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We show that the effect of stress on the reproductive fitness of noisy cell populations can be modeled as

a first-passage time problem, and demonstrate that even relatively short-lived fluctuations in gene

expression can ensure the long-term survival of a drug-resistant population. We examine how this effect

contributes to the development of drug-resistant cancer cells, and demonstrate that permanent immunity

can arise independently of mutations.
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Gene expression is a stochastic process that enables
genetically identical cells in the same environment to
exhibit phenotypic variation [1–3]. This noise-induced
nongenetic (epigenetic) variability can be beneficial to
cell populations experiencing acute stress by providing a
temporary basis for natural selection [4–7].

Experimental observations suggest that gene expression
is inherently associated with ‘‘epigenetic memory,’’ de-
fined by the fluctuation relaxation time of a gene product
within a cell lineage. In human lung cancer cells, this
relaxation time can be as long as four generations [8].

Brock et al. [9] recently argued that epigenetic memory
might accelerate tumor progression by contributing to the
development of drug-resistant cancer cells. In this hypothe-
sis, phenotypic variability from the noisy expression of
gene X that confers resistance renders some cells (and
their offspring) temporarily insensitive to the drug, thereby
increasing the probability of acquiring a mutation
conferring permanent immunity. In the present work, we
develop a minimal model to study this phenomenon
quantitatively.

To study how gene expression noise impacts the dynam-
ics of isogenic cell populations under stress, we define the
reproductive fitness (W) as the number of offspring pro-
duced in the presence of the stressor (i.e., a drug) relative to
that produced in its absence. For simplicity, we assume that
all cells produce offspring at the same rate in the absence of
the drug, and define the generation time (tD) as the time it
takes for each cell to reproduce once. We set the generation
time as unit time and report all time scales relative to tD.
We also assume that cells carry the gene X conferring drug
resistance when its expression level x is sufficiently high,
and that this gene is expressed stochastically in individual
cells.

The effects of gene expression noise on populations
under stress have previously been analyzed to explain
why certain genes have high expression noise [5–7]. In
these analyses, the dependency between gene expression
and reproductive fitness was defined by the integral

WðtÞ ¼
Z

wðxÞpxðx; tÞdx; (1)

where pxðx; tÞ is the probability distribution function
(PDF) describing the concentration (x) of the gene product
across the population, and wðxÞ is the microscopic fitness
function describing the effect of the drug on the fitness of
cells with a given expression level. The basic concept is
illustrated in Fig. 1(a) using a model where wðxÞ is de-
scribed by the Heaviside step function, such that cells are
unable to reproduce if their expression level is below a
critical value, wðx < xcÞ ¼ 0, and unaffected by the drug
otherwise, wðx � xcÞ ¼ 1. In this case, previous theoreti-
cal work [5–7] concluded that high gene expression noise
is beneficial at high drug doses, since the fraction of cells
expressing above a reproductive threshold xc increases
with the width of the initial expression distribution
[Fig. 1(a)]. However, because pxðx; tÞ is assumed fixed at
the time of drug treatment, this conclusion is valid only for
instantaneous selection effects. The analysis of prolonged
stress exposure necessitates an approach where selection,
inheritance, and gene expression dynamics all contribute to
the evolution of the population.
Population survival during prolonged drug exposure is a

first-passage time problem. In the absence of mutations
conferring permanent immunity, cells that survive the ini-
tial selection will eventually succumb to the drug since
they cannot maintain high expression indefinitely.
Consider a subpopulation of cells with the same level of
x above xc [Fig. 1(b)]. The time interval in which a given
cell can reproduce is the first-passage (or sojourn) time
tSðxÞ, where the threshold xc represents an absorbing bar-
rier. Although cells are initially identical, the expression of
the drug-resistance gene evolves differently in different
cells, and the time to reach the reproductive threshold is
a random variable described by the first-passage time
distribution pSðx; tSÞ [Fig. 1(b), Inset]. Since only cells
with tSðxÞ> tD reproduce, wðxÞ in Eq. (1) is given by
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wðxÞ ¼
Z 1

tD

pSðx; tSÞdt0S; (2)

and the overall fitness of the population at time t can be
written as

WðtÞ ¼
Z 1

xc

�Z 1

tD

pSðx; tSÞdt0S
�
pxðx; tÞdx: (3)

The population fitness in Eq. (3) has an explicit solution
only in special cases. Previous analyses [5–7] circum-
vented this problem, in part, by focusing on initial selection
effects (t ! 0). However, even in this limit, it is also
necessary to assume that all cells above the threshold
contribute to fitness [i.e., wðxÞ ¼ 1 for x > xc].

To investigate more general cases, we used the Ornstein-
Uhlenbeck (OU) process to model the level of gene ex-
pression in individual cells [10]. This process can be
described by the Langevin equation

dxðtÞ
dt

¼ 1

�
½�� xðtÞ� þ c1=2�t; (4)

where c and � are the diffusion constant and the relaxation
time, respectively, and �t is Gaussian white noise [h�ti¼0,
h�t�t0 i ¼ �ðt� t0Þ] [11]. The steady-state PDF of the OU
process is a Gaussian distribution with mean � and vari-
ance �2 ¼ c�=2. Without loss of generality, we set � ¼ 0
and use the fluctuation time scale � to model the time scale
of epigenetic memory.

The fluctuation time scale of gene expression has been
determined experimentally in human lung cancer cells in
terms of the ‘‘mixing time’’ �m, defined as the lag where
the autocorrelation function has decreased by 50% [8]. The
mixing time for the stationary OU process is �m ¼ � lnð2Þ.
The measured values of �m varied between 0.5 to 3.0
generations for different genes, corresponding to values
of � between 0.7 to 4.0 generations for the OU process.
First, we examined the effect of drug treatment on

reproductive fitness after one generation time when the
absorbing barrier is located at xc ¼ 0. In this case, the
first-passage time PDF for x > xc is given by [12]

pSðx; tSÞ ¼ xffiffiffiffiffiffiffiffiffi
2�c

p exp

��x2 expð�tS=�Þ
2c� sinhðtS=�Þ þ tS

2�

�

�
�

1

� sinhðtS=�Þ
�
3=2

: (5)

We evaluated the effects of varying the time scale of
epigenetic memory and the noise amplitude by numerical
integration of Eq. (3), using the steady-state OU
distribution to describe the initial gene expression distri-
bution. Figure 1(c) shows the results for fixed noise
(�2 ¼ 1) and variable �, and fixed time scale (� ¼ 2)
and variable �2.
The time scale of epigenetic memory significantly af-

fects ‘‘acute’’ reproductive fitness, even for very long
fluctuation relaxation times. For example, when � ¼ 20,
W is reduced to 0.4, compared with the value of 0.5
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FIG. 1 (color online). Epigenetic effects on a cell population exposed to stress. (a) Schematic of instantaneous selection effects.
(b) Schematic of generalized model. (c) Reproductive fitness at the time of first division Wðt ¼ tDÞ after the application of a stress (at
xc ¼ 0) as a function of � or �2 for fixed �2 or �, respectively. Analytical curves (solid lines) were obtained via numerical solution of
Eq. (3). (d)Wðt ¼ tDÞ as a function of xc for high and low �2. � and �2 are scaled by tD. Dashed lines represent results obtained from
Eq. (1), or equivalently Eq. (3) in the limit � ! 1.
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obtained (irrespectively of the noise amplitude) in the
permanent epigenetic memory limit � ! 1 [Fig. 1(c)].
For � ¼ 2, the reproductive fitness is approximately 0.2,
and the majority of cells starting with x > xc are unable to
maintain above-threshold gene expression long enough to
reproduce. In this case, the acute reproductive fitness re-
mains constant, presumably because changing the noise
amplitude for xc ¼ 0 does not change the fraction of cells
with x > xc.

To examine cases where xc > 0, it is necessary to use
numerical simulations since a general closed-form solution
of the first-passage time PDF is not available. For this
purpose, we employed a population simulation algorithm
[13] in which gene expression in each ofN individual cells,
xiðtÞ for i ¼ 1; . . . ; N, is obtained by solving Eq. (4) nu-
merically [14]. In these simulations (20 realizations of 104

cells unless indicated otherwise), cell division occurs when
a deterministic cell cycle ‘‘clock,’’ which is reset at each
division, reaches tD. Each cell keeps track of the time since
its birth and can only advance its clock if they maintain
gene expression above the threshold. Moreover, cells
where xiðtÞ � xc are assumed to be fixed and unable to
change their expression level (i.e., � ¼ 1). Simulations
were initiated by assigning, to each cell, random initial
values of gene expression and the cell cycle clock from the
steady-state distribution of the OU process and a uniform
distribution ½0:tD�, respectively.

Numerical calculations of fitness for xc > 0 identified �
as a critical determinant of population survival.
Specifically, the fitness of a population with low gene
expression noise can be greater than that of a population

with high noise if the fluctuation relaxation time is suffi-
ciently long. We observed this in simulations, shown in
Fig. 1(d), with an increased threshold xc for fixed time
scales (� ¼ 2 or � ¼ 5) and two different fluctuation am-
plitudes (�2 ¼ 1 or �2 ¼ 10). When the two populations
had the same finite value of �, we observed that increased
gene expression noise always provides a fitness benefit
(data not shown). However, as expected from Fig. 1(c),
incorporating stochastic gene expression dynamics (i.e.,
finite values of �) generally yields a significant reduction
in fitness compared to the asymptotic permanent memory
limit. The magnitude of this reduction is sensitive to both
the value of the threshold xc and the value of �. This is
illustrated in Fig. 1(d) where the fitness of the high noise
population is greater than the low noise population only
when the value of xc is sufficiently high.
In our second case, we analyzed the long-term effects of

varying the time scale of epigenetic memory on population
dynamics and reproductive fitness. For simplicity, we focus
on the case where xc ¼ 0 and noise is fixed (�2 ¼ 1).
Figure 2(a) shows representative gene expression distribu-
tions obtained after 10 generation times for short- and
long-term epigenetic memory. When the fluctuation time
scale is short (� ¼ 0:5, top panel), the number of cells that
may reproduce (i.e., cells with xiðtÞ> xc) is reduced over
time since, on average, cells reach the absorbing barrier
faster than they reproduce. Correspondingly, given enough
time, the population will go extinct. This is not the case
when memory is long (� ¼ 10, bottom panel) and the birth
rate exceeds the rate of loss at the absorbing barrier.
In addition, the mode of gene expression distribution shifts
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FIG. 2. Effect of epigenetic memory � on drug resistance at various time scales. (a) Top and bottom plots show population
distributions corresponding, respectively, to short (� ¼ 0:5) and long (� ¼ 10) epigenetic memory and show the fraction of drug-
resistant cells (i.e., cells with x > xc) after acute (t ¼ 0) and prolonged (t ¼ 10) drug exposures (single realization of 105 cells). (b)W
as a function of t for various values of �. t, �, and �2 are scaled by tD.
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to higher values, in resemblance of experimental observa-
tions [7].

Relatively short-term epigenetic memory can result in
permanent drug resistance even in the absence of muta-
tions. This is illustrated in Fig. 2(b), which shows how the
reproductive fitness of populations with different memory
time scales evolves over time. In populations with long-
term memory (e.g., � ¼ 5, 10, or 1), the number of cells
that may reproduce increases steadily over time and settles
in a steady state where more than half of them reproduce
every generation time (i.e., WðtÞ> 0:5). Importantly, pop-
ulations with memory at intermediate time scales (e.g.,
� ¼ 1:5, 2, or 3) may retain long-term viability and finite
rates of reproductive fitness. Because the simulations in-
volve finite populations, the outcome of a given realization
cannot always be predicted. For example, when � ¼ 1:5, a
viable population was observed to develop in 29% of the
simulations while the population went extinct in the re-
maining 71% of simulations. While populations with short
memory (e.g., � ¼ 0:5 or 1) eventually go extinct, several
cell cycles were needed for the drug to fully affect all cells.

In the third and final case, we investigated the added
effect of genetic mutations on the development of drug-
resistance. A central element of the Brock et al. hypothesis
is that temporary drug resistance due to slow fluctuations in
gene expression may contribute to tumor development by
increasing the overall probability that some cells acquire a
mutation conferring permanent immunity. To model this
scenario, we allowed each cell with an expression level

above xc the chance to mutate once per generation time.
We denote this probability PM. If a cell acquired the
mutation, it and its offspring were permanently resistant
to the drug, and the survival of a continuously growing
population inevitable.
We first investigated the added effect of mutations on the

reemergence of a cancerous tumor under constant drug
treatment. In these simulations, we chose xc such that the
drug instantaneously removed 95% of the population, and
measured the time it took for the remaining cells to double
in number. Figure 3(a) shows the dependency of this dou-
bling time on � when PM is equal to 0.01 and 0.1. These
mutation rates are unrealistically high biologically and
were chosen to illustrate the effect of epigenetic memory
in an extreme limit.
As expected, increasing the mutation probability signifi-

cantly reduces the doubling time when the gene expression
fluctuations are short-lived. Unexpected, however, the
value of � beyond which mutations do not have an addi-
tional effect is remarkably short despite the unrealistically
high mutation rates. Specifically, the doubling time is more
or less unaffected by PM when � is roughly above 4
generations, corresponding to the upper range of mixing
times observed experimentally [8].
We confirmed our results using a semirealistic model of

gene expression noise [15] where proteins are synthesized
in irregular bursts at irregular intervals [Fig. 3(a), Inset].
We also tested the effect of replacing the fitness threshold
with a more realistic sigmoidal fitness function and found
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no qualitative difference (data not shown). In reality, gene
expression dynamics may follow more complex kinetics
than that of a simple mean-reverting process due, for
example, to multistability and noise-driven switching
[16,17]. Our simulation results demonstrate that such com-
plexity is not required for gene expression noise to have a
significant impact on population dynamics under pro-
longed stress.

We also determined how the probability of remission
depends on the mutation rate, the initial number of cancer
cells with above-threshold expression, and the time scale
of gene expression noise. In these simulations, the cancer is
in remission if no cells have above-threshold gene expres-
sion and have not acquired a mutation conferring perma-
nent immunity within 10 generation times. As expected
[Fig. 3(b)], the probability of remission is greatly de-
creased when the number of initial surviving cancer cells
or the mutation rate is increased. Also, when � is very
short, remission is virtually guaranteed. However, the
probability that a drug-resistant cell population will
emerge can be quite substantial within the experimentally
observed range of �. Even with a relative low mutation rate
(PM ¼ 0:01) and 10 surviving cells, the probability of
remission is only 42% when � ¼ 4:0.

In summary, we have analyzed the effect of gene ex-
pression noise on the reproductive fitness of isogenic cell
populations under stress as a first-passage time problem.
By explicitly incorporating the ‘‘epigenetic memory’’ of
this noise (i.e., the fluctuation relaxation time), we have
generalized previous theoretical work that explained the
acute effects of noise amplitude but did not incorporate
gene expression dynamics [5–7]. This generalization is
important for two reasons. First, it has allowed us to
demonstrate using a minimal model that gene expression
noise with biologically realistic time scales has a signifi-
cant effect on reproductive fitness under stress and is a
critical determinant of population survival. Second, it en-
ables theoretical and computational investigations of ex-
perimentally observed phenomena associated with
prolonged stress exposure, including reversible shifts in
gene expression distributions [7], and drug resistance. In
this context, we have demonstrated that the time scale of
epigenetic memory required to develop a drug-resistant
cell population independently of mutations is comparable
to that measured for certain genes in human cancer cells
[8]. Correspondingly, long-term population survival may
not require specialized memory-conferring mechanisms.
It might, for example, be achieved without a significant
fitness cost through bursty gene expression. An important
next step is to confirm our findings using more
realistic models of gene expression incorporating

additional stochastic effects, such as partitioning errors
[18], and correspondingly, to employ various analytical
and numerical methods that may permit solution in these
more complex cases (e.g., [19,20]). We anticipate that
future analysis of such models will provide a deeper under-
standing of epigenetic interactions between genes, drugs,
and population dynamics.
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