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Abstract
Rising rates of resistance to antimicrobial drugs threaten the effective treatment of infections across
the globe. Drug resistance has been established to emerge from non-genetic mechanisms as well as
from genetic mechanisms. However, it is still unclear how non-genetic resistance affects the
evolution of genetic drug resistance. We develop deterministic and stochastic population models
that incorporate resource competition to quantitatively investigate the transition from non-genetic
to genetic resistance during the exposure to static and cidal drugs. We find that non-genetic
resistance facilitates the survival of cell populations during drug treatment while hindering the
development of genetic resistance due to competition between the non-genetically and genetically
resistant subpopulations. Non-genetic resistance in the presence of subpopulation competition
increases the fixation times of drug resistance mutations, while increasing the probability of
mutation before population extinction during cidal drug treatment. Intense intraspecific
competition during drug treatment leads to extinction of susceptible and non-genetically resistant
subpopulations. Alternating between drug and no drug conditions results in oscillatory population
dynamics, increased resistance mutation fixation timescales, and reduced population survival.
These findings advance our fundamental understanding of the evolution of resistance and may
guide novel treatment strategies for patients with drug-resistant infections.

1. Introduction

Antimicrobial (drug) resistance occurs when bacteria,
viruses, fungi, and parasites no longer respond to
drug therapy, making infections difficult or impossi-
ble to treat, which increases the risk of disease trans-
mission, severe illness, and death [1]. The evolution
of genetic drug resistance is known to arise from
the natural selection of mutations or resistance genes
that provide microbes with the ability to survive and
proliferate during treatment [2]. It has also been
shown that non-genetic mechanisms promote micro-
bial phenotypic diversification and survival strate-
gies in selective drug environments [3]. Phenotypic
heterogeneity has important implications for drug
resistance [4, 5], with heritable resistance potentially
arising independently of genetic mechanisms [6]. The
stochastic or ‘noisy’ expression of genes [7, 8] intro-
duces phenotypic heterogeneity among genetically

identical cells in the same drug environment, which

can result in the fractional killing of clonal microbial

populations [3, 9], as well as chemotherapy resistance

in cancer [10]. This stochasticity is due in part to

the inherently random nature of the biochemical

reactions involved in the transcription and translation
of genetic material, and can lead to the emergence

of phenotypically distinct subpopulations within an

actively replicating clonal cell population [8, 11].

Another form of non-genetic drug resistance called

‘tolerance’ occurs in fungi, in which a slow-growing
subpopulation of cells (that are genetically identical

to susceptible cells) emerges during antifungal drug

treatment [12]; related phenomena occur in bacteria

[13, 14] and cancer [15].

Non-genetic drug resistance has been proposed to

promote the development of genetic drug resistance
[4, 5, 10, 12, 16]. This process may be enhanced
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by the interaction between non-genetic and genetic
mechanisms inside the cell [5]. For instance, pro-
moter mutations can alter the expression noise levels
of drug resistance genes [9], genetic network architec-
ture can modulate gene expression noise to enhance
drug resistance [17–19], and stress response genes
can evolve elevated transcriptional variability through
natural selection [20, 21]. Non-genetic mechanisms
can facilitate the generation of genetic diversity by
increasing the expression of key regulators involved in
DNA replication, recombination, or repair [22, 23], as
well as by enhancing the adaptive value of beneficial
mutations during drug treatment [24] and promot-
ing the fixation of favorable gene expression altering
mutations [25]. Non-genetic phenotypic variability
can impact cellular populations by providing a link
between micro-scale dynamics (such as stochasticity
at the molecular level) and macro-scale biological
phenomena (including the fate of interacting cell
populations) [26]. Such noise in biological systems
may facilitate the adaptation to environmental stress
by allowing distinct, co-existing cellular states in a
population to find the best adaptive solution from
multiple starting points [27]. However, there are con-
flicting views on how phenotypic heterogeneity may
facilitate adaptive evolution [28] and the transition
from non-genetic to genetic drug resistance remains
to be quantified [5, 12].

Fungal pathogens are among the leading causes
of infectious disease mortality, which is expected
to accelerate due to a variety of factors including
climate change [29]. Particularly concerning is the
emergence of multidrug resistant yeast pathogens
around the globe [30]. Mathematical models and
synthetic gene networks (or ‘circuits’) are being used
to experimentally investigate drug resistance in yeast
[31]. In particular, synthetic gene circuits have been
designed to mimic network motifs that occur natu-
rally, such as positive feedback loops, to study non-
genetic resistance in the budding yeast Saccharomyces
cerevisiae [18, 32, 33]. This positive feedback has
been shown to confer yeast cells with a heritable,
non-genetically drug-resistant phenotype for up to
283 h before switching back to the drug-susceptible
phenotype [32]. These experimental studies reveal
important insights into fungal drug resistance and
provide parameters for our quantitative models.

Selective pressures during infection can lead
to cooperation and competition within microbial
communities [34], and these interactions can have
implications for disease outcomes [35]. Competition
within a microbial community composed of the same
species becomes relevant when resources such as
nutrients or space become limiting, such as at high
population density. Intraspecific competition results
from ‘exploitation competition’, which involves the
relatively more efficient use of a limiting resource or
from ‘interference competition’, which results from
the production of toxic substances that impair the

growth or survival of competitors [36]. Intraspe-
cific competition leads to logistic growth, whereby
population growth is exponential when population
size and resource competition are low, followed by a
progressively reduced growth rate as the population
size increases toward the carrying capacity of the
micro-environment [37]. Phenotypic heterogeneity
can promote interactions among subpopulations as
well as the division of labour between individual
cells, providing clonal microbial populations with
new functionalities [38]. Importantly, the evolution-
ary effects of intraspecific competition have not been
investigated in the context of resource competition
between non-genetically and genetically resistant sub-
populations in microbial populations undergoing
drug treatment.

In this study, we investigate the transition from
non-genetic to genetic resistance during static drug
(drugs that stop or slow cell growth) and cidal
drug (drugs that kill cells) treatment in the pres-
ence of resource competition using deterministic and
stochastic population models [37]. Overall, we find
that non-genetic resistance facilitates the survival of
cell populations undergoing drug treatment, while
hindering the fixation of genetic mutations due to
competition effects between the non-genetically and
genetically resistant subpopulations.

2. Methods

2.1. Deterministic population model
The deterministic population model describes
changes in cellular subpopulation concentrations
over time during drug treatment. Three different
subpopulations comprising the total population T are
described in this model: a susceptible subpopulation
S, a non-genetically resistant subpopulation N, and
a genetically resistant subpopulation G. Cells may
switch between the S and N subpopulations, and
cells in the N subpopulation can mutate into the G
subpopulation (figure 1). The mathematical model
is described by a set of coupled ordinary differential
equations (ODEs):

dS

dt
= Sk′S + NrS,N − SrN ,S − SδS (1)

dN

dt
= Nk′N + SrN ,S − NrG,N − NrS,N − NδN (2)

dG

dt
= Gk′G + NrG,N − GδG, (3)

where rS,N is the switching rate from N to S, rN,S is
the switching rate from S to N, rG,N is the mutation
rate from N to G, and δS, δN, δG are the death rates of
S, N, and G, respectively. k′S, k′N , and k′G describe the
birth rate of each subpopulation in the presence of a
drug and resource competition, and are described by
equation (6). There is no mutational pathway from
S to G, as we are considering drugs that completely
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arrest growth and division (k′S = 0) and therefore
genetic mutation due to DNA replication errors in
the S subpopulation does not occur [39]. Appendix D
considers cases where S is allowed to grow (k′S �= 0),
which allows mutation from S to G (rG,S �= 0),
and shows that the qualitative trends seen in our
main results hold for this scenario. Unless otherwise
indicated, we assume that N has partial, temporary
resistance (i.e., 0 < δN < δS) and that genetic muta-
tion provides complete, permanent resistance to the
drug. To model static and cidal drug treatments of
varying strengths, we respectively varied the birth and
death rates in equations (1)–(3).

Summing equations (1)–(3) under the above
assumptions yields the following equation for the
concentration of the total population:

T = S + N + G (4)

as well as an equation for the growth rate of the total
population:

dT

dt
= Sk′S + Nk′N + Gk′G − SδS − NδN − GδG. (5)

Resource competition between the subpopula-
tions was modeled by scaling kS, kN, and kG by a
Baranyi-Hill type function, which depends on T and
results in logistic growth [37]. The Baranyi model
accurately describes the transition from lag-phase to
exponential growth that occurs during the adaptation
to antimicrobial drugs [37, 40]. For subpopulation i
(where, i ∈ {S, N, G}), this is given by:

k′i = kiz(T) = ki

(
hn

hn + Tn

)
, (6)

where ki is the maximum birth rate for subpopulation
i (which leads to exponential growth in the absence of
competition for limited resources), n is the Hill coef-
ficient, and h is the point at which the competition
function z(T) is half of its maximum value.

The growth dynamics of S, N, and G were obtained
by solving the deterministic model, starting from
initial population sizes Si, Ni, and Gi and numerically
integrating equations (1)–(3) over a total time ttot

using a time step Δt. This numerical integration was
performed using the ode45 ODE solver, which is based
on an explicit Runge–Kutta method, in MATLAB
[41]. The fixation time τ fix was used as a quantita-
tive measure of how long it takes for G to become
dominant in the population [42] and was defined as
the time it takes for G to comprise 95% of the total
population.

2.2. Stochastic population model
Next, we developed a stochastic population model
corresponding to the deterministic population model
to study the effects of non-genetic resistance on
the evolution of genetic resistance in low cell num-
ber regimes. Low numbers of infectious cells can

occur at the onset of infection and during the final
stages of drug treatment, and is the regime where
stochastic fluctuations are expected to have a sig-
nificant effect on population dynamics. Accordingly,
equations (1)–(3) were translated into the following
set of reactions:

S
k′S−→ 2S (7)

N
k′N−−→ 2N (8)

G
k′G−−→ 2G (9)

S
rN,S−−→N (10)

N
rS,N−−→ S (11)

N
rG,N−−−→G (12)

S
δS−→� (13)

N
δN−−→� (14)

G
δG−−→� (15)

equations (7)–(15) were simulated using the Gillespie
stochastic simulation algorithm [43, 44].

To quantify the effect of non-genetic drug resis-
tance on the evolution of genetic drug resistance in
the stochastic population model, we obtained the
first-appearance time (Pτ ) and fixation time (Pτfix

)
distributions of G. For parameter regimes where
population extinction could occur during the cidal
drug treatment simulations (i.e., when S and N go
extinct before G appears), we determined the effect
that the death rate of N had on the probability
of G emerging (PG) before population extinction.
This was determined from the number of population
extinction events that occurred over a large number
of simulations for different values of the death rate
for N.

While the deterministic population model
(equations (1)–(3)) was suitable for investigating
large population dynamics under drug treatment,
the corresponding stochastic population model
(equations (7)–(15)) was necessary to accurately
quantify fixation time and mutation first-appearance
time distributions and extinction events for cidal
drug treatment scenarios, where the total population
size becomes small enough to result in extinction
events (no drug resistance mutation appears before S
and N reach zero). When starting with no pre-existing
mutations (Gi = 0), the fixation times calculated
using the deterministic model of cidal drug treatment
tended to be underestimated compared to those
calculated using averages over exact stochastic
simulations. When starting with a pre-existing
mutation (Gi = 1), the average fixation times using
the stochastic model converged to the those found
using the deterministic model (appendix H). This
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Figure 1. Schematic depicting the transitions between susceptible, non-genetically resistant, and genetically resistant
subpopulations in a cell population undergoing drug treatment. Cells with the drug susceptible (S) phenotype can switch to
non-genetically drug-resistant (N) phenotype and vice versa (at rates rN,S and rS,N, respectively). The degree of susceptibility or
resistance of S, N, and G to a drug can be varied between simulations and is dependent on the treatment scenario being
investigated. For example, a higher birth rate (kN) or a lower death rate (δN) results in the degree of transient drug resistance of N
cells being higher (represented by dark green cells), whereas a lower kN or a higher δN results in a lower level of transient drug
resistance (represented by light green cells), as described overall by the fitness (N subpopulation growth rate) in the presence of a
static or cidal drug, respectively; this is similar, but not shown in the schematic for clarity, for S and G cells. Cells from the N
subpopulation can mutate (at a rate rG,N) to become permanently genetically drug-resistant (G) cells.

highlights the importance of stochastic modeling
when considering low numbers of infectious cells
with no pre-existing drug resistance mutations.

We focus on the cidal drug treatment scenario for
stochastic simulations for constant and fluctuating
drug conditions, as the corresponding static drug
stochastic simulations took prohibitively long to sim-
ulate due the lack of cell death, which resulted in larger
subpopulation/population sizes, and correspondingly
stochastic fluctuations were not expected to have
much effect on the population dynamics.

3. Results and discussion

The parameters for the deterministic and stochas-
tic population models are provided in appendix A
(table A1) and the simulation codes are freely avail-
able at: https://github.com/CharleboisLab/S-N-G.

3.1. Deterministic population and evolutionary
dynamics under static drug exposure
We began by numerically solving the deterministic
population model to generate the time series sub-
population concentrations to investigate the relative
fitness effects of the non-genetically and genetically
resistant subpopulations on the evolution of drug
resistance during static drug treatment. We model the
effects of a static drug by setting the birth rate of
the susceptible cells S to zero (kS = 0) and setting all
death rates to a natural basal death rate, which was
based on the chronological life span of S. cerevisiae
(table A1) [45].

The concentration of S initially decreases after
the application of the static drug as a result of cells
switching from S to N and then increases logistically
due to switching from N to S, before falling toward
extinction due to resource competition with the G
subpopulation (figure 2(A)). The growth of N fol-
lows a logistic-type curve before also falling toward

extinction (figure 2(B)). Overall, the growth of S and
N (figures 2(A) and (B)), along with the growth of
total population (figure 2(D)), increase as the fitness
of N increases (modeled for static drug treatment by
increasing the birth rate of N).

The concentration of G (figure 2(C)) and the
fraction of G in the total population (figure 2(E))
reveal that an increase in the fitness of N slows the
expansion of G. This can be attributed to resource
competition between the subpopulations, as a higher
total population size reduces the growth rate of G
(equation (6)).

The growth rate of the total population over time
increases before sharply decreasing after it reaches
a maximum (figure 2(F)). This is a result of the
growth of the population beginning to slow down as
it increases in size (dT/dt → 0 as T →∞), which is
expected for logistic-type growth [37]. Despite the
decrease in the expansion of G, the total population
growth rate increases as the fitness of N increases
(figure 2(F)). Thus, increasing the fitness of N in
the static drug environment enhances the growth of
the population, while at the same time hindering
the expansion of G. Additionally, intense resource
competition drives the S and N subpopulations to
extinction at longer timescales.

Then, we quantified how the fitness of the N and
G subpopulations affect the fixation of the mutated G
subpopulation. As expected, an increase in kG relative
to kN shortens the fixation time of G in the population
(figure 3(A)). Importantly, increasing kN relative to kG

lengthens the fixation time of G (figure 3(A)), due to
competition decreasing the fraction of G in the total
population (figure 2(E)).

Overall, the trends in the static drug environ-
ment were similar for a wide range of mutation
rates (figure F5), though there were some qualitative
differences for variations in the S–N switching rates
(figures F1 and F2) (appendix F).
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Figure 2. Growth of the genetically resistant subpopulation is hindered by an increase in birth rate of the non-genetically
resistant subpopulation during static drug treatment. (A) The growth curve of the susceptible (S) subpopulation. (B) The growth
curve of the non-genetically resistant (N ) subpopulation. (C) The growth curve of the genetically resistant (G) subpopulation.
(D) The growth curve of the total population (T). (E) The fraction of G in the total population (T). (F) The rate of change
in the size of T (dT/dt) as a function of time (t). Each coloured line represents a different numerical simulation corresponding to
the growth value of N (kN) shown in the legend in (A), with the solid blue line representing the lowest level of N fitness
(kN = 0.1733 h−1), the red dash-dotted line an intermediate level of N fitness (kN = 0.2600 h−1), and the yellow dashed line the
highest level of N fitness (kN = 0.3466 h−1) relative to the fitness of G (kG = 0.3466 h−1) when exposed to a static drug.

Figure 3. Drug resistance of the non-genetic subpopulation slows the evolution of the genetically resistant subpopulation during
drug exposure. (A) Heat map shows the effect of the birth rates of the non-genetically resistant (N ) and genetically resistant (G)
subpopulations (kN and kG, respectively) on the fixation time (τ fix) of the genetically resistant subpopulation (G) during static
drug treatment. (B) Heat map shows the effect of the death rates of N and G (δN and δG, respectively) on the τ fix of G during cidal
drug treatment. For this case, we set δS was set to 1.0 h−1 and kN and kG to 0.3466 h−1. Each bin in (A) and (B) corresponds to a
simulation for a particular combination of kN and kG or δN and δG, respectively. The colour bar gives τfix in hours. As kN is less
than or equal to kG, numerical simulation data does not appear in the upper diagonal of the heat map in (A).

3.2. Deterministic population and evolutionary
dynamics under cidal drug exposure
Next, we investigated how the relative fitness of
the non-genetically resistant and genetically resistant
subpopulations affected the evolutionary dynamics of
the population under cidal drug treatment.

The concentration of S quickly declines after expo-
sure to the cidal drug, with phenotype switching
from N providing temporary survival before dying off

(figure 4(A)). The N subpopulation shows temporary
growth for lower values of δN before dying off, while
higher values of δN produce flat growth curves before
going extinct due to drug treatment and subpop-
ulation competition (figure 4(B)). Lower δN values
(higher N fitness) prolong the temporary survival of
S and N compared to higher δN values (figures 4(A)
and (B)). The logistic growth of G also changes due to
the fitness of N, with the higher δN (lower N fitness)
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Figure 4. The fraction of the genetically resistant cells in the population increases with a decrease in fitness of the non-genetically
resistant subpopulation in a cidal drug environment due to intraspecific competition. (A) The growth curve of the drug
susceptible (S) subpopulation. (B) The growth curve of the non-genetically drug resistant (N ) subpopulation. (C) The growth
curve of the genetically drug resistant (G) subpopulation. (D) The growth curve of the total population (T ). (E) The fraction of G
in the total population (T). (F) The rate of change in the size of T (dT/dt) as a function of time (t). Each coloured line represents
a different numerical simulation corresponding to the death rates of N shown in the legend in (A), with the solid blue line
representing the highest level of N fitness (death rate of 0.1 h−1), the red dash-dotted line an intermediate level of N fitness
(death rate of 0.5 h−1), and the yellow dashed line the lowest level N fitness (death rate of 1.0 h−1) relative to the fitness of G
(unaffected by the drug) during cidal drug treatment. S was given a death rate of 1.0 h−1 for these simulations, and the birth rate
of both N and G was set to 0.3466 h−1.

Figure 5. Probability of genetic drug resistance emerging before population extinction increases with the fitness of the
non-genetically resistant subpopulation during cidal drug treatment. The appearance probability of the genetically drug resistant
subpopulation (PG) is shown as a function of decreasing N fitness (death rate; δN). Each coloured line represents a different
strength of the cidal drug on the susceptible population S, with the red dashed-dotted line representing the lowest strength
(δS = 0.1 h−1), the blue line an intermediate strength (δS = 0.5), and the green dashed-dotted line the highest strength
(δS = 1.0 h−1). The birth rates of N and G were set to kN = kG = 0.3466 h−1. Each data point is an average over ten realizations
of 10 000 simulations. Error bars show the standard deviation.

values producing a sharper increase toward saturation
(figure 4(C)). Increasing the fitness of N decreases
the fraction of G in the total population, as lower δN

values result in more N cells and consequently lower
G/T values (figure 4(E)).

The number of cells in the total population ini-
tially declines (negative growth rate; figure 4(D)) be
fore stabilizing at zero population growth (figure
4(F)). Then the population growth rate increases
as the genetically drug resistant G subpopulation
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Figure 6. Drug resistance mutation first-appearance time and fixation time distributions during cidal drug treatment. (A)
First-appearance time (Pτ ) and (B) fixation time (Pτfix

) distributions for the genetically resistant subpopulation (G) for a low level
of non-genetically resistant subpopulation (N) fitness (death rate; δN = 0.3 h−1). For (A) and (B), histograms show results for
14 625 stochastic simulations. (C) Pτ and (D) Pτfix

distributions for G for an intermediate level of N fitness (δN = 0.2 h−1). For
(C) and (D), histograms show results for 30 391 SSA simulations. (E) Pτ and (F) Pτfix

distributions for G for a high level of N
fitness (δN = 0.1 h−1). For (E) and (F), histograms show results for 100 000 stochastic simulations. The mean and the CV for each
distribution is provided in the top corners of each plot. The death rate of S was set to δS = 1.0 h−1 and the birth rates of N and G
were set to kN = kG = 0.3466 h−1 for these simulations.

expands to take over the population. This is
followed by a decrease in the population growth
rate, as the total population size moves toward
saturation (zero population growth) after the
maximum population growth rate is reached.
Interestingly, when the fitness of N was high, there
was a subsequent resurgence in the population
growth rate before the population finally saturates.
The first peak in the population growth rate is a
due increasing S and N concentrations, and the
second peak is due to a subsequent rising in G
subpopulation concentration. When G is considered
to be partially resistant (i.e. δG > 1/156 h−1),

cidal drug treatment can either drive the total
population to extinction or result in non-zero steady-
state S, N, and G subpopulation concentrations
(figure E1).

As for the static drug treatment, increasing the
fitness of N hinders the fixation time of the geneti-
cally resistant subpopulation during cidal drug treat-
ment (figure 3(B)). Similar population dynamics were
observed when N was given a smaller birth rate
(kN = 0.1733 h−1) compared to G (figure D1). Over-
all, the findings for cidal drug treatment were qual-
itatively similar for a wide range of parameters
(figures C1, F3, F4, and F6) (appendix F).
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Figure 7. Fixation time of a genetic resistance mutation as a function of non-genetic drug resistance. Shown are the numerical
solutions of the deterministic ODE model (blue dots) and SSA results (orange crosses) for the corresponding stochastic model.
The death rate of the susceptible population (S) was set to δS = 1.0 h−1 and the birth rates of N and G were set to
kN = kG = 0.3466 h−1 for these simulations. Error bars on the SSA results denote the standard deviation.

3.3. Stochastic evolutionary dynamics during
cidal drug treatment
We simulated the stochastic population model
(equations (7)–(15)) translated from the
deterministic population model (equations (1)–(3))
to investigate the transition from non-genetic to
genetic drug resistance in cell populations moving
toward extinction during cidal drug treatment. This
is important as fluctuations in small subpopulation
sizes may impact the evolutionary dynamics of the
population. Given that S and N are killed to differing
degrees by the cidal drug, and that the evolution
of G depends directly on N, we hypothesized that
stochastic fluctuations in the size of N could lead to
the survival or extinction of the total population.
To quantify the population and evolutionary drug
resistance dynamics in this regime, we determined
how the fitness of N affects the probability of
population extinction (which occurs when S and N
go extinct before G emerges; figure G1), along with
the first-appearance and fixation times of a genetic
mutation, which are bound to occur in our model
once G is present in the population.

Decreasing the fitness of N (increasing δN)
decreased the likelihood of G appearing and res-
cuing the cell population from extinction during
cidal drug treatment (figure 5). This is in quali-
tative agreement with a previous study that found
that increasing the fluctuation relaxation time of
a drug resistance gene increased the probability of
acquiring a drug resistance mutation [6]. When
N had high fitness in the cidal drug environment
(δN = 0.1 h−1 to δN = 0.3 h−1) the total popu-
lation never went extinct. The extinction proba-
bility increased exponentially as the fitness of N
decreased, with the population going extinct between
57% and 83% (depending on the value of δS)

of the time for moderate fitness (δN = 0.5 h−1),
and between 87% and 96% (depending on the value
of δS) of the time for low fitness (δN = 1.0 h−1).
These results show that the presence of non-genetic
resistance enhances population survival when there
are no pre-existing drug resistance mutations prior
to drug exposure, and that non-genetic resistance
increases the chance that a mutation will occur by
providing a drug-exposed population with more time
before extinction. As expected, G always appeared
in the population when the strength of the cidal
drug was low (δN < 0.3 h−1), and conversely, the
population almost always went extinct before G could
emerge when the strength of the cidal drug was high
(δN = 1.0 h−1) (figure 5).

When the fitness of N increased in the cidal
drug environment so did the means of the muta-
tion first-appearance time and fixation time distri-
butions (figure 6). This indicates that the presence
of non-genetic drug resistance slows the evolution
of genetic drug resistance, in agreement with the
results obtained from the deterministic population
model (figure 3(B)). While the coefficient of variation
(CV; defined as the standard deviation divided by
the mean) of the first-appearance time distributions
(figures 6(A), (C) and (E)) was only marginally
dependent on the fitness of N, the CV of the fixa-
tion time distributions (figures 6(B), (D) and (F))
increased approximately three fold as the fitness of N
increased from low to high. Therefore, the presence of
increased non-genetic drug resistance is predicted to
not only slow down genetic drug resistance, but also
to increase the uncertainty in its evolution.

A comparison of the fixation times found using
the deterministic ODE model and the mean fixa-
tion times calculated over many stochastic simulation
algorithm (SSA) simulations for various δN values
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Figure 8. Oscillatory subpopulation concentration and growth rate dynamics in alternating drug-no drug conditions. The
fraction of the genetically resistant cells in the population increases with the death rate of the non-genetically resistant
subpopulation in a fluctuating cidal drug environment (12 h alternating drug-no drug intervals, starting with the drug applied).
(A) The growth curve of the drug susceptible (S) subpopulation. (B) The growth curve of the non-genetically drug resistant (N)
subpopulation. (C) The growth curve of the genetically drug resistant (G) subpopulation. (D) The growth curve of the total
population (T). (E) The fraction of G in the total population (T). (F) The rate of change in the size of T (dT/dt) as a function of
time (t). Each coloured line represents a different numerical simulation corresponding to the death rates of N shown in the legend
in (A), with the solid blue line representing the highest level of N fitness (death rate of 0.1 h−1), the red dash-dotted line an
intermediate level of N fitness (death rate of 0.5 h−1), and the yellow dashed line the lowest level N fitness (death rate of 1.0 h−1)
relative to the fitness of G (unaffected by the drug) during cidal drug treatment. S was given a death rate of 1.0 h−1 for these
simulations, and the birth rate of both N and G was set to 0.3466 h−1.

is shown in figure 7. As expected, the mean fixa-
tion times calculated from the stochastic simulations
generally match those found using the determin-
istic model. When modeling a pre-existing muta-
tion (Gi = 1), which removes the stochasticity in the
first appearance time of the mutant subpopulation,
the mean values of the stochastic simulation results
converge with those found using the deterministic
model (figure H1). Importantly, both determinis-
tic and stochastic models show that decreasing the
fitness of N increases the speed of genetic fixation
(this also holds for pre-existing mutation scenarios;
figure H1).

3.4. Evolutionary dynamics during fluctuating
cidal drug treatment
To investigate evolutionary drug resistance dynamics
in fluctuating drug treatment scenarios, we assigned
resistant subpopulations a fitness cost when the drug
was removed. This was done by reducing kN to
0.2600 h−1 and kG to 0.1733 h−1, while allowing S
to grow with kS = 0.3466 h−1 in the no-drug envi-
ronment (which also opened the mutational pathway
from S to G at a rate rG,S); the parameters were the
same as before in the intervals where the cidal drug
was applied (table A1).

We first performed deterministic simulations
where drug application intervals ranged from 6 to
48 h, followed by no-drug intervals of the same
duration. The fraction of G in the total population
changes relative to the fitness of N in a similar
way as the constant drug environment, showing a
hindrance of the fixation of G with increasing N
fitness (figures 8 and 9). Alternating between drug
and no-drug environment resulted in oscillations
in the subpopulation concentrations and population
growth rate (figure 8). Interestingly, when N had a
high level of resistance to cidal drug treatment, the
population growth rate oscillated dramatically before
saturating, rather than the isolated population growth
rate surge and resurgence peaks that occurred prior
to saturation in the constant cidal drug environment
simulations (figure 8(F)). Increasing the period of
the drug–no drug fluctuations also lengthens the
fixation time scales of G (figure 9) compared to the
constant cidal drug treatment scenario (figure 3(B)).
Thus, fluctuating the drug condition, along with the
presence of non-genetic drug resistance, can length
the onset of permanent genetic drug resistance.

Next, we performed stochastic simulations to
determine the probability of genetic drug resis-
tance appearing before population extinction for 12,
24, and 48 h fluctuations in cidal drug treatment.

9
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Figure 9. Drug resistance of the non-genetic subpopulation slows the evolution of the genetically drug resistant subpopulation
during fluctuating cidal drug exposure. Heat map shows the effect of the death rates δN and δG on the τ fix of G during cidal drug
treatment for 12 h drug–no drug fluctuations time, starting with drug applied. δS was set to 1.0 h−1, as it was assumed that S
would experience the least amount of resistance to the drug compared to N and G, and the trends seen here were found to hold
for fluctuation times of 6–48 h (data not shown). Each bin corresponds to a simulation for a particular combination of δN and
δG. The colour bar gives τ fix in hours.

Figure 10. Probability of genetic drug resistance emerging before population extinction decreases at longer cidal drug–no cidal
drug fluctuation intervals. The appearance probability of the genetically drug resistant subpopulation (PG) is shown as a function
of N fitness (death rate; δN). Each coloured line represents a different fluctuation time, with the red dashed-dotted line
representing 12 h fluctuations, the blue line 24 h fluctuations, and the green dashed-dotted line 48 h fluctuations (each starting
with drug applied). Each data point is an average over ten realizations of 10 000 simulations. Error bars show the standard
deviation.

Importantly, increasing the fluctuation timescale of
the drug to 48 h decreases the probability of genetic
drug resistance emerging at intermediate levels of
δN, compared to 12 and 24 h drug–no drug fluctu-
ation intervals (figure 10). As in the constant cidal
drug scenario, decreasing the fitness of the non-
genetically resistant subpopulation lowers the chance
of G appearing before population extinction.

Overall, these results suggests that alternating
drug conditions can result in oscillatory population
dynamics, and that increasing the drug–no drug
timescales can increase resistance mutation fixation
times and decrease population survival.

4. Conclusion

We found using deterministic and stochastic pop-
ulation models that while non-genetic resistance
enhances population survival, a slower rate of genetic
resistance evolution emerges from resource com-
petition between these subpopulations during con-
stant and fluctuating drug treatments. Specifically,
increasing the fitness of the non-genetically resistant
subpopulation (which allows the population to sur-
vive initial drug exposure) exponentially increased
the chance of a genetically resistant subpopulation
appearing and rescuing the total population from
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extinction during treatment at intermediate cidal
drug strength. However, increasing the fitness of the
non-genetically resistant subpopulation, along with
fluctuating the drug condition, slowed down the fix-
ation time of the genetic drug resistance mutation
due to subpopulation competition effects, when no
pre-existing mutations were present in the popula-
tion. Incorporating pre-existing mutations into the
model reduced the timescale of fixation, as it removed
the growth delay resulting from the time taken by
non-genetically resistant cells to mutate into genet-
ically resistant cells. For the stochastic simulations,
the presence of pre-existing mutations reduced the
stochasticity of the first-appearance time of the genet-
ically resistant subpopulation and protected against
population extinction. Corresponding experimental
investigations could be performed using microbes
harbouring inducible synthetic gene circuits to con-
trol the fraction of non-genetically resistant cells in
the population in combination with DNA sequencing
to track the appearance time and frequency of drug
resistance mutations [31–33].

High levels of competition drove the competing
susceptible and non-genetically resistant subpopula-
tions extinct in static and cidal drug treatment sce-
narios, which opens the possibility of incorporating
competition and resource limitation strategies into
antimicrobial therapies. These predictions could be
tested experimentally, for instance through competi-
tion assays [46] in which synthetic gene circuits tune
the initial fractions of susceptible and non-genetically
drug resistant cells in the population [31].

Alternating drug–no drug conditions generated
oscillatory population dynamics, and increasing
the drug–no drug fluctuation timescale resulted
in lengthened resistance mutation fixation times
and a sharper population survival-extinction ‘phase
transition’. It will be important to investigate
the effects of non-genetic resistance on the
development of genetic resistance in more complex
cell models [47] and further in the context of
fluctuating environments, which may be governed
by environment-sensing genetic networks [48],
along with cellular trade-offs that may occur in drug
environments [49]. Microfluidic devices could be
used to experimentally study the effects of fluctuating
drug stress at the single-cell level [50, 51]. Fluctuating
environmental stressors have been shown to facilitate
‘bet-hedging’ in cell populations [52, 53], whereby
some cells adopt a non-growing, stress-resistant
phenotype to increase the long-term fitness of the
population. This could be modelled using stochastic
hybrid processes [54], for instance by using an
stochastic ON–OFF switch coupled to a system of
ODEs describing subpopulation dynamics in the
presence of a drug. Furthermore, the first-appearance

time, fixation time, and extinction events could
be described analytically in future studies using a
first-passage time framework [6, 55].

Overall, our quantitative model generated robust
and novel predictions on the evolution of drug
resistance, and revealed that the interplay between
transient non-genetic drug resistance and permanent
genetic resistance may be more complex than previ-
ously thought. Specifically, in addition to enhancing
the survival of a drug-exposed microbial popula-
tion in constant drug conditions [4, 5, 10, 16, 24],
our findings demonstrate that transient non-genetic
resistance may hinder the evolution of permanent
genetic resistance in constant and fluctuating drug
conditions. As drug exposure is generally a form of
selective pressure, the results of this study are also
anticipated to be useful for understanding the evo-
lutionary dynamics of other stress-resistant microbial
populations.

A complete understanding of the drug resis-
tance process, including the interplay between non-
genetic and genetic forms of drug resistance, will be
important for mitigating the socio-economic costs of
antimicrobial resistance [5]. The resistance mutation
appearance probabilities and first-appearance time
distributions determined using stochastic population
models may prove useful for guiding drug therapies.
Quantitative distributions such as these may someday
serve as a way to avoid drug failure resulting from the
transition from non-genetic to genetic resistance by
indicating the timescale at which a clinician should
substitute or combine drugs during treatment to
avoid the selection of resistance-conferring mutations
[56, 57]. Fluctuations in mutation first-appearance
times are also important, as they can be the difference
between the eradication or the establishment of drug-
resistant infection during drug therapy. Finally, drug
resistant infections may one day be overcome by
novel strategies that enhance competition between
non-genetically and genetically resistant pathogens
during treatment. One potential strategy is to revert
an infectious population of cells from being drug-
resistant to drug-sensitive by periodically fluctuating
the drug environment. Specifically, by temporarily
removing or substituting the drug, the fitness costs
associated with subpopulation competition consid-
ered in our study, along with the previously estab-
lished costs of non-genetic resistance [9, 32] and resis-
tance mutations [58], could be exploited such that
drug-susceptible cells dominate in the population.
Overall, improving our quantitative understanding
of how non-genetic and genetic mechanisms interact
will advance our fundamental understanding of drug
resistance evolution and may lead to more effective
treatments for patients with drug-resistant infections.
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Appendix A. Parameters

The parameter values used in our study (table A1)
were based on experimental studies on the budding
yeast S. cerevisiae [32, 33, 45, 59, 60]. Additionally,
some parameters were scanned over a range of values
to account for parameter uncertainty, to probe for
parameter regime specific model behaviour, and to
test the robustness of the simulation results.

Drug susceptible cells S formed the majority of
the total initial population (Ti) and non-genetically
drug resistant cells N formed 1%–10% of Ti [19].
We assumed there were no pre-existing genetic drug
resistance mutations (Gi = 0) for all numerical and
stochastic simulations in the main text. Numerical
simulation of the deterministic population started
with Si = 5.5 × 105 cells ml−1 and Ni = 5.5 × 104

cells ml−1, which are common initial concentrations
for ‘log-phase’ laboratory experiments [60].

Depending on the concentration of the drug being
considered, constant birth rates kN and kG (which
model the fitness of the given subpopulation in the
presence of a static drug where death rates are unaf-
fected) were assigned values between 0.1733 h−1 and
0.3466 h−1, based on birth rates measured in standard
yeast cell culture experiments [59]. For cidal drugs,
we modeled fitness by setting the birth rates kN and

kG equal and scanning over N and G death rates
(δN and δG) at a constant S death rate (δS); the trends

also held for lower kN and δS values (see appendix C
and appendix D). The parameter ranges in table A1

were the basis of parameter scans that were used to
predict how the relative fitness between N and G

will affect population dynamics and the evolution of
genetic drug resistance in our study.

To model partial drug resistance due to gene-
expression noise, it was assumed that kN � kG for

static drugs and δG � δN for cidal drugs, with genetic
drug resistance mutations providing the greatest level

of resistance. Genetic mutations were also assumed to
be permanent in our simulations.

The switching rates between S and N are based

on experimental estimates [32] and ranged between
rS,N = 0.0035 h−1 and rN,S = 0.0625 h−1. The muta-

tion rate from N to G was based on a previous
modeling-experimental study [19], which ranged

from 10−6 to 10−7 per cell division, and was
assigned a value of rG,N = 0.3 × 10−6 h−1 in our

simulations.
The deterministic and stochastic population mod-

els provide a means to simulate the effects of non-
genetic resistance on the evolution of drug resistance.

The effects of static drugs (which reduce cell growth
but do not kill cells) were modeled by arresting the

birth of S (kS = 0 and rG,S = 0) and varying the
birth rates of N and G (kN and kG, respectively)

and by setting the death rates to a low natural basal
death rate (δS = δN = δG = 1/156 h−1). Cidal drugs

(which eventually kill all non-genetically resistant

cells) were modeled by adding non-zero death rates
for S and N (δS and δN, respectively). Unless otherwise

stated, we also modeled partial drug resistance of N by
setting δN < δS. Overall, varying key parameters spec-

ified in table A1 did not yield qualitatively different
results.

The parameter values given in table A1 were
also used for the stochastic simulations, as all the

corresponding reactions in the stochastic population
model were of zeroth-order or first-order [37]. Note

that in the stochastic population model the values of
Si, Ni, and Gi are exact numbers of cells (Si = 5.5 ×
105 cells and Ni = 5.5 × 104 cells), which we used
as the initial conditions to investigate the stochastic

transition from non-genetic to genetic resistance as

the number of cells in the population approached zero
(extinction) due to cidal drug treatment. The S to N

(and vice-versa) phenotype switching rates (rN,S and
rS,N, respectively), the N to G mutation rate (rG,N), and

the birth and death rates (ki and δi, respectively, where
i ∈ {S, N, G}) are all given as probability per unit time

in the stochastic population model.
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Table A1. Parameters used for numerically simulating the deterministic population dynamics model in static and cidal drug
conditions. A horizontal line in the ‘cidal drug value’ column indicates that the value is the same as the corresponding value in the ‘static
drug value’ column. A blank entry in the ‘units’ column indicates no units and ‘see text’ in the ‘reference’ indicates that the justification
for the parameter value is given in the main text or appendices.

Parameter Static drug value Cidal drug value Units Reference

Si 5.5 × 103 to 5.5 × 108 — Cells ml−1 [60]
Ni 5.5 × 102 to 1.1 × 108 — Cells ml−1 [9, 19]
Gi 0 — Cells ml−1 [39]
kS 0 — h−1 [39]
kN 0.1733–0.3466 — h−1 [59]
kG 0.1733–0.3466 — h−1 [59]
rS,N 0.0035 — h−1 [32, 33]
rN,S 0.0625 — h−1 [32, 33]
rG,S 0 — h−1 [39]
rG,N 10−6/3 — h−1 [19]
δS 1/156 0.1–1.0 h−1 [45]
δN 1/156 0.1–1.0 h−1 [45]
δG 1/156 1/156–0.05 h−1 [45]
h 1 × 107 — Cells ml−1 See text
n 2 — [59]

Figure B1. Simulations with a small S birth rate of kS = 0.01 h−1 and a mutational pathway from S to G (with a mutation rate
rG,S equal to rG,N used previously). (A) Fixation time heatmap for static drug case. (B) Fixation time heatmap for cidal drug case
(with δS = 1.0 h−1).

Appendix B. Small S birth rate
and mutational pathway from S to G

To test the scenario where drugs hinder but do not
completely arrest growth of the susceptible cells S, we
ran simulations with a small birth rate kS. We also
considered an active mutational pathway from S to G
(with the mutation rate rG,S being equal to the rG,N

mutation rate used in the main text). For all values
of kS tested (ranging from 1% to 50% the growth
rates used in the main text), the main conclusion
that non-genetic resistance hinders the fixation of
resistance mutations held for static and cidal drug
scenarios. A representative case for kS = 0.01 h−1 is
provided for the static drug case in figure B1(A) and
for the cidal case in figure B1(B). Specifically, there
were small quantitative differences in fixation times,

but the qualitative relationship between fixation time
and kN or δN held.

Appendix C. Different cidal drug
strengths

Figure C1 demonstrates that the qualitative results
discussed in the main text hold for higher levels of S
fitness (death rate δS = 0.5 h−1 and δS = 0.1 h−1) in
the cidal drug environment. Figure C1(A) shows the
cidal drug fixation heatmap using the deterministic
ODE model for an intermediate S fitness of δS =

0.5 h−1 and figure C1(B) shows the same case for
a high S fitness of δS = 0.1 h−1. The finding that
the fitness of the S subpopulation had little effect on
the fixation of G in the cidal drug environment can
likely be attributed to the fact that kS = 0 makes the
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Figure C1. The results in the main text regarding N fitness and G fixation are shown to hold for higher levels of S fitness than
those considered in the cidal drug environment in the main text (δS = 1.0 h−1; figure 3(B)). (A) Fixation time heatmap for
intermediate S fitness (δS = 0.5 h−1). (B) Fixation time heatmap for higher S fitness (δS = 0.1 h−1).

Figure D1. Growth of the genetically resistant subpopulation is hindered by the growth of the non-genetically resistant
subpopulation with a low birth rate in cidal drug environment. (A) The growth curve of the drug susceptible (S) subpopulation.
(B) The growth curve of the non-genetically drug resistant (N ) subpopulation. (C) The growth curve of the genetically drug
resistant (G) subpopulation. (D) The growth curve of the total population (T). (E) The fraction of G(t) in the total population T.
(F) The rate of change in the size of T (dT/dt) as a function of time. Each coloured line represents a different numerical
simulation corresponding to the death rates of N shown in the legend in (A), with the solid blue line representing the highest level
of N fitness (death rate of 0.1 h−1), the red dash-dotted line an intermediate level of N fitness (death rate of 0.5 h−1), and the
yellow dashed line the lowest level N fitness (death rate of 1.0 h−1) relative to the fitness of G (unaffected by the drug) during cidal
drug treatment. S was given a death rate of δS = 1.0 h−1 for these simulations, and the birth rate of G was set to kN = 0.3466 h−1.

S population significantly less fit relative to N and G
subpopulations regardless of the cidal drug strength.

Appendix D. Cidal drug simulations
with low N birth rate

Here we consider a cidal drug scenario where N has a
low birth rate relative to G by setting kN = 0.1733 h−1,
while kG remained at 0.3466 h−1. Subpopulation
trajectories, the fraction of genetically drug resistant
cells in the population G/T, and the population rate

of change dT/dt for this case are shown in figure D1.

A fixation time heat map for this case is shown in

figure D2. The qualitative trends and conclusions

made in the main text hold for this scenario.

Appendix E. Partially drug-susceptible
genetic mutant

Figure E1 shows a cidal drug case where G is assigned

a death rate of δG = 0.5 h−1 and hence is not fully

resistant to the drug. The time series show three
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Figure D2. Drug resistance of the non-genetic subpopulation slows the development of the genetically drug resistant
subpopulation in a cidal drug environment with N having a low birth rate relative to G (kN = 0.1733 h−1). Heat map shows the
effect of the death rates of the non-genetically resistant (δN) and genetically resistant (δG) subpopulations on the fixation time
(τfix) of G under cidal drug treatment. Each bin corresponds to a simulation for a combination of δN and δG parameter values.
The colour map show the fixation time in hours.

Figure E1. Partially resistant genetic mutation results in either total population extinction or non-zero steady-state population
size during cidal drug treatment (δG = 0.5 h−1). (A) The growth curve of the drug susceptible (S) subpopulation. (B) The growth
curve of the non-genetically drug resistant (N) subpopulation. (C) The growth curve of the genetically partially drug resistant (G)
subpopulation. (D) The growth curve of the total population (T). (E) The fraction of G(t) in T. (F) The rate of change in the size
of T (dT/dt) as a function of time. Each coloured line represents a different numerical simulation using the death rate values
shown in the legend in (A), with the solid blue line representing the highest level of N fitness (δN = 0.1 h−1), the red dash-dotted
line an intermediate level of N fitness (δN = 0.5 h−1), and the yellow dashed line the lowest level of N fitness (δN = 1.0 h−1)
relative to the intermediate fitness level of G (δG = 0.5 h−1).

different cases. The first case is where N has a rel-
atively high-fitness death rate, resulting in the total
population moving toward a non-zero steady state
over time (solid blue lines in figure E1). The second
case captures a scenario where N and G have the same
intermediate fitness death rate, resulting in extinction
of the total population (dash-dotted red lines in

figure E1). The last case shows a situation where N
has a low fitness death rate that is greater than the
death rate of G, which also results in total population
extinction (dashed yellow lines in figure E1). Consis-
tent with our main results, this case shows that the
fitness of N hinders the evolution of G, even when G
is partly susceptible to the drug.
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Figure F1. Genetic fixation results in the static drug environment for different values of switching rate rN,S. (A) rN,S = 0.001 h−1.
(B) rN,S = 0.1 h−1.

Figure F2. Genetic fixation results in the static drug environment for different values of switching rate rS,N. (A) rS,N = 0.0001 h−1.
Due to the large range of values (ranging from 2080 h to over 106 hr) this color map was plotted on a log scale. (B) rS,N = 0.01 h−1.

Figure F3. Genetic fixation results in the cidal drug environment for different values of switching rate rN,S. (A) rN,S = 0.001 h−1.
(B) rN,S = 0.1 h−1.

Appendix F. Parameter scans
of switching and mutation rates

To further test the robustness of our main findings,

we performed order-of-magnitude parameter scans

of the switching rates rN,S and rS,N (figures F1–F4), as

well as the mutation rate rG,N (figures F5 and F6), for

the static and cidal drug scenarios.

Specifically, when the switching rate from S to

N (rN,S) was decreased by an order of magnitude

it reduced the timescale (i.e., slightly decreased the
lower bound of τfix and drastically decreased the
upper bound of τ fix) over which G fixed in the popula-
tion (figure F1(A)); (2) when the switching rate from
N to S (rS,N) was decreased by an order of magnitude
it increased the timescale (i.e., slightly decreased the
lower bound of τ fix and drastically increased the
upper bound of τ fix) over which G evolved in the
population (figure F2(A)); and (3) when the switch-
ing rate from N to S (rS,N) was increased by an order
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Figure F4. Genetic fixation results in the cidal drug environment for different values of switching rate rS,N. (A) rS,N = 0.0001 h−1.
(B) rS,N = 0.01 h−1.

Figure F5. Genetic fixation results in the static drug environment for different values of mutation rate rG,N. (A) rG,N = 10−7/4 h
(B) rG,N = 10−6/2 h.

Figure F6. Genetic fixation results in the cidal drug environment for different values of mutation rate rG,N. (A) rG,N = 10−7/4 h
(B) rG,N = 10−6/2 h.

of magnitude, it decreased the timescale (i.e., slightly

decreased the lower bound of τ fix and drastically

decreased the upper bound of τ fix) over which G

fixed in the population (figure F2(B)). One might

expect that any change that leads to an increase in N

would also increase G (because N mutates to G) and

therefore would decrease the fixation of time of G,

however, this was not the case and the evolution of G

depended on the interactions between the competing

subpopulations.

There were no important differences were

observed for parameter scans of the N to G mutation

rate (figures F5 and F6).

Overall, these results demonstrate that the conclu-

sions made in the main text hold for a wide range

of parameters, though changing the switching rates
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Figure G1. Cell population survival and extinction during cidal drug treatment. (A) A representative population non-extinction
case where G appears before S and N go extinct. (B) A representative population extinction case where S and N go extinct before
G appears in the population.

Figure H1. Genetic subpopulation G fixation time comparison for deterministic ODE and SSA simulations with a pre-existing
mutation (Gi = 1). Genetic fixation time τfix is shown as a function of non-genetic subpopulation N fitness (δN) in the cidal drug
environment. The death rate of the susceptible population S was set to δS = 1.0 h−1 and the birth rates of N and G were set to
kN = kG = 0.3466 h−1 for these simulations. Error bars on the SSA results show the standard deviation.

qualitatively affects the evolution of drug-resistant

mutants in a way that is not entirely obvious and that

depends on the underlying population dynamics.

Appendix G. Survival and extinction
scenarios

Representative survival and extinction trajectories

from the stochastic simulations are shown in

figure G1. Figure G1(A) shows a case where the cell

population survives cidal drug treatment due to G

emerging before S and N go extinct. G subsequently

takes over the population in this scenario. In contrast,

figure G1(B) shows a case where the cell population

goes extinct due to S and N reaching zero cells before

G appears.

Appendix H. Pre-existing mutation
for stochastic simulations

To show that the discrepancies seen in figure 7 were

due to differences between the modeling approaches,

i.e., SSA models extinction due to stochasticity in τ app,

simulations using a pre-existing mutation (Gi = 1)

were made. Figure H1 shows the comparison of

genetic fixation times calculated using simulations

from the deterministic ODE and SSA modeling

approaches, similar to figure 7 in the main text.

As seen, removing the possibility of extinction by

removing the stochastic nature of the first appearance

time of G results in the SSA results converging to those

found using the deterministic ODE model.
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Appendix I. Varying initial population
sizes

Starting the deterministic simulations with a low or
high initial population size (Ti ≈ 103 or Ti ≈ 108) or
with varying amounts of initial non-genetically resis-
tant cells (Ni making up 1%–20% of Ti) were found to
have little effect on the fixation time of the genetically
resistant population, as the population dynamics in
these cases quickly converged to similar trajectories
regardless of their initial population sizes. For the
stochastic simulations the initial population size was
found to aid survival, with high initial populations
surviving the drug for longer amounts of time and
hence providing more time for the mutant population
to emerge, as expected, but the fixation times of the
genetically resistant population were once again not
strongly affected by varying Ti or Ni.
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