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Abstract. Over the past few years, it has been increasingly recognized
that stochastic mechanisms play a key role in the dynamics of biological
systems. Genetic networks are one example where molecular-level fluctu-
ations are of particular importance. Here stochasticity in the expression
of gene products can result in genetically identical cells displaying signif-
icant variation in biochemical or physical attributes. This variation can
influence individual and population-level fitness.

Cells also receive noisy signals from their environments, perform detec-
tion and transduction with stochastic biochemistry. Several mechanisms,
including cascades and feedback loops, allow the cell to manipulate noisy
signals and maintain signal fidelity. Furthermore through a biochemical
implementation of Bayes’s rule, it has been shown that genetic networks
can act as inference modules, inferring from intracellular conditions the
likely state of the extracellular environment.

Keywords: stochastic gene expression, fitness, genetic networks, signal
processing and propagation, Bayesian inference.

1 Introduction

Genetic networks, defined as ensembles of molecules and interactions that control
gene expression, produce and regulate cellular dynamics. At a fundamental level,
a gene is information encoded in a sequence of nucleotides. This information is
processed by the machinery of the cell to execute the instructions it contains.
Understanding the process by which this information is produced, processed,
and propagated is vital for understanding cellular behaviour.

Advancements in experimental techniques for empirically measuring gene ex-
pression in single cells, as well as in corresponding theoretical methods, have
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enabled the rigorous design and interpretation of experiments that provide in-
controvertible proof that there are important endogenous sources of stochastic-
ity (randomness) that drive biological processes [51]. For example, heterogeneity
within a population of a single cell type can be measured experimentally using
flow-cytometry analysis, a technique commonly employed for counting and ex-
amining the chemical and physical properties of cells. Specifically, one can obtain
within a few seconds a histogram of a given protein in individual cells across a
large cell population. Within the histogram, the abundance of the protein in the
cells with the lowest and highest expression level typically differs by orders of
magnitude; this spread far exceeds signal measurement noise [15].

The stochastic expression of gene products (mRNA and protein) is important
for human health and disease. Take for example the development of drug re-
sistance during chemotherapy. When the drug Imatinib is used to treat chronic
myeloid leukemia, the disease recurs with a frequency of 20-30 % [14]. Even
though numerous genetic mutations have been shown to render the drug ineffec-
tive [27,23,63], in two-thirds of cases no mutations have been found [14]. Instead,
elevated levels of survival pathway proteins in Imatinib-resistant leukaemia cell
lines were detected [37]. The rapid rate of resistance development, its dose de-
pendence and high frequency of upregulation of the correct pathways are consis-
tent with non-genetic heterogeneity, that is, variation in gene expression across
a population of genetically identical cells. This mechanism generates enduring
outlier cells with distinct phenotypes (i.e. any observable biochemical or physical
attributes), some of which may be subject to selection.

Cells sense and process information using biochemical networks of interacting
genes and proteins [29]. At a specific point of the network (input) a signal is
detected and then is propagated to modulate the activity or abundance of other
network components (output). In order to process information reliably, the cell
requires a high degree of sensitivity to the input signal but a low sensitivity to
random fluctuations in the transmitted signal. However, the signals that a cell
receives from its environment and propagates through its genetic network are
noisy [29,43]. Understanding how this noise is processed and propagated in gene
networks is crucial for understanding signal fidelity in natural networks and de-
signing noise-tolerant gene circuits [42]. For example, several network motifs al-
low for amplification or attenuation of noisy signals [4,8,18,28,38,42,44,49,52,57].
Additionally, it has been shown that genetic networks can be used by cells to infer
the likely state of their stochastic external environment from noisy intercellular
conditions [32,43].

The chapter is organized as follows: Section 2 presents the process of gene
expression, the inherent stochasticity in this process, and common measures of
noise. Some background for the deterministic and stochastic modelling and sim-
ulation of gene expression, as well as a comparison between these two methods, is
provided in Section 3. Section 4 introduces mechanisms, namely genetic cascades
and feedback loops, that enable the cell to process and propagate noisy intracel-
lular and extracellular signals. In Section 5, the relationship between noise and
fitness is explored. Specifically, the stochastic expression of stress-related genes
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and bet-hedging cell populations are discussed, and corresponding models and
simulations are presented. The final section (Section 6), illustrates how genetic
networks can infer the likely state of their extracellular environment through a
biochemical implementation of Bayes’ rule.

2 Gene Expression and Stochasticity

A gene is a specific sequence of nucleotides encoded in the DNA. Gene expres-
sion is the process by which a gene is transcribed and translated to produce
messenger RNA (mRNA) and protein, respectively. To initiate transcription, an
RNA polymerase (RNAp) must recognize and bind to the promoter region of the
gene. Promoters have regulatory sites to which transcription factors can bind to
either activate or repress gene transcription. The promoter is followed by the
coding sequence, which is transcribed by the RNAp into an mRNA molecule.
Transcription stops when the RNAp reaches a termination sequence and unbinds
from the DNA. Next, translation ensues wherein ribosomes read the mRNA se-
quence, and for each codon, a corresponding amino acid is added to a polypeptide
chain (a.k.a. a protein). After post-translational processing, the protein becomes
capable of performing its specific tasks.

A model of the process of expressing a single gene is shown in Figure 1.
Although this depiction is simple compared to the true complexity of gene ex-
pression, it captures the essential features including the synthesis of mRNA (M)
from a single gene promoter (A) (at a rate sA), the synthesis of protein (P) from
mRNA templates (rate sP ), and the decay of mRNA and protein molecules (rates
δM and δP respectively). Although more complex models of gene expression have
been developed (e.g. [34,47,50,56]), the simple model depicted in Figure 1 is suf-
ficient for the purpose of this chapter.

Fig. 1. A simple model for the expression of a single gene (each step represents several
biochemical reactions). All steps are modelled as first-order reactions with the indicated
rate constants (units of inverse time) associated with these steps.

The expression of gene products is a noisy process [51,30,31,35,41]. The term
‘noise’ when used in the context of gene expression is a broad reference to the ob-
served variation in protein content among apparently identical cells exposed to
the same environment [21]. This noise can be divided up into extrinsic and in-
trinsic components. Extrinsic noise can be generally defined as fluctuations and



92 D.A. Charlebois, T.J. Perkins, and M. Kaern

variability that arise in a system due to disturbances originating from its envi-
ronment, and therefore depends on how the system of interest is defined [53]. Ex-
trinsic gene expression noise arises from several sources including: the metabolic
state of the cell, cell-cycle phase, cell age, variability in upstream signal transduc-
tion, and the external cellular environment [19,21,30,32,35,42,45,46,56,62]. Intrin-
sic expression noise refers to the multistep processes that lead to the synthesis and
degradation of mRNA and protein molecules which are inherently stochastic due
to the underlying binding events which occur as a result of the random collisions
between small numbers of molecules (e.g. the binding of transcription factors to
one or two copies of a gene) [30].

Several noise measures are used to quantify the degree of heterogeneity in
gene expression. The most common is the relative deviation from the average,
which is determined by the ratio of the standard deviation σ to the mean µ. In
this chapter, noise η refers to this ratio. Another measure of noise, known as the
‘fano factor’ (φ = σ2/µ), can be used to uncover trends that might otherwise be
obscured by the characteristic 1/

√
µ scaling of the noise [30,57].

3 Modelling Gene Expression

Biological systems can be modelled at multiple scales, from detailed physical
descriptions of molecular interactions to phenomenological representations of
populations of organisms. Here we present the approximate ordinary differen-
tial equation (ODE) approach and the exact stochastic method to simulate the
phenomenological model of gene expression shown in Figure 1.

3.1 Deterministic Modelling

Traditionally, the time evolution of a chemical system is modelled as a determin-
istic process using a set of ODEs. This approach is based on the empirical law
of mass action, which provides a relation between reaction rates and molecular
concentrations [60]. Generally, the instantaneous rate of a reaction is directly
proportional to the concentration (which is in turn proportional to mass). In the
deterministic description of the model shown in Figure 1, the cellular mRNA and
protein concentrations ([M ] and [P ], respectively) are governed by the macro-
scopic rate equations

d[M ]
dt

= sA − δM [M ], (1)

d[P ]
dt

= sP [M ] − δP [P ], (2)

where the terms δM [M ] and δP [P ] are the degradation rates for mRNA and
protein, respectively; the term sp[M ] is the rate of protein synthesis, and mRNA
production occurs at a constant rate (sA) due to the presence of a single pro-
moter. The steady-state concentrations are given by
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[M s] =
sA

δM
, (3)

[P s] =
[M ]sP

δP
=

sAsP

δMδP
, (4)

and are related to the average steady-state number of M and P (M s and P s,
respectively) by the cell volume V .

Note that the deterministic mathematical model (Eqs. (1) and (2)) was ob-
tained by treating each step as a first-order chemical reaction and applying the
law of mass action. The law of mass action was developed to describe chemi-
cal reactions under conditions where the number of each chemical species is so
large that concentrations can be approximated as continuous variables without
introducing significant error [53].

In order for the deterministic approach to provide a valid approximation of
the exact stochastic description, the system size must be large in terms of the
numbers of each species and the system volume (e.g., here large sA and V so
that the number of expressed mRNA and protein molecules is high with the ratio
sA/V remaining constant) [30]. When this condition is not satisfied, the effects
of molecular noise can be significant. The high molecular number condition is
not satisfied for gene expression, due to low copy number of genes, mRNAs, and
transcription factors within the cell [64].

When the deterministic ODEs presented in Eqs. (1) and (2) are numerically
simulated (e.g. via a variable step Runge-Kutta method), the resulting trajec-
tory can in certain parameter regimes capture the mean behavior of the cells.
They cannot, however, capture the fluctuations about the mean and therefore
the resulting probability distributions (Fig. 2). Futhermore, when reaction rates
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Fig. 2. Time series of protein number generated by deterministic and stochastic sim-
ulations (black and gray curves, respectively). The histogram in the right-hand panel
corresponds to the stochastic simulation and shows the probability that a cell will
have a given intracellular protein level. Parameters were set to (units s−1): sA = 0.02,
sP = 0.05, δM = 0.0005, and δP = 0.01.
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depend nonlinearly on randomly fluctuating components, macroscopic rate equa-
tions may be far off the mark even in their estimates of averages [40].

3.2 Stochastic Modelling

Due to the importance of noise in many biological systems, models involving
stochastic formulations of chemical kinetics are increasingly being used to simu-
late and analyze cellular control systems [26]. In many cases, obtaining analytical
solutions for these models is not feasible due to the intractability of the corre-
sponding system of nonlinear equations. Thus, Monte Carlo (MC) simulation
procedures for the number of each molecular species are commonly employed.
Among these procedures, the Gillespie stochastic simulation algorithm (SSA) is
the de-facto standard for simulating biochemical systems in situations where a
deterministic formulation may be inadequate [24,25].

In the direct method Gillespie SSA, M chemical reactions {R1, . . . , RM} char-
acterised by numerical reaction parameters c1, ..., cM among N chemical species
X1, ..., XN , are simulated one reaction event at a time. The fundamental hy-
pothesis of the stochastic formulation of chemical kinetics is that the average
probability of a given reaction i, occurring in the next infinitesimal time interval,
dt, is given by aidt. Here, ai is the reaction propensity obtained by multiplying
ci by the number of reactants (for first order reactions) or reactant combinations
(for second order and higher reactions) hi available for reaction Ri. The next
reaction to occur (index µ) and its timing τ are determined by calculating the
M reaction propensities a1, ..., aM to obtain an appropriately weighted proba-
bility for each reaction. The SSA determines when (τ = ln(1/r1)/a0) and which
(min{ µ | ∑µ

i=1 ai ≥ r2a0}) reaction will occur next, using uniformly distributed
random numbers r1 and r2, and the sum of the reaction propensities a0.

The direct method Gillespie SSA can be implemented via the following pseu-
docode [24,25]:

1: if t < tend and a0 =
∑M

i=1 ai �= 0 then
2: for i = 1, M do
3: Calculate ai and a0 =

∑i
v=1 av

4: end for
5: Generate r1 and r2

6: Determine τ and µ
7: Set t = t + τ
8: Update {Xi}
9: end if

The following reaction equations are required to stochastically simulate the
model of gene expression under consideration (Fig. 1)

A
sA−→ A + M (5)

M
sP−→ M + P (6)



Stochastic Gene Expression 95

M
δM−→ � (7)

P
δP−→ � (8)

Eqs. (5) and (6) respectively describe the transcription and translation processes.
The degradation of M and P are accounted for by Eqs. 7 and 8, respectively.

The advantage of using a stochastic framework to simulate the present model
of gene expression can be seen in Figure 2. Specifically, the stochastic method
captures not only the mean protein concentration, but also the fluctuations in
protein abundance. These fluctuations provide the information necessary for the
histograms that describe the probability that a cell will have a given level of a
particular molecular species, and can play a significant role in cellular dynamics.

4 Processing and Propagation of Noisy Signals

The genetic program within a living cell is encoded by a complex web of biochem-
ical interactions between gene products. The proper execution of this program
depends on the propagation of signals from one gene to the next. This pro-
cess may be hindered by stochastic fluctuations arising from gene expression.
Furthermore it has been found that gene expression noise not only arises from
intrinsic fluctuations, but also from noise transmitted from the expression of up-
stream genes [42]. We now consider how noise can be processed and propagated
in genetic networks.

4.1 Cascades

A common regulatory motif, especially in development, is a transcriptional cas-
cade where each gene (Ai) influences the expression of a subsequent gene (Ai+1)
to form a cascade (Fig. 3 Inset) [44]. Experimental studies have shown that vari-
ability can be transmitted from an upstream gene to a downstream gene, adding
substantially to the noise inherent in the downstream gene’s expression [42,49].

Using a reduced version of the model of gene expression presented in Figure 1,
where transcription and translation are combined into a single step, we model a
generic linearised genetic cascade as follows. The input signal for the cascade is
provided by A0, which itself is constitutively expressed to produce a protein P0

and described by the following reactions

A0

sP0−→ A0 + P0 (9)

P0

δP0−→ � (10)

The protein expression dynamics Pi of the subsequent genes Ai (where i ∈
{1, . . . , N}, and N is the total number of genes) in the cascade are modelled
as follows

Ai + Pi−1

sPi−→ Ai + Pi + Pi−1 (11)

Pi

δPi−→ � (12)
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The protein expression of the genes A1−AN in the cascade are each subject to
the stochastic fluctuations in the previous gene’s expression. Therefore the noise
in protein number, for the same mean expression, increases with each subsequent
step in the cascade (Fig. 3 - includes parameters).

Fig. 3. Propagation of noise in a genetic cascade. The noise in protein number (ηP )
is plotted against the cascade stage. Parameters were set as follows (units s−1): kP0 =
kPi = 100 and dP0 = dPi = 1 and the simulation was run for 100000 s in order to
obtain accurate statistics. Inset shows a schematic of a generic linearised stochastic
cascade where each gene (Ai) influences the expression of the subsequent gene in the
cascade.

Genetic cascades can produce a wide range of dynamics in addition to those
presented in this section. For example, it has been shown that genetic cascades
can be either ‘fluctuation-unbounded’ (as in Fig. 3) or ‘fluctuation-bounded’ (i.e.
expression noise moves towards some asymptotic limit as the size of the cascade
is increased) [59]. Furthermore, longer genetic cascades can actually function to
filter out rapid fluctuations at the expense of amplifying noise in the timing of
propagated signals [59]. To perform this function, the cascade must not only
be fluctuation-bounded, but must also be intrinsically less noisy than the input
signal.

4.2 Feedback Loops

Feedback loops, in which a protein regulates its own transcription, play an impor-
tant regulatory role in many genetic networks [38,44]. Positive feedback loops
(e.g. where a protein activates its own expression) can act as noise amplifiers
[38], whereas negative feedback loops (e.g. where a protein represses its own ex-
pression) can act to suppress noise [8,18,54]. Specifically, negative feedback can
reduce the effects of noise because fluctuations above and below the mean are
pushed back towards the mean [4,8,18,52,57]. Here we provide a simple example
of relative noise amplification and attenuation in genetic feedback loops.
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Fig. 4. Stochastic simulations of negative and positive feedback networks. Protein
(P ) time series and corresponding probability histograms of negative (a,b) and positive
(c,d) auto-regulatory systems (Eqs. (13)-(16) and Eqs. (17)-(21), respectively). Note the
increase in variability about the same mean when positive auto-regulation is compared
to negative auto-regulation. Parameters are given in the text.

Again using the reduced version of the model of gene expression presented in
Section 4.1, but where the protein P represses its own formation, we obtain a
simple example of a network with negative auto-regulation [38]. The reactions
are as follows

A + P
k1−→ AP (13)

AP
k2−→ A + P (14)

A
sP−→ A + P (15)

P
δP−→ � (16)

Here, Eqs. (13) and (14) respectively describe the binding and unbinding of P
with a promoter A, Eq. (15) the production of P which occurs only when the pro-
moter is not bound to P , and Eq. (16) the degradation of P . The reaction param-
eters were set as follows: k1 = 4 mol−1h−1, k2 = 100 h−1, sP = 150 mol−1h−1,
and δP = 1 h−1. The protein time series and corresponding probability histogram
are shown respectively in Figure 4a and 4b.

The corresponding positive auto-regulation system, where protein production
occurs at a higher rate (than basal) when P is bound to A, can be described by
the following reactions

A + P
k1−→ AP (17)

AP
k2−→ A + P (18)

A
bP−→ A + P (19)
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AP
sP−→ AP + P (20)

P
δP−→ � (21)

These equations are similar to those describing negative auto-regulation (Eqs. (13)-
(16)) except that Eq. (19) describes basal protein production (which is required
for activation) and Eq. (20) the promoter bound production of P . Here the
parameters were set to: k1 = 1 mol−1h−1, k2 = 100 h−1, bP = 3 mol−1h−1

sP = 147 mol−1h−1, and δP = 1 h−1. Note the increase in noise in the protein
time series and histogram (Fig. 4c and 4d, respectively) relative to the negative
feedback case (Fig. 4a and 4b).

It is important to note that many dynamics not discussed in the present
section can result from the manner in which a genetic network propagates and
processes signals. For example, in the presence of noise, positive feedbacks can
behave as a switch, eventually flipping the gene from an ‘off’ to an ‘on’ state
[20,44]. Furthermore, negative feedback loops can control speed of response to
intra or extra-cellular events [48] and lead to oscillations in the expression of
a gene product [7]. Feedback loops have also been shown capable of shifting
the frequency of gene expression noise such that the effect on noise behaviour
of downstream gene circuits within a cascade may be negligible, thus acting as
noise filters [54].

5 Noise and Fitness

Heterogeneity in a cell population resulting from the variation in molecular con-
tent [30,58] is probably the most apparent manifestation of stochastic gene ex-
pression. In the simplest case, the concentration of some expressed protein could
display some variability from cell to cell [19,39]. A more complex scenario in-
volves populations of identical cells splitting into two or more groups, each of
which is characterized by a distinct state of gene expression and growth rate
[58]. Here, fluctuations in gene expression can provide the cell with a mechanism
for ‘sampling’ physiologically distinct states, which may increase the probability
of survival during times of stress without the need for genetic mutation [30,58].

5.1 Stochastic Expression of Stress-Related Genes

The probabilistic features arising from gene expression noise led to the hypoth-
esis that evolution has fine-tuned noise-generating mechanisms and genetic ar-
chitectures to derive beneficial population diversity [55,61,33]. Direct evidence
that genome sequence contributes to cell-cell variability indicates that gene ex-
pression noise, like other genome-encoded traits, is inheritable and subject to
selective pressures, and therefore evolvable. Specifically, large-scale proteomic
studies in yeast have shown that genes associated with stress response pathways
have elevated levels of intrinsic noise [6,22,36]. Stress-response genes have thus
experienced positive pressure toward high population variability, presumably
because this providing a selective advantage during periods of stress.
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The increased gene expression noise exhibited by stress related genes lends
support to the hypothesis that variability in protein content among cells might
confer a selective advantage. By broadening the range of environmental stress
resistance across a population, added gene expression noise could increase the
likelihood that some cells within the population are better able to endure en-
vironmental assaults [5,12]. Experimental results providing support for this hy-
pothesis were obtained in a study by Bishop et al. [9], which demonstrated a
competitive advantage of stress-resistant yeast mutants under high stress due to
increased phenotypic heterogeneity.

Investigations on the effect of gene expression noise have been carried out in
yeast cells under acute environmental stress [10]. Both experiments and simu-
lations confirmed that increased gene expression noise can provide a significant
selective advantage at high stress levels. This was not, however, the case at low
stress levels, where the low-noise strain had higher fitness than the high-noise
strain.

In a qualitative explanation, Blake et al. [10] attribute the differential im-
pact of added noise to a change in the relative fraction of surviving cells at
different levels of stress. While a low-noise population will have a higher num-
ber of cells above the protein production threshold necessary for survival at low
stress levels (Fig. 5a), the same will be true for a high-noise population under
a high level of stress (Fig. 5b). In a quantitative model, the size of this fraction
depends on the probability distribution function associated with the spread of
protein content among individual cells. Consequently, if it is assumed that cells
are either unaffected or killed by the stress, the population fitness (reproductive
rate) and differential fitness (difference in reproductive rates between two pop-
ulations, e.g. a low and a high noise cell population) for a certain stress level
can be calculated (Fig. 5c and 5d, respectively) [21]. This provides a very simple
quantitative framework that captures the observed impact of population hetero-
geneity on population fitness following acute stress.

Theoretical Models and Simulations

The impact of acute stress on the fitness W of a cell population can be cal-
culated theoretically by evaluating the integral

W =
∫ ∞

0

w(x)f(x)dx, (22)

where w(x) is the relative reproductive rate of cells expressing a stress-related
gene at a level given by x, and f(x) describes the population distribution of gene
expression when cells are exposed to stress [65]. In a study by Fraser et al. [21],
this distribution was approximated by the lognormal distribution

f(x) =
1

xβ
√

2x
exp

[
(ln(x) − α)2

2β2

]
, (23)
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Fig. 5. Modelling the effects of noise in the expression of a stress-resistant gene. (a)
Low noise is beneficial when most cells express the stress-inducing gene at levels above
a certain threshold. (b) High noise is beneficial when most cells express the stress-
inducing gene at levels below the threshold. (c) The effect of varying the stress level on
fitness for low and high noise cell populations. Stress levels where noise is beneficial and
disadvantageous are defined by positive and negative values of the differential fitness
∆W , respectively. (d) Differential fitness at varying stress levels for three populations
with elevated noise relative to a low noise (η0 = 0.1) reference population.

where α and β are defined by the average gene expression level µ and gene
expression noise η through the relationships β2 = ln(1 + η2) and α = ln(µ) −
0.5β. The distributions in Figure 5a and 5b were obtained for η = 0.4 and
η = 1.2, respectively. Moreover, the impact of acute stress was approximated
by a step function such that cells expressing a stress-resistance gene below a
certain threshold would have a reproductive rate of zero, i.e., fitness w(x) = 0
for x < sthr and are otherwise unaffected, i.e., w(x) = 1 for x ≥ sthr.

Continuing with a positive selection scheme, where cells with high expression
of a stress-resistant gene have high fitness, and cells with low expression have
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low fitness, we now compute W . Specifically, if it is assumed that the level
of stress s experienced by the population is related to the most likely level of
gene expression (i.e. the mode of the distribution in Eq. (23)), then the noise-
dependency of population fitness in Eq. (22) for a threshold model is given by
the error function (erf) describing the cumulative lognormal distribution

W (η, s) =
∫ ∞

0

w(x)f(x)dx =
∫ ∞

sthr

f(x)dx

=
1
2

+
1
2
erf

[√
ln(1 + η2)

2

(
ln(sthr/s)
ln(1 + η2)

− 1
)]

. (24)

This equation was used to calculate the fitness curves displayed in Figure 5c using
sthr = 6.91 and η = 0.1 or η = 0.4, for the low and high noise populations re-
spectively. Correspondingly, the differential fitness curves displayed in Figure 5d
were obtained by evaluating the quantity ∆W (η, s) = W (η, s)−W (η0, s), where
W (η, s) is the fitness of the population with variable high noise (η = 0.2 0.3, or
0.4) and W (η0, s) is a reference population with low noise (η0 = 0.1).

5.2 Bet-Hedging Cell Populations

Another interesting example of how noise can influence fitness involves cells that
can switch between phenotypes in a changing environment [1,58]. Under fixed
environmental conditions, the net growth rate (and therefore fitness) of the popu-
lation is maximized when all cells are of the fastest growing phenotype. However,
in a changing environment, it is thought that a statically heterogeneous popu-
lation (i.e. a population where transitions between states are not influenced by
environmental conditions) can deal with an uncertain future by hedging its bets.
Specifically, a broad distribution of phenotypes is generated in the ‘hope’ that
some of these phenotypes will remain viable after an environmental change. In
contrast, a dynamically heterogeneous population has a more reliable strategy:
individuals in such populations can sense and respond to external changes by ac-
tively switching to the fit state. If the response rate is sufficiently rapid compared
to the rate of environmental fluctuations, as is the case for many real systems,
then transitions from the fit state to the unfit state are actually detrimental.
Thus, bet-hedging is only beneficial if response rates are sufficiently low.

Acar et al. [1] experimentally investigated how stochastic switching between
phenotypes in changing environments affected growth rates in fast and slow-
switching Saccharomyces cerevisiae (budding yeast) populations. Specifically, a
strain was engineered to randomly transition between two phenotypes, ON and
OFF , characterized respectively by high or low expression of a gene encoding the
Ura3 enzyme, necessary for uracil biosynthesis. Each phenotype was designed to
have a growth advantage over the other in one of two environments. In the first
environment (E1) uracil was lacking and cells with the ON phenotype had an
advantage. In the second environment (E2), cells with the OFF phenotype had
an advantage due to the presence of a drug (5-FOA), which is converted into a
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toxin by the Ura3 enzyme. In this environment, which also contains uracil, cells
expressing Ura3 will have low viability while cells not expressing Ura3 will grow
normally.

Simulating Complex Population Dynamics

In order to simulate the scenario described above, we used a population dy-
namics algorithm [16] and a model of gene expression described by the following
biochemical reaction scheme [30]

k1

Aact ⇀↽ Arep

k2

(25)

Aact
sA,act−→ Aact + M (26)

Arep
sA,rep−→ Arep + M (27)

M
sP−→ M + P (28)

M
δM−→ � (29)

P
δP−→ � (30)

Eq. (25) describes the transitions to the active (upregulated level of gene expres-
sion) Aact and repressed (basal level of gene expression) Arep promoter states
with rates k1 and k2 respectively, Eqs. (26) and (27) the mRNA production from
the Aact (at a rate sA,act) and Arep (at a rate sA,rep) states respectively, Eq. (29)
the protein production from mRNA at a rate sP , and Eqs. (28) and (30) respec-
tively the mRNA (at a rate δM ) and protein (at a rate δP ) degradation. The
fitness wk of each cell k, which is here defined as a function of the environment
and cellular protein concentration [P ], was described by a Hill function

wk(E, [P ]) =

{
[P ]n

[P ]n+Kn , if E = E1,
Kn

Kn+[P ]n , if E = E2.
(31)

This equation describes partitioning of cells into fit (wk(E, P ) ≥ 0.5) and unfit
(wk(E, P ) < 0.5) phenotypes corresponding to whether or not their [P ] in a
particular environment is above or below a particular value given by the Hill
coefficient K. The volume of each cell was modelled using an exponential growth
law

Vk(tdiv) = V0 exp
[
ln(2)

(
tdiv

τ0

)]
. (32)

Here, V0 is the cell volume at the time of its birth, and τ0 = τφ/w, where τφ

is the cell division time in absence of any selective pressure. To incorporate the
effect of fitness on gene expression, the value of transcription rate parameter sA

depended on whether or not a cell was fit in either E1 or E2 (see Fig. 6 and [1]
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for parameters). Note that in this model the cells divided symmetrically when
their volume reached 2V0.

The population distributions obtained for this model are shown in Figure 6.
Specifically, we first obtained the steady-state protein concentration distribu-
tions for cells in E1 and E2 (Fig. 6a and 6b, respectively). Here, the majority
of cells either fell within a distribution centered at higher value of P , charac-
terizing the ON cells, or a distribution centered at a lower value, characterizing
the OFF cells, in E1 or E2 respectively. The rest of the cells fell within the
distribution capturing the unfit subpopulation in both environments. These re-
sults were found experimentally in [1] and are expected, as higher levels of the
Ura3 enzyme are either favorable or unfavorable with respect to the fitness of
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Fig. 6. Simulations of environmental effects on phenotypic distribution. (a) Steady-
state (top and bottom figures) and time-dependent (middle figures) protein distri-
butions of cells transfered from an environment lacking uracil (E1) to an environment
containing uracil and 5-FOA (E2). (b) Steady-state (top and bottom figures) and time-
dependent (middle figures) protein distributions of cells transfered from E1 to E2. Note
that when a sufficient amount of time has elapsed after the environmental transition
from either E1 to E2 or vice versa, cells with either the OFF or ON phenotype prolif-
erate, respectively, in agreement with experimental results found in [1]. The following
parameters were used (units s−1): δM = 0.005, sP = 0.1, δP = 0.008, K = 200, n = 10.
For fit cells in E1 sA,act = 0.2 and for unfit cells sA,rep = 0.05 - vice versa in E2. Addi-
tionally τφ was set to the mean doubling time (MDT) of 1.5 hours for Saccharomyces
cerevisiae [13].
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Fig. 7. Simulations of populations of slow and fast-switching cells. (a) Growth rates of
cells after an environmental change from E2 to E1 at t = 0. (b) Growth rates of cells
after environmental change from E1 to E2 at t = 0. Note that the transient before the
steady-state region is shorter in (a) than in (b), and that fast-switching cells recover
faster from the environment change but slow-switching cells have a higher steady-state
growth, in agreement with experimental results found in [1].

the cells depending on the environment. Additionally, the time-dependent pop-
ulation distributions after the transition to E1 from E2, and vice versa, were
obtained (Fig. 6a and 6b, respectively). Here, the dynamics of the two distinct
subpopulations of cells in transition between the steady-states are visible. As
time progresses after the environmental transition, fewer and fewer of the cells
are in the unfit state (ON in Fig. 6a and OFF in Fig. 6b), as the cells in
the more fit state (OFF in Fig. 6a and ON in Fig. 6b) grow and divide at a
faster rate and therefore come to dominate the population in terms of absolute
numbers. Figure 7 shows the growth rates obtained from simulations of slow
and fast-switching cell populations, where cells were transfered from E2 to E1,
and vice versa, at t = 0. Growth rates show a transition period and a steady-
state region. In agreement with experiments (see Acar et al. [1]), fast-switching
cells were found to recover from the effect of environment change faster than
slow-switching cells but have a lower steady-state growth rate.
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6 Cellular Decision-Making in a Noisy Environment

Previous sections have described sources of noise in gene regulatory networks,
how noise can impact fitness, and how different regulatory mechanisms can ei-
ther attenuate or amplify noise. While noise is an inherent part of the stochastic
chemistry of cells, it is also an inherent part of their sensing apparatus as well as
of the signals they sense. For example, cells can respond to the concentrations
of numerous kinds of chemicals, including nutrients, toxins, signaling molecules,
as well as physical properties of the environment such as pressure and tem-
perature. A recent line of research has investigated models of how cells should
process such noisy signals, and in particular, whether human theories of optimal
signal processing might be embodied in cells–implemented chemically, as it were
[17,2,3,32]. We present a simplified version of the analysis of Libby et al. [32].
We show that it is possible, in principle, for the chemistry of gene regulation to
approximate probability-theoretic computations related to the analysis of noisy
signals. This general viewpoint provides one possible interpretation, a detailed
quantitative interpretation, for the function of real regulatory networks.

6.1 Two-Class Bayesian Discrimination Problems

The work of Libby et al. [32] used the framework of two-class Bayesian discrimi-
nation problems to interpret gene regulatory mechanisms, and the lac operon of
E. coli in particular. In these problems, we imagine that there is an unobserved
binary random variable X , whose value one wants to estimate. For example, it
may be important to an E. coli whether its immediate environment has a low
or high concentration of a particular sugar (Figure 8), in order for it to make
the right choices about expressing genes useful for the import and metabolism of
that sugar. In other cases, the relevant variable may be the presence or absence

Fig. 8. Conceptualization of an inference problem solved by a cell. (a) An E. coli cell
(oblong) in an environment low in a particular sugar (black circles). (b) The same
cell in a higher sugar environment. The amount of intracellular sugar is related, albeit
imperfectly and stochastically, to the extracellular sugar concentration. While intra-
cellular sugar directly drives the regulation of genes related to its metabolism, it is the
extracellular sugar that is of true importance to the regulatory decisions made by the
cell.
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of a toxin, a mating partner, a competitor organism, etc. Although X is not
directly observed, we assume there is another variable S which is observed, and
the value of which depends stochastically on the value of X . For example, in the
situation depicted in Figure 8, S may be the intracellular sugar concentration.
This S can be viewed as “observed by” or “known to” the cell, because this
sugar can interact directly, chemically, with the regulatory machinery of the cell
and bring about changes in cellular behavior (e.g., changing the expression of
certain genes). The exact value of S may depend on many factors—the size of
the cell, the number of permeases, and so on, but it clearly depends as well on
the extracellular environment state, X . We can imagine that there are different
probability distributions for S depending on the state X , P (S = s|X = low)
an P (S = s|X = high). The problem the cell faces, then, is to estimate the
probabilities of X = low and X = high based on the signal value S = s. This
can be done via Bayes’s rule

P (X = high|S = s) =
P (S = s|X = high)P (X = high)

P (S = s)

=
P (S = s|X = high)P (X = high)

P (S = s|X = high)P (X = high) + P (S = s|X = low)P (X = low)
.

From this formula, it is clear that the probability of X being high or low depends
not just on the value of S, via the probability distribution for S as a function of
X , but also on the terms P (X = high) and P (X = low) = 1 − P (X = high).
The are called the prior probabilities, which are one’s beliefs about X before the
signal S has been accounted for, while P (X = high|S = s) and P (X = low|S =
s) = 1 − P (X = high|S = s) are called the posterior probabilities, representing
one’s beliefs about X after the signal S has been accounted for.

6.2 A Model of Genetic Response to Intracellular Sugar

We present a simplified chemical model of gene activation that is broadly similar
to the function of the lac operon of E. coli, as well as a number of other sugar
metabolic systems. It is not intended as a description of the lac operon per se, but
rather as a generic model of negatively regulated control. We model intracellular
sugar, S, a repressor molecule R, and the promoter A of a gene whose protein
P is expressed in a correlated fashion to sugar S. In a real system, P might
actually represent a set of proteins involved in the metabolism or import of the
sugar S, but we do not model these aspects. We merely think of P as being the
response of the cell that is turned on by the presence of S.

� rS(X)−→ S (33)

S
γS−→ � (34)
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rRS

S + R ⇀↽ SR
rSR

(35)

SR
γS−→ R (36)

rAR

A + R ⇀↽ AR
rRA

(37)

A
sP−→ A + P (38)

P
δP−→ � (39)

Eq. (33) describes the process of intracellular sugar entering the system at rate
rS(X), which, because X is binary, can be one of two values—rlow when X = low
and rhigh when X = high. Sugar “decays”, whether bound to the repressor
(Eq. (36)) or not (Eq. (34)), which would realistically represent the sugar being
metabolized, or concentration decreasing via dilution. The repressor can bind
to the promoter and make it transcriptionally inactive (Eq. (37)). However, a
repressor molecule bound by sugar (Eq. 35) cannot bind the promoter. In this
way, increasing S leads to decreasing free R, and thus increasing transcriptional
activation and increasing level of P . At this qualitative level, the model behaves
as would be expected by a system that responds to the sugar S. Is a more
quantitative interpretation of the system possible? Is it possible for the system
to implement, or approximate, the Bayesian two-class computation described
above, so that the “output” of the system, the expression of the protein P , is
proportional to the posterior probability that the external environment being in
state X = high?

Fig. 9. Conditional and posterior probabilities for a problem of inferring environment
state X (low or high in sugar) based on the noisy intracellular sugar level, S. (a) The
probability distributions for S in the two environment states. (b) The posterior proba-
bility of X = high given an intracellular sugar level S, and the output of the chemical
model of gene regulation, with parameters tuned to match the posterior probability.
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6.3 Chemically Approximating Bayesian Two-Class Discrimination

Libby et al. [32] showed that a variety of different chemical regulatory models of
sugar metabolism are indeed capable of approximating the Bayesian two-class
computation. To demonstrate this using the model above, suppose that rlow =
10 molecules per second, rhigh = 20 molecules per second, and γS = 1 s−1.
When X = low, the steady-state probability distribution for S is Poisson with
parameter λ = 10, and when X = high, it is Poisson with parameter λ = 20
(Figure 9a). Assuming that X = low and X = high are equally likely a priori,
so that P (X = low) = P (X = high) = 1

2 , then Equation 6.1 can be used to
compute the posterior probability that the environment is in a high sugar state.
The result of this computation is shown in Figure 9b.

Returning to the chemical model, let [P ]Stot denote the steady-state number
of molecules of P when the total intracellular sugar Stot = S + RS is fixed
at a certain level. That is, we remove reactions 33, 34 and 36 from the model,
and compute the (deterministic) steady-state of the system. We implemented
this steady-state computation in Matlab and used the fminsearch utility to
find reaction rate parameters for the system that minimize the squared error
function

30∑
Stot=0

(P (X = high|Stot) − [P ]Stot)2. (40)

As shown in Figure 9b, the parameters of the chemical model can be chosen so that
the average number of molecules of P , given intracellular sugar level Stot, closely
matches the Bayesian computation of the probability that the environment is in
the high sugar state. This demonstrates that even the simplest gene regulatory
mechanisms are capable, in principle, of approximately reproducing fairly sophis-
ticated probability-theoretic computations, and thus are capable of implementing
inferential procedures to help the cell reason about its environment.

Whether or not this is an appropriate interpretation of the behavior of real
gene regulatory systems remains to be seen. Libby et al. [32] showed that the
experimentally measured response of the lac operon to two signals, lactose con-
centration and cAMP concentration (a starvation signal), is consistent with a
solution to a two-class discrimination problem. Relatedly, Dekel et al. [17] showed
that expression of the lac operon seems to balance the metabolic benefit from the
sugar against the metabolic cost of expression. Andrews et al. [2,3] have shown
that chemotactic behavior can be interpreted through the lens of filtering and in-
formation theory. Thus, there is growing evidence that human theories of noisy
signal processing and decision making may indeed be implemented biochemi-
cally in the cell, and that these theories provide explanations for the detailed
quantitative behaviors of cellular networks.

7 Conclusion

Our understanding of the origins and consequences of stochasticity in gene ex-
pression has advanced significantly in recent years. This advancement has been
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fueled by theoretical developments enabling biological hypothesis formulation
using stochastic process and dynamical systems theory, as well as experimental
breakthroughs in measurements of gene expression at the single cell level [53].

Noise in gene expression was originally viewed as being detrimental in terms of
cellular function due to the corruption of intracellular signals negatively affect-
ing cellular regulation with possible implications for disease. However, noisy gene
expression can also be advantageous, providing the flexibility needed by cells to
adapt to stress such as a changing environment [1,21,58]. Stochasticity in gene
expression provides a mechanism for the occurrence of heterogeneous popula-
tions of genetically identical cells, in terms of phenotypic and cell-type diversity,
which can be established during cellular growth and division [14,30,51]. Further-
more, studies have suggested that intrinsic stochasticity in gene expression is an
evolvable trait [22,39].

Gene expression noise not only arises from intrinsic fluctuations, but also from
noise propagated through the network from upstream genes [42]. Several genetic
network motifs including cascades and feedback loops can act to modulate this
noise, resulting in a range of behaviour including amplification, bounded fluctu-
ations, and noise filtration [42,49,59].

Cells depend on the information they obtain from their environment to remain
viable. Yet this information, received at the cell surface, is conveyed through
gene and protein networks and is transferred via biochemical reactions that
are inherently stochastic [11,19,39,45]. Stochastic fluctuations can undermine
both signal detection and transduction. As a result, cells are confronted with
the task of predicting the state of the extracellular environment from noisy
and potentially unreliable intracellular signals. In addition to employing noise
reduction mechanisms, cells may statistically infer the state of the extracellular
environment from intracellular inputs [32,43].

The study of noise in genetic networks has provided novel insights into how
cells survive, propagate and ultimately perish in stochastic environments. This
line of research is likely to continue to prove fundamental for developments in
the fields of molecular and synthetic biology and in furthering our understanding
and treatment of human disease.
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