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Abstract

Machine learning is a subfield of artificial intelligence which combines sophisticated 
algorithms and data to develop predictive models with minimal human interference. 
This chapter focuses on research that trains machine learning models to study anti-
microbial resistance and to discover antimicrobial drugs. An emphasis is placed on 
applying machine learning models to detect drug resistance among bacterial and fungal 
pathogens. The role of machine learning in antibacterial and antifungal drug discovery 
and design is explored. Finally, the challenges and prospects of applying machine 
learning to advance basic research on and treatment of antimicrobial resistance are 
discussed. Overall, machine learning promises to advance antimicrobial resistance 
research and to facilitate the development of antibacterial and antifungal drugs.

Keywords: machine learning, antimicrobial resistance, fungi, bacteria, infection,  
drug discovery and design

1. Introduction

Antimicrobials are the agents used to prevent and treat the infection caused by 
bacteria, fungi, viruses, and parasites in plants, animals, and humans. Sir Alexander 
Fleming in his Nobel Prize lecture emphasized the importance of avoiding resistance 
to antibiotics [1]. Antimicrobial resistance (AMR) is a phenomenon that occurs when 
infectious microorganisms do not respond to antimicrobial agents, leading to treatment 
failure, the spread of the infectious disease, and severe illness and death [2]. Among 
microorganisms, bacteria and fungi are the most encountered pathogens with resis-
tance in clinical settings. Patients infected with resistant bacteria or fungi have worse 
clinical outcomes compared to patients with infections caused by the same bacteria or 
fungi without resistance [3]. It is estimated that by the end of year 2050, if unmitigated, 
AMR will result in 10 million lives lost per year and cumulative cost of 100 trillion USD 
[4]. The global burden associated with bacterial AMR alone, considering 204 countries 
and territories, 23 bacterial pathogens, and 88 drug-pathogen combinations, was 4.95 
million deaths during the year 2019 [5]. The majority of these patients succumbed 
to lower respiratory tract and blood stream infections associated with drug-resistant 
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bacteria, with highest mortality rate of 27.3 per 100,000 patients [5]. Among elderly 
patients in the USA, the treatment of methicillin resistant Staphylococcus aureus 
(MRSA) infection costs $22,293 more per patient compared to patients infected with 
non-resistant Staphylococcus aureus. Similarly, treating patients infected with resistant 
carbapenem-resistant Acinetobacter species costs $57,390 more per patient compared to 
patients infected with non-resistant Acinetobacter species. These extra costs are attrib-
uted to the increased length of hospital stays and health complications, which lead to 
more medical interventions and higher mortality rates [6].

The most common bacterial pathogens associated with hospital acquired infections 
and AMR are the ESKAPE pathogens. ESKAPE is an acronym for Enterococcus faecium, 
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas 
aeruginosa, and Enterobacter species [7]. The priority pathogens recognized by the 
World Health Organization are extended spectrum beta lactamases (ESBL) produc-
ing Escherichia coli, MRSA, ESBL-producing Klebsiella pneumoniae, Streptococcus 
pneumoniae, carbapenem-resistant Acinetobacter baumannii, and multidrug-resistant 
(MDR; organism resistant to at least one agent in three or more antimicrobial classes) 
P. aeruginosa and vancomycin-resistant Enterococcus fecalis [5, 8, 9]. Antimicrobial 
resistance among fungi is a serious issue because of the limited number of classes of 
antifungal agents available for treating invasive fungal infections, as compared to 
antibacterial agents (Table 1). Moreover, due to variety of socio-economic reasons it has 
been over a decade that no new class of antifungal drug has been developed [10]. Global 
warming and climate change is also predicted to increase the prevalence of fungal 
infections (as fungi adapt to higher temperatures, humans and animals may lose their 

Mechanism of action Antibacterial class

Inhibitor of cell wall 
synthesis

β-Lactams, Carbapenems, Cephalosporins, Monobactams, Penicillin, 
Glycopeptide

Cell membrane 
depolarizer

Lipopeptides

Inhibitor of protein 
synthesis

Aminoglycosides, Tetracyclines, Chloramphenicol, Lincosamides, Macrolides, 
Oxazolidinones, Streptogramins

Inhibitor of nucleic acid 
synthesis

Quinolones

Inhibitor of metabolic 
pathways

Sulfonamides, Trimethoprim

Mechanism of action Antifungal class

Inhibitors of ergosterol 
synthesis

Azoles

Aqueous pores in cell 
membrane

Polyenes

Inhibitor of glucan 
synthase

Echinocandins

Inhibitor of squalene 
epoxidase

Allylamines

Inhibitor of nucleic acid 5-Flurocytosine

Table 1. 
Different classes of antibacterial and antifungal drugs and their mechanism of action.
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thermal protection provided by their elevated body temperatures) [11]. The majority 
of the invasive fungal infections are caused by yeasts, especially Candida albicans, 
which can cause mild symptomatic infection to acute sepsis with a mortality rate over 
70% in immunocompromised patients [12]. Over the last decade, Candia auris has 
been reported on all continents and in more than 44 countries [13, 14]. The first known 
appearance of Candida auris dates back to 1996 in South Korea, when it was originally 
misidentified as Candida hemulonii (and then later correctly identified as Candida 
auris) [15]. This fungus displays intrinsic resistance and acquired resistant (Figure 1) to 
the major classes of antifungals and hospital disinfectants and has caused several out-
breaks [16–19]. The main reason that Candida auris attention across globe is due to high 
mortality rate (45%) among patients with bloodstream infections [20]. Interestingly, 
Candida auris has different resistance profiles based on the genomic sequences identi-
fied in different countries; presently, Candida auris is classified into four discrete clades, 
as well as a potential fifth clade [21, 22]. Candida auris is less virulent than C. albicans 
because of the ‘fitness cost’ associated with its MDR nature; as a consequence, Candida 
auris has not been observed to revert back to its susceptible form in the absence of 
antimicrobial pressure [23]. Recently in the United States the identification of pandrug-
resistant (resistant to all agents in all classes of antimicrobial agents) [24] Candida 
auris among skin colonizers has raised alarm [25]. Mycelial fungi, which consisting of 
network of fine filaments known as hyphae, such as Aspergillus species are ubiquitous 
in nature and commonly cause respiratory disorders. Aspergillus species resistant to the 
azole class of antifungals are a serious threat, as azoles are first line of therapy against 
Aspergillus infection [26]. Another mycelial fungi, Trichophyton indotinea, which causes 
skin infection is spreading across the globe [27, 28].

Figure 1. 
Depicting the difference between intrinsic and acquired resistance. Microorganisms that are intrinsically resistant 
can propagate from the moment that they are exposed to the antimicrobial agent. Microorganisms can also acquire 
resistance during exposure to an antimicrobial agent through genetic and nongenetic mechanisms. Adapted from 
‘Intrinsic and acquired drug resistance’, by BioRender.com (2022). Retrieved from https://app.biorender.com/
biorender-templates.
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The emergence of AMR in high-income countries is mainly associated with use, 
misuse, and overuse of antibiotics in hospitals, agriculture, and communities [29]. 
Whereas in low- and middle-income countries unhygienic practices, contaminated 
water supplies, civil conflicts, and an increased number of immunocompromised 
patients (especially among HIV infections) are the main contributors to AMR [30]. 
Increased infections, and in turn increased use of antimicrobial agents, has imposed 
selection pressures that result in the retention of resistant strains. Identifying infec-
tious agents early helps clinicians to promptly choose the appropriate antimicrobial 
agent to treat the infection based on the intrinsic resistance profiles and local epide-
miology data on resistance [31]. Resistance profiling methods, such as culture-based 
and molecular biology-based methods, currently take up to 72 h from the time of 
sample collection. During this time, patients often receive broad-spectrum antibiot-
ics, which may lead to acquired resistance (Figure 1). Several novel strategies have 
been developed for rapid detection of AMR. However, most of these methods are 
based on molecular biology, immunology, biochemistry, and rapid culture techniques 
[32]. Importantly, the cost and the expertise involved in establishing and maintaining 
these techniques and related devices is often too high for many hospitals and institu-
tions, especially those in remote and impoverished communities.

Machine learning (ML) has been around for decades, as optical character recogni-
tion gained popularity during 1990s with its application as spam filters. A seminal 
paper by Geoffery Hinton in 2006 on recognizing handwritten digits using ‘deep learn-
ing’ (a ML technique implemented in artificial neural networks) rekindled interest 
in ML. Recently, during the 14th Critical Assessment of Protein Structure Prediction 
(CASP14) competition [33], a neural network based model called AlphaFold predicted 
protein structures with high accuracy (i.e., comparable to the experimental struc-
tures), outperforming other protein structural deduction methods [34]. Furthermore, 
deep learning is increasingly being applied to solve complex multidimensional prob-
lems, such as speech recognition [35] and image classification [36].

Machine learning is the application of advanced algorithms that enable a computer 
to ‘learn’ and generate predictive mathematical models from data. Arthur Samuel 
in 1959 described ML as ‘the field of study that gives computers the ability to learn 
without being explicitly programmed’ [37]. Tom Mitchell in 1997 provided a more 
engineer-oriented definition, when he stated that a ‘computer program is said to learn 
from experience E with respect to some task T and some performance measure P, if 
its performance on T, as measured by P, improves with experience E’ [38]. Machine 
learning can be divided into supervised, unsupervised, and reinforcement learning. In 
supervised learning, the ML model is trained using labeled datasets, with the resulting 
model being a function that can take new data and predict an output. To determine the 
reliability of the trained model, a test set of complete input/output data which was not 
used during training is employed to determine an unbiased estimate of model per-
formance. Whereas, in unsupervised learning, the training data are supplied without 
labels. Unsupervised learning algorithms find the similarity among data points and 
cluster them together. Reinforcement learning (RL) uses algorithms that learn from 
the accumulation of ‘rewards’ that a computational agent receives through interactions 
with its environment. Reinforcement learning, which is often combined with other ML 
methods such as deep neural networks, has led to some of the most successful artificial 
intelligence systems ever developed. These range from systems that beat human profes-
sionals in the game of Go [39] to systems that help control nuclear fusion reactions [40].

Recent advances in digitizing medical records and data generated in experiments 
have paved the way for ML applications in the fields of biology and medicine. Many 
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clinical trials are leveraging ML processes to improve the efficiency and quality of 
clinical research and pre-clinical drug development [41]. Machine learning is also 
being applied to assess the risk of developing sepsis based on patients’ clinical records 
[42]. Machine learning has also found applications at the cellular level. For instance, 
convolutional neural networks (CNNs) can predict the interactions of transcription 
factors and histones within chromosome structures, which in turn aids in analyzing 
genome architecture as well as gene regulation [43]. Other examples include using 
neural networks to identify the role of non-coding DNA in humans in regulating 
gene expression [44] and applying recurrent neural networks (RNNs) to characterize 
chromatin folding in Drosophila melanogaster [45]. Furthermore, the availability of 
large-scale high-throughput genomic and epigenomic data has led to several studies 
that have highlighted the potential applications of ML in the field of genomics [46] as 
well as non-coding RNAs [47]. Machine learning has also been used to assist clinicians 
treating infectious diseases [48]. However, the use of ML in studying drug-resistant 
pathogens is less developed.

In this chapter, we first discuss the mechanisms of underlying bacterial and 
fungal AMR, followed by an overview of ML methods used to detect drug-resistant 
pathogens. We then highlight the application of ML in the discovery and design of 
antimicrobial drugs. Finally, we present the challenges and prospects of applying ML 
to AMR research and drug development.

2. Mechanisms of antibiotic resistance

The major burden of AMR in hospital settings is due to bacteria and fungi. 
Antimicrobial resistance can be classified into different types, including ‘intrinsic 
resistance’ and ‘acquired resistance’ (Figure 1) [49]. Intrinsic resistance occurs when 
bacteria or fungi are naturally resistant to an AMR drug or to a class of AMR drugs 
[50]. Bacteria and fungi which were previously susceptible to an antimicrobial drug 
can acquire resistance, for instance, by modifying the target site of the drug or by 
gaining a resistance mutation (Figure 1). In these scenarios, the microorganism 
develops resistance post-exposure to the drug. Whereas, if the microorganism does 
not have a target site for the drug or has a preexisting resistance mutation, then it 
is classified as intrinsically resistant. Other forms of AMR exist, such as ‘clinical 
resistance’, whereby a microorganism is susceptible to a drug in-vitro, but the drug is 
ineffective against the same microorganism in in-vivo. Clinical resistance can occur in 
a patient due to pharmacokinetic and pharmacodynamic factors.

Another aspect of AMR is ‘persistence’ and ‘tolerance’, which are phenomena that 
allow non-growing or slow growing bacterial and yeast pathogens to survive antimi-
crobial treatment [51, 52]. In the case of genetic resistance to a drug, all the progeny 
of the resistant microorganism stably inherit resistance to the drug (Figure 1). 
Whereas persistence occurs when a small fraction of a clonal bacterial population is 
resistant to an antibiotic, but the persistent cells do not harbor resistance mutations or 
genes. Rather, these persister cells are in a stationary or dormant phase, which reduces 
the effectiveness of antibiotics that target growth processes [53–55]. Antibiotic 
persistence is a heterogenous response of a bacterial population to an antibiotic and 
causes a delay in the clearance of the infection [56]. In contrast, tolerant cells require 
more time to be affected by an antimicrobial drug compared to susceptible cells [56]. 
Systemic infections due to persistent and tolerant organisms lead to higher mortality 
rates compared to infections caused by susceptible microorganisms [57]. Nongenetic 
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drug resistance is another form of AMR. Nongenetically drug-resistant phenotypes 
can be found in clonal cell populations [58] and results from genetically identical cells 
differentially expressing genes that confer resistance, along with various epigenetic 
mechanisms [59, 60].

Bacteria and fungi belong to different kingdoms, have differences in cellular 
components, and antibacterial and antifungal agents target different sites. Despite 
this, there are similarities between the AMR agents that are used to treat antifungal 
and antibacterial infections. For instance, cell wall inhibitors of bacteria target 
peptidoglycan, an important component of the bacterial cell wall, whereas some 
antifungal agents inhibit ergosterol, an important component of fungal cell mem-
brane. Antibacterial agents have diverse mechanisms of action, including inhibiting 
cell wall synthesis, depolarizing cell membranes, as well as inhibiting of protein 
synthesis, nucleic acid synthesis, and metabolic pathways (Table 1) [61]. However, 
in contrast to many antibacterial agents, antifungal analogues for protein inhibitors, 
topoisomerase inhibitors, and metabolic pathways inhibitors are not available. Only 
a limited number of antifungal agents are available that target ergosterol synthesis, 
cell membrane integrity, glucan synthase, nucleic acid synthesis, and the squalene 
epoxidase enzyme.

2.1 Antibacterial resistance mechanisms

The main mechanisms of antibiotic resistance among bacteria are (i) limiting 
uptake of a drug; (ii) modifying a drug target; (iii) inactivating a drug; and (iv) 
active drug efflux (Figure 2a). Limiting uptake due to natural permeability barriers 
imposed by the cell membrane, drug inactivation by antibiotic inactivating enzymes, 
and drug efflux resulting non-specific protein efflux pumps are mechanisms of 
intrinsic resistance. Whereas the transfer of genes between bacteria that encode drug 
efflux pumps or enzymes that inactivate antibiotics, as well as drug target modifica-
tions, are acquired resistance mechanisms. Antibiotic resistance mechanisms differ 
between gram-negative and gram-positive bacteria due to differences in their cell wall 
composition. Gram-negative bacteria employ all the drug resistance mechanisms, 
whereas gram-positive bacteria mainly limit the uptake of a drug [62]. Due to the 
hydrophobic nature of the cell wall, many of the hydrophilic antibiotic cannot bind 
to the cell wall and the high lipid content among mycobacteria restricts the entry of 
hydrophilic antibiotics [63]. However, porin channels found within the cell mem-
brane allow certain hydrophilic antibiotics to enter the cell. Modifications to these 
porin channels limits drug uptake [64]. Mutations in the gene responsible for porin 
proteins alter the selectivity of hydrophilic drugs [65]. Drug intake is also restricted 
by the thickening of cell wall [63]. Another widely observed phenomenon that 
restricts drug uptake is the formation of bacterial and fungal biofilms. The thick outer 
layer of a biofilm is composed of extracellular polymeric substances and is impen-
etrable to many antimicrobial drugs [66].

Antibiotics target multiple cellular components and bacteria can modify these 
targets leading to AMR. One of the major targets is the cell wall, which is commonly 
targeted by ß-lactam drugs, specifically among gram positive bacteria. Resistance to 
ß-lactam antibiotics results from modifications in the cell wall structures as well as 
a number of penicillin-binding-proteins [67]. Bacteria can alter the precursor of the 
target by mutating the gene responsible for these precursors, eventually leading to an 
altered target site. This results in the antibiotic failing to bind to the target site [68]. 
Ribosomes are also commonly targeted by antibiotics to inhibit protein synthesis. 
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Mutations in the ribosomal gene leading to the protection of the ribosomes and meth-
ylation of the ribosomal subunits lower the binding affinity of antibiotics, leading to 
resistance [69]. Similarly, modifications in the DNA gyrase or topoisomerase enzyme, 

Figure 2. 
Mechanisms of action of antimicrobial drugs in bacteria and fungi. (a) Effect of antibacterial drugs on bacterial 
cellular components and the corresponding resistance mechanism developed by bacteria. Created with Bio-Render.
com. (b) Effect of antifungal drugs on fungal cellular components and the resistant mechanisms developed by the 
fungi. Adapted from “Antimicrobial Therapy Strategies”, by BioRender.com (2022). Retrieved from https://app.
biorender.com/biorender-templates.
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nucleic acid synthesis inhibitors fail to bind to these enzymes [70]. Drugs that inhibit 
metabolic pathways inhibit important metabolic byproducts that are essential for 
bacterial survival. These antibiotics competitively bind to the active sites of enzymes 
responsible for the synthesis essential metabolites. Mutations in the gene responsible 
for these enzymes restricts antibiotics from binding [71]. Another mechanism of AMR 
is the inactivation of the drug by the pathogens. Degrading or transferring a chemical 
group to the antibiotics modifies its structure and affinity towards the target [72]. 
Efflux pumps remove toxic substances from the bacterial cell; some efflux pumps are 
constitutively expressed and others are induced or overexpressed in the presence of 
antibiotics. There are majorly five families of efflux pumps depending on the energy 
source they utilize and their structure [64]. Namely, the ATP-binding cassette (ABC) 
family, the multidrug and toxic compound extrusion family, the small multidrug resis-
tance family, the major facilitator superfamily (MFC), and the resistance-nodulation-
cell division family. The majority of the bacteria resistant to antibiotics overexpress 
efflux pumps from one of these families during antibiotics exposure [73].

2.2 Antifungal resistance mechanisms

Antifungal resistance mechanisms are not as extensively studied as antibacterial 
resistance mechanisms. Several factors including immunosuppressive treatments, 
indiscriminate use of broad-spectrum antibiotics, and immune suppressive diseases 
like HIV led to a surge in fungal infections during 1970s and 1980s [74]. Antifungal 
drugs including imidazoles and azoles were subsequently approved during late 1980s 
and 1990. Extensive use, misuse, and overuse of these antifungal drugs since then 
have led to the emergence of AMR in fungal pathogens. Determining if a fungal 
isolate is resistant is based on the minimum inhibitory concentration (MIC) of the 
antifungal drug. The MIC of a fungus isolated from a clinical sample informs the 
decision on the appropriate course of antifungal therapy.

Currently three major classes of anti-fungal drugs used for treating systemic fungal 
infections. Namely, azoles (itraconazole, voriconazole, posaconazole, and isavuco-
nazole), polyenes (amphotericin B) and echinocandins (caspofungin, micafungin, 
and anidulafungin) (Table 1). The limited number of classes of antifungal drugs and 
AMR in fungi restricts treatment options. The emergence of MDR fungal species 
further hinders treatment options. Azoles target ergosterol biosynthetic pathway, as 
ergosterol is necessary in the cell membrane to maintain the stability, permeability 
and the activity of membrane bound enzymes (Figure 2b) [75]. The substitution of an 
amino acid in the binding site of the enzyme is a common mechanism of azole resis-
tance among Candida species. Overexpression of ERG11 gene is also common among 
azole-resistant strains [76]. Furthermore, the overexpression of drug targets decreases 
the effectiveness of a drug, as more drug is required for inhibition [77]. Like bacterial 
efflux pumps, fungi have two main membrane associated efflux pumps superfamilies, 
the ABC superfamily and the MFC superfamily. Overexpression of Candida drug 
resistance (CDR) genes such as CDR1 and CDR2 of the ABC superfamily lead to the 
efflux of azoles and decreased drug accumulation [78, 79]. Gain-of-function muta-
tion in the gene responsible for a transcription factor UPC2 leads to upregulation 
of many ergosterol biosynthesis genes, conferring azole resistance [80]. Another 
transcription factor TAC1 regulates the activity of efflux pumps in Candida species. 
TAC1 is responsible for upregulation of CDR1 and CDR2 in the presence of azoles 
[81]. Chromosomal abnormalities and mitochondrial defects also contribute to azole 
resistance [82, 83]. Stress response pathways related to the heat shock protein Hsp90 
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provide critical strategies for the survival in the presence azoles leading to resistance 
[84]. Echinocandin resistance is mainly due to mutations in the FKS gene. FKS gene is 
responsible for the synthesis of glucan synthase enzyme involved in the synthesis of 
ß-glucan in the fungal cell wall [85, 86]. In certain cases, echinocandin induces chitin 
synthesis via protein kinase-C, high osmolarity glycerol, and calcineurin pathways 
[87] by activating two chitin synthases (Chs2 and Chs8) [88], leading to masked target 
sites. Polyene resistance in fungal pathogens is less understood because of its various 
mechanisms of action on the fungal cell. Polyenes act on the fungal cell membrane by 
interacting with ergosterol and impairs the membrane barrier function [89]. Polyene 
resistance is mainly attributed to the alterations in the sterol content of the cell mem-
brane, a defense mechanism developed against oxidative stress created by the drug and 
reorientation of ergosterol structures within the cell membrane [90]. Furthermore, 
Candida species harboring mutations in the ERG3 and ERG6 genes exhibited polyene 
resistance [91]. However, increased catalase activity by the fungal cell also reduces the 
oxidative stress imparted by the amphotericin leading to resistance [92]. Polyene and 
azole resistance in combination has been reported among Candida species as well as 
Cryptococcus neoformans, and has mostly been attributed to the reduction of ergosterol 
in the cell membrane and accumulation of its intermediates [93].

Current methods for detecting AMR among the infecting pathogens take up to 
72 h from the time of sample collection. All the isolated bacterial and fungal patho-
gens must undergo standard antimicrobial susceptibility testing (AST) as recom-
mended by the European Committee on Antimicrobial Susceptibility Testing and 
the Clinical Laboratory Standards Institute [94, 95]. Early detection of the infecting 
pathogen along with its drug resistance profile are critical for initiating prompt 
antimicrobial therapy. However, several challenges are faced during this process, 
such identifying the pathogen, differentiating between commensal and pathogenic 
microorganisms in a clinical sample [96]. After successful isolation of the pathogen, 
a round of subculture must be performed so that contamination can be excluded 
before commencing AST. Microbroth dilution and disk diffusion AST methods can 
get delayed due to contamination, leading to delays in initiating the appropriate 
antimicrobial therapy. Several new technologies and methods are being used for 
early and rapid detection of AMR. For example, technologies based on nucleic acid 
amplification, hybridization, microscopy, electrochemical, mass spectroscopy, and 
nanotechnology [97, 98]. However, these methods require sophisticated instruments, 
expertise, and expensive consumables restricts their deployment in low-income 
countries. Point-of-care tests (POCTs) used at patient bedsides are now being used to 
determine AMR; POCTs can be also used among outpatients. Some types of POCTs 
like microscopy stations, single molecule biosensors, and microfluidic platforms 
are being tested [99, 100]. The drawbacks of POCTs, including small sample size, 
lack of internal standards, and their inability to detect nongenetic forms of AMR 
resistance still need to be resolved. More advanced methods such as ML approaches 
to detect AMR could further reduce turn-around times and could be deployed across 
diagnostic laboratories. Machine learning methods can be also applied to detect 
certain features that are present in resistant bacteria and fungi, but absent in sensitive 
isolates, which the human eye or other diagnostic technologies may fail to recognize 
[101]. For instance, real-time high-throughput screening of modified proteins within 
the resistant isolates [102] has been less explored and is an ideal application for ML 
methods. The application of ML methods (Section 3) may lead to a deeper under-
standing of AMR mechanisms, which in turn could lead to rapidly detecting AMR 
pathogens in patients (Section 4) and to developing new drugs (Section 5).
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3. Machine learning basics

Machine learning enables us to investigate and draw conclusions from information 
contained in data that would otherwise be inaccessible to humans. Problems that benefit 
from the application of ML are endless, but they have a few defining features [103]. First, 
the problem may have a known solution, but converting it into a computer program is 
not feasible or requires extensive resources. For example, humans can easily identify 
a dog within a group of other four-legged animals but writing a computer program to 
explicitly describe all possible aspects of a dog and its differences to other similar animals 
would be error prone and practically infeasible. On the other hand, training a ML 
algorithm to identify a dog may only take a few lines of code, given modern ML software 
tools. Second, complex problems where traditional methods have failed to identify a 
solution may benefit from the use of ML algorithms (Figures 3 and 4), such as the use 
of deep learning systems to master the game of Go [104] or to make highly accurate 
predictions of protein structure [34]. Not only does this enable the use of the resulting 
ML model in practical applications, but it can also guide researchers towards a deeper 
understanding of the system they are studying. For instance, ML can guide mathemati-
cians by finding patterns and relations between mathematical objects that can lead to the 
formation of new conjectures and theorems [105].

Although the defining feature of all ML approaches is to learn from a given 
dataset, ML techniques can be separated into three broad categories based on the 
amount of human input: Supervised learning, unsupervised learning, and reinforce-
ment learning [103, 106–108]. Each of these approaches have their own concepts, 
techniques, and areas of applicability, with the differences between them not always 
clear. Nonetheless, these categories are useful to provide a means to determine the 
best approach for a particular problem at hand. Understanding the available tools is 

Figure 3. 
A selection of common machine learning methods. (A) Linear regression model using a prediction line to 
distinguish the test dataset. (B) Logistic regression model using a threshold to distinguish the test dataset into two 
groups. (C) Random forest model using a visually generated decision tree for datapoints to estimate each samples 
outcome by voting. (D) Multilayer perceptron architecture consisting of an input layer, multiple hidden layers, 
and an output layer.
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crucial for choosing the best ML technique to solve a particular problem. Although 
an extensive overview of each ML category is outside the scope of this chapter, we 
provide an overview of some of the common ML methods below.

3.1 Supervised learning

Supervised learning consists of algorithms that learn using a training set con-
sisting of labeled data [106]. The goal of supervised learning is to find a model for 
the relationship between the inputs (called ‘features’) and known outputs, which 
can then be used to predict outputs for future inputs, where the actual outputs are 
unknown. Supervised learning techniques can be separated into two categories, ‘clas-
sification’ and ‘regression’ [109, 110].

Classification problems generally aim to classify future inputs into predefined 
categories through training on examples, where the inputs are labeled with their cor-
responding category [107]. Given enough quality training data, models created with 
classification techniques can provide accurate classification of future data, without 
requiring the details of the input data to be explicitly programed [103, 106–108]. For 
instance, a researcher may desire to have a computer take a microscopy image of a 
cell and return the name of the species, without requiring a human to identify the 
species. Using a training set of microscopy images for a variety of different species 
labeled with the name of the species, a classification model can be trained to learn 
the relationships between the visual aspects of the species and their labels. The 
model produced can then be used on unlabeled microscopy images to determine 
the species, saving researchers time and effort, along with producing a model that 
can be shared in the scientific community. Classification learning algorithms are 
not restricted to images; any form of data that can be separated into predefined 
categories can be fed into a classification learning algorithm for training to produce a 
classifier model [107, 108].

Figure 4. 
The machine learning pipeline. This pipeline consists of data originating from different biological experiments, 
preprocessing steps for cleaning the data, along with the feature extraction process. Machine learning methods 
are then applied to the clean data by dividing this data into training, testing, and validation sets. ‘MALDI TOF’ 
stands for ‘matrix assisted laser desorption ionization time of flight’, ‘LR’ for ‘logistic regression, ‘CNN’ for 
‘convoluted neural network, ‘SVM’ for ‘support vector machine’, and ‘RF’ for ‘random forest’.



The Global Antimicrobial Resistance Epidemic – Innovative Approaches and Cutting-Edge Solutions

12

While classification methods aim to predict discrete class labels for inputs, regres-
sion methods aim to predict continuous numerical values for given numerical inputs 
[107, 108]. Regression techniques also learn from training data containing inputs and 
outputs, but in this case the data consists of numerical inputs and their correspond-
ing numerical outputs, with the resulting model being a continuous mathematical 
relationship between inputs (independent variables) and outputs (dependent 
variables) [107]. The resulting model can then be provided with future inputs to 
make numerical predictions. For example, a researcher may be interested in finding a 
mathematical relationship between the inputs of an experiment (e.g., preset voltages) 
and the corresponding outputs they detect (e.g., electrical currents), for systems 
where theory is unable to make accurate predictions. By training a regression model 
on a large amount of set inputs and detected outputs, the researcher may be able to 
find a model that accurately predicts numerical outputs when given future inputs. 
Not only is this useful in a practical sense, but the resulting model can also be used 
to guide fundamental research by providing an accurate mathematical and physical 
relationships that can be further analyzed and understood in terms of theoretical 
ideas [105, 111].

Through extensive research on supervised learning, many different learning 
algorithms for classification and regression have been developed and programmed into 
readily available software packages. Linear regression, logistic regression [107, 108], 
support vector machines (SVMs) [112], decision trees and random forests [113] and 
most artificial neural networks [114] are some examples of supervised learning sys-
tems, each having their own advantages and disadvantages.

3.2 Unsupervised learning

Unsupervised learning methods, unlike supervised learning, attempt to learn 
from unlabeled data [115]. This often takes the form of data clustering, but other 
methods such as anomaly detection and dimensionality reduction also fall under this 
category [107, 108]. Clustering algorithms attempt to separate unlabeled data into 
groups with similar components, which can be useful for extracting information 
from high-dimensional data, which is often infeasible for a human to do. Anomaly 
detection involves finding anomalous outliers in large datasets by comparing data 
points to learned patterns, which can be helpful when working with noisy experi-
mental data [116, 117]. Dimensionality reduction methods attempt to simplify 
high-dimensional data without losing important information, making the analysis 
and use of such data easier [118, 119]. Unsupervised learning methods can also be 
combined with supervised learning, referred to as ‘semi-supervised’ learning, to 
learn from data that is partially labeled [120, 121]. This is useful when working with 
large amounts of data, where labeling every data point is infeasible. Some examples 
of unsupervised learning methods include k-means clustering [122, 123], hierarchi-
cal clustering [124, 125], DBSCAN [126], isolation forests [127], principal compo-
nent analysis [128], autoencoders [107, 108], locally linear embedding [129], and 
expectation-maximization algorithms [130].

3.3 Reinforcement learning

Reinforcement learning approaches rely on the idea of learning from ‘rewards’ 
obtained through interactions with an environment [131]. Reinforcement learning 
problems are formulated as a discrete-time stochastic control processes known as 
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‘Markov decision processes’, with the goal of training a computational system (or 
‘agent’) to determine the best strategy (or ‘policy’) for reaching a defined goal [132]. 
The environment is defined by ‘states’ that the agent can be in, while the agent is able 
to perform certain ‘actions’ to interact with the environment. As the agent interacts 
with its environment, numerical values called rewards that model performance are 
collected for performing certain actions [132]. The goal of the agent is then to maxi-
mize these rewards (using sophisticated statistical methods) by learning the best 
policy for making decisions in particular situations through repeated interactions 
with its environment [132]. For example, a reinforcement learning system may be 
programmed into a cleaning robot to maximize the amount of cleaning it can do while 
still being able to return to its charging station. In this case, a positive reward would 
be given for picking up trash, while a negative reward would be given for letting its 
battery die without reaching the charging station. Using reinforcement learning 
methods, the robot can learn to optimize its own behavior through repeated experi-
ence with its environment.

3.4 Validating machine learning models

To ensure the model created using ML is accurate it must be validated on data 
independent of the training set [103, 106–108, 133]. Applying the trained model 
directly to a certain problem is one method of testing, but this is often impractical 
for real-world applications where model performance matters. The usual method of 
validation is to split the initial dataset into training and testing sets, where the model 
is trained on the training set and its accuracy is determined by comparing its predic-
tions using the testing set inputs to the true outputs from the test set [107, 108]. This 
analysis provides the ‘generalization error’ estimate of the model, which is used to 
determine whether the model is accurate, and the errors associated with using the 
model on new data [107]. Many different metrics are used to determine the general-
ization error, such as the root mean square error or false-positive/false-negative rates 
[103, 107, 108], and the choice of method depends on the problem and the learning 
algorithm. Through iterative training and testing cycles, model performance is 
improved until a satisfactory accuracy is achieved.

A major issue when using ML is overfitting the model to the training set  
[103, 106–108, 133]. This corresponds to the case where the ‘training error’ (i.e., how 
well the model matches the training data) is low, but the generalization error (i.e., 
how well the model can predict outcome values for previously unseen data) is high 
[107, 108]. This is a common occurrence, especially when using models that are more 
complex than the actual relationships contained in the data. For example, if the actual 
relationship between inputs and outputs is linear but we attempt to fit a third-degree 
polynomial to the data, we may produce a model that passes through each of the 
training set data points exactly (low training error) but cannot generalize to data 
outside of the training set (high generalization error). Avoiding overfitting (as well 
as underfitting) requires the use of appropriate training and validation methods to 
determine model performance before deploying a trained ML model. The quantity 
of training data is also important. A lack of training data can lead to inaccurate or 
biased predictions. The amount of data required to create accurate models ultimately 
depends on the problem and ML method being used [103, 106–108, 133].

During the testing stage, it is important to tune the ‘hyperparameters’ of the 
model to improve training accuracy [103, 106–108, 133–135]. Hyperparameters refer 
to the parameters that are not being learned, such as gradient time steps or data batch 
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size. Many cross-validation techniques for hyperparameter tuning are available, such 
as k-fold cross validation [135], and can be implemented directly in ML software 
packages. It is also often necessary for datasets to be pre-processed before applying 
ML techniques [136]. Pre-processing is application/software dependent and involves 
converting the collected data into data structures that can be read by the ML algo-
rithm/software package being used.

3.5 Machine learning software

The extensive and increasing use of ML in industry and scientific research has led 
to the development of many tools for applying ML techniques quickly and accurately. 
With almost every well-established ML algorithm being implemented in free dedi-
cated software packages, deploying a ML solution has in some cases become as simple 
as writing a few lines of code. Although the researcher must determine whether their 
problem may benefit from the application of ML, the availability of extensively tested 
and optimized tools to apply ML has made doing so much easier once the relevant 
data has been collected and organized.

Python is currently the most used programming language for ML, as it contains 
well-developed and optimized ML libraries. However, other languages such as Julia 
are also becoming popular with ML researchers. Below is a list of some of the free 
software packages used for ML applications, along with the programming languages 
they can be used with.

• TensorFlow (https://www.tensorflow.org/) [137]. Developed by Google, 
TensorFlow can be used with a variety of programming languages, including 
Python, C++, Julia, and Java.

• Keras (https://keras.io/) [138]. Keras is a widely used, user-friendly Python 
interface for the TensorFlow library.

• Scikit-learn (https://scikit-learn.org/) [139]. Scikit-learn is a Python library that 
contains many ML algorithms, optimized for Python data structures. Wrappers 
to use Scikit-learn with other programming languages, such as Julia, are also 
available.

• PyTorch (https://pytorch.org/) [140]. Developed by Facebook, PyTorch is a ML 
framework primarily for Python, but it also has a C++ version.

4. Machine learning for detecting drug resistance

Over the last decade, an increase in AMR has occurred across the world. At the 
same time, ML methods have been successfully applied in numerous scientific fields. 
The availability of large datasets from whole genome sequencing (WGS), matrix 
assisted laser desorption ionization time of flight mass spectroscopy (MALDI TOF 
MS), transcriptional response to antibiotics and proteome profiles have facilitated 
the application of ML algorithms to detect AMR. Specifically, ML methods have been 
used to detect AMR in bacterial and fungal pathogens based on the data obtained 
from WGS and MALDI TOF MS (Figure 4) [102, 141–143]. Reduced genomic 
sequencing cost and high-throughput data from WGS has enabled application of 
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ML methods to sequence data. A few studies have utilized genome sequencing data 
to predict resistance phenotypes among bacterial pathogens using ML methods 
[144–149]. A ML method called ‘adaptive boosting’ was employed to detect car-
bapenem resistance in A. baumannii, MRSA, and beta-lactam and co-trimoxazole 
resistance in S. pneumoniae with accuracies ranging from 88 to 99% [145]. Similarly, 
another ML method called ‘gradient-boosting’ was able to detect MIC in K. pneu-
moniae against 20 antibiotics [146]. A software package called ‘Mykrobe predictor’ 
detected resistance in S. aureus and Mycobacterium tuberculosis against 12 antibiotics 
[147]. These models were able to classify the pathogens as either resistant or sensi-
tive, however, the features used by the algorithm to classify them are not known. In 
this regard, classification and regression trees (CART) and set covering machines 
(SCM) models were employed to detect resistance among 12 bacterial species against 
56 antibiotic combinations. Both CART and SET are rule-based learning algorithms, 
which helped to interpret the resistance mechanisms by identifying the presence or 
absence of ‘k-mers’ (all of a gene sequence’s subsequences of length k). These type of 
methods help to interpret the model’s results based on the features it has used, thus 
overcoming the ‘interpretability problem’ (i.e., non-availability of data or features 
used to reach the conclusion by the ML method) [150]. MALDI TOF MS is being 
extensively used for identifying bacteria and fungi in diagnostic laboratory across the 
world. The fluconazole resistance in C. albicans was detected using three ML meth-
ods (Random Forest, Logistic regression and Linear discriminant analysis (LDA)) 
using spectral data. Of these three models, authors found that LDA was most robust 
method in detecting AMR with the accuracy, sensitivity, and specificity of 85.7%, 
88.9%, and 83.3% respectively. Furthermore, another study employed the MALDI 
TOF spectral data from S. aureus, E. coli, and K. pneumoniae to predict the resistance 
phenotype. They used multilayer perceptron and gradient boost methods to get an 
area under receiver operator curve (AUROC) of 0.80, 0.74, and 0.74 [102]. AUROC is 
the metric used to measure the accuracy of the ML model in predicting the label (in 
this case, sensitive or resistant). A few studies have utilized patient data to predict if 
patients could develop resistant infections along with suitable therapies based on the 
local epidemiology of the pathogens. Microsoft’s Azure ML algorithm determined the 
appropriate therapy based on patient demographic data and the resistance profiles 
of previously isolated microorganisms [151]. Another study applied ML methods to 
patients’ medical records to predict antibiotic resistance against five antibiotics [152]. 
Patient demographic data and previous clinical and antibiotic history was used to 
predict AMR in pathogens isolated from urinary tract infection, such that the appro-
priate antibiotic could be prescribed [153].

5. Machine learning in drug design and drug discovery

The success rate of a potential therapeutic drug is extremely very low. Between 
2000 and 2015, the success rate of drug development in oncology alone was as low as 
3.4% [154]. Drug discovery involves various steps from target identification, optimi-
zation, validation, and hit discovery [155]. Machine learning is being implemented in 
the drug discovery process, from identifying the potential molecules or compounds 
against a particular disease to clinical trials [156]. A new drug, from its discovery 
through to clinical trials, involves huge cost (approximately 2.5 billion USD) and may 
take up to 10–15 years to come to market [157, 158]. The advent of high-throughput 
screening methods and the associated ‘omics’ data, along with the computer-assisted 
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drug design (CADD) technologies, encouraged pharmaceutical companies to focus on 
leveraging ML methods to identify potential drug targets as well as new drugs. These 
in-silico methods not only provide the molecular properties of the potential drug 
molecules, but they also have an impact on the attrition rate in the drug discovery 
pipeline, especially in pre-clinical experiments.

The first step in the drug discovery is to associate the target with the disease of 
interest. Here, it is hypothesized that inhibiting or modifying the target results in the 
alleviation of the disease. Machine learning has been applied to find the target using 
protein-protein, transcriptional, and metabolic interactions within cells and tissues. 
In this regard, semi-supervised learning models based on drug-protein interaction 
network information, chemical structures and genomic sequence data were able 
to predicted drug-protein interactions on enzyme, ion channel, GPCR (G protein 
coupled receptor), and nuclear receptor datasets [159]. A decision tree-based meta-
classifier was employed to predict genes based on the aforementioned interactions 
that are associated with morbidity and that can be used as targets [160]. Similarly, 
a SVM model was able to classify proteins as drug targets and non-drug targets, for 
breast, pancreatic, and ovarian cancers [156]. In this study, after predicting multiple 
targets, two of the predicted targets were validated using peptide inhibitors, which 
had antiproliferative activity on cell culture models. Other studies have utilized ML 
methods for identifying drug targets, including for Huntington’s disease [161]. The 
drug-protein interaction (DPI) databases consist of drugs that interact with therapeu-
tic protein targets. However, these drugs might interact with the non-target proteins 
in-vivo, leading to side-effects or toxicity. Furthermore, knowledge on the drug and 
non-target interaction is limited. To address this knowledge gap, a study used a pool 
of 35 ML methods to predict DPIs based on the similarities between drugs and protein 
targets [162].

Support vector machines have been extensively used in drug development. The 
SVM method has been applied to raw data to predict the radiation protection function 
and toxicity for radioprotectors targeting p53 [163]. A regression-SVM model was 
used to assess target-ligand interactions [164]. Support vector machines were also 
able to predict the ‘druggability’ based on the structure of target [165] and have been 
used for other applications such as identifying drug-target interaction [109], cancer 
cell properties, drug resistance [110], selection of therapeutic compounds from 
public database [166], predicting properties of organic compound [167], designing 
new ligands [168], and virtual screening [169]. Random forest algorithms have been 
used to improve scoring function performance in ligand-protein binding affinity 
[169]. Random forest approaches have also been used to select molecular descriptors 
to achieve better accuracy for the compounds designed for drugs used in immune 
network technology [170]. Multilayer perceptron (MLP) algorithm is another ML 
approach that has been mainly used to generate compounds automatically for de novo 
drug design [171]. Yavuz et al. used MLP approach to predict the secondary struc-
ture of the proteins, which are used in drug design [133]. Deep learning approaches 
such as deep neural networks (DNNs), CNNs, RNNs, and autoencoders have been 
exploited in the drug discovery process. Deep learning algorithms increase the 
prediction performance on quantitative structure-activity relationship by retrieving 
feature extractions and capabilities in chemical characters automatically. ‘DeepChem’ 
is a multi-task neural network platform that helps in performing drug development 
process [172]. Convolutional neural networks have been utilized to predict affinities 
in protein-ligand binding [114, 173, 174]. Additionally, RNNs have been employed 
to virtually screen of molecular libraries to find anti-cancer agents via molecular 
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fingerprints [175]. Finally, autoencoders have been used to generate molecules in de 
novo drug design [176, 177].

Machine learning approaches have been used to discover antibiotics. Stokes et al. 
discovered an antibiotic from the ‘Drug Repurposing Hub’ called halicin. This drug is 
effective against E. coli, Clostridioides difficile, and pan-resistant Acinetobacter bahuma-
nii [178]. Machine learning methods can mine large databases of genes and metabolites 
to identify molecule types that may include novel antibiotics [179, 180]. Machine 
learning methods are also being applied to the databases such as ‘ChEMBL’, which 
contains 1.9 million compounds with biological activity against 12,500 targets [181], 
‘BindingDB’, which consists of 805,000 compounds with their binding affinities and 
7500 protein targets [182], and ‘AnitbioticDB’, which consists of 1100 compounds that 
are in different stage of development for therapeutic use [183]. Antimicrobial peptides 
(AMPs) are found in all classes of life and are an important component of the innate 
immune response. Xiao et al. used fuzzy k-nearest neighbor algorithm to identify and 
define the functions of AMPs [184]. Another study used a semi-supervised density-
based clustering algorithm model on linear AMPs that are active against gram-negative 
strains. Wang et al., applied four ML methods to discover new agents against MRSA. In 
this study, the authors derived in-silico models from 5451 cell-based anti-MRSA assay 
data using Bayesian, SVM, recursive partitioning, and k-nearest neighbor methods. By 
applying a ML approach to the ‘Guangdong Small molecule Tangible Library’ (which 
contains over 7500 small molecules), 56 hits were found, of which 12 novel anti-MRSA 
compounds were reported [185]. Targeting components in bacteria that are absent in 
humans can lead to new treatments against infections. DNA gyrase present in bacteria 
was targeted by Li et al. to discover anti-DNA gyrase compound using a ML approach 
[186]. In the same study, the authors also used in-vitro models to verify the virtual hits 
to check the hit activities against E. coli, MRSA, and other bacteria. Machine learn-
ing approaches have also been applied to discover antifungal drugs. For instance, a 
ML approach was employed to generate genome-wide gene essentiality predictions 
for C. albicans using a functional genomics resource named ‘Gene Replacement and 
Conditional Expression’ to identify three primary targets out of 866 genes. These three 
genes were involved in kinetochore function, mitochondrial integrity, and translation; 
glutaminyl-tRNA synthetase Gln4 was then identified as the target of N-pyrimidinyl-
β-thiophenylacrylamide, which is an antifungal compound [187]. Temporal convo-
lutional networks (TCNs) have been developed and deployed for antifungal peptide 
(AFP) prediction using deep learning models [188]. Similarly, Mousavizadegan  
et al. used pseudo amino acid composition to predict AFPs using a SVM algorithm 
[138]. Three peptides with highest prediction score were subsequently used in in-vitro 
assays. Sharma et al. proposed ‘Deep-AFPpred’, a deep learning classifier that predicts 
AFPs from protein sequence data [189].

6. Challenges and prospects

Antimicrobial resistance is an emerging global health crisis. As infectious micro-
organisms are evolving resistance through genetic and nongenetic mechanisms, 
new methods are required to rapidly diagnose and treat drug-resistant infections. 
The recent discovery of novel forms of AMR, including tolerance, persistence, and 
nongenetic resistance highlights the ingenuity of pathogenic microorganisms as well 
as the multifaceted nature of this problem. Digitization of clinical records presents 
opportunities for leveraging ML methods for fast and accurate identification of resistant 
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microorganisms. However, applying ML methods to detect AMR is still in the nascent 
stage. Importantly, the quantity and quality of the data required to detect resistance 
among bacteria and fungi are still limited. Furthermore, ML models currently used 
elsewhere require optimization to successfully detect AMR. Advancement in the areas 
of laboratory diagnosis of infectious agents and sharing of data across different centers 
could pave the way forward for using ML methods identify and detecting drug-resistant 
microorganisms.

Machine learning has played an important role in the discovery of drugs by 
identifying novel drug targets and drug molecules. Several new drugs discovered 
using ML methods have been successful in clinical trials after spending comparatively 
less time in the drug discovery pipeline. Though ML methods are proving to useful in 
drug design and drug discovery, several challenges still exist. For instance, the absence 
of sufficient training data as well as biased, faulty, or noisy training data results in 
poor ML model predictions. To address this, methods to remove outliers, and filter 
out unwanted features are being developed to increase the predictive power of ML 
models.

Another issue is that ML algorithms employ a ‘black box’ approach to train ML 
models. Specifically, how the features are being interpreted during each stage of the 
training to come to an accurate prediction is largely still not understood. An area 
of research called explainable artificial intelligence (XAI) has emerged to address 
this issue. XAI consists of processes and methods that help the human users to 
comprehend the results generated by ML algorithms. Also, XAI helps to characterize 
the model accuracy, transparency, and outcomes [190]. Applying XAI in the field 
of AMR research may lead to the discovery of novel resistance mechanisms. Finally, 
the heterogeneity of many databases restricts the incorporation of ML algorithms to 
these databases. However, the data on disease, drug compounds, and AMR mecha-
nisms are growing day-by-day, leading to the continuous curation of ML models. 
Other challenges for deploying ML algorithms include cross-platform normaliza-
tion, statistical issues, and the division of testing datasets. Many of these issues may 
be resolved through sophisticated data preprocessing methods. Importantly, these 
data and interpretability issues will need to be resolved before ML methods are more 
widely adopted in scientific research and trusted in clinical settings.
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