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Abstract 

Fungal infections, especially due to Candida species, are on the rise. Multi-drug resistant organisms such as Candida auris are difficult and 
time consuming to identify accurately. Machine learning is increasingly being used in health care, especially in medical imaging. In this study, 
w e e v aluated the effectiv eness of six con v olutional neural netw orks (CNNs) to identify four clinically important Candida species. Wet-mounted 
images were captured using bright field live-cell microscopy followed by separating single-cells, budding-cells, and cell-group images which were 
then subjected to different machine learning algorithms (custom CNN, VGG16, ResNet50, InceptionV3, EfficientNetB0, and EfficientNetB7) to 
learn and predict Candida species. Among the six algorithms tested, the InceptionV3 model performed best in predicting Candida species 
from microscopy images. All models performed poorly on raw images obtained directly from the microscope. The performance of all models 
increased when trained on single and budding cell images. The InceptionV3 model identified budding cells of C. albicans, C. auris , C. glabrata 
( Nakaseom y ces glabrata ), and C. haemulonii in 97.0%, 74.0%, 68.0%, and 66.0% cases, respectively. For single cells of C. albicans, C. auris , 
C. glabrata , and C. haemulonii InceptionV3 identified 97.0%, 73.0%, 69.0%, and 73.0% cases, respectively. The sensitivity and specificity of 
InceptionV3 were 77.1% and 92.4%, respectively. Overall, this study provides proof of the concept that microscopy images from wet-mounted 
slides can be used to identify Candida yeast species using machine learning quickly and accurately. 

Lay summary 

Fungal infections due to Candida yeasts are increasing worldwide. Existing methods to identify these pathogens are difficult and time consuming. 
We find that machine learning can identify Candida species from images quickly and accurately, improving the diagnosis of infectious fungal 
diseases. 

Ke y w or ds: Candida species, deep neural networks, fungal infections, machine learning, medical AI diagnosis. 
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Introduction 

Fungi cause serious infections affecting more than one billion 

people of all ages across the globe and are responsible for 
approximately 1.6 million deaths per year.1 Candida species 
is the fourth leading agent to cause hospital-acquired blood- 
stream infections in USA 

2 , seventh in Europe,3 and affects 
250 000 people worldwide and causes 50 000 deaths every 
year.4 Candida species, commonly found as commensals in hu- 
man skin and mucosal surfaces, cause opportunistic infections 
when the immune system is impaired.5 The severity of the in- 
fection depends on the immune status of the individual, the 
infecting agent, and their virulence factors along with their 
ability to evade host factors.6 The mortality rate due to can- 
didemia ranges from 22% to 75%.7 

Nearly 90% of invasive Candida infections are caused by 
Candida albicans, C. glabrata (which has an alternate tax- 
onomic name of Nakaseomyces glabrata 8 ) , C. tropicalis, C.
parapsilosis, and C. krusei.9 Due to the limited antifungal 
treatment options to treat invasive infections,10 early diag- 
nosis and prompt antifungal therapy are critical for suc- 
cessful clinical outcomes. Candida auris has emerged as a 
multi-drug resistant pathogen causing hospital-acquired in- 
fections and outbreaks. First reported in Japan in 2009, C.
auris spread across the globe and recently the World Health 
Received: September 19, 2023. Revised: December 6, 2023. Accepted: December 
© The Author(s) 2023. Published by Oxford University Press on behalf of The In
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rganization declared this pathogen as a ‘critical priority’ 
athogen.11–13 Candida auris is commonly encountered in pro- 

onged hospitalized patients and is known to cause superficial 
o invasive bloodstream infections.14 The mortality rate due 
o this pathogenic yeast ranges from 30% to 60%.15 In some
ospitals in India, C. auris is the most isolated Candida species
rom blood culture.16 Previous studies indicate that C. auris 
xhibits increased minimum inhibitory concentrations (MICs) 
o all three major classes of antifungal drugs to treat invasive
nfections (i.e., azoles, polyenes, and echinocandins).17 Several 
tudies have reported that C. auris is often misidentified as C.
aemulonii , C. famata , C. sake , and Saccharomyces cerevisiae
y conventional laboratory methods (e.g., germ tube and car- 
ohydrate fermentation tests) as well as automated commer- 
ial methods (e.g., VITEK and matrix-assisted laser desorp- 
ion ionization-time of flight mass spectroscopy [MALDI-TOF 

S]) .18–20 Diagnostic-based antifungal treatments can reduce 
osts and shorten hospital stays compared to empirical treat- 
ents.21 Therefore, early detection of pathogenic Candida 

pecies can help improve patient outcomes and contain infec- 
ious fungal diseases. 

Another major problem in the diagnosis of candidiasis 
s the delay in turnaround time from conventional meth- 
ds. A few studies have utilized molecular techniques to 
19, 2023 
ternational Society for Human and Animal Mycology. All rights reserved. 
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Table 1. Clinical Candida species isolates used in this study and their Gen- 
Bank accession numbers. 

Species 
number Isolate 

GenBank accession 
number 

1 Candida albicans #1 OR490529 
2 C. albicans #2 OR490530 
3 C. albicans #3 OR490531 
4 C. albicans #4 OR490532 
5 C. albicans #5 OR490533 
6 C. auris #1 OP984814 
7 C. auris #2 OP984815 
8 C. auris #3 OP984816 
9 C. auris #4 OP984817 
10 C. auris #5 OP984818 
11 C. glabrata #1 OR490534 
12 C. glabrata #2 OR490535 
13 C. glabrata #3 OR490536 
14 C. glabrata #4 OR490537 
15 C. glabrata #5 OR490538 
16 C. haemulonii OR491713 
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educe the turnaround time for the diagnosis of Candida in-
ections. For example, Maaroufi et al.22 developed a real-time
olymerase chain reaction (PCR)-based assay for the early de-
ection and identification of commonly encountered Candida
pecies from simulated blood cultures. This method showed
igh efficiency as an adjunct to blood culture systems with a
hort turnaround time (1–2 h) compared to traditional meth-
ds. Farina et al.23 evaluated the performance of MALDI-TOF
S in identifying clinically relevant Candida species directly

rom positive blood cultures. They found that MALDI-TOF
S had a prediction accuracy of 90% compared to conven-

ional methods, with a much shorter turnaround time (12–24
). In addition to molecular methods, other techniques such as
eptide nucleic acid fluorescence in situ hybridization (PNA-
ISH),24 flow cytometry,25 and Raman spectroscopy 26 have
een explored in the context of rapidly identifying Candida
pecies. However, these methods require sophisticated instru-
ents (e.g., MALDI-TOF MS, DNA sequencer, etc.), exten-

ive laboratory expertise, or time-consuming preprocessing of
andida species. 
The ‘gold standard’ for the diagnosis of the invasive can-

idiasis has been elaborated by Mycoses Study Group Ed-
cation and Research Consortium group.27 In their consen-
us guidelines, four tests are stated to confirm the diagnosis
f invasive candidiasis: histopathology findings, positive cul-
ure from sterile site samples, detection of yeast from paraffin-
mbedded tissue samples, and blood culture positivity (most
mployed test). Other non-culture methods employed for the
iagnosis of the invasive candidiasis are beta- d -glucan,28 C. al-
icans germ tube antibody,29 nucleic acid amplification test
rom blood samples,30 and T2 Biosystems ( Candida panel)-
ased diagnostic tests.31 However, these non-culture methods
equire expensive equipment and extensive expertise, limit-
ng their usage in underdeveloped countries and in rural set-
ings.32 Identifying these infecting Candida species is crucial
ue to the high diversity among the genus and the possibility
f intrinsic and acquired resistance in some of these species.33 

he major drawback of these tests is their long turnaround
imes, which is approximately 72–96 h, leading to delays in
ntifungal treatment resulting in increased mortality.34 Anti-
ungal susceptibility testing takes an additional 48–72 h to
rovide the susceptibility profile of the infectious agent, fur-
her delaying antifungal therapy. 

Artificial Intelligence (AI) and machine learning (ML) are
ncreasingly being applied in health care, especially in med-
cal imaging for diagnosing diseases.35 , 36 Images acquired
ia ultrasound, computed tomography, and magnetic reso-
ance imaging, are being subjected to AI-computer-aided de-
ign (CAD) for diagnostic purposes in clinical practice. AI-
AD has shown superior or similar performance compared

o conventional diagnostic approaches for various diseases
ncluding ophthalmic diseases, respiratory diseases, and can-
ers.37 Deep learning is a form of AI with the capability
o increase the accuracy as well as rapidity of the diagno-
is through processing large medical image datasets, which
as been deemed impossible for human experts.38 Convolu-
ional neural networks (CNNs) can classify images and de-
ect objects in images.39 , 40 , 40–44 Deep learning has been used
n infectious disease surveillance, including in early-warning
ystems for disease surveillance,41 pathogen classification,42 

irby–Bauer disk diffusion assay interpretation (for bacte-
ia),43 nosocomial outbreak source identification,44 and risk

45 
ssessment. b
A limited number of studies have evaluated ML algorithms
o identify yeast species. Data generated from the Raman spec-
roscopy were used to train ML models to identify Candida
pecies.26 , 46 Another study used stained C. albicans images
rom cosmetic products to check for contamination.47 Deep
earning techniques have also been employed to capture C. al-
icans morphologies and explore their intermixing patterns.48 

ther studies have combined technologies such as PCR, mass
pectroscopy, molecular beacons, and laser-induced break-
own spectroscopy with machine to rapidly identify yeast
pecies.49–52 These tests may offer improved ‘sensitivity’ and
specificity’ 53 (see ‘Definitions’ section in supplementary ma-
erials) compared to traditional methods but require further
alidation before widespread implementation. 

In this study, we evaluate the efficiency of ML mod-
ls to identify four yeast species, namely C. albicans , C.
uris, C. glabrata ( N. glabrata ), and C. haemulonii . Wet-
ounted images are captured by bright-field live-cell mi-

roscopy. These microscopy images are then separated into
ingle-cell, budding-cell, and cell-group images, which are
sed to train and validate the ML models to identify Can-
ida species of pathogenic yeast. Specifically, we train, val-
date, and test deep neural network models to learn hierar-
hical representations from imaging data by stacking multiple
ayers of non-linear transformations. Overall, we find that ML
odels- (especially the InceptionV3 model) can extract rel-

vant features from the microscopy images to identify these
east species. 

aterial and methods 

trains, media, and growth conditions 

he US National Research Council’s guidelines for the Care
nd Use of Laboratory Animals were followed. Candida albi-
ans , C. auris, C. glabrata , and C. haemulonii isolates were ob-
ained from clinical samples from the Alberta Precision Lab-
ratories (APL)—Public Health Laboratory (ProvLab). All
trains and isolates (Table 1 ) were preserved in 25% glycerol
t -80 

◦C until further use. The strains and isolates were re-
ived by culturing from frozen stock on Sabouraud glucose
gar (SDA) plates (Millipore, Darmstadt, Germany) and incu-

◦
ated at 35 C for 48 h. Fresh subcultures were made on SDA 
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Figure 1: Images of Candida species captured using live-cell bright-field microscopy to train the machine learning models. (A) Raw microscopic image of 
Candida species visualized by wet-mount preparation after 24 h of growth and captured using an EVOS M70 0 0 microscope imaging system. (B) 
Microscopy image showing cell groups cropped from the raw image. (C) Image showing a single cell cropped from the raw image. (D) Image showing a 
budding cell cropped from the raw image. All these images were used in their original aspect ratio to train the deep neural network models; some of 
these images appear blurry here as they have been combined with others to form a montage. 
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agar plates and incubated at 35 

◦C for 24 h prior capturing 
high-resolution microscopy images (see ‘Data collection’ sec- 
tion in supplemental materials). 

DNA extractions, PCR, and sequencing 

All the clinical isolates were identified using MALDI- 
TOF MS 54 by the APL-ProvLab. Then internal tran- 
scribed spacer (ITS) region of ribosomal DNA sequencing 
was carried out to confirm the Candida species identity.
The primers ITS-5 (5’-GGAA GTAAAA GTCGTAA CAA GG- 
3’) and ITS-4 (5’-TCCTCCGCTT A TTGA T A TGC 3’) were 
used to amplify the ITS region (Integrated DNA Technolo- 
gies, Iowa, USA). Genomic DNA extraction was done using 
the phenol-chloroform-isoamyl alcohol method as previously 
described.55 The quality and quantity of the extracted DNA 

were measured using a microvolume μDrop Plate (Thermo 

Fisher Scientific, Mississauga, Canada). The template and 

the primers were mixed in concentrations of 7.5 ng/ μl lnd 

0.25 μM, respectively, to a final volume of 10 μl. Sanger se- 
quencing was then performed using a 3730 Genetic Analyzer 
(Thermo Fisher Scientific, Mississauga, Canada) at the Molec- 
ular Biology Services Unit at the University of Alberta. The 
resulting sequences were subjected to nucleotide BLAST anal- 
ysis,56 which revealed 100% similarity to the standard strains.
The isolates’ ITS sequences were submitted to National Cen- 
ter for Biotechnology Information (NCBI) with the accession 

number OR490529-OR490538 (Table 1 ). 

Data collection 

The isolated colonies of different Candida species grown on 

SDA medium for 24 h were utilized to prepare wet mount 
using normal saline (0.9%) on the microscopic slide (Fisher- 
brand, Pittsburg, USA) overlayed with the coverslips (size: 
22 mm, Fisherbrand, Pittsburg, USA). Raw images (1000 im- 
ages) for each species were captured using the EVOS M7000 

imaging system (Invitrogen, Thermo Fisher Scientific, Mas- 
sachusetts, USA) at 100x resolution. Coarse and fine adjust- 
ents were made to focus the cell on a single plane before cap-
uring the images. These raw images were further used to crop
ut single cells (1000 images), budding cells (1000 images),
nd cell groups (1000 images) (Figure 1 ). A total of 4000 im-
ges per species consisting of raw images, single cells, budding 
ells, and cell groups saved in different directories and labelled
ith the name of the species (T able 2 ). T est sets consisting of
00 images each of raw images, single cell, budding cell, and
ell groups for each species were acquired. This test set was
ot included either in the training or validation process. After
ach model was trained, a test set was used to evaluate model
erformance. 

reprocessing 

ll acquired microscopy images were scanned manually for 
orrupt or incomplete images, which were removed from the 
ataset. Images deemed problematic (e.g., images with scarce 
ells, out-of-focus, or blurred images, etc.) to the learning task
ere removed. The Python Programming Language and rele- 

ant packages (Numpy, Pandas, Matplotlib, Pillow, OpenCV,
ensorFlow, Keras, Scikit-learn, and scikit-image) were used 

or all preprocessing, simulation, and ML. All the images were
esized to be consistent with the neural network used.57 Then 

he pixels in the images were scaled to the [0 1] range. This
ormalization helps to stabilize the training process and en- 
ures that deep neural networks learn from similar intensity 
anges across different images.58 However, for the Inception 

L model images were rescaled to the pixel values from the
riginal range [0 255] to the range of [-1 1] or [-0.5 0.5]. Mean
ubtraction was done to subtract the mean red, green, and blue
RGB) value of the entire dataset from each image. Inception 

odels often include mean subtraction as part of their prepro- 
essing to center the data around zero, which aids in training
onvergence. Inception models have specific input size require- 
ents (299 × 299 pixels), whereas EfficientNetB0 requires 
ifferent image sizes (224 × 224 pixels). Images need to be
esized to a fixed input size that matches the ML model’s ar-

art/myad134_f1.eps
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Table 2. Size of the image datasets used for training, validating, and testing each model (custom CNN, InceptionV3, VGG16, ResNet50, EfficientNetB0, 
and EfficientNetB7) for four different Candida species. 

Type of image 
Number of 

images 
Images used for 
training (80%) 

Images used for 
validation 

(20%) 

Images used for 
testing (separate 

dataset) 

Raw images 4000 800 ( n = 4) 200 ( n = 4) 200 ( n = 4) 
Single cell 4000 800 ( n = 4) 200 ( n = 4) 200 ( n = 4) 
Budding cell 4000 800 ( n = 4) 200 ( n = 4) 200 ( n = 4) 
Cell groups 4000 800 ( n = 4) 200 ( n = 4) 200 ( n = 4) 
Different strains of Candida 
albicans ( n = 5) and C. 
glabrata ( n = 5), C. auris 
( n = 5) (SC and BC—100 each) 

3000 — — 1000 ( n = 3) 

Total images 19 000 12 800 3200 6200 

Note: A total of 16 000 images were used (1000 each of raw images, single-cell images, budding-cell images, and cell-group images for each species). Of these 
16 000 images 80% (12 800 images) were used for training and 20% (3200 images) were used for validation. A separate dataset consisting of 200 images 
for each image type (raw images, single-cell images, budding-cell images, and cell-group images) was used for testing the models (200 × 4 [4 image types] x 
4 [4 different Candida species] = 3200). Five different strains for each of Candida albicans, C. glabrata, and C. auris were tested for single-cell images (100 
images per strain, 500 images per species) and budding-cell images (100 images per strain and 500 images per species). SC denotes single-cell and BC denotes 
budding-cell images. 
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hitecture requirements. Rescaling the images helps to reduce
he impact of extreme pixel values and allows the network to
onverge faster.58 Furthermore, data augmentation techniques 
ere applied to artificially increase the diversity and quantity
f training data. All the training images were subjected to data
ugmentation to increase the size of the dataset as well as to
educe the bias. Some of the common data augmentation tech-
iques that we used were random rotations, translations, flips,
nd zooms. Data augmentation helps to reduce overfitting and
mproves the model’s ability to generalize to unseen data.59 

hen the image datasets were split into separate subsets for
raining (80%) and validation (20%); a separate dataset was
sed for testing. The training dataset was used to train the
odel, and the validation dataset for hyperparameter tuning

learning rate, batch size, number of epochs, network architec-
ure, activation functions, weight initialization, dropout rate,
ne tuning, and different search strategies to explore hyper-
arameter space for best hyperparameters) and model selec-
ion, and the testing dataset was used to evaluate the final ML
odel’s performance. The overall workflow to classify Can-
ida species is shown in Figure 2 . 

lassifier architecture 

ix deep CNN classifier architectures were implemented:
NN, 60 V GG-Net, 61 InceptionV3, 62 ResNet50 

63 , Efficient-
etB0, and EfficientNetB7.64 The custom CNN learning ar-

hitectures consist of convolutional layers, pooling layers, and
ully connected layers, which are stacked together in a sequen-
ial manner ( Supplementary Figure 1 ). There are four convolu-
ional layers with different filters. The first convolutional layer
as 16 filters, the second has 32 filters, the third has 64 filters,
nd the fourth has 128 filters. All these layers use a rectified
inear unit (ReLU) activation function. Following each con-
olutional layer, a max pooling layer is applied. After the last
ax pooling layer, a dropout layer with a dropout rate of 0.2

s added. Then the model flattens the 2D feature maps into a
D vector. Two fully connected (dense) layers follow the flat-
ened layer. The first dense layer consists of 128 units and uses
he ReLU activation function. The second dense layer is the
utput layer with the Softmax activation function, which has
our class units (once for each of the Candida species in our
tudy). A total of 50 epochs were used to train the model. 
The VGG16 base model was created using the VGG16
lass; the weights parameter was set to ‘ImageNet’, which ini-
ializes the model with pre-trained weights on the ImageNet
ataset.65 Then the fully connected layers at the top of the
GG16 architecture were excluded ( Supplementary Figure 2 ).
he shape of the input images was set to 224 × 224 × 3 pix-
ls for RGB images with dimensions 224 × 224 pixels. The
odel was fine-tuned by freezing the pre-trained layers so that

he learned features were retained. A new model was then cre-
ted, and the base model was added as the first layer in the new
odel, followed by a flattening of the layer. Two fully con-
ected (dense) layers were added after the flattened layer. The
rst dense layer had 64 units and the ReLU activation func-
ion was used, which introduced non-linearity to the model.
he second dense layer was the output layer, which had four
nits corresponding to each of the Candida species used in this
tudy. The SoftMax activation function was used to produce
lass probabilities for multi-class classification. The SoftMax
unction ensures that the output probabilities sum up to 1. 

InceptionV3, the third version of the Inception architecture
Figure 3 ),65 has fewer parameters (models with fewer param-
ters are often preferred for transfer learning due to faster
onvergence and better adaptation to new data) compared to
he V GG architecture. 66 As for V GG16, images are scaled to
24 × 224 × 3 pixels. Images pass through each block layer
hen max pooling is performed at the next layer. Images pass
ia these convolutional blocks and into flattened layer, which
s fully linked. Four dense layers (512, 256, 128, and 4 nodes)
nd three dropout layers (0.5) after the first three dense layers
ere used. The Softmax activation function was used for the
utput layer. 
ResNet50 stands out for its deep architecture, consisting of

0 layers ( Supplementary Figure 3 ), which enables it to learn
ighly complex representations from images.63 ResNet50 pro-
esses images of size 256 × 256 × 3 pixels. Max pooling was
sed to downsample the features. After passing through the
esidual blocks, features were flattened to a 1D vector. Like the
nceptionV3 architecture, four dense layers were utilized with
he final layer consisting of four nodes representing classes.
andom dropout layers were also implemented after the first

hree layers. 
EfficientNetB0 has excellent generalization capabilities

cross various datasets.64 The architecture employs a

https://academic.oup.com/mmy/article-lookup/doi/10.1093/mmy/myad134
https://academic.oup.com/mmy/article-lookup/doi/10.1093/mmy/myad134
https://academic.oup.com/mmy/article-lookup/doi/10.1093/mmy/myad134
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Figure 2: Schematic representation of the w orkflo w to train machine learning models to identify four different Candida species. (A) Candida albicans on 
semi-solid growth medium. (B) EVOS M70 0 0 microscope imaging system. (C) Labeled microscopy images of the different Candida species used in this 
study: (i) C. albicans , (ii) C. auris , (iii) C. glabrata , and (iv) C. haemulonii ) captured using an EVOS M70 0 0 imaging system. (D) Machine learning model 
reading input images and passing them through the hidden la y ers of the con v olutional neural network to extract features and output a species 
classification. (E) Accuracy and loss during the training and validation process. (F) Data augmentation (flipped, zoomed, rotated, and rescaled images of 
existing images) to reduce overfitting. 

Figure 3: Schematic representation of InceptionV3 model. The color map defines the different layer types in the visualization (input, convolution, batch 
normalization, activation, max pooling, average pooling, concatenation, global average pooling, dense, and dropout layers). 
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compound scaling technique that efficiently scales up the 
model’s dimensions while keeping computational resources in 

check. Whereas EfficientNetB7 represents the most advanced 

version of the EfficientNet CNN architecture, it has a larger 
model size and complexity compared to EfficientNetB0. De- 
spite its increased computational cost, EfficientNetB7 main- 
tains the inherent efficiency that is characteristic of the Effi- 
cientNet architecture. 

Results 

We evaluated the effectiveness of the six CNN models to 

identify four different Candida species. First, we evaluated 

the custom CNN model with and without data augmenta- 
tion, whereas all other CNN models were evaluated with 

data augmentation. Data augmentation artificially increases 
the number of images, improves model generalization, reduces 
overfitting and variance to transformations, and overall im- 
proves performance on real-world data. The training accu- 
racy without data augmentation for the custom CNN model 
eached up to 99.6%, whereas the validation accuracy was 
6.9%. Post-data augmentation, the training and validation 

ccuracy were respectively 85.4% and 83.9%, respectively 
 Supplementary Figure 4 ). However, the precision and recall
or this model were 25.0% and 38.2%, respectively. Overall,
he performance of the custom CNN model on the unseen 

est dataset was not satisfactory ( Supplementary Table 1 ). The
aw images contain blank spaces, which this model received as
garbage data’ (i.e., data without any value towards predicting 
he output). Therefore, we cropped out images of single, bud- 
ing, and cell groups from the raw images and then trained
he model (see ‘Data Collection’ section in supplemental ma- 
erials). This model trained on the augmented data was able to
dentify Candida albicans on raw cell images and budding cells
espectively at 75.0% and 82.0%, though at the cost of poorly
dentifying C. albicans from single-cell images (12.5%). Over- 
ll, this model performed poorly in identifying C. haemulonii 
n all the testing datasets ( Supplementary Table 2 ). 

Next, we trained the ResNet50 model with data augmen- 
ation. With data augmentation, the training and validation 
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Table 3. Results of the InceptionV3 model and for each class trained on single and budding cell images. 

Metrics InceptionV3 
Candida 
albicans C. auris C. glabrata C. haemulonii 

Accuracy (%) 74.6 74.6 74.6 74.6 74.6 
Sensitivity (%) 77.1 88.5 63.0 55.0 91.2 
Specificity (%) 92.4 86.2 96.2 96.1 87.5 
Precision (%) 77.9 68.2 84.8 82.8 70.8 
Negative predictive value 
(%) 

92.4 95.7 88.6 86.7 96.7 

F 1 score (%) 77.14 77.0 72.3 66.6 79.7 
AUC (%) 91.9 94.3 87.0 90.1 96.1 
Time to identify (ms) - 0.02 0.02 0.02 0.02 

Note: See ‘Definitions’ section for quantitative definitions of each metric. 
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ccuracy respectively reached 98.7% and 73.0% at the end
f epoch 20 ( Supplementary Figure 5 ). However, the preci-
ion and recall for each class was < 30.0% ( Supplementary
able 4 ). The test set containing the raw images was used to
est this model’s predictive ability. Trained ResNet50 was able
o predict all the C. albicans (100.0%) raw images. How-
ver, it could only predict C . haemulonii , C . glabrata , and
. auris in 18.0%, 6.9%, and 0.5% of the cases, respec-

ively. We then used the test set containing the single-cell im-
ges. The model correctly predicted C. albicans, C. auris, C.
labrata , and C. haemulonii in 88.5%, 71.0%, 62.5%, and
0.0% instances, respectively. The model was able to pre-
ict a test set containing C. albicans budding cells at 96.0%,
ollowed by C. haemulonii (61%), C. glabrata (28.4%), and
. auris (28.4%). 
Then we trained the InceptionV3 model with data augmen-

ation. The training and validation accuracy reached 92.4%
nd 78.7%, respectively. The precision and recall for this
odel trained and validated on all the image sets are provided

n Supplementary Table 5 . When we evaluated the trained In-
eptionV3 model with a test set containing raw images this
odel was able to correctly classify the majority of C. albi-

ans images (95.5%). However, this model could not iden-
ify C. auris and C. haemulonii, as the images were misclas-
ified as C. albicans . A low success rate of 29.2% was also
bserved in correctly classifying the C. glabrata images. When
he test set containing only budding cells was evaluated this
odel was able to correctly identify C. albicans , C. auris , C.

labrata , and C. haemulonii budding cells in 87.7%, 20.0%,
7.0%, and 82.3% of cases, respectively. Whereas, in the case
f test set images of single cell belonging to C. albicans , C.
uris, C. glabrata , and C. haemulonii were correctly identified
n 87.0%, 59.0%, 85.0%, and 36.5% of cases, respectively.
hen we trained this model using images of single cell and
udding cell belonging to different classes and found that the
raining and validation accuracies reached 76.3% and 74.6%,
espectively, at the end of epoch 50. We then evaluated other
etrics (negative predictive value, F1 score, AUC score, and

ime to identify) for this model (Table 3 ) . The receiver op-
rator characteristic (ROC) curve is a plot that depicts the
rade-off between the sensitivity and specificity across a series
f cutoff points when the diagnostic test is continuous or on
n ordinal scale.67 The ROC curve for the different Candida
pecies is presented in Figure 4 . When we tested the model’s
erformance on the test set containing single cells and budding
ells of different Candida species this model could respectively
dentify budding cells of C . albicans, C . auris , C . glabrata , and
. haemulonii in 97.0%, 74.0%, 68%, and 66% of the cases.
 C  
imilarly, for single-cell test set model could respectively iden-
ify C. albicans, C. auris , C. glabrata , and C. haemulonii in
7.0%, 73.0%, 69%, and 73% of the cases. 
We then evaluated the VGG16 model to determine if it

ould outperform the InveptionV3 model. When the VGG16
odel was trained on all the image datasets, the overall

raining accuracy was 73.0% ( Supplementary Table 6 ). We
ound a similar accuracy (73.7%) when the VGG16 model
rained on single-cell and budding-cell image dataset alone
 Supplementary Table 7 ). EfficientNetB0 and EfficientNetB7
odels were also trained for raw images as well as single

nd budding cell images. However, the precision and recall
or both models were below 25.0%. 

Finally, we tested the ability of the InceptionV3 model to
dentify five different strains of the same species for C. albi-
ans , C. glabrata , and C. auris . Of the total 500 images of
ingle cells and budding cells each belonging to each strain
100 images of single cells and budding cells for each strain)
he trained InceptionV3 model was able to identify accurately
ingle-cell images of C. albicans , C. glabrata , and C. auris in
3.4%, 69.2%, and 73.5% of the cases, respectively. Whereas
or the budding cell images, the model was able to identify
 . albicans , C . glabrata , and C . auris in 92.0%, 75.4%, and
8.3% of the cases. 

iscussion 

mage-based studies incorporating ML algorithms have suc-
essfully been implemented to identify disease states, quantify
iomarkers, detect mitosis, recognize lymph node metastasis,
issue segmentation, prognostication, and to predict molecular
xpression and treatment responses.68 Our proof-of-concept
tudy demonstrates that overall microscopy images obtained
sing wet-mounted slides can be used to identify different
andida species using ML models. However, our results indi-
ate that black spaces between cells in the raw (unprocessed)
mages did not add to useful information with respect to cell
eatures. In contrast, single-cell and budding-cell images with
inimal blank spaces proved ideal. Different Candida species
ave different cell size ranges and budding pattern,69 which
ay have been critical for our ML models to differentiate be-

ween the species. Our model was able to distinguish Candida
lbicans more efficiently from other tested Candida species.
ne hypothesis for the misclassification of C. glabrata and
 . haemulonii as C . albicans is due to the pleomorphic na-

ure of C. albicans . The varying size and shape of C. albi-
ans are learned by the ML models and while classifying other
andida species some of these features might resemble that

https://academic.oup.com/mmy/article-lookup/doi/10.1093/mmy/myad134
https://academic.oup.com/mmy/article-lookup/doi/10.1093/mmy/myad134
https://academic.oup.com/mmy/article-lookup/doi/10.1093/mmy/myad134
https://academic.oup.com/mmy/article-lookup/doi/10.1093/mmy/myad134
https://academic.oup.com/mmy/article-lookup/doi/10.1093/mmy/myad134
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Figure 4: AUC–ROC curve of InceptionV3 model and AUC value with individual class scores. Dashed blue line (no-discrimination line) represents the 
performance of a random guessing classifier. 
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of C. albicans , which may lead to misclassification.69 Further 
studies using stained cell images to train the ML models could 

help overcome this issue to attain a score of > 99% akin to an 

experienced microbiologist.70 

Performance of different ML algorithms depends on the 
dataset used during the learning process. Similarly, our study 
showed that the microscopy image dataset we generated was 
effectively learned by the InceptionV3, which was able to clas- 
sify the species of Candida most accurately. The high perfor- 
mance of InceptionV3 compared to other models has been 

reported previously. For instance, InceptionV3 showed high 

accuracy and sensitivity to diagnose poultry diseases.71 An- 
other study on ankle fracture detection using deep learning 
algorithms found that InceptionV3 model had high specificity 
and sensitivity.72 Similarly, InceptionV3 was able to identify 
skin cancer-melanoma with high accuracy.73 In contrast, Rah- 
man et al., reported that the InceptionV3 model could reach 

an accuracy of 61.4% with augmented data while classifying 
89 different fungal genera.74 One reason for the low accu- 
racy of InceptionV3 in their study may be due to the relatively 
small microscopy imaging dataset (1079 images of 89 genera).
However, in our study custom CNN, VGG16, ResNet50, Ef- 
ficientNetB0, and EfficientNetB7 were not as efficient as In- 
ceptionV3 in classifying Candida species. Similar instances of 
poor performance of these deep neural networks have also 

been found previously.75–77 Some of these models performed 

well on the other datasets such as ImageNet, CIFAR (Cana- 
dian Institute for Advanced Research), and MNIST (Modified 

National Institute of Standards and Technology) databases 
but failed to learn about the microscopy images in this study.
In our study, we showed that the trained model was able to 

identify the images within 0.02 milliseconds (Table 3 ). In con- 
trast, diagnostic labs inoculate clinical samples onto agar plate 
or automated blood culture system (blood samples) and the 
resulting growth after incubating for 18–24 h is utilized for 
the identification.78 Identifying the etiologic agent may fur- 
ther take around 24–48 h.78 Whereas the sample preparation 

method used in this study is comparatively easy with limited 
equired resources after we obtain the yeast colonies on the 
gar plate. 

One common challenge with ML models is their ‘black box’ 
ature, which makes it difficult to understand how they ar-
ive at their predictions.79 This lack of interpretability hin- 
ers their adoption in clinical practice where transparency 
nd trust are crucial. To address this challenge, researchers in
he field of explainable AI have explored different approaches 
o make ML models more interpretable.80–84 For instance, by 
enerating heatmaps or saliency maps, identifying informative 
eatures through feature reduction or selection, or providing 
mmersive visualizations through VR technology, researchers 
an enhance transparency and trust in ML predictions. We 
peculate that the subtle uniqueness of each species in their
hape, size, and the budding pattern along with the budding 
ase might have contributed as the important features for the 
L process. Similarly, further exploration of the model’s abil- 

ty to predict different Candida species will provide more in-
ight into the features of the images required to identify them
ccurately. Based on this proof of concept study, we can fur-
her elaborate on the use of these ML models in many areas
uch as (1) extrapolating the application of the ML approach 

o detect other yeast species, which in turn can help its di-
gnostic utility, (2) employing different complex models (e.g.,
enseNet, Xception, MobileNetV2, ResNeXt, and SENet 85 ) 

o improve performance metrics, (3) location-specific training 
f the yeast images is required for its use, and (4) differen-
iating antifungal resistant isolates from susceptible isolates.
ne of the limitations of our study is that we did not con-

ider all the yeast species causing infection (e.g., Pichia ku- 
riavzevii [ C . krusei ], C . parapsilosis , and C . tropicalis ); we
onsidered strains from four Candida species: C . albicans, C .
uris , C. glabr ata ( Nakaseomyces glabr ata ), and C. haemu-
onii . Thus, it is possible that our ML approach may face chal-
enges in identifying morphologically similar species, though 

e do not anticipate these challenges for morphologically dis- 
inct fungi. However, even closely related (phylogenetically 
nd morphologically) fungal species differ in several physio- 
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ogical and biochemical properties,86 as well as their microbio-
ogical species-specific staining profiles.87 Utilizing ML meth-
ds to leverage these distinctions may aid in detecting mor-
hologically similar species, which is a promising direction
or future research. We also did not test microscopy images
btained from co-culturing different Candida species. In clin-
cal settings, multi-species infections are encountered and are
hallenging to treat.88 Distinguishing yeast species from other
ell types and components of clinical samples such as blood
nd urine would further elaborate the utility of our method for
linical applications. Nevertheless, we anticipate that our ML-
ased approach, which does not require sophisticated instru-
ents or extensive expertise to implement, will help to reduce

he turnaround times for the diagnosis of yeast infections. 
Our study demonstrates that the identification time for

andida species can be drastically reduced and requires less
xpertise unlike for sophisticated techniques such as MALDI-
OF MS or nucleic acid-based amplification tests. Our study
lso highlights the ease of use in exploiting the ML approach
or rapid identification of Candida species using microscopy
mages. To optimize the detection capability of our ML mod-
ls, we separated out images of single cells, groups of cells,
nd budding cells from the raw microscopy images. However,
n a clinical microbiology laboratory separation of individual
ells and budding cells from the captured microscopic images
dds a step to the workflow before image classification. This
an be overcome by automating the image separation process
ith unsupervised ML,79 where the individual cells, groups
f cells, and budding cells can be cropped based on the con-
ours, borders, and intensity from the raw images.89 Consid-
ring the rapid emergence of antifungal-resistant species,33 it
ill be indispensable to evaluate the ability of these ML mod-

ls to determine susceptibility profiles in future work. For in-
tance, data from the whole genome sequence of C. auris has
een used to train ML models to predict the mutations respon-
ible for antifungal drug resistance, rank different resistance
utations, and discover new mutations related to drug resis-

ance.90 Overall, we anticipate that ML approaches will be
ble to detect antifungal-resistant phenotypes, elucidate un-
erlying molecular resistance mechanisms, and improve the
reatment of patients with infectious fungal diseases. 
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