses are displayed within the
insets. *Significant difference at a level P <
0.05.
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When stimulation intensity was increased to produce con-
traction amplitudes of ~20-30% MVIC torque, H reflexes and
asynchronous activity were present during constant-frequency
stimulation at both locations. During the step-frequency pat-
tern, H-reflex amplitudes increased after stimulation at 100 Hz
and reached ~24% Mpnax during NMES over the nerve trunk
and 5% Mpux during NMES over the muscle belly. Although
H reflexes are initially depressed during repetitive stimulation
due to postactivation depression of neurotransmitter release
from Ia afferents (31), our laboratory has previously reported
large H reflexes during NMES over the nerve trunk (5, 37). In
the present study, even at the higher stimulation intensity,
when antidromic transmission in motor axons (23) would be
more pronounced, H reflexes were present during NMES at
both locations. In the individual who received stimulation to
generate ~40% MVIC torque (see Fig. 5), H reflexes were
present only during stimulation over the nerve trunk, whereas
only M waves were evident in the EMG during stimulation
over the muscle belly; although these data were not included in
the group due to coactivation of TA. Thus, at this highest
stimulation intensity studied, a central contribution was only
present during stimulation over the nerve trunk, but further
study at these higher intensities is required to substantiate this
finding.

The significantly greater Hyax-to-Mpax ratio and predom-
inance of H reflexes during NMES over the nerve trunk
compared with NMES over the muscle belly are likely
explained in part by the neuronal architecture beneath the
stimulating electrodes. NMES over the nerve trunk, where
sensory and motor axons are bundled close together beneath
the stimulating electrodes, likely recruited a relatively
greater proportion of sensory axons than NMES delivered
over the muscle belly near the TS motor points. At the level
of the TS muscles, axons of the tibial nerve branch diffusely
(36). This branching, in combination with the increased
interelectrode distance and use of larger electrodes during
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stimulation over the muscle, may have activated axons over
a broader spatial distribution, resulting in a less synchronous
afferent volley arriving at the motoneuron during NMES
over the muscle belly compared with NMES over the nerve
trunk. Thus, during stimulation over the muscle belly, the
sensory volleys may not depolarize motoneurons synchro-
nously and generate an H reflex; rather, they may be more
temporally dispersed and contribute to enhanced asynchro-
nous activity. This effect of stimulation location would be
less for the M wave, as the pathway to the muscle is shorter
and circumvents central synapses compared with the path-
way for the H reflex.

During stimulation over the muscle belly, M waves were
significantly enhanced over time during low- and high-inten-
sity stimulation. Some change in the amplitude of the M wave
can be expected due to changes in muscle architecture beneath
the recording electrodes (20), but M-wave amplitude did not
change over time during NMES over the nerve trunk. Since the
recording site and contraction intensities were not different
between stimulation locations, a change in muscle architecture
beneath the recording electrode does not explain the larger M
waves evoked during stimulation over the muscle belly. How-
ever, muscle conformational changes beneath the stimulating
electrodes may explain larger M waves during stimulation over
the muscle belly. In isometric muscle contractions, the muscle
fibers shorten and develop tension as the tendon stretches (26).
This shortening would alter the position of muscle fibers
beneath the stimulating electrodes in such a way that more
axons and possibly more motor points converge beneath the
stimulating electrodes, resulting in greater numbers of acti-
vated axons, further enhancing the muscle contraction. Support
for this rationale lies in the slow rise of M-wave amplitude in
concert with the slow rise in torque during the first second of
stimulation when the muscle is shortening during NMES over
the muscle belly.
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Central Mechanisms

Several central mechanisms may account for the en-
hanced H reflexes and asynchronous activity that develop
over time during NMES. Such mechanisms include the
following: inadvertent or voluntary descending drive,
posttetanic potentiation at the Ia synapse, and activation of
persistent inward currents in spinal neurons. Inadvertent
voluntary activation of motoneurons could account for the
increase in H-reflex amplitude (51) and asynchronous activ-
ity; however, evidence suggests that this is not what oc-
curred. Similar levels of extra torque generated through
central pathways, as occurred during the low-intensity stim-
ulation in this study, can develop in people who are sleeping
(18) or who have complete spinal cord injury (45). Further-
more, participants in this study did not find the stimulation
uncomfortable and remained relaxed throughout the NMES
and did not voluntarily contract the muscles of the ankle.
Posttetanic potentiation may also add to the enhanced cen-
tral motor unit recruitment observed. Following repetitive
stimulation of Ia afferents, posttetanic potentiation at the la
synapse enhances excitatory postsynaptic potentials (27,
30). The development of persistent inward currents in spinal
neurons have also been suggested as a mechanism underly-
ing enhanced central motor unit recruitment (5, 17, 18, 37).
Persistent inward currents have been demonstrated directly
in spinal neurons in animals initiated by high-frequency
synaptic drive (7) and indirectly in humans during periods
of electrical stimulation (17, 18) or vibration (21, 35).

Implications for NMES

NMES is used to generate contractions for maintaining
muscle quality [therapeutic electrical stimulation (TES)]
and producing functional movements [functional electrical
stimulation (FES)] following damage to central motor path-
ways (22, 32, 33, 46). However, the nonphysiological re-
cruitment order of motor units during NMES limits the
activation of low-threshold motor units during TES, and
that, combined with synchronous motor unit activation,
contributes to accelerated muscle fatigue during FES (46).
The random recruitment order and synchronous discharge
associated with recruitment through peripheral pathways (M
waves) is in sharp contrast to the asynchronous and orderly
motor unit recruitment that occurs during a voluntary con-
traction. The synchronous discharge of motor units during
NMES means that nonphysiologically high firing rates are
required to produce smooth contractions, and these high
firing rates increase the energy demand from each active
motor unit, resulting in premature fatigue (1). Additionally,
the random recruitment order enhances the susceptibility of
low-threshold motor units to disuse atrophy and fiber-type
transitions, leaving the muscle with a smaller proportion of
fatigue-resistant motor units (46). The limited recruitment
of low-threshold motor units could be overcome by increas-
ing the stimulation intensity to depolarize all of the motor
axons, but the disadvantage of synchronous motor unit
recruitment would remain, and such high intensities can be
problematic for individuals with residual sensation (15) or
compromised bone density (19). For this reason, developing
methods that recruit low-threshold motor units at relatively
low-stimulation intensities may have advantages for both

TES and FES. Enhancing the extent to which NMES acti-
vates sensory axons and contributes to the evoked contrac-
tions through a central pathway in the form of H reflexes or
asynchronous activity may be one such method.

The data from the present experiments confirm previous
indications that the contribution made by central and peripheral
pathways to electrically evoked contractions differs when stim-
ulation is applied over a nerve trunk compared with over a
muscle belly (5). Contractions produced by NMES over the
nerve trunk generated a larger central contribution (H reflexes).
NMES over the muscle belly evoked contractions with a
greater contribution from direct motor axon activation (M
waves). Thus NMES over the nerve trunk may hold greater
promise for maintaining muscle quality following central mo-
tor pathway damage, as well as in the prevention of muscle
fatigue during FES. Although there may be issues around
control for FES using NMES over the nerve trunk, as contrac-
tions evoked by stimulation over the tibial nerve have been
shown to be less stable within a single contraction and less
consistent between successive contractions compared with
stimulation over the TS muscles (5). The potential to reflex-
ively activate a sufficiently large proportion of motor units to
be useful for TES and FES may require a muscle with partic-
ularly strong reflex inputs, such as the TS muscles. Whether
recruitment during NMES over the nerve trunk and over the
muscle belly differs for other muscle groups has not yet been
tested. However, a central contribution to electrically evoked
contractions has been demonstrated for the TS (5, 18, 37), TA
(37), quadriceps (A. J. Bergquist, unpublished observation),
wrist extensors (5), biceps brachii (10, 42), and flexor pollicis
longus (9).

Additionally, as stimulation intensity is increased beyond
what was tested in this study, for example, in response to
fatigue during FES exercise, increased levels of anti-dromic
collision will develop (51). This will progressively block
H-reflex and asynchronous contributions to evoked contrac-
tions. Although it has been estimated that 20-30% MVIC
plantar flexion torque is required for walking (2), the present
results indicate that a central contribution to evoked con-
tractions occurs over this range during stimulation over the
tibial nerve and, to a lesser extent, the TS muscles. How-
ever, considerably greater levels of plantar flexion torque, as
a percent of MVIC, may be required for walking in indi-
viduals with severely atrophied muscle, and whether this
can be achieved through central recruitment remains to be
determined.

Summary

The contributions made by central and peripheral pathways
to motor unit recruitment during NMES differed markedly for
plantar flexion contractions of equal amplitude generated by
NMES applied over the tibial nerve compared with the TS
muscles. During NMES over the nerve trunk, contractions
were generated primarily through a central pathway, while
NMES over the muscle belly generated contractions predom-
inantly through a peripheral pathway. Thus NMES over the
tibial nerve may be more advantageous for maintaining muscle
quality and reducing muscle contraction fatigue for rehabilita-
tion compared with NMES over the TS muscles.
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