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SUMMARY

Fluctuations, or “noise”, can play a key role in determining the behaviour

of living systems. The molecular-level fluctuations that occur in genetic net-

works are of particular importance. Here, noisy gene expression can result in

genetically identical cells displaying significant variation in phenotype, even in

identical environments. This variation can act as a basis for natural selection

and provide a fitness benefit to cell populations under stress.

This thesis focuses on the development of new conceptual knowledge about

how gene expression noise and gene network topology influence drug resistance,

as well as new simulation techniques to better understand cell population

dynamics. Network topology may at first seem disconnected from expression

noise, but genes in a network regulate each other through their expression

products. The topology of a genetic network can thus amplify or attenuate

noisy inputs from the environment and influence the expression characteristics

of genes serving as outputs to the network.

The main body of the thesis consists of five chapters:

1. A published review article on the physical basis of cellular individuality.

2. A published article presenting a novel method for simulating the dynam-

ics of cell populations.

3. A chapter on modeling and simulating replicative aging and competition



using an object-oriented framework.

4. A published research article establishing that noise in gene expression

can facilitate adaptation and drug resistance independent of mutation.

5. An article submitted for publication demonstrating that gene network

topology can affect the development of drug resistance.

These chapters are preceded by a comprehensive introduction that covers es-

sential concepts and theories relevant to the work presented.



SOMMAIRE

Les fluctuations, ou le << bruit >>, peuvent être-utile pour les systèmes

biologiques. En particulier, les fluctuations moléculaires dans les réseaux

génétiques peuvent être d’importance particulière. Ici, la stochasticité dans

l’expression d’un gène dans des cellules identiques peut introduire une source

de variabilité phénotypique dans la population, même dans des environnements

identiques. Cette variation peut fournir une base pour la selection naturelle

et offrir un avantage reproductif aux populations cellulaires en état de stress.

Cette thèse vous présente les travaux de recherche sur l’effet de l’expression

stochastique d’un gène et de la topologie d’un réseau génétique dans le développement

du phénomène de résistance aux drogues, ainsi que de nouvelles méthodes pour

simuler les dynamiques de populations cellulaires. La topologie d’un réseau et

la stochasticité dans l’expression d’un gène peuvent sembler être déconnectés,

mais elles ont un dénominateur commun : les gènes dans un réseau génétique se

contrôle les uns les autres et la topologie du réseau peut amplifier ou atténuer

le bruit dans les gènes servant comme source de sortie du réseau.

La thèse contient cinq chapitres:

1. Un article de revue publié sur la base physique de l’individualité cellu-

laire.

2. Un article publié qui présente une méthode innovatrice pour simuler les

dynamiques de populations cellulaires.



vi

3. Un chapitre sur la modélisation et simulation de l’effet de la sénescence

et de la compétition sur les dynamiques des populations cellulaires.

4. Un article de recherche publié qui établis que les fluctuations de courte

durée dans l’expression d’un gène peuvent assurer la survie à long terme

d’une population résistante à une certaine drogue indépendamment des

mutations génétiques.

5. Un article soumis pour publication qui démontre que la topologie d’un

réseau génétique peut fournir la base du développement de la résistance

aux drogues.

Ces chapitres sont précédés d’une introduction extensive couvrant les théories

et les concepts essentiels à leur compréhension.
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PREFACE

Science students, outside the physical sciences, are usually not taught much

about noise other than it degrades the quality of a signal and thus is a hin-

drance to experimental design and measurement. Noise is in this context

viewed as something negative, often external to the system and requiring fil-

tration and removal. Fortunately, in physics, we also learn the fundamentals

of noise, typically in courses on statistical mechanics and numerical methods

for stochastic processes. These fundamental concepts are applicable to a broad

range of systems, including living cells.

In the biological sciences, it is often assumed that populations of geneti-

cally identical cells of the same type are homogeneous and that any difference

between these cells is either negligible or can be attributed to experimental

error. However, the role of gene expression noise in generating beneficial cell-

to-cell variability is beginning to attract considerable attention, largely as a

result of the influx of physical scientists and mathematicians to areas such

as biological physics, quantitative biology, and systems biology. As will be

demonstrated in this thesis, this line of research is shedding new light on an

issue of central importance to the treatment of disease: drug resistance. My

work over the past several years adds new knowledge to our understanding of

the development of drug resistance. This thesis is a contribution to the body

of work that is transforming biology into a more quantitative discipline.
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Chapter 1

Introduction

All models are wrong, but some are useful. - George E.P. Box

1.1 Gene Expression

1.1.1 Central “Dogma” of Molecular Biology

The central dogma of molecular biology deals with the transfer of sequential informa-

tion encoded in DNA, RNA, and protein molecules [31,32]. It is a negative statement

asserting that information from a protein can never be transferred back to either pro-

tein or nucleic acid and generally flows from DNA to RNA, and from RNA to protein

(Fig. 1.1).

More specifically, gene expression is the process by which a gene, a specific se-

quence of nucleotides in the DNA, is transcribed to produce messenger RNA (mRNA)

and mRNA is translated into protein. To initiate transcription, an RNA polymerase

(RNAp) must recognize and bind to the promoter region, a regulatory region of DNA

that precedes the gene [5, 104]. Promoters have regulatory sites to which regulatory

proteins (transcription factors) can bind to either activate or repress gene transcrip-

1
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DNA

ProteinRNA

Figure 1.1 Central dogma of molecular biology. Solid arrows denote general
information transfers which occur in all cells. Dotted arrows show special
transfers that may occur in special circumstances (e.g., reverse transcription
and RNA silencing).

tion. The promoter is followed by the coding sequence, which is transcribed by the

RNAp into an mRNA molecule. Transcription stops when the RNAp reaches a ter-

mination sequence and unbinds from the DNA. Next, translation follows in which

ribosomes read the mRNA sequence, and for each codon (a three-nucleotide sequence

of DNA or mRNA), a corresponding amino acid is added to a polypeptide chain

(a protein). The protein becomes capable of performing specific tasks after post-

translational modification.

1.1.2 Stochastic Gene Expression

The expression of gene products is a noisy or stochastic process [40,65,72,98,107,114,

119,122,129,146]. Stochastic gene expression is ultimately a manifestation of the ther-

mal nature of chemical reactions, which constitute probabilistic molecular events [50].
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Specific physical reasons exist as to why the dynamics of chemically reacting systems

are non-deterministic. Chemical systems are often in contact with a “heat bath”

which keeps the system in thermal equilibrium at some temperature. When the sys-

tem is in thermal equilibrium, the molecules are distributed randomly and uniformly

throughout the containing volume. These molecules move with erratic motions as

a result of the uneven bombardment of underlying fluid molecules (Brownian mo-

tion), which themselves have essentially random motions due to thermal fluctuations

from the environment and collisions with other fluid molecules (self-diffusion). These

erratic motions result in erratic collisions, and this results in the non-deterministic

timing of individual reactions and an inherently noisy time evolution of molecular

population levels [49, 51,53].

The term “noise” when used in the context of gene expression is a broad reference

to the observed variation in mRNA or protein content among apparently identical

cells exposed to the same environment [42]. Noise-induced phenotypic heterogeneity

has been observed in prokaryotes (e.g., bacteria [40]) and eukaryotes (e.g., yeast [107]

and mouse cells [22]). This noise can be divided up into extrinsic and intrinsic com-

ponents. Intrinsic gene expression noise refers to variation generated in the mul-

tistep processes that lead to the synthesis and degradation of mRNA and protein

molecules [18,40,54,65,72,112,119,121] (Fig. 1.2). Extrinsic gene expression noise can

be generally defined as fluctuations and variability that arise in a system due to dis-

turbances originating from its environment, and therefore depends on how the system

of interest is defined [133]. Extrinsic gene expression noise arises from several sources

including: asymmetric and stochastic partitioning at cell division [54,61,106,126,168],

cell age [121, 142, 157, 169], stage of the cellular replication cycle [107], fluctuations

in the abundance of ribosomes [147], and variability in upstream signal transduc-

tion [115,157].
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Figure 1.2 A phenomenological model for the expression of a single gene.
mRNA (M) is synthesized from a single gene (represented by its promoter
(A)) at a rate sA, protein (P) is synthesized from an mRNA template at
a rate sP , and mRNA and protein molecules decay at rates δM and δP ,
respectively. All steps are modeled as first-order reactions with the indicated
rate constants (units of inverse time) associated with these steps. Figure
reproduced by permission from American Institute of Physics: Chaos 16:
026107, copyright 2006.

Several noise measures are used to quantify the degree of heterogeneity in gene

expression, or noise η [65, 149]. The most common is the relative deviation from the

average expression, which is determined by the ratio of the standard deviation σ to

the mean µ. Another measure of noise, known as the fano factor (φ = σ2/µ), can be

used to uncover trends that might otherwise be obscured by the characteristic 1/
√
µ

scaling of the noise as described by Poisson statistics and observed experimentally in

living systems (e.g., [148]).

1.1.3 Consequences of Noisy Expression

In molecular biology it is often assumed that clonal cell populations are uniform [58].

As a result, not much attention has been paid to the effects of noise-induced cell-

to-cell variability. Variation in gene expression can be detrimental to cell function,

necessitating minimization, as fluctuations in protein levels may disrupt intracellular

signaling and cellular regulation [3, 15, 43]. However, noise-induced variability can
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also be beneficial by providing the phenotypic diversity for natural selection to act

upon [17, 42, 170, 171]. Noise-generated variability can have functionally significant

consequences in response to perturbations such as drug treatment [21,25,29,58,171],

and provide a fitness advantage in fluctuating environments [4, 42,78,156].

Evidence suggests that protein noise levels have been selected to reflect the costs

and benefits of this variation [107]. Blake et al. established that noisy gene expression

can be advantageous under conditions of high stress [17]. The authors genetically

engineered two nearly identical Saccharomyces cerevisiae (budding yeast) strains such

that one strain had relatively high noise and the other relatively low noise in the

expression of a drug resistance gene. Next, they exposed the yeast populations to

increasing concentrations of the antibiotic Zeocin. The authors found that for high

levels of Zeocin the high-noise strain had a higher viability. Conversely, for low

levels of Zeocin the low-noise strain had higher viability. Blake et al. attributed the

differential impact of added noise to a change in the relative fraction of surviving cells

at different levels of stress. While a high-noise population will have a higher number

of cells above the protein threshold necessary for survival at high stress levels, the

same applies for a low-noise population under a low level of stress (Fig.1.3).

Acar et al. found that cell populations can enhance their fitness by allowing

individual cells to switch stochastically between phenotypes [4]. In this study, a bud-

ding yeast strain was engineered to randomly transition between two phenotypes, ON

and OFF, characterized respectively by high- or low-expression of a gene encoding

the Ura3 enzyme which is necessary for uracil synthesis. The drug 5-FOA is con-

verted into a toxin (5-fluorouracil) by the Ura3 enzyme inside the cell which causes

stress and reduces fitness. This allowed the researchers to design each phenotype

to have a growth advantage over the other in one of the two environments. In the

first environment which lacked uracil and FOA, cells with the ON phenotype had
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an advantage. In the second environment, which contained uracil and FOA, cells

with the OFF phenotype had the advantage. The authors changed environmental

conditions by adding or removing uracil and FOA from the media. It was found that

fast switching populations outgrew slow switching populations when the environment

fluctuated rapidly, whereas slow-switching phenotypes outgrew fast switchers when

the environment rarely changed. These results suggest that tuning inter-phenotypic

switching rates may constitute a simple strategy to cope with fluctuating environ-

ments. Thus an isogenic population can improve its fitness by bet-hedging, namely

optimizing phenotypic diversity such that, at any given time, an optimal fraction of

the population is prepared for an unexpected environmental stress. This phenotypic

diversity is introduced naturally through the stochastic process of gene expression.

1.1.4 Measuring Gene Expression

Classic mRNA and protein experiments (e.g., immunoblots or microarrays) involve

disrupting the cell membrane and releasing the contents of all the cells in the sam-

ple [58]. The trait X of interest, here the abundance of a specific mRNA or protein,

is isolated and its average level in the sample is measured. As useful as these tech-

niques are, they do not provide information at a single-cell level which is essential for

studying the effects of noise-generated cell-to-cell variability.

Flow cytometry is one commonly employed technique for measuring the biochem-

ical and physical properties of a cell population at a single-cell resolution. This

technique, however, cannot be used to monitor temporal changes within an individ-

ual cell as it generates a population “snapshot” by a recording specific properties of

each cell in the population once at a specific point in time. Gene expression within a

population of a single cell type can be measured experimentally using this technique.

Specifically, one can obtain a histogram of a given protein in individual cells across a
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Figure 1.3 Gene expression noise confers survival in clonal cell populations.
Schematic illustration of protein expression distributions for low- and high-
noise populations. The fraction of cells that express above (viable cells) and
below (inviable cells) a stress threshold depends on the position of the thresh-
old and the level of noise in the population. Figure reproduced by permission
from Blackwell Publishing Ltd: Molecular Microbiology 71: 13331340, copy-
right 2009.



1.1 Gene Expression 8

large cell population. Variability in gene expression can be observed within the peak

of a protein histogram generated from flow-cytometry data. For a genetically identical

(clonal) cell population the abundance of the protein in the cells with the lowest and

highest expression level typically differs by three or more orders of magnitude. This

spread far exceeds signal measure error which suggests that gene expression noise is

not simply a measurement artifact [22].

A microfluidics device can be assembled together with a fluorescence microscope

and a charge-coupled device (CCD) camera to perform fluorescence live cell imaging

experiments (e.g., [159]). In a microfluidics device, cells are fixed between a mem-

brane and the coverslip which constrains them to grow as a 2D sheet. This facilitates

imaging while simultaneously allowing for fluid exchange. Additionally, this device

provides a controlled environment for drug resistance experiments as the media is con-

stantly flowing over the cells, ensuring that all cells are exposed to the same nutrient

and drug concentrations. This setup is very practical for conducting drug resistance

experiments as the cells do not float around during media changes or when the media

is stirred so as to maintain uniform experimental conditions. This technique monitors

the dynamics of trait X, and the resulting time series delivers kinetic information on

the temporal structure of the fluctuations of gene expression that evade flow cytom-

etry and other techniques. This technique also allows the tracking of cell fate history

and the construction of cell lineages.

1.1.5 Gene Regulatory Networks

In one of the most highly cited papers in physics, Barabási and Albert [12] proposed

that a general feature of large networks is that connectivity of the nodes follows a



1.1 Gene Expression 9

scale-free power law distribution

p(k) ∝ k−γ, (1.1)

where k is the number of inputs and γ is the degree exponent which describes the

importance of hubs (a node with many connections) in the network. This distri-

bution follows a straight line on logarithmic scales. The term “scale-free” indicates

the absence of a typical node in the network that can be used to characterize the

connectivity of the rest of the nodes. This feature was found to be a consequence

of a network expanding continuously by the addition of new nodes and new edges

attaching preferentially to sites that were already highly connected [12]. Most net-

works within the cell, including metabolic, protein-protein, and genetic networks,

approximate a scale-free topology (see [13] for a review).

Stuart Kauffman first modeled a gene in 1969 as a binary (ON-OFF) device and

the genome as a network of N interconnected genes [69, 70]. In this model, each

gene is described by k and one of among the 22k logical (boolean) functions on its k

inputs. The output of the network is the gene expression profile. In these studies,

Kauffman was considering random networks so k and the assignment of the boolean

function were random variables. A gene network state (one of 2N states) was defined

as a list of the present value (0 or 1, representing OFF or ON, respectively) for each

of the N genes. The subsequent state of the network is determined by the network

structure and the present state. Several different models have since been employed

to extend the boolean network model and more realistically describe the dynamics

of gene expression and regulation (e.g., [124, 127, 133, 146]). Some of these modeling

approaches were used in the works presented in Chapters 2.4-6.4, and are described

in Section 1.2.

A genetic regulatory network (GRN) is broadly defined as an ensemble of molecules
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and interactions that control gene expression and thereby regulate cellular dynam-

ics [23]. Gene expression is regulated by transcription factors (TFs), which are them-

selves proteins encoded by genes [5]. Hence, the production (and activity) of TFs may

be regulated by other TFs. It is this set of physical protein-protein and protein-DNA

interactions that forms a transcriptional regulatory network. The inputs to transcrip-

tional networks are signals that transmit information about the cellular or extracellu-

lar environment. The input signals can activate biochemical signal-transduction path-

ways, resulting in a chemical modification of a TF. In other cases, another molecule

may bind the TF directly altering its activity.

GRNs are comprised of simple recurring patterns of interconnections known as net-

work motifs, including feedback loops, cascades, and feedforward loops (Fig. 1.4) [5,

103], commonly found in different species (e.g., [80,103,136]). These motifs are found

at frequencies much higher than those found in randomized networks and can be

considered as building blocks necessary to assemble entities of more complex func-

tionality.

GRN topology can influence the properties of gene expression noise. For example,

a transcriptional cascade (Fig. 1.4b) can significantly increase the noise in the expres-

sion of a downstream gene by transmitting variability in the expression of upstream

genes [27,115,126]. Cascades can also be designed to produce output that is less noisy

than the input [150]. Positive feedback (Fig. 1.4a) increases noise by amplifying fluc-

tuations about a mean and can result in bistability [27,111]. The latter occurs in gene

expression when the rate of positive regulation is strong compared to the degrada-

tion/dilution rate of the expression products [5]. Negative feedback (Fig. 1.4a) on the

other hand reduces noise by attenuating fluctuations about a mean [15, 27, 39, 138].

Feedforward loops (Fig. 1.4b) may similarly filter out fluctuations in the input sig-

nal [5]. For example, a coherent feedforward loop with OR logic at the output buffers
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X Y Z

a)

b)

Z
+/-

+/- +/-

+/-g(x,y)

Figure 1.4 Common gene regulatory network motifs. (a) Autoregulation.
(b) Feedforward loop, or if dotted line is absent, a cascade. Activation or
repression are respectively denoted by + and - at the inputs and g(x,y) is
the gate function which depends on the logic governing the inputs to Z (e.g.,
OR, AND, or, SUM) [99]. For example, if all inputs are + in (b) then the
schematic depicts a coherent feedforward network.

against OFF fluctuations in the input signal and a coherent feedforward loop with

AND logic at the output buffers ON fluctuations in the input signal.

In Chapter 6, we use mathematical modeling to study the pleiotropic (multiple)

drug resistance (PDR) network in budding yeast (see also Section 1.4.3), which is

interesting because it consists of a positive feedback loop embedded in a coherent

feedforward loop (Fig. 1.4b). The increased relaxation time (defined as the time for

the level of gene expression to fall to 50% of the steady-state value when the input

to the network is turned ON [5]) and increased noise of this network relative to other

network motifs resulting from the same genes [5, 66,134], led me to hypothesize that

the structure of the PDR5 transcriptional network is not random but rather evolved

due to the fitness advantage it confers yeast in stressful environments.
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1.2 Modeling Gene Expression

The information that a gene encodes is processed by the machinery of the cell to ex-

ecute the instructions it contains. Understanding how this information is produced,

processed, and propagated is vital for understanding cellular behaviour [27]. The gene

expression process can be modeled at multiple scales, from detailed physical descrip-

tions of molecular interactions to relatively simple phenomenological representations.

A phenomenological model of this process is shown in Fig. 1.2. Although this depic-

tion is a drastic simplification of the gene expression process (see e.g., [97,124,127,146]

for more complex models of gene expression), it captures the essential features, namely

the synthesis of mRNA from a single gene, the synthesis of protein from an mRNA

template, and the decay of mRNA and protein molecules [133].

In this Section, we present the approximate ordinary differential equation (ODE)

and Langevin approaches, and the exact chemical master equation (CME) formalism,

together with the corresponding numerical methods, to model the gene expression

process shown in Fig. 1.2. Each method has advantages and disadvantages and thus

are appropriate under different circumstances. Obtaining an analytical and numerical

solution to a system of ODEs is relatively straightforward. However, this approach

is only valid when molecular species concentrations are high, and even in this case,

it only captures averages. The Langevin approach incorporates additive noise terms

into a system of ODEs to capture randomly fluctuating concentrations of chemical

species. Analytically, this case is described using a Fokker-Planck equation, and

although more challenging than for ODEs, can for simple cases be solved exactly

to obtain the moments of the distribution. Numerical methods to solve Langevin

equations involve random numbers and are more costly in terms of computational

resources than corresponding numerical ODE methods. The CME approach describes
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the time evolution of the probability distribution of every chemical species in the

system. Since the chemical species inside the cell appear in integer amounts and

are often present at low numbers, the CME is more exact and appropriate than

the aforementioned methods which describe concentrations. The CME is generally

intractable analytically and numerically. The de facto standard is to simulate each

reaction in the system using a stochastic simulation algorithm (SSA). This approach

is thus more computationally intensive than the other methods considered in this

thesis.

1.2.1 Ordinary Differential Equations

Traditionally, the time evolution of a chemical system has been modeled as a deter-

ministic process using a set of ordinary differential equations (ODEs). This approach

is based on the empirical law of mass action, which provides a relation between re-

action rates and molecular concentrations [153]. Namely, the instantaneous rate of a

reaction is directly proportional to the product of the reactant concentrations (which

is in turn proportional to mass) raised to the power of their stoichiometric coeffi-

cients. In the deterministic description of the model shown in Fig. 1.2, the cellular

mRNA and protein concentrations ([M ] and [P ], respectively) are governed by the

rate equations

d[M ]

dt
= sA − δM [M ], (1.2)

d[P ]

dt
= sP [M ]− δP [P ], (1.3)

where the terms δM [M ] and δP [P ] are the degradation rates for mRNA and protein,

respectively; the term sp[M ] is the rate of protein synthesis, and mRNA production

occurs at a constant rate (sA) due to the presence of a single promoter. The steady-
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state concentrations found by setting Eqs. (1.2) and (1.3) equal to zero are

[M s] =
sA
δM

, (1.4)

[P s] =
[M ]sP
δP

=
sAsP
δMδP

, (1.5)

and are related to the average steady-state number of M and P by the cell volume

V .

Note that the deterministic mathematical model (Eqs. (1.2) and (1.3)) was ob-

tained by treating each step as a first-order chemical reaction and applying the law

of mass action. The law of mass action was developed to describe chemical reac-

tions under conditions where the number of each chemical species is so large that

concentrations can be approximated as continuous variables without introducing a

significant error [133].

Deterministic ODEs can in certain cases accurately describe the mean of gene

expression (Fig. 1.5a). They cannot, however, capture the fluctuations about the

mean and therefore the resulting probability distributions that are available when

using a stochastic approach (Fig. 1.5b). Furthermore, when reaction rates depend

nonlinearly on randomly fluctuating components, macroscopic rate equations may be

far off the mark even in their estimates of averages [113].

In order for the deterministic approach to provide a valid approximation of an

exact stochastic description (see Section 1.2.3), the system size must be large in

terms of the numbers of each species and the system volume (e.g., for the model we

are considering here sA and V must be large so that the number of expressed mRNA

and protein molecules is high with the ratio sA/V remaining constant) [65]. When

this condition is not satisfied, the effects of molecular noise can be significant. The

high molecular number condition is not satisfied for gene expression, due to low copy

number of genes, mRNAs, and transcription factors within the cell [165].
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Runge-Kutta Method

There are several numerical techniques available to solve an ODE [92]. The fourth

order Runge Kutta (RK4) method is the best practical compromise between accuracy

(error at each step on the order of O(h5) and total accumulated error of order O(h4))

and computational effort (four evaluations of f per time step). Let an initial value

problem be specified by y(t0) = y0 and ẏ(t) = f(t, y), where y is a scalar or a vector.

The RK4 algorithm is as follows

k1 = f(tn, yn),

k2 = f((tn + h/2), yn + hk1/2),

k3 = f((tn + h/2), yn + hk2/2),

k4 = f(tn + h, yn + hk3),

tn+1 = tn + h,

yn+1 = yn + h(k1 + 2k2 + 2k3 + k4)/6, (1.6)

where n is a non-negative integer and h is the step-size. To solve Eqs. (1.2) and (1.3),

as shown in Fig. 1.5, y(t0) = [0, 0] and f(t, [M,P ]) = [sA −MδM , sPM − PδP ].

1.2.2 Langevin Approach

Langevin theory can be used to model intrinsic and extrinsic noise in gene expres-

sion (see [134] and Chapter 5; a historical introduction to the Langevin equation is

provided in Chapter 2). A Langevin approach assumes that fluctuations do not drive

the system far from steady-state, and thus, in the case considered here, is only strictly

valid when the number of molecules is sufficiently large [145]. However, this method

often works well for very small numbers of molecules, and at the very least, almost

always provides useful qualitative information about the system. To model intrinsic
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Figure 1.5 Simulating gene expression dynamics. (a) Time series of pro-
tein number generated by deterministic (ODE) and stochastic methods (OU
process and SSA). (b) Histograms corresponding to steady-state numerical
and stochastic simulations and shows the probability that a cell will have
a given intracellular protein level. Parameters were set to (units min−1):
sA = 1, sP = 1, δM = 0.1, δP = 0.01 (ODE and SSA), and c = 100, and
τ = 200 (OU). In (a) and (b), cells are assumed to have a fixed volume of 1
µm3 and in (b) steady-state distributions were obtained after 106 minutes of
simulation time.
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noise, white noise terms (ξM and ξP ) are added to the ordinary differential Eqs. (1.2)

and (1.3)

d[M ]

dt
= sA − δM [M ] + ξM , (1.7)

d[P ]

dt
= sP [M ]− δP [P ] + ξP . (1.8)

Since 〈ξM(t)〉 = 〈ξP (t)〉 = 0 (angle brackets denote ensemble average), M s and P s

obtained from these equations are equivalent to Eqs. (1.4) and (1.5). The stochastic

variables ξM and ξP , have been shown to satisfy [145]

〈ξM(t1)ξM(t2)〉 = 2δMM
sδ(t1 − t2),

〈ξP (t1)ξP (t2)〉 = 2δPP
sδ(t1 − t2), (1.9)

where M s and P s are respectively given in Eqs. (1.4) and (1.5), δ(t1− t2) is the Dirac

delta function, and 〈ξM(t1)ξP (t2)〉 = 0.

To model extrinsic noise, a variable ε can be added to any of the rate constants

in the model of Fig. 1.2. The dynamics of ε satisfy the Ornstein-Uhlenbeck (OU)

process, a continuous, mean-reverting stochastic process that can be represented as

a Langevin equation

dε(t)

dt
=

1

τ
(µ− ε(t)) +

√
cξ0(t), (1.10)

where ξ0(t) is Gaussian white noise (〈ξ0(t)〉 = 0, 〈ξ0(t1)ξ0(t2)〉 = δ(t)). Note that

ξ0(t) is uncorrelated with ξM(t) and ξP (t). Correlated extrinsic fluctuations acting

on different parameters of the system correspond to the same ε changing each of the

relevant parameters. Multiple uncorrelated extrinsic fluctuations require an εi for

each uncorrelated fluctuation. The parameter τ is called the relaxation time, and c

is called the diffusion constant. The diffusion constant determines the strength of

random fluctuations, while the relaxation time determines how rapidly on average a

fluctuation will dissipate back to the mean (specifically, 1/e of the mean).



1.2 Modeling Gene Expression 18

The probability density function (p) for the OU process is given by [52]

∂p(x, t)

∂t
=

1

τ

∂[xp(x, t)]

∂x
+
c

2

∂2p(x, t)

∂x2
, (1.11)

which is the Fokker-Planck equation for the OU process. The stationary probability

distribution of an OU process is a Gaussian distribution with mean µ and variance

cτ/2. The OU process thus allows a fixed degree of heterogeneity to be imposed

over a long period of time in a single cell, or at a given instant in time across a

large population of cells. The effects of gene expression dynamics on fitness can be

investigated by varying the values of c and τ (see Chapter 5).

Exact Updating Formula

An exact updating formula for Ornstein-Uhlenbeck process was developed by D.T.

Gillespie [49,52]

x(t+ ∆t) = x(t) exp(−∆t/τ) + [cτ/2(1− exp(−2∆t/τ))]1/2 n, (1.12)

where ∆t is a positive finite variable and n is a unit normal random number.

The advantage of using a stochastic framework to simulate the present model

of gene expression can be seen in Fig. 1.5. Specifically, the stochastic method cap-

tures not only the mean concentrations, but also the fluctuations in molecular species

abundance (Fig. 1.5a). These fluctuations provide the information necessary for the

histograms that describe the probability that a cell will have a given level of a particu-

lar molecular species (Fig. 1.5b), which can play a significant role in cellular dynamics

and fitness (discussed Section 1.1.3).

1.2.3 Chemical Master Equation

In the stochastic formulation of chemical kinetics, the time evolution of a chemical

system is described analytically by a finite differential-difference equation in which
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time t and N distinct and reacting species populations, where Xi : i ∈ {1, 2, . . . , N}

is the population of species Si : i ∈ {1, 2, . . . , N}, all appear as independent vari-

ables [50,51]. The differential-difference equation in this context is referred to as the

chemical master equation, and the function which satisfies it, namely p(X1, . . . , XN ; t),

is known as the grand probability function (GPF).

The GPF describes the probability that there will be X1 molecules of S1, X2

molecules of S2, . . . , and XN molecules of SN , in a volume V at t; the CME is the

equation governing the time-evolution of this function [50,51]. The state of the chem-

ically reacting system can be described by the integer vector x = [X1, . . . , XN ]T . The

system’s state can change through any one of the M reactions Rµ : µ ∈ {1, 2, . . . ,M}.

An Rµ reaction results in a state transition from x to x + sµ, where sµ is a vector

which represents the changes in molecular species numbers that occurred as a result

of Rµ. The propensity for a reaction to occur aµ (units T−1) is given by aµ = cµxi,

where cµ is a reaction parameter that characterizes reaction Rµ, and xi is the number

of distinct molecular reactant combinations for reaction Rµ found to be present in V

at t. The fundamental hypothesis of the stochastic formulation of chemical kinetics

is that the probability that a particular combination of reactant molecules in a par-

ticular reaction Rµ will react within the next infinitesimal time interval dt is given by

aµdt.

The CME can be expressed as follows [50,51]

∂

∂t
p(x, t) =

M∑
µ=1

[aµ(x− sµ)p(x− sµ, t)− p(x, t)aµ(x)] . (1.13)

The first and second moments of p(x, t) with respect to a species i are the average

number 〈Xi(t)〉 of that molecule and variance σ2
i (t) = 〈X2

i 〉 − 〈Xi〉2. The intrinsic

noise, which unless otherwise indicated will be hereafter denoted by ηi, for species

i, is defined by ηi(t) = σi(t)/ 〈Xi(t)〉, and is thus directly related to the moments of
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p(x, t) [133]. Note that an approximation of the CME is the Fokker-Planck equation,

which describes the time evolution of a continuous probability distribution. If we

set ∂
∂t
p(Xi, t) = 0, then in some cases it is possible to directly obtain the stationary

probability distribution ps(Xi). In the steady-state, the probability of transition from

a state with Xi molecules to the state with Xi + 1 molecules must be equal to the

probability of transition from a state with Xi + 1 molecules to the state with Xi

molecules.

In order to construct the CME associated with the model of gene expression shown

in Fig. 1.2 we proceed as follows. To write the CME in a compact form, we introduce

a step operator Ek
i which describes the addition or removal of k molecules of species

i when a particular reaction occurs [133]. For a function f(Xi, Xj) with two integer

arguments, Ek
Xi

increments Xi by an integer k, such that

Ek
Xi
f(Xi, Xj) = f(Xi + k,Xj). (1.14)

Now we consider a change in the system due to degradation of mRNA. The change

in probability is given by

dp(M,P, t)

dt
= δM(M + 1)p(M + 1, P, t)− δMMp(M,P, t), (1.15)

where the first and second terms describe, respectively, the flux in and out of state

M,P, t due to the removal of one mRNA. Using the step operator and letting p(M,P, t) =

p, the above equation can be expressed in a more compact form as

dp

dt
= δM(E1

M − 1)Mp. (1.16)

If we incorporate the change in probability due to the production of mRNA then we

obtain

dp

dt
= sA(E−1M − 1)p+ δM(E1

M − 1)Mp. (1.17)
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Similarly, the contributions to the probability flux due to the production and decay

of mRNA and protein is

dp

dt
= sA(E−1M − 1)p+ sP (E−1P − 1)Mp

+ δM(E1
M − 1)Mp+ δP (E1

P − 1)Pp. (1.18)

Because the CME is linear in the state variables M and P the moments of the

probability distribution can be calculated using moment generating functions [155].

The first moment of p yields the average steady-state numbers of mRNA (for a deriva-

tion see supplemental materials in [135])

〈M s〉 =
sA
δM

(1.19)

and protein molecules

〈P s〉 = 〈M s〉 sP
δP

=
sAsP
δMδP

. (1.20)

Note that Eqs. (1.19) and (1.20) are in agreement with Eqs. (1.4) and (1.5). The

variances in the state variables can be obtained from the second moment of p, and

thus an expression for the intrinsic noise in the steady-state protein abundance can

be determined. The noise in steady-state protein number can be expressed as [135]

ηsP =
σsP
µsP

=

(
1

P s
+

1

1 + φ

1

M s

)1/2

, (1.21)

where φ = δM/δP . The production and decay of mRNA molecules can modeled as a

birth-death process and thus the noise in steady-state mRNA number ηsM is simply

1/
〈√

M s
〉

(since from Poisson statistics (σsM)2 = 〈M s〉).

Although there are a few specific cases were the CME can be solved exactly,

in general, analytical solving or numerically simulating the master equation for a

system of realistic size and complexity is not possible [50,51,165]. The approach used

in practice is to simulate the very process that the CME describes using Monte Carlo

(MC) methods.
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Stochastic Simulation Algorithm

Models involving the stochastic formulation of chemical kinetics are increasingly be-

ing used to simulate and analyze the dynamics of cellular systems [48]. Analytical

solutions to these models are often intractable due to the nonlinearity of the corre-

sponding system of equations. Thus, Monte Carlo (MC) simulation procedures for

the number of each molecular species are commonly employed. Among these pro-

cedures, the Gillespie stochastic simulation algorithm is the de-facto standard for

simulating biochemical systems in situations where a deterministic formulation may

be inadequate [50,51].

For every simulation step the SSA determines which reaction in the system will

occur next and the time at which this reaction will occur (τ) [50, 51]. These items

are determined from the following probability density function

p(τ, µ) = aµ exp(a0τ), (1.22)

where aµ = hµcµ, a0 =
∑
aµ, and p(τ, µ)dt is the probability that the given reaction

µ will occur in the infinitesimal time interval dt. After determining µ and τ , the

system time and integer number of molecules in the system products are updated.

This process is reiterated until the simulation is finished. The direct method SSA

can be implemented via the pseudocode provided in Chapter 3. This algorithm,

unlike most procedures for solving deterministic rate equations, never approximates

an infinitesimal time interval dt by a finite time step ∆t. The algorithm determines

the exact time at which individual molecular reactions occur.

The following reaction equations are required to stochastically simulate the model

of gene expression under consideration (Fig. 1.2)

A
sA−→ A+M, (1.23)

M
sP−→M + P, (1.24)
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M
δM−→ �, (1.25)

P
δP−→ �. (1.26)

Equations (1.23) and (1.24) respectively describe the transcription and translation

processes. The degradation of M and P are accounted for by Eqs. (1.25) and (1.26),

respectively. A single SSA time series realization and the steady-state distribution

corresponding to Eqs. (1.23)-(1.26) are shown in Fig. 1.5a and Fig. 1.5b, respectively.

There is a simple relationship between deterministic and stochastic rate constants.

This relationship is important because it allows experimentally determined rate con-

stants to be incorporated into the SSA [74]. For zero-order reactions (reactions that

proceed at a rate that is independent of the reactant concentration) and first-order

reactions (reactions that proceed at a rate that depends linearly on only one reactant

concentration) the deterministic rate constant kµ and stochastic rate constant cµ are

equal [50]. The reason for the parity is that zero-order and first-order reactions are

independent of the reaction volume, whereas the reaction rates for higher-order reac-

tions depend on the reaction volume as the reactant molecules must collide in order

to react. For second order reactions (reactions that proceed at a rate that depends

on the concentration of one second-order reactant or two first-order reactants), the

stochastic rate constant equals the deterministic rate constant divided by the volume

of the reaction environment

cµ =
nkµ
NAV

, (1.27)

where NA is Avogadro’s number, and n = 1 if the reaction involves two different

species of reactants and n = 2 if the reaction involves two reactants of the same

species [74].
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1.3 Modeling Population Dynamics

1.3.1 Cellular Growth and Division

The origins and consequences of cell-to-cell variability is often investigated analyti-

cally or computationally using single-cell models (e.g., [28, 146]). Such models typi-

cally ignore or idealize the effects of cell growth and division, and rarely capture the

population-level effects of differential reproduction [2]. In ODE models, a first-order

effective degradation term is often used to account for dilution due to exponential

growth [64]. Similarly, in discrete stochastic models, the effect of growth and/or

partitioning of cellular contents at division can be approximated by increasing the

degradation rates of all components [113]. However, these methods tend to average

away the dynamics resulting from growth and division that can play an important role

in cellular dynamics (e.g., asymmetric division [61,106,142,168]). Another approach

is to model the cellular growth and division explicitly.

Based on observations in prokaryotes (e.g., [77]), cellular growth has been modeled

using a linear function [7, 74, 75,146]

V (t) = V0(1 + td/T ), (1.28)

where V0 is the volume of the cell at the time of its birth, td is the time since last

division, and T is the interval between volume doubling. Exponential growth has

been observed in eukaryotes (e.g., [148]) and has been described using an exponential

growth law [26,96,157]

V (t) = V0 exp [ln 2(td/T )] . (1.29)

Modeling cell division involves determining when a particular cell will divide and

how the cell volume and contents will be distributed. In models that do not incorpo-

rate the effects of cell size, division can be based on a periodic or random time (see,



1.3 Modeling Population Dynamics 25

e.g., Chapter 5). When cell size is explicitly incorporated into the model, the simplest

option is to assume that division occurs once the cell has exceeded a critical size Vdiv

corresponding to one doubling of its initial volume V0. Another option is “sloppy

cell-size control” [154], where cell division is treated as a discrete random event that

takes place with a volume-dependent probability. Asymmetric cell division can be

modeled in either of these cases by setting Vdaughter < Vmother such that total cell

volume prior to cell division is conserved. Age dependent replication is described in

Chapter 4.

When cell division is triggered, additional rules must be specified to model the

partitioning of cellular content between mother and daughter cells. When the cellular

contents are assumed to partition independently, they can be partitioned determin-

istically between the two volumes (e.g., symmetrically [74]) or probabilistically (e.g.,

using binomial distribution to partition non-DNA molecules [146]). Models of more

disordered segregation (e.g., clustering due to packaging in vesicles) can be modeled

as a multinomial process [61].

1.3.2 Constant-Number Monte Carlo

Quantitative modeling plays an important role in bridging the relationship between

single-cell and cell population dynamics. An approach known as population balance

modeling addresses this using partial differential equations [41,44,45,63,120,152]. In

this approach, cells are described as a continuous density flowing through a multi-

dimensional state space that quantifies different physiological attributes (e.g., mass

and chemical composition), and integral terms are used to account for birth and

death processes along with a function describing the partitioning of cellular contents

at division. The time-evolution is uniquely determined by the initial population dis-

tribution, and all cell densities change according to the same deterministic rules.
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Correspondingly, information about individual cell trajectories is lost in this formal-

ism. Population balance models also quickly become very difficult to formulate and

solve when more than a few variables are incorporated [57].

Another approach is to simulate a sufficiently large ensemble of individual cells

serving as a representative sample of the “true” population. This is advantageous

because it puts the available methods for single-cell simulation at our disposal without

the difficulty of integrating complicated and heterogeneous single-cell behaviour into a

broader mathematical framework. Notably, the use of individual-based models places

virtually no constraints on the biologically relevant details that can be formulated

and simulated (e.g., [67]).

Models of non-interacting and non-dividing cells have been used extensively to

study population variability arising from the process of gene expression. These models

are typically simulated by performing numerous independent realizations of individual

cells. To incorporate cell division, one could simulate the time courses of single

cells, randomly choosing one of the two newborn cells to follow when a cell divides.

The result is lineages (or cell chains) containing a single individual per generation

(e.g., [146]). One problem with the cell chain approach is that it does not take into

account the proliferative competition between cells in different gene expression or

cellular states, and so will not provide the correct joint distribution of cell properties

except in special cases. Another approach is to simulate the time courses of single

cells, and continue to simulate all newborn cells produced. The result is a complete

lineage tree (e.g., [123]). This approach can be used when dealing with a model in

which cell proliferation can vary with a number of intrinsic variables such as age,

metabolic state, and cell type. The problem here is that the size of the simulation

ensemble rapidly grows to the point of intractability. This can be addressed using

a technique called the constant-number Monte Carlo (CNMC) method [79, 93, 139],
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originally developed to approximate the solution of population balance models of

particulate processes. The idea is that the total number of particles being simulated

is kept fixed while the composition of different particles in the finite sample still reflects

the true number density within the full population. Note that as the CNMC method

is using a fixed number of randomly chosen individuals to represent the population

as a whole, there is an error associated with the method. This error was shown to

be (lnx)0.89/
√

2N , where x is the extent of growth and N is the size of the sample

population [139].

The CNMC method has been applied to the simulation of heterogeneous popu-

lations [26, 100, 101]. Mantzaris used the method in conjunction with deterministic

and stochastic Langevin models of single-cell dynamics [100], along with methods to

determine the timing of cell divisions and partitioning of cell contents that agree with

the population balance formalism [101].

The SSA and CNMC method were combined in a cell population dynamics algo-

rithm [26] discussed in the next section. In this implementation of the CNMC method,

the individual mother and daughter cells are stored in two separate arrays [26]. Each

time a cell divides, the daughter cell is placed in the daughter array and the time

of birth recorded. Then, at specified intervals, cells within the mother array are re-

placed one at a time, with the oldest daughter cells being inserted first. Because

every mother cell is equally likely to be replaced during the sample update, the joint

distribution of the population remains intact for sufficiently large N [139].

1.3.3 Population Dynamics Algorithm

For my master’s thesis [24], I developed a population dynamics algorithm (PDA) that

combines the SSA (Section 1.2.3) with the CNMC method (Section 1.3.2) to accu-

rately and efficiently simulate gene expression dynamics across growing and dividing
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cell populations at single-cell resolution [26]. The PDA was the algorithm employed

to perform the cell population simulations in Chapters 5 and 6.

Individual-based simulations provide an attractive alternative to rigorous math-

ematical analysis in investigations of phenomena such as drug resistance resulting

from heterogeneous dynamics of cell populations. This is because of the relative ease

of incorporating biologically relevant details, which generally make the mathemat-

ical model equations difficult to formulate and solve. Individual-based simulations

can also capture the trajectories, lineages or fates of individual cells, thus enabling a

more direct comparison of simulation and experimental results. The main drawback

is that comprehensive analyses require significant computational resources.

The SSA in particular can be very computationally intensive since the step size

τ becomes very small when the total number of molecules is high or the fastest re-

action occurs on a time-scale that is much shorter than the time-scale of interest. It

is therefore useful to develop techniques that can be used to speed up simulations.

An exact method known as the “Next Reaction Method” was developed by Gibson

and Bruck [47]. This method minimizes the number of random numbers required (to

one per time step) and reduces the number of redundant time calculations through

the use of dependency graphs that denote the dependencies between reactions. The

reaction times are stored in a data structure known as an indexed priority queue.

However, the same reasons that make the Next Reaction Method faster, also make

it much more challenging to code and implement within the framework of the PDA.

SSA simulations can also be sped up using approximate simulation methods such as

the tau-leaping procedure, in which each time step τ advances the system through

possibly many reaction events [53]. In order to preserve statistical accuracy of the

simulation results while decreasing simulation run-times, the SSA was used together

with parallel computing methods [26]. Though, in principle, any numerical or sim-
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ulation method can be implemented in the PDA (e.g., in Chapter 5 the OU process

was used to simulate the gene expression dynamics).

The accuracy of the PDA was benchmarked against exact and approximate an-

alytical solutions for several scenarios of increasing biological complexity, including

steady-state and time-dependent gene expression, and the effects on population het-

erogeneity of cell growth, division, and DNA replication [26]. This comparison demon-

strated that the PDA provides an accurate approach to simulate how complex bio-

logical features influence gene expression. To further benchmark the algorithm, we

implement a coarse-grained two-state model of a bet-hedging yeast population in or-

der to simulate fitness (growth-rate) dynamics under environmental stress and the

results were found to be qualitatively in agreement with experimental data. Finally,

for the same yeast population, we simulated a fine-grained model which explicitly in-

corporates both gene expression and fitness in order to capture environmental effects

on phenotype distributions. These simulations exemplified the utility of the PDA in

a case where deterministic methods were unable to account for the full dynamics of

the system.

1.3.4 Noise and Fitness

The stochastic nature of gene expression has led to the hypothesis that evolution

by natural selection has fine-tuned noise-generating mechanisms and genetic archi-

tectures to derive beneficial population diversity [95, 140, 156]. Direct evidence that

genome sequence contributes to cell-to-cell variability indicates that gene expression

noise, like other genome-encoded traits, is inheritable and subject to selective pres-

sures, and therefore evolvable. Large-scale proteomic studies in yeast have shown

that genes associated with stress response pathways have elevated levels of intrin-

sic noise [11, 43, 107]. Stress-response genes have likely experienced positive pressure
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toward high expression variability, presumably because this provides a selective ad-

vantage during periods of stress. By broadening the range of environmental stress

resistance across a population, added gene expression noise could increase the likeli-

hood that some cells within the population are better able to endure environmental

assaults [20, 144]. Experimental results providing support for this hypothesis were

obtained in a study by Bishop et al. [16], which demonstrated a competitive advan-

tage of stress-resistant yeast mutants under high stress due to increased phenotypic

heterogeneity.

In a qualitative explanation, Blake et al. [18] attribute the differential impact of

added noise to a change in the relative fraction of surviving cells at different levels of

stress (Fig. 1.3). In a quantitative model, the size of the fraction of viable cells depends

on the probability distribution function associated with the spread of protein content

among individual cells. Consequently, if it is assumed that cells are either unaffected

or completely affected by the stress, the population fitness (reproductive rate) and

differential fitness (difference in reproductive rates between two populations, e.g., a

high and a low noise cell population) for a given stress level can be calculated (Fig. 1.6a

and 1.6b, respectively) [42]. This provides a very simple quantitative framework

that captures the observed impact of population heterogeneity on population fitness

following acute stress.

The impact of acute stress on the fitness of the cell population W (macroscopic

fitness) can be calculated theoretically by evaluating the integral

W =
∫
w(x)f(x)dx, (1.30)

where the fitness of an individual cell w(x) (microscopic fitness) is the relative repro-

ductive rate of cells expressing a stress-related gene at a level given by x, and f(x)

describes the population distribution of gene expression when cells are exposed to
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stress [171]. In a study by Fraser et al. [42], this distribution was approximated by

the lognormal distribution

f(x) =
1

xβ
√

2x
exp

[
(ln(x)− α)2

2β2

]
, (1.31)

where α and β are defined by the average gene expression level µ and gene expression

noise η through the relationships β2 = ln(1+η2) and α = ln(µ)−0.5β. The impact of

acute stress was approximated by a step function such that cells expressing a stress-

resistance gene below a certain threshold would have a reproductive rate of zero, that

is, fitness w(x) = 0 for x < sthr and are otherwise unaffected, that is, w(x) = 1 for

x ≥ sthr.

If it is assumed that the level of stress s experienced by the population is related to

the most likely level of gene expression (i.e., the mode of the distribution in Eq. (1.31)),

then the noise-dependency of population fitness in Eq. (1.30) for a threshold model

is given by the error function (erf) describing the cumulative lognormal distribution

W (η, s) =
∫
w(x)f(x)dx =

∫ ∞
sthr

f(x)dx

=
1

2
+

1

2
erf

√ ln(1 + η2)

2

(
ln(sthr/s)

ln(1 + η2)
− 1

) , (1.32)

where cells with high expression of a stress-resistant gene have high fitness, and cells

with low expression have low fitness (positive selection scheme) [27, 171]. Eq. (1.32)

was used to calculate the fitness curves displayed in Fig. 1.6a using sthr = 6.91 and η =

0.1 or η = 0.4, for the low and high noise populations, respectively. Correspondingly,

the differential fitness curves displayed in Fig. 1.6b were obtained by evaluating the

quantity ∆W (η, s) = W (η, s) − W (η0, s), where W (η, s) is the fitness of the high

noise population (η = 0.2, 0.3, or 0.4) and W (η0, s) is a reference population with

low noise (η0 = 0.1).

The model of fitness presented in this section assumes that the gene expression

level in each cell is fixed and is therefore appropriate only when considering an acute
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Figure 1.6 The effects of noise in the expression of a stress-resistant gene.
(a) The effect of varying the stress level on fitness (W ) for low and high noise
(η) cell populations. Stress levels where noise is beneficial and disadvanta-
geous are defined by positive and negative values of the differential fitness
(∆W ), respectively. (b) Differential fitness at varying stress levels for three
populations with elevated noise relative to a low noise (η0 = 0.1) reference
population. Figure reproduced from Zhuravel et al. [171] by permission of
the Creative Commons Attribution Noncommercial License.



1.3 Modeling Population Dynamics 33

stress. In reality, the level of expression in each cell fluctuates and thus the fitness

of the cell can change even in a constant stressful environment. In order to describe

the effects of expression noise, prolonged stress exposure, and fitness, we developed

a general theoretical framework incorporating the timescale of gene expression fluc-

tuations (see Chapter 5). Specifically, we generalized Eq. (1.30) by incorporating the

first-passage time distribution of gene expression fluctuations. When this equation

cannot be solved analytically (e.g., when an equation for the first-passage time dis-

tribution is unavailable) or numerically (e.g., when it is unknown how f(x) evolves in

time), we resort to computer simulations to incorporate the effect of gene expression

fluctuations on fitness. Each generation, macroscopic fitness is determined by the ra-

tio of the number of cell divisions that occur in a population under stress (cells with

sufficiently long first-passage times such that they can maintain their expression level

x above a fitness threshold and divide during that generation) to the number of cell

divisions in the corresponding unstressed population. The simulations are performed

such that mother cells can only divide once and daughter cells not at all (daughter

cells may become mother cells in the next generation if they are not replaced them-

selves by other daughter cells during the CNMC substitution). Whether or not a

mother cell divides during a particular generation depends on their microscopic fit-

ness. For a given generation, the population has maximum fitness if all the mother

cells divide once, and minimum fitness if none of the mother cells divide. Although

the total number of cells in the population is fixed by the CNMC method, microscopic

fitness, and thus macroscopic fitness, are dynamic variables.
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1.4 Drug Resistance

1.4.1 Mechanisms of Drug Resistance

Drug resistance was first observed in hospitals where, at the time, most antibiotics

were being used [86]. For example, sulfonamide resistant Streptoccoccus pyogenes

was discovered in the late 1930’s [82], followed by penicillin resistant Staphylococcus

aureus [14] and streptomycin resistant Mycobacterium tuberculosis [33] in the 1940’s.

These resistant strains emerged shortly after the introduction of the antibiotics [81,

86, 88, 105, 167]. Although drug resistance is not a recent phenomenon, the number

of resistant organisms and range of organisms resistant to multiple drugs is on the

rise [30, 81, 86, 88, 105, 151]. Thus, elucidating the underlying mechanisms of drug

resistance is of ever increasing importance in medicine [56].

There are many biochemical mechanisms which allow microorganisms to resist

drugs. These mechanisms can be broadly divided into three categories: reduced drug

delivery [56, 104, 108], reduced drug activity (via drug inactivation, and alteration of

drug target sites and metabolic pathways) [56,62,88,141,161,162], and increased drug

efflux [84, 94, 109]. These mechanisms are influenced by both genetic and epigenetic

factors (discussed in Sections 1.4.2 and 1.4.3, respectively).

Drug efflux pumps are of particular relevance to this thesis (Chapter 6). This

mechanism allows cells to resist drugs by pumping cytotoxic drugs out of the cell.

For example, drug efflux mediates resistance to tetracyclines, chloramphenicol, and

fluoroquinolones [84, 109]. The most well known class of efflux pumps are trans-

membrane transport proteins of the ATP-binding cassette (ABC) superfamily. ABC-

transporters are characterized by the presence of a cytoplasmic adenosine triphos-

phate (ATP) binding domain [94]. It harnesses energy from ATP hydrolysis that the

transporters require to pump out various intracellular drugs. ABC-transporters also
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contain a transmembrane domain. The transmembrane domain offers the binding

site for substrates or drugs for translocation from the cytoplasm to the extracellular

environment.

More than one type of mechanism may provide resistance to the same drug. For

example, tetracycline resistance can be affected by either efflux or ribosome protec-

tion [102]. On the other hand, pleiotropic drug resistance (PDR) can result from a

single mechanism such as the ABC-transporter PDR5 that provides yeast with resis-

tance to several structurally and functionally unrelated drugs [10,34–36,68]. In some

cases, PDR can be reversed by a variety of pharmacological agents which promote

drug accumulation (e.g., calcium channel blockers) [56]. However, in other cases,

PDR strains can require the use of more than six different drugs [19] and patients

may succumb to the PDR infection because all available drugs have failed [81].

1.4.2 Genetic Basis of Drug Resistance

Drug resistance is often associated with two components: the drug which inhibits

sensitive microorganisms and selects the resistant ones, and the genetic resistance

determinant selected by the drug [85, 87]. At a molecular level, the biochemical

mechanisms mentioned in the previous section can be a result of, though not limited

to, mutations, horizontal gene transfer, and gene amplification or deletion [6]. All

these effects can occur directly on resistance genes or on genes involved in their

regulation [56].

Decreased drug activity resulting from a modification of the drug target can occur

due to mutations in a structural gene encoding a target protein and is usually asso-

ciated with drugs whose target is well-defined [56]. For example, mutations in the

enzyme thymidylate synthetase can result in resistance to 5-fluorouracil. In the ab-

sence of plasmids and transposons (which generally mediate high-level resistance), a
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step-wise progression from low-level to high-level resistance occurs in bacteria through

sequential mutations in chromosomes [81, 132, 163]. This process was responsible for

the initial emergence of penicillin and tetracycline resistance in strains of Neisseria

gonorrhoeae.

The long term use of a single antibiotic can not only select for bacteria that are

resistant to the antibiotic but also to several others [83, 88]. This phenomenon re-

flects the linkage of different resistance genes on the same transposon or plasmid [143].

Bacteria that are already resistant to one growth inhibitory agent can recruit addi-

tional resistance traits from other bacteria sharing the environment. It was from the

doubly resistant (penicillin and tetracycline) strains of Neisseria gonorrhoeae that

the new fluoroquinolone-resistant strains emerged [88]. Many of the known resistance

genes can be transferred from resistant bacteria to sensitive bacteria of the same or

different species. Resistance genes can be transfered by horizontal gene transfer in

several ways: cell-to-cell conjugation, transformation by naked DNA (as linear DNA

or on plasmids) that is released by dead cells, or bacteriophage-mediated transduc-

tion [6,56,81,88,89]. There is evidence of the transfer of resistance elements to human

commensal bacteria and pathogens [1,166], and extensive gene transfer in the human

intestinal microbiome [128].

A direct consequence of gene amplification (increase in gene copy number) is

protein overexpression. This can result in drug resistance due to an increase in the

concentration of the drug target. For example, a methionine sulphoximine-resistant

Chinese hamster ovary cell line has been described that over-produces the target

enzyme glutamine synthetase and was associated with an increase in the copy number

of the gene encoding the target protein [130]. Conversely, drug resistance can occur

from the under-production of a protein resulting from a gene deletion. For example, it

was found that deletion of the genes regulating the MSH2 enzyme required for DNA
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mismatch repair increased resistance to thiopurine chemotherapy in human leukemia

cells [38].

The types of genetic change discussed in this section are not mutually exclusive. In

fact, examination of the multiple genetic changes that are frequently observed in drug

resistant tumour cell lines suggests that they can operate simultaneously [56]. Fur-

thermore, mutations causing a genetic change do not necessarily occur independently

of their phenotypic consequences (i.e., mutations are not necessarily independent

random events). Paradigm shifting research has shown that mutations facilitating

adaptation can be induced by a stressor (for a review see Rosenberg [125]).

1.4.3 Epigenetic Basis of Drug Resistance

Defining the term “Epigenetic”

The classical definition of “epigenetic” is: “a change in the state of expression of

a gene that does not involve a mutation, but that is nevertheless inherited in the

absence of the signal (or event) that initiated that change” [118]. There are, however,

in the literature several specific uses of this term.

The term epigenetic was coined by Waddington in the 1940s to describe phe-

notypes that arise from the interactions between genes, rather than those directly

encoded by a gene [158]. This meaning is captured in the conceptual epigenetic land-

scape framework that Waddington proposed to explain the phenotypes of discrete

cell types (Fig. 1.7). This idea allowed scientists to think conceptually about the

process of cell development from zygote to adult [71]. In particular, the zygote has

daughter cells which roll down the branching valleys into the final resting “wells” that

specify the terminal cell types. The epigenetic landscape can be altered by an envi-

ronment change or mutation which can lead to developmental errors. Physicists still
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use the term epigenetic in the same manner in the context of genetic networks [8,160].

Mathematically, a stable gene expression pattern can be represented by an “attractor

state” [60] at the bottom of a pseudo-potential well, similar to a minimal energy equi-

librium state. The large number of such stable attractor states of a genomic network

collectively comprise the epigenetic landscape in which valleys represent the “basins

of attraction” of the attractor states. In this framework, an attractor state determines

a cell-type specific gene expression profile [59,60,69]. Being at the bottom of a valley

explains the inherent robustness of the cell-type specific gene expression profiles that

continuously face temporal noise or stochastic perturbations [60].

Molecular biologists have borrowed the term epigenetic from Waddington to de-

scribe covalent modifications of DNA or histones (proteins found in eukaryotic cell

nuclei that function like a spool to compact DNA into a structure called a nucleo-

some) [73, 131]. Gene expression can be upregulated or downregulated when DNA

is methylated or histones are modified via methylation, acetylation, deacetylation,

and so on [118]. DNA methylation, a modification found in some eukaryotes (not in

yeast and flies) and bacteria can be self-perpetuating over many generations: mainte-

nance methylases recognize hemi-methylated DNA, the product of replication of fully

methylated DNA, and add methyl groups to the unmethylated DNA strand [117,137].

It is unknown if histone modifications, found in eukaryotes, can be transmitted upon

replication. However, a recent experimental study of fly embryos suggests that histone

modifying proteins, and not methylated histones, remain associated with DNA during

replication [116]. It should be noted that histone modifiers and enzymes that trig-

ger DNA methylation must be recruited to genes by specific DNA binding proteins.

Therefore, it can be argued that the dynamics of a gene network are orchestrated by

the genes themselves and not the other way around.

“Epigenetic memory” can be thought of broadly as the timescale associated with
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an epigenetic phenotype. We have recently used the notion of a fluctuation timescale

in gene expression to refer to epigenetic memory (see Chapter 5). Fluctuations in

gene expression occur over a wide range of timescales; while intrinsic transcriptional

bursting (the production of many mRNA molecules within a short time) may occur

on the order of milliseconds to minutes, extrinsic sources of variation can lead to long

range fluctuations with timescales on the order of the cell cycle [76, 119]. Thus, the

relaxation time (discussed in Section 1.2.2) can be used to quantify epigenetic mem-

ory. Our definition of epigenetic memory is akin to the mean first-passage time of a

Brownian particle returning to the attractor after a perturbation placed it somewhere

in the basin of attraction.

Epigenetic Drug Resistance

It is well established that an acquired genetic change can cause drug resistance

(e.g., [46, 55, 164]). Less appreciated is that drug resistance can emerge from epi-

genetic effects.

Zhuravel et al. demonstrated that budding yeast under drug treatment reversibly

change expression levels in the direction that increases fitness [171]. Specifically,

the authors showed that budding yeast can survive by adapting during drug expo-

sure [171]. This study used the Ura3-FOA system described in Section 1.1.3 for the

Acar et al. experiments. Here, the yeast strain was genetically engineered to express

the Ura3 gene fused with a gene that produces a fluorescence protein to experimen-

tally measure expression levels of the Ura3 protein. The mode of the gene expression

distribution was observed to shift to a lower level under FOA treatment. The gene

expression distribution relaxed back to its pretreatment distribution when the FOA

was removed from the media. These results are characteristic of epigenetic drug

resistance.
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Figure 1.7 Schematic of the epigenetic landscape corresponding to a genetic
toggle switch. The state space here is projected onto a two-dimensional plane
in which each position represents a state corresponding to a particular gene
expression pattern. Changes in gene expression translate into the movement
of the network state in the state space. Each network state in the state space
plane can be assigned to a quasi-potential, the magnitude of which is inversely
related to the probability of the network being found in that state, which in
turn reflects its stability when the system is at equilibrium. There are only
two stable states in this network as gene A and gene B inhibit each other, and
so all expression patterns in which A and B are equally expressed are highly
unstable. For example, a slight excess of gene B (so that B > A) would
suppress gene A, reducing its own inhibition and, hence, promoting its own
expression, which further increases the excess of B over A expression. This
would continue until the network reaches an equilibrium state at B >> A
when the expression of B cannot increase further owing to other limitations.
Figure reproduced by permission from Macmillan Publishers Ltd: Nature
Reviews Genetics 10: 336-342, copyright 2009.
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Another example is the development of drug resistance during chemotherapy.

When the drug Imatinib is used to treat chronic myeloid leukemia, the disease re-

curs with a frequency of 20-30% [21]. Even though numerous genetic mutations have

been shown to render the drug ineffective [46, 55, 164], in two-thirds of cases no mu-

tations have been found [21]. Instead, elevated levels of survival pathway proteins

in Imatinib-resistant leukaemia cell lines were detected [110]. The rapid rate of re-

sistance development, its dose dependence and high frequency of upregulation of the

correct pathways are consistent with nongenetic heterogeneity, that is, variation in

gene expression across a population of genetically identical cells. This mechanism gen-

erates enduring outlier cells with distinct phenotypes, some of which may be subject

to selection.

Recently, it was found that the antibiotic Isoniazid (INH) failed to eliminate a

portion of a clonal population of Mycobacterium smegmatis [159]. This phenomenon

was previously attributed to infrequently dividing or nondividing persister cells (dor-

mant cells that can withstand antimicrobial drugs) [9,37,91]. However, Wakamoto et

al. detected cells dividing in the drug environment via single-cell measurements [159].

Pre-INH elongation rates between persister and nonpersister cells were found to be

not significantly different, ruling out preexisting persister cells. Persistence was at-

tributed to a reversible tolerance which resulted from low levels of gene expression

(expressed catalase-peroxidase activates INH), rather than stable genetic mutations.

Epigenetic memory can contribute to the development of genetic mutations [21,

25]. It was recently argued that epigenetic memory may accelerate tumor progression

by contributing to the development of drug resistant cancer cells [21]. In this hy-

pothesis, phenotypic variability from the noisy expression of a resistance gene renders

some cells and their offspring temporarily insensitive to the drug, thereby increasing

the probability of acquiring a mutation conferring permanent immunity.
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In budding yeast, the expression of the ABC-transporter PDR5 is controlled ho-

mologous transcriptional regulators PDR1 and PDR3. The PDR5 protein provides

yeast with generalized resistance to a broad spectrum of functionally and structurally

unrelated drugs. The topology of the PDR5 transcriptional network, as my thesis

research has revealed (see Chapter 6), may significantly enhance the development of

nongenetic drug resistance.

1.5 Thesis Overview

The unifying concept of the research presented in this thesis is that it has a physical

basis. The physics of noise is introduced through a review article in Chapter 2. The

physics of stochastic processes guided the use of a stationary approximation which

yields a novel way to speedup population simulations in Chapter 3. Incorporating

more biological detail results in both insights and the need for more sophisticated

computational techniques (Chapter 4). To help make those techniques tractable, the

principles of physics are employed to make simplifying assumptions. In Chapter 5, a

simple physical model of a mean-reverting process reveals that gene expression noise

can render a population drug resistant. Incorporating network topology demonstrates

that such increased time scales can be achieved and suggests that they are tuned

during evolution (Chapter 6).

In the final chapter of this thesis (Chapter 8), the main conclusions of the work

presented in Chapters 3-6 are summarized, ongoing research discussed, and future

research directions suggested.

The Appendices include a supplementary figure as well as enlarged versions of

figures that are difficult to read in the main body of the text due to the direct

incorporation of journal manuscripts into the thesis.



1.6 References 43

1.6 References

[1] F.M. Aarestrup. Veterinary drug usage and antimicrobial resistance in bacteria

of animal origin. Basic Clin. Pharmacol. Toxicol., 96:271–281, 2005.

[2] N. Abdennur. A framework for individual-based simulation of heterogeneous

cell populations. Master’s thesis, University of Ottawa, 2012.

[3] M. Acar, A. Becskei, and A. van Oudenaarden. Enhancement of cellular memory

by reducing stochastic transitions. Nature, 435:228–232, 2005.

[4] M. Acar, J.T. Mettetal, and A. van Oudenaarden. Stochastic switching as a

survival strategy in fluctuating environments. Nat. Genet., 40:471–475, 2008.

[5] U. Alon. An Introduction to Systems Biology: Design Principles of Biological

Circuits. Boca Raton: Chapman & Hall/CRC.

[6] D.I. Andersson. Veterinary drug usage and antimicrobial resistance in bacteria

of animal origin. Basic Clin. Pharmacol. Toxicol., 96:271–281, 2005.

[7] A. Arkin, J. Ross, and H.H. McAdams. Stochastic kinetic analysis of devel-

opmental pathway bifurcation in phage lambda infected Escherichia coli cells.

Genet., 149:1633–1648, 1998.

[8] E. Aurell and K. Sneppen. Epigenetics as a first exit problem. Phys. Rev. Lett.,

88:048101, 2002.

[9] N.Q. Balaban. Persistence: mechanisms for triggering and enhancing pheno-

typic variability. Curr. Opin. Genet. Dev., 21:768–775, 2011.

[10] E. Balzi and A. Goffeau. Yeast multidrug resistance: The pdr network. J. Bioen-

erg. Biomembr., 27:71–76, 1995.



44

[11] A. Bar-Even, J. Paulsson, N. Maheshri, M. Carmi, and et al. Noise in protein

expression scales with natural protein abundance. Nat. Genet., 38:636–643,

2006.

[12] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Sci-

ence, 286:509–512, 1999.

[13] A.-L. Barabási and Z.N. Oltvai. Network biology: Understanding the cell’s

functional organization. Nat. Rev. Genet., 5:101–113, 2004.

[14] M. Barber. Infection by penicillin resistant staphylococci. Lancet, 2:641–644,

1948.

[15] A. Becskei and L. Serrano. Engineering stability in gene networks by autoreg-

ulation. Nature, 405:590–593, 2000.

[16] A.L. Bishop, F.A. Rab, E.R. Sumner, and S.V. Avery. Phenotypic heterogeneity

can enhance rare-cell survival in stress-sensitive yeast populations. Molec. Mi-

crobiol., 63:507–520, 2007.

[17] W.J. Blake, G. Balazsi, M.A. Kohanski, F.J. Issacs, and et al. Phenotypic

consequences of promoter-mediated transcriptional noise. Molec. Cell, 24:853–

865, 2006.

[18] W.J. Blake, M. Kaern, C.R. Cantor, and J.J. Collins. Noise in eukaryotic gene

expression. Nature, 422:633–637, 2003.

[19] B.R. Bloom and C.J.L. Murray. Tuberculosis: commentary on a re-emergent

killer. Science, 257:1055–1064, 1992.



45

[20] I.R. Booth. Stress and the single cell: intrapopulation diversity is a mechanism

to ensure survival upon exposure to stress. Int. J. Food Microbiol., 78:19–30,

2002.

[21] A. Brock, H. Chang, and S. Huang. Non-genetic heterogeneity - a

mutation-independent driving force for the somatic evolution of tumours.

Nat. Rev. Genet., 10:336–342, 2009.

[22] H.H. Chang, M. Hemberg, M. Barahona, E. Ingber, and et al. Transcrip-

tomewide noise controls lineage choice in mammalian progenitor cells. Nature,

453:544–547, 2008.

[23] D. Charlebois. A biophysicist ponders the application of hidden metric spaces

to genetic networks. Nature, 458:811, 2009.

[24] D.A. Charlebois. An algorithm for the stochastic simulation of gene expression

and heterogeneous population dynamics. Master’s thesis, University of Ottawa,

2010.

[25] D.A. Charlebois, N. Abdennur, and M. Kaern. Gene expression noise facilitates

adaptation and drug resistance independently of mutation. Phys. Rev. Lett.,

107:218101, 2011.

[26] D.A. Charlebois, J. Intosalmi, D. Fraser, and M. Kaern. An algorithm for the

stochastic simulation of gene expression and heterogeneous population dynam-

ics. Commun. Comput. Phys., 9:89–112, 2011.

[27] D.A. Charlebois and M. Kaern. Information Processing and Biological Systems.

Springer-Verlag, 2011.



46

[28] K.C. Chen, A. Csikasz-Nagy, B. Gyorffy, J. Val, and et al. Kinetic analysis of a

molecular model of the budding yeast cell cycle. Molec. Biol. Cell, 11:369–391,

2000.

[29] A.A. Cohen, N. Geva-Zatorsky, E. Eden, M. Frenkel-Morgenstern, and et al.

Dynamic proteomics of individual cancer cells in response to a drug. Science,

322:1511–1516, 2008.

[30] M.L. Cohen. Changing patterns of infectious disease. Nature, 406:762–767,

2000.

[31] F. Crick. On protein synthesis. Symp. Soc. Exp. Biol., XII:139–163, 1958.

[32] F. Crick. Central dogma of molecular biology. Nature, 227:561–563, 1970.

[33] J. Crofton and D.A. Mitchison. Streptomycin resistance in pulmonary tuber-

culosis. Br. Med., 2:1009–1015, 1948.

[34] A. Delahodde, T. Delaveau, and C. Jacq. Positive autoregulation of the yeast

transcription factor pdr3p, which is involved in control of drug resistance.

Mol. Cell. Biol., 15:4043–4051, 1995.

[35] T. Delaveau, A. Delahodde, A. Carvajal, and E. Subnik and et al. Pdr3, a

new yeast regulatory gene, is homologous to pdr1 and controls the multidrug

resistance phenomenon. Mol. Gen. Genet., 224:501–512, 1994.

[36] D. Dexter, W.S. Moye-Rowley, A.L. Wu, and J. Golin. Mutations in the yeast

pdr3, pdr4, pdr7 and pdr9 pleiotropic (multiple) drug resistance loci affect the

transcript level of an atp binding cassette transporter encoding gene, pdr5.

Genetics, 136:505–515, 1994.



47

[37] N. Dhar and J. D. McKinney. Microbial phenotypic heterogeneity and antibiotic

tolerance. Curr. Opin. Microbiol., 10:30–38, 2007.

[38] B. Diouf, Q. Cheng, N.F. Krynetskaia, and W. Yang and et al. Somatic deletions

of genes regulating msh2 protein stability cause dna mismatch repair deficiency

and drug resistance in human leukemia cells. Nat. Med., 17:1298–1303, 2011.

[39] Y. Dublanche, K. Michalodimitrakis, N. Kummerer, and M. Foglierini et al.

Noise in transcription negative feedback loops: simulation and experimental

analysis. Molec. Syst. Biol., 2, 2006.

[40] M.B. Elowitz, A.J. Levine, E.D. Siggia, and P.S. Swain. Stochastic gene ex-

pression in a single cell. Science, 297:1183–1186, 2002.

[41] H.V. Foerster. In The kinetics of cellular proliferation. New York: Grune and

Stratton, 1959.

[42] D. Fraser and M. Kaern. A chance at survival: gene expression noise and

phenotypic diversification strategies. Molec. Microbiol., 71:1333–1340, 2009.

[43] H.B. Fraser, A.E. Hirsh, G. Giaever, and J. Kumm and et al. Noise minimization

in eukaryotic gene expression. PLoS Biol., 2:e137, 2004.

[44] A.G. Fredrickson, D. Ramkrishna, and H.M. Tsuchiya. Statistics and dynamics

of procaryotic cell populations. Math. Biosci., 1:327–374, 1967.

[45] A.G. Fredrickson and H.M. Tsuchiya. Continuous propagation of microorgan-

isms. AIChE J., 9:459–468, 1963.

[46] C.B. Gambacorti-Passerini, R.H. Gunby, R. Piazza, A. Galietta, and et al.

Molecular mechanisms of resistance to imatinib in philadelphia-chromosome-

positive leukaemias. Lancet. Oncol., 4:75–85, 2003.



48

[47] M.A. Gibson and J. Bruck. Exact stochastic simulation of chemical systems

with many species and many channels. J. Phys. Chem., 105:1876–1889, 2000.

[48] D.T. Gillespie. Handbook of Materials and Modeling.

[49] D.T. Gillespie. Markov processes: an introduction for physical scientists. New

York: Academic Press Limited.

[50] D.T. Gillespie. A general method for numerically simulating the stochastic time

evolution of coupled chemical reactions. J. Comput. Phys., 22:403–434, 1976.

[51] D.T. Gillespie. Exact stochastic simulation of coupled chemical reactions.

J. Phys. Chem., 81:2340–2361, 1977.

[52] D.T. Gillespie. Exact numerical simulation of the ornstein-uhlenbeck process

and its integral. Phys. Rev. E., 54:2084–2091, 1996.

[53] D.T. Gillespie. Stochastic simulation of chemical kinetics.

Annu. Rev. Phys. Chem., 58:35–55, 2007.

[54] I. Golding, J. Paulsson, S.M. Zawilski, and E.C. Cox. Realtime kinetics of gene

activity in individual bacteria. Cell, 123:1025–1036, 2005.

[55] M.E. Gorre, M. Mohammed, K. Ellwood, N. Hsu, and et al. Clinical resistance

to sti-571 cancer therapy caused by bcr-abl gene mutation or amplification.

Science, 293:876–880, 2001.

[56] J.D. Hayes and C.R. Wolf. Molecular mechanisms of drug resistance.

Biochem. J., 272:281–295, 1990.

[57] M.A. Henson. Dynamic modeling of microbial cell populations.

Curr. Opin. Biotech., 14:460–467, 2003.



49

[58] S. Huang. Non-genetic heterogeneity of cells in development: More than just

noise. Development, 136:3853–3862, 2009.

[59] S. Huang, G. Eichler, Y. Bar-Yam, and D.E. Ingber. Cell fates as

high-dimensional attractor states of a complex gene regulatory network.

Phys. Rev. Lett., 94:128701, 2005.

[60] S. Huang and S. Kauffman. Encyclopedia of Complexity and Systems Science.

[61] D. Huh and J. Paulsson. Non-genetic heterogeneity from stochastic partitioning

at cell division. Nat. Genet., 43:95–102, 2011.

[62] H.F. Jenkinson. Ins and outs of antimicrobial resistance: era of the drug pumps.

J. Dent. Res., 75:736–742, 1996.

[63] H.M. Tsuchiya J.M. Eakman, A.G. Fredrickson. Statistics and dynamics of

microbial cell populations. Chem. Eng. Prog. S. Ser., 62:37–49, 1966.

[64] M. Kaern, W.J. Blake, and J.J. Collins. The engineering of gene regulatory

networks. Annu. Rev. Biomed. Eng., 5:179–206, 2003.

[65] M. Kaern, T.C. Elston, W.J. Blake, and J.J. Collins. Stochasticity in gene

expression: From theories to phenotypes. Nat. Rev. Genet., 6:451–464, 2005.

[66] S. Kalir, S. Mangan, and U. Alon. A coherent feed-forward loop with a sum

input function prolongs flagella expression in escherichia coli. Mol. Sys. Biol.,

2005.

[67] J.R. Karr, J.C. Sanghvi, D.N. Macklin, M.V. Gutschow, and et al. A whole-

cell computational model predicts phenotype from genotype. Cell, 150:389–401,

2012.



50

[68] D.J. Katzmann, P.B. Burney, J. Golin, Y Mahe, and et al. Transcriptional

control of the yeast pdr5 gene by the pdr3 gene product. Mol. Cell. Biol.,

14:4653–4661, 1994.

[69] S. Kauffmann. Homeostasis and differentiation in random genetic control net-

works. Nature, 224:177–178, 1969.

[70] S. Kauffmann. Metabolic stability and epigenesis in randomly constructed ge-

netic nets. J. Theoret. Biol., 22:437–467, 1969.

[71] S.A. Kauffmann. The epigenetic landscape and clinical implications.

J. Crit. Care, 26:e15, 2011.

[72] B.B. Kaufmann and A. van Oudenaarden. Stochastic gene expression: from

single molecules to the proteome. Curr. Opin. Genet. Dev., 17:107–112, 2007.

[73] S. Khorasanizadeh. The nucleosome: from genomic organization to genomic

regulation. Cell, 116:259–272, 2004.

[74] A.M. Kierzek. Stocks: Stochastic kinetic simulations of biochemical systems

with gillespie algorithm. Bioinf., 18:470–481, 2002.

[75] A.M. Kierzek, J. Zaim, and P. Zielenkiewicz. The effect of transcription and

translation initiation frequencies on the stochastic fluctuations in prokaryotic

gene expression. J. Biol. Chem., 276:8165–8172, 2001.

[76] E. Klipp. Timing matters. FEBS Lett., 583:4013–4018, 2009.

[77] H.E. Kubitschek. Cell volume increase in escherichia coli after shifts to richer

media. J. Bacteriol., 172:94–101, 1990.



51

[78] E. Kussell and S. Leibler. Phenotypic diversity, population growth, and infor-

mation in fluctuating environments. Science, 309:2075–2078, 2005.

[79] K. Lee and T. Matsoukas. Simultaneous coagulation and break-up using

constant-n monte carlo. Powder Technol., 110:82–89, 2000.

[80] T.I. Lee, N.J. Rinald, F. Robert, D.T. Odom, and et al. Transcriptional regu-

latory networks in saccharomyces cerevisiae. Science, 298:799–804, 2002.

[81] S.B. Levy. The Antibiotic Paradox: How Misuse of Antibiotics Destroys their

Curative Powers. Cambridge: Perseus Publishing.

[82] S.B. Levy. Microbial resistance to antibiotics. an evolving and persistent prob-

lem. Lancet, 2:83–88, 1982.

[83] S.B. Levy. Engineered Organisms in the Environment: Scientific Issues. Wash-

ington DC: ASM Press, 1985.

[84] S.B. Levy. Active efflux mechanisms for antimicrobial resistance. Antimi-

crob. Agents Chemother., 36:695–703, 1992.

[85] S.B. Levy. Balancing the drug resistance equation. Trends Microbiol., 2:341–

342, 1992.

[86] S.B. Levy. The challenge of antibiotic resistance. Sci. Am., 278:46–53, 1998.

[87] S.B. Levy. The 2000 garrod lecture. factors impacting on the problem of an-

tibiotic resistance. J. Antimicrob. Chemother., 49:25–30, 2002.

[88] S.B. Levy and B. Marshall. Antibacterial resistance worldwide: causes, chal-

lenges and responses. Nat. Med., 10:S122–S129, 2004.



52

[89] S.B. Levy and R.V. Miller. Gene Transfer in the Environment. New York:

McGraw Hill.

[90] S.F. Levy, N. Ziv, and M.L. Siegal. Bet hedging in yeast by heterogeneous,

age-correlated expression of a stress protectant. PLOS Biol., 10, 2012.

[91] K. Lewis. Persister cells. Annu. Rev. Microbiol., 64:357–372, 2010.

[92] I. L’Heureux. Lecture notes: Computational physics i, 2012.

[93] Y. Lin, K. Lee, and T. Matsoukas. Solution of the population balance equation

using constant-number monte carlo. Chem. Eng. Sci., 57:2241–2252, 2002.

[94] F.S. Liu. Mechanisms of chemotherapeutic drug resistance in cancer therapy -

a quick review. Taiwan J. Obstet. Gynecol., 48:239–1252, 2009.

[95] L. Lopez-Maury, S. Marguerat, and J. Bahler. Tuning gene expression

to changing environments: from rapid response to evolutionary adaptation.

Nat. Rev. Gen., 9:583–593, 2008.

[96] T. Lu, D. Volfson, L. Tsimring, and J. Hasty. Cellular growth and division in

the gillespie algorithm. Syst. Biol., 1:121–128, 2004.

[97] L. Ma, J. Wagner, J.J. Rice, and H. Wenwei and et al. A plausible model for

the digital response of p53 to dna damage. PNAS, 102:14266–14271, 2005.

[98] N. Maheshri and E.K. O’Shea. Living with noisy genes: how cells func-

tion reliably with inherent variability in gene expression. Annu. Rev. Bio-

phys. Biomol. Struct., 36:413–434, 2007.

[99] S. Mangan and U. Alon. Structure and function of the feed-forward loop network

motif. PNAS, 100:11980–11985, 2003.



53

[100] N.V. Mantzaris. Stochastic and deterministic simulations of heterogeneous cell

population dynamics. J. Theor. Biol., 241:690–706, 2006.

[101] N.V. Mantzaris. From single-cell genetic architecture to cell population dynam-

ics: Quantitatively decomposing the effects of different population heterogeneity

sources for a genetic network with positive feedback architecture. Biophys. J.,

92:4271–4288, 2007.

[102] L.M. McMurry and S.B. Levy. Tetracycline resistance in gram-positive bacteria,

in Gram-Positive Pathogens. Washington DC: ASM Press.

[103] R. Milo, S. Shen-Orr, S. Itzkovitz, and N. Kashtan et al. Network motifs:

Simple building blocks of complex networks. Science, 298:824–827, 2002.

[104] L.G. Mitchell N.A. Campbell, J.B. Reece. Biology. Menlo Park: Ben-

jamin/Cummings.

[105] H.C. Neu. The crisis in antibiotic resistance. Science, 257:1064–1073, 1992.

[106] R.A. Neumuller and J.A. Knoblich. Dividing cellular asymmetry: asymmetric

cell division and its implications for stem cells and cancer. Genes Dev., 23:2675–

2699, 2009.

[107] J.R.S. Newman, S. Ghaemmaghami, J. Ihmels, and D.K. Breslow and et al.

Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biolog-

ical noise. Nature, 441:840–846, 2006.

[108] H. Nikaido. Prevention of drug access to bacterial targets: permeability barriers

and active efflux. Science, 264:382–388, 1994.

[109] H. Nikaido. Multidrug efflux pumps of gram-negative bacteria. J. Bacteriol.,

178:5853–5859, 1996.



54

[110] S. Okabe, T. Tauchi, and K. Ohyashiki. Characteristics of dasatinib and imatini-

bresitant chronic myelogenous leukemia cells. Clin. Cancer Res., 14:6181–6186,

2008.

[111] D. Orrell and H. Bolouri. Control of internal and external noise in genetic

regulatory networks. J. Theor. Biol., 230:301–312, 2004.

[112] E.M. Ozbudak, M. Thattai, I. Kurtser, and A.D. Grossman and et al. Regula-

tion of noise in the expression of a single gene. Nat. Genet., 31:69–73, 2002.

[113] J. Paulsson. Noise in a minimal regulatory network: plasmid copy number

control. Quart. Rev. Biophys., 34:1–59, 2001.

[114] J. Paulsson. Summing up the noise in gene networks. Nature, 427:415–418,

2004.

[115] J.M. Pedraza and A. van Oudenaarden. Noise propagation in gene networks.

Science, 307:1965–1969, 2005.

[116] S. Petruk, Y. Sedkov, D.M. Johnston, and J.W. Hodgson et al. Trxg and

pcg proteins but not methylated histones remain associated with dna through

replication. Cell, 150:922–933, 2012.

[117] M. Ptashne. On the use of the word epigenetic. Curr. Biol., 17:R1–R4, 2005.

[118] M. Ptashne and A. Gann. Genes and Signals. New York: Cold Spring Harbor

Press.

[119] A. Raj and van A. Oudenaarden. Nature, nuture, or chance: stochastic gene

expression and its consequences. Cell, 135:216–226, 2008.



55

[120] D. Ramkrishna. Population Balances: Theory and Applications to Particulate

Systems in Engineering. London UK: Academic Press.

[121] J.M. Raser and E.K. O’Shea. Control of stochasticity in eukaryotic gene ex-

pression. Science, 304:1811–1814, 2004.

[122] J.M. Raser and E.K. O’Shea. Noise in gene expression: origins, consequences,

and control. Science, 309:2010–2013, 2005.

[123] A.S Ribeiro, D.A Charlebois, and J. Lloyd-Price. CellLine, a stochastic cell

lineage simulator. Bioinf., 23:3409–3411, 2007.

[124] A.S Ribeiro, R. Zhu, and S.A. Kauffman. A general modeling strategy for gene

regulatory networks with stochastic dynamics. J. Comp. Biol, 13:1630–1639,

2006.

[125] S. Rosenberg. Evolving responsively: Adaptive mutation. Nat. Rev. Genet.,

2:504–515, 2001.

[126] N. Rosenfeld, J.W. Young, U. Alon, P.S. Swain, and et al. Gene regulation at

the single-cell level. Science, 307:1962–1965, 2005.

[127] M. Roussel and R. Zhu. Validation of an algorithm for the delay stochas-

tic simulation of transcription and translation in prokaryotic gene expression.

Phys. Biol., 3:274–284, 2006.

[128] A.A. Salyers, A. Gupta, and Y. Wang. Human intestinal bacteria as reservoirs

for antibiotic resistance genes. Trends Microbiol., 12:412–416, 2004.

[129] M.S. Samoilov, G. Price, and A.P. Arkin. From fluctuations to phenotypes:

The physiology of noise. Sci. STKE, 366:re17, 2006.



56

[130] P. G. Sanders and R.H. Wilson. Amplification and cloning of the chinese ham-

ster glutamine synthetase gene. EMBO J., 3:65–71, 1984.

[131] C.B. Schaefer, S.K. Ooi, T.H. Bestor, and D. Bourc’his. Epigenetic decisions in

mammalian germ cells. Science, 316:398–399, 2007.

[132] T. Schneiders, S.G.B. Amyes, and S.B. Levy. Role of acrr and rama in fluoro-

quinolone resistance in clinical klebsiella pneumoniae isolates from singapore.

Antimicrob. Agents Chemother., 47:2831–2837, 2003.

[133] M. Scott, B. Ingalls, and M. Kaern. Estimations of intrinsic and extrinsic noise

in models of nonlinear genetic networks. Chaos, 16:026107, 2006.

[134] V. Shahrezaei, J.F. Ollivier, and P. Swain. Colored extrinsic fluctuations and

stochastic gene expression. Mol. Syst. Biol., 4, 2008.

[135] V. Shahrezaei and P.S. Swain. Analytical distributions for stochastic gene ex-

pression. PNAS, 105:17256–17261, 2008.

[136] S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the tran-

scriptional regulation network of escherichia coli. Nat. Genet., 31:64–68, 2002.

[137] A.B. Silveira, C. Trontin, S. Cortijo, and J. Barau et al. Extensive natural

epigenetic variation at a de novo originated gene. PLoS Genet., 9:e1003437,

2013.

[138] M.L. Simpson, C.D. Cox, and G.S. Sayler. Frequency domain analysis of noise

in autoregulated gene circuits. PNAS, 100:4551–4556, 2003.

[139] M. Smith and T. Matsoukas. Constant-number monte carlo simulation of pop-

ulation balances. PNAS, 53:1777–1786, 1998.



57

[140] W.K. Smits, O.P. Kuipers, and J.W. Veening. Phenotypic variation in bacteria:

the role of feedback regulation. Nat. Rev. Microbiol., 4:259–271, 2006.

[141] B.G. Spratt. Resistance to antibiotics mediated by target alterations. Science,

264:388–393, 1994.

[142] E.J. Stewart, R. Madden, G. Paul, and F. Taddei. Aging and death in an

organism that reproduces by morphologically symmetric division. PLoS Biol.,

3:e45, 2005.

[143] A.O. Summers. Generally overlooked fundamentals of bacterial genetics and

ecology. Clin. Infect. Dis., 34 Suppl 3:S85–S92, 2002.

[144] E.R. Sumner and S.V. Avery. Phenotypic heterogeneity: differential stress

resistance among individual cells of the yeast Saccharomyces cerevisiae. Micro-

biology, 148:345–351, 2002.

[145] P.S. Swain. Efficient attenuation of stochasticity in gene expression through

posttranscriptional control. J. Mol. Biol., 344:965–976, 2004.

[146] P.S. Swain, M.B. Elowitz, and E.D. Siggia. Intrinsic and extrinsic contributions

to stochasticity in gene expression. PNAS, 99:12795–12800, 2002.

[147] J.J. Tabor, T.S. Bayer, Z.B. Simpson, and M. Levy et al. Engineering stochas-

ticity in gene expression. Mol. Biosyst., 4:754–761, 2008.

[148] S. Di Talia, J.M. Skotheim, J.M. Bean, and E.D. Siggia et al. The effects of

molecular noise and size control on variability in the budding yeast cell cycle.

Nature, 448:947–952, 2007.

[149] M. Thattai and A. van Oudenaarden. Intrinsic noise in gene regulatory net-

works. PNAS, 98:8614–8619, 2001.



58

[150] M. Thattai and A. van Oudenaarden. Attenuation of noise in ultrasensitive

signaling cascades. Biophys. J., 82:29432950, 2002.

[151] J. Travis. Reviving the antibiotic miracle? Science, 264:360–363, 1994.

[152] H.M. Tsuchiya, A.G. Fredrickson, and R. Aris. Dynamics of microbial cell

populations. Adv. Chem. Eng., 6:125–206, 1966.

[153] T.E. Turner, S. Schnell, and K. Burrage. Stochastic approaches for modelling

in vivo reactions. Comput. Biol. Chem., 28:165–178, 2004.

[154] J.J. Tyson and O.J. Diekmann. Sloppy size control of the cell division cycle.

Theor. Biol., 118:405–426, 1986.

[155] N.G. van Kampen. Stochastic Processes in Physics and Chemistry. Amsterdam:

North-Holland.

[156] J.W. Veening, W.K. Smits, and O.P. Kuipers. Bistability, epigenetics, and

bet-hedging in bacteria. Annu. Rev. Microbiol., 62:193–210, 2008.

[157] D. Volfson, J. Marciniak, W.J. Blake, and N. Ostroff and et al. Origins of

extrinsic variability in eukaryotic gene expression. Nature, 439:861–64, 2006.

[158] C.H. Waddington. The epigenotype. Endeavour, 1:18–20, 1942.

[159] Y. Wakamoto, N. Dhar, R. Chait, and K. Schneider and et al. Dynamic persis-

tence of antibiotic-stressed mycobacteria. Science, 339:91–95, 2013.

[160] A.M. Walczak, J.N. Onuchic, and P. G. Wolynes. Absolute rate theories of

epigenetic stability. Proc. Natl. Acad. Sci. USA, 102:18926–18931, 2005.

[161] C. Walsh. Antibiotics: Actions, Origins, Resistance. Washington: ASM Press.



59

[162] C. Walsh. Molecular mechanisms that confer antibacterial drug resistance.

Nature, 406:775–781, 2000.

[163] H. Wang, J.L. Dzink-Fox, M. Chen, and S.B. Levy. Genetic characterization of

highly fluoroquinolone-resistant clinical escherichia coli strains from china: role

of acrr mutations. Antimicrob. Agents Chemother., 45:1515–1521, 2001.

[164] Y. Wei, M. Hardling, B. Olsson, and R. Hezaveh and et al. Not all imatinib

resistance in cml are bcr-abl kinase domain mutations. Ann. Hematol., 85:841–

847, 2006.

[165] D.J. Wilkinson. Stochastic Modelling for Systems Biology. Boca Raton: Chap-

man & Hall.

[166] W. Witte. Medical consequences of antibiotic use in agriculture. Science,

279:996–997, 1998.

[167] M.J. Wood. Microbial resistance: bacteria and more. Clin. Infect. Dis., 36:S2–

S3, 2003.

[168] P.S. Wu, B. Egger, and A.H. Brand. Asymmetric stem cell division: lessons

from drosophila. Semin. Cell Dev. Biol., 19:283–293, 2008.

[169] R. Zadrag-Tecza, M. Kwolek-Mirek, G. Bartosz, and T. Bilinski. Cell volume as

a factor limiting the replicative lifespan of the yeast Saccharomyces cerevisiae.

Biogerontology, 10:481–488, 2009.

[170] Z. Zhang, W. Qian, and J. Zhang. Positive selection for elevated gene expression

noise in yeast. J. Mol. Syst. Biol., 5, 2009.



60

[171] D. Zhuravel, D. Fraser, S. St-Pierre, and L. Tepliakova et al. Phenotypic impact

of regulatory noise in cellular stress-response pathways. Syst. Synth. Biol., 4,

2010.



Chapter 2

What all the Noise is About: The

Physical Basis of Cellular

Individuality

Daniel A. Charlebois, Mads Kærn. Can. J. Phys. (2012).

61



REVIEW / SYNTHÈSE

What all the noise is about: the physical basis of
cellular individuality

Daniel A. Charlebois and Mads Kærn

Abstract: Noise has been traditionally viewed as undesirable in biology, resulting in disorder, distortion, and disruption,
and ultimately as something that needs to be filtered and removed. More recently, it has been shown that noise can also be
beneficial. We briefly review historical developments pertaining to noise in biological physics, and some of the current re-
search in the field of molecular and cellular biophysics.

PACS Nos: 87.18.Tt, 05.40.Jc, 87.10.Mn, 87.10.Rt, 87.16.Yc, 87.23.Kg

Résumé : Traditionnellement, le bruit a été vu comme étant indésirable en biologie, résultant en désordre, distorsion et per-
turbation, et ultimement comme quelque chose qui doit être filtré et éliminé. Dernièrement, la recherche a démontré que le
bruit peut être utile. Dans ce travail nous passons brièvement en revue les développements historiques touchant le bruit dans
le domaine de la physique biologique et la recherche actuelle en biophysique moléculaire et cellulaire.

A historical perspective

In 1827 a botanist named Robert Brown observed pollen
particles moving about randomly in a fluid [1, 2]. He ob-
served this with all sorts of nonliving materials including
minerals, woods, and century-old dried out plants, and con-
cluded that the erratic movements were not a property of liv-
ing organisms.
Many years later, physicist Georges Gouy [3] conceived

that the motion observed by Brown was a result of the irreg-
ular thermal fluctuations of the molecules in the liquid. This
phenomenon is now called Brownian motion (BM). It was a
young Albert Einstein who worked out the now famous result
describing the mean-square displacement (in one dimension)
of a particle undergoing BM

x2
� � ¼ 2Dt ð1Þ
where t is the time and D is the diffusion constant. The key
idea behind Einstein’s equation is that the random motion of
a large particle occurs because it is being constantly bom-
barded by other “invisible” smaller particles in the fluid. Ul-
timately, Einstein used the concept of such “noise” to predict
the existence of atoms [4–7]. Paul Langevin arrived at the
same result for the mean-square displacement a few years la-
ter using a different approach, namely, a differential equation

with a random force term, or as it is now known in statistical
physics, a Langevin equation [8].
In the previous framework by Einstein, the position of a

Brownian particle undergoing BM is nowhere differentiable
and its instantaneous velocity is correspondingly undefined
[9]. To avoid this, Ornstein and Uhlenbeck described the ve-
locity of a Brownian particle, instead of the position, as the
main random quantity using a Langevin equation [10]

dxðtÞ
dt

¼ 1

t
½m� xðtÞ� þ c1=2xt ð2Þ

where m is the mean, c the diffusion constant, t the relaxa-
tion time, and xt describes a Gaussian white noise process
with zero mean and fixed variance.
In classical biology, genetically identical cells in an identi-

cal environment are expected to have identical phenotypes
(i.e., observable chemical and physical properties). Any ob-
served difference is attributed to experimental error. How-
ever, in 1945 a biophysicist named Max Delbrück found
that the number of virus particles released from infected
bacteria showed reproducible variations and, accordingly, is
best described by a probability distribution rather than a
single value [11]. These experiments were inspired by ear-
lier theoretical work where Delbrück wrote down a master
equation (ME; see later in text) describing the statistical
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fluctuations in the number of particles for an autocatalytic
chemical reaction [12]. When Delbrück solved these equa-
tions, he obtained the well-known noise scaling relationship

h ¼ 1ffiffiffiffi
N

p ð3Þ

in which the magnitude of the fluctuations or noise, h, is
equal to the reciprocal of the square root of the number of
particles, N, that initiate the reaction. Correspondingly, Del-
brück hypothesized that the variation he observed arose from
the variation in the number of the initial infection. About four
decades later, Spudich and Koshland demonstrated that bac-
terial cells grown in homogeneous conditions showed charac-
teristic behavioural differences that persisted over their
lifespans [13]. They attributed this nongenetic individuality
to poissonian fluctuations in the small numbers of generator
molecules, and suggested that it may also apply to other pro-
cesses, such as differentiation and asynchrony of cell cul-
tures.

Noise and biological systems

It is not altogether surprising that variation exists in bio-
logical systems when one considers the random (stochastic)
nature of biochemical reactions. These reactions are stochas-
tic as they result from collisions between Brownian particles,
which lead to the nondeterministic timing of individual reac-
tions and an inherently noisy time evolution of molecular
population levels [14, 15]. The relative amplitudes of these
fluctuations are effectively averaged out of systems, such as
test tubes, with a large number of molecules (see (3)). These
systems are appropriately described using deterministic equa-
tions.
A noisy system can formally be described using the so-

called ME approach [16]. A ME is a set of first-order differ-
ential equations governing the time evolution of the probabil-
ity of a system to occupy each one of a discrete set of states.
A ME usually takes the form

dpkðtÞ
dt

¼
X

k 0
fWk 0!kpk 0 ðtÞ �Wk!k 0pkðtÞg ð4Þ

Here, pk is the time-dependent probability associated with
state and Wk!k 0 is the transitional probability per unit time
from k′ to k. In this form, it is clear that the ME is a gain–
loss equation for the probabilities of the separate states, k.
The gain of state k due to the transitions from other states k′
is represented by the first term, and the loss due to transitions
from k into other states k′ is represented by the second term.
The time evolution of the probability distribution for a

continuous variable can be described using a Fokker–Plank
equation. The Fokker–Plank equation for a single variable x
has the form

@pðx; tÞ
@t

¼ � @

@x
½gðxÞpðx; tÞ� þ 1

2

@2

@x2
½DðxÞpðx; tÞ� ð5Þ

where g is the deterministic drift term and D is the stochastic
diffusion term. The Fokker–Plank equation is often used as
an approximation of the ME (4). We refer the reader to
ref. 16 for a thorough introduction to the subject.

A chemical master equation (CME) accounts for the ran-
dom timing in the birth and death of individual molecules
caused by the nondeterministic timing of individual reac-
tions. As elegant as the CME formalism is, it usually cannot
be solved analytically. Consequently, one either has to resort
to approximations or simulate every individual state transi-
tion occurring in the system. Daniel Gillespie’s stochastic
simulation algorithm is a Monte Carlo simulation of the very
process that the CME describes, and is the gold standard for
simulating biochemical reaction systems [14, 15].
The Gillespie algorithm is often applied to simulate the

gene expression process inside living cells. This process is
fundamental to all life and is one of the most actively re-
searched topics in science today. Physicists have long been
interested in genetics; in his famous book What is Life?,
Erwin Schrödinger introduced the idea of a gene as an aperi-
odic structure that stored genetic information in its configura-
tion of covalent chemical bonds [17]. He also predicted that
due to the order present in living organisms, DNA must be
made up of a large number of atoms to counter the property
of increasing randomness with smaller numbers of atoms.
Within a decade, Watson and physicist Francis Crick deduced
the double helical model for the structure of DNA [18]. Crick
subsequently proposed the central hypothesis of molecular bi-
ology, namely that the gene expression process involves
copying DNA into mRNA (transcription) and the production
of a protein from this mRNA template (translation) (Fig. 1a)
[19, 20]. Importantly, gene expression involves the collisions
of small numbers of particles. Usually only one or two copies
of DNA are found in a cell along with small numbers of
mRNAs and transcription factors [21], and thus gene expres-
sion is an inherently noisy process (see (3) and Fig. 1b) like
the processes observed by Delbrück and Spudich and Kosh-
land [11, 13].
Gene expression can be measured experimentally using

fluorescent proteins. More precisely, the gene coding for the
fluorescent protein is placed beside a gene of interest such
that they are transcribed and translated together. The degree
of fluorescence, which indicates the level of gene expression,
can then be measured in individual cells by flow cytometry
to produce a population “snapshot” in the form of a gene ex-
pression distribution (Fig. 1c), or by time-lapse microscopy
to produce a time series (Fig. 1d).

Current Research
The noise in gene expression allows for variation to exist

among genetically identical cells in the same environment
(for a comprehensive review see refs. 22 and 23). This is of
particular interest because it can allow some members of a
population to survive while others perish [24] (Fig. 2a). For
instance, Blake et al. [25] observed that genetically identical
yeast populations engineered to have higher noise (more cell-
to-cell variation) reproduced faster than low noise popula-
tions when exposed to high levels of an antibiotic. Noise in
gene expression also allows for “elastic adaptation”, which
occurs when the noise-generated distribution of a phenotype
changes reversibly due to an environmental stress such that
the reproductive fitness of a population in the new environ-
ment is optimized. For example, populations of yeast cells
have been observed to adapt to long-term exposure to a drug
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by shifting the gene expression distribution in the direction
that minimizes the impact of a drug [26]. When the drug is
removed, the shift in gene expression can revert back to the
distribution observed before the drug was applied [26]. This
phenomenon has been attributed to nongenetic memory, as
opposed to genetic memory where a mutation in the DNA

would result in a permanent shift in gene expression. The
term “nongenetic memory” can generally be defined as any
mechanism that produces an enduring phenotype without al-
tering the DNA sequence.
Genetic networks can store nongenetic memory in two or

more discrete, stable states of network activity (see ref. 27

Fig. 1. Gene expression is a stochastic process. (a) A simple two-step model of gene expression. The schematic shows the synthesis of
mRNA (M) from a gene with an active promoter (A) at a rate SA, and the synthesis of protein (P) from an M template at a rate SP, and the
decay of M and P molecules at rates dM and dP, respectively. Reprinted with permission from (Scott et al. Chaos, 16, 026107-2, (2006)).
Copyright 2006, American Institute of Physics. (b) Time series of protein number generated by deterministic (solid black line) and stochastic
(gray line) simulations. The histogram in the right-hand panel corresponds to the stochastic simulation and shows the probability that a cell
will have a given intracellular protein level. Reprinted by permission from Macmillan Publishers Ltd. (Kaern et al. Nat. Rev. Genet. 6, 453,
copyright 2005. (c) Experimental green fluorescent protein (GFP) distribution for a clonal population of budding yeast obtained via flow
cytometry (unpublished data). (d) GFP expression for a clonal population of budding yeast obtained using a microfluidics device (unpublished
data).
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for a review). For instance, in yeast, nongenetic memory can
be enhanced by reducing the rate of stochastic transitions be-
tween two stable gene expression states [28]. In human cells,
Brock et al. [29] proposed that nongenetic memory confer-
ring temporary drug resistance contributes to tumour devel-
opment by increasing the chance that some cells acquire a
mutation conferring permanent immunity to the treatment re-
gime. Nongenetic memory can also be stored in the lifetime
of the gene expression fluctuations. That is, the lower the fre-
quency of the noise the higher the level of the nongenetic
memory, as the previous state is “remembered” by the cell
for a longer period of time than at higher frequency noise.
This was shown using an Ornstein and Uhlenbeck process
[10] (see (2)) to be sufficient for the development of long-

term drug resistance, independent of genetic memory confer-
ring resistance [30] (Fig. 2b). This hypothesis is currently
being investigated experimentally.

Conclusion

This is a new era for biology, one where more and more
physicists are playing leading roles and driving the field to
become more quantitative. The mathematical models being
developed are helping to better explain the data gathered in
the laboratory and to predict novel behaviour. In particular,
stochastic models are being used increasingly in preference
to deterministic models to describe biochemical networks
and elucidate dynamics at the single-cell level [21]. Due to

Fig. 2. Gene expression noise confers survival in clonal cell populations. (a) Schematic illustration of distributions for a low- and high-noise
population. A greater number of cells in the high-noise population express above (cell survival) and below (cell death) the high- and low-
stress thresholds, respectively. Reproduced with permission from (Fraser et al. Mol. Microbiol. 71, 1335 (2009)). In the case shown here, the
high-noise population has a higher fitness than the low-noise population when the stress is high, vice versa when the stress is low. (b) Effect
of nongenetic memory and probability of mutation (PM) per generation on the time for a simulated cancer cell population undergoing pro-
longed drug treatment to double. Note that the doubling time is more or less unaffected by PM when the nongenetic memory is roughly above
four generations and that in both cases a drug-resistant cell population develops. Reprinted figure with permission from (Charlebois et al.
Phys. Rev. Lett. 107, 218101-4 (2011)). Copyright 2011 by the American Physical Society.
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the randomness inherent in living systems, an understanding
of the source of this randomness and its effects is of funda-
mental importance. Fortunately, due to the foundations laid
by early physicists, and the familiarity of many physical sci-
entists today with the theory of stochastic processes, we can
obtain a deeper understanding of biological systems.
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Abstract. We present an accelerated method for stochastically simulating the dynam-
ics of heterogeneous cell populations. The algorithm combines a Monte Carlo ap-
proach for simulating the biochemical kinetics in single cells with a constant-number
Monte Carlo method for simulating the reproductive fitness and the statistical char-
acteristics of growing cell populations. To benchmark accuracy and performance, we
compare simulation results with those generated from a previously validated popula-
tion dynamics algorithm. The comparison demonstrates that the accelerated method
accurately simulates population dynamics with significant reductions in runtime un-
der commonly invoked steady-state and symmetric cell division assumptions. Consid-
ering the increasing complexity of cell population models, the method is an important
addition to the arsenal of existing algorithms for simulating cellular and population
dynamics that enables efficient, coarse-grained exploration of parameter space.

PACS: 87.10.Mn, 87.10.Rt, 87.16.Yc, 87.17.Ee

Key words: Accelerated stochastic simulation algorithm, constant-number Monte Carlo, gene
expression, population dynamics and fitness.

1 Introduction

Cell populations are heterogeneous entities. Part of this heterogeneity arises from the
stochasticity inherently present in the process of gene expression, which can result in
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significant variability even among cells with identical genotypes in identical environ-
ments [7, 15, 16, 20, 26, 29, 35]. This variability can in turn have significant impact on the
overall reproductive fitness of a cell population [1, 2, 5, 9, 41, 42].

In some cases it is possible to derive analytical solutions for the statistical charac-
teristics of gene expression for simple models (e.g., [25, 27, 30, 31, 36]). However, for
more biologically realistic models, these characteristics are available only through nu-
merical simulations. To permit investigations, we previously developed an algorithm for
the stochastic simulation of heterogeneous population dynamics at a single-cell resolu-
tion [4]. This Population Dynamics Algorithm (PDA) combines the Gillespie stochastic
simulation algorithm (SSA) [10, 11] to simulate gene expression in individual cells and a
constant-number Monte Carlo (MC) method [17, 21, 22, 28, 34] for simulating population
dynamics.

To benchmark the performance and accuracy of the method, we compared simula-
tion results from the PDA with steady-state and time-dependent analytical solutions for
several scenarios, including steady-state and time-dependent gene expression, and the
effects on population heterogeneity of cell growth, division, and DNA replication [4].
Additionally, we used the PDA to model gene expression dynamics within bet-hedging
cell populations during their adaption to environmental stress. Later, in [5] the PDA
and analytical solutions developed for determining the first-passage time dependent fit-
ness of a cell population exposed to a drug over a single generation were found to be in
agreement. We refer the reader to these papers for details on the analytical work. These
comparisons demonstrated that the PDA accurately captures how complex biological
features influence gene expression and population dynamics. However, simulation run-
times can be extensive when the biochemical reaction kinetics that take place within a
large number of individual cells are simulated using conventional MC approaches.

To address this problem, we have developed an accelerated method for simulating
population dynamics (AMSPD). We first demonstrate that the AMSPD algorithm is nu-
merically accurate and provides a significant speedup compared to the PDA. We then
use the AMSPD to perform a parameter scan of a simple model for the development of
non-genetic drug resistance to illustrate that it can be advantageous to use the AMSPD
and PDA in combination to find an optimal balance between efficiency and accuracy.

2 Algorithm

In this section we present the AMSPD algorithm. The stochastic simulation algorithm [10,
11] and the constant-number MC method [17, 21, 22, 28, 34] are also described for com-
pleteness.

2.1 Accelerated method for simulating population dynamics

The first step in the AMSPD algorithm is to generate a single stationary time series (such
that the moments of the corresponding distribution are not changing) for each biochem-
ical variable in the system using an appropriate simulation method (e.g. the SSA [10, 11]
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– see Section 2.2) and store the values of the time series in an array of length N. Each
row of the array corresponds to a separate biochemical variable. It is not uncommon in
simulation studies to assume that one or more biochemical species are in a steady-state
(e.g., [1, 19, 31, 37]). The AMSPD algorithm then employs this time series to simulate the
gene expression and fitness dynamics of a population of cells (Fig. 1a). Specifically, at
the start of the simulation each cell of the initial population is assigned a positive integer
(randomly generated from a uniform distribution on the interval [1,N]), which corre-
sponds to its column ‘position’ in the array. During a given sampling interval, each cell
progress through the pre-generated time series values stored in the rows of the array.
Each time a cell’s internal clock is incremented by a pre-specified value time increment
∆t, so is its column position in the array (note that the pre-generated time series values
were obtained from sampling the SSA simulation using the same ∆t). If a cell happens to

Figure 1: The accelerated method for simulating population dynamics (AMSPD) algorithm. (a) Schematic
showing how individual cells are simulated by the AMPSD algorithm. After the cells are randomly assigned
positions on the time series (dots), their positions are incremented until the end of the sampling interval tsample

is reached (squares). If a reproductive stress is not incorporated into the simulations, then mother cells simply
reproduce at a specified rate. However, if the fitness of the cells depends on the level of a particular biochemical
variable, then cells can only reproduce if this variable remains above a specified threshold. For instance, in
region I, the gene expression value x remains above a critical threshold xc during the sampling interval and
therefore the cell is able to reproduce during the entire interval. In region II, the gene expression value of the
cell falls below xc and is therefore flagged and unable to reproduce after this point. (b) Flow diagram of the
AMSPD algorithm presented in the main text (see Table 1 for AMSPD variable and parameter descriptions).
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reach the last column before the end of the sampling interval, then the cell is randomly
assigned a new position on the array within some error ǫ from the last value, for each
biochemical variable in the system. There is a tradeoff between accuracy and efficiency
as ǫ is varied (data not shown). For smaller values of ǫ, simulation runtimes are longer
but the results are more accurate, and vice versa for larger values of ǫ. In this study we
use an ǫ of 10 or lower. For simulations involving the presence of a stressor (e.g. a drug),
a biochemical variable of interest (e.g. protein concentration) can be used to determine
cellular fitness. For example, if the value of this variable falls below a critical threshold
then the cell can be flagged and its biochemical variables no longer simulated nor the
cell able to reproduce (Fig. 1a). More elaborate fitness functions than a simple step func-
tion can also be incorporated into the AMSPD algorithm. For example, a ‘softer’ fitness
threshold can be modeled using a Hill function with low values of the Hill coefficient n
(e.g., n=2−4).

Once the end of the sampling interval is reached for all the cells in the population, the
constant-number MC method [17, 21, 22, 28, 34] is used to keep the number of cells in the
population fixed (see Section 2.3). If a cell divides during the sampling interval the con-
centration of each variable is assumed to remain constant. This is equivalent to assuming
that the cellular contents are equally partitioned into equal volumes or that the transient
time to steady-state is negligible. This assumption has been used in several other studies
(e.g., [3, 5, 6, 18, 31]). The daughter cell is then randomly assigned a position on the time
series within some tolerance ǫ of each of the mother cell’s biochemical variables at the
moment of division.

The AMSPD algorithm can be expressed by the flow diagram (Fig. 1b) and the sub-

Table 1: AMSPD parameters and variables.

Parameter/Variable Description

div and divc Division variable and corresponding threshold at which division
occurs.

ǫ Error term for assignment or re-assignment of position on the
stationary time series.

lts Length of the stationary time series.

NCdaughter Number of daughter cells born in a given sampling interval.

NCpopulation Total number of cells in the population.

nts Position on the stationary time series.

t Global simulation time.

tend Simulation end time.

tk Local or cell specific simulation time.

tsample Sampling interval for statistics.

trestore Interval between population size restores.

x and xc Biochemical variable of interest and the corresponding threshold
below which cells are unable to reproduce.
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sequent pseudocode (Algorithm 2.1). In the pseudocode the AMSPD parameters and
variables are defined as follows: div is the division parameter (generally time or vol-
ume) and divc the corresponding threshold (if applicable) at which division occurs, lts

the length (number of points) of the time series, t the global simulation time, tend the
user specified simulation end time, tk the local or cell specific simulation time, tsample

the sampling interval for statistics, trestore the interval between population size restores,
NCdaughter the number of daughter cells, NCpopulation the total number of cells in the pop-
ulation, nts the position on the time series, x a biochemical variable of interest and xc the
corresponding threshold (if applicable) below which cells are unable to reproduce. The
AMSPD parameters and variables for pseudocode the are summarized in Table 1.

Algorithm 2.1: AMSPD

1: Generate a stationary time series for each variable using the SSA (see Algorithm 2.2)
2: Randomly obtain an initial nts for each cell
3: while t< tend do
4: begin parallel region
5: for all NCpopulation such that tk < tsample do
6: Update tk and div
7: if x≥xc then
8: Update nts and x
9: if nts≥ lts then

10: Randomly generate new nts (until x(nts) within ±ǫ of x(lts)) and update x
11: end if
12: if div≥divc then
13: Execute cell division
14: Increment NCdaughter

15: end if
16: end if
17: end for
18: end parallel region
19: Update t and tsample

20: Execute constant-number MC (see Algorithm 2.3)
21: Compute statistics
22: end while

2.2 SSA

In the Direct Method Gillespie SSA [10, 11], M chemical reactions with rate constants
c1,··· ,cM among N chemical species X1,··· ,XN , are simulated one reaction event at a
time. The next reaction to occur Ω and its timing Γ are determined by calculating M
reaction propensities a1,··· ,aM, given the current number of molecules of each of the N
chemical species, to obtain an appropriately weighted probability for each reaction. It
can be implemented via the following pseudocode:
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Algorithm 2.2: SSA

1: if t< tend and α0=∑
M
v=1 av 6=0 then

2: for v=1,M do
3: Calculate αv

4: end for
5: α0=∑

M
v=1 av

6: Generate uniformly distributed random numbers (r1,r2)
7: Determine when (Γ= ln(1/r1)/α0) and which (min{Ω | αΩ≥ r2α0}) reaction will occur
8: Set t= t+Γ

9: Update X1,··· ,XN

10: end if

2.3 Constant-number Monte Carlo method

The constant-number MC method [17,21,22,28,34] permits the statistically accurate sim-
ulation of a representative sample of an exponentially growing cell population. In this
implementation of the method, all the daughter cells born since the last update NCdaughter

are stored and simulated using a separate array from the mother cells. To avoid simulat-
ing the daughters of daughter cells, the interval between population size updates trestore

is chosen such that mother cells divide at most once, and daughter cells not at all, during
a particular trestore interval. The constant-number MC method can be represented by the
following pseudocode:

Algorithm 2.3: CNMC

1: if t> trestore and NCdaughter≥1 then
2: for all NCdaughter do
3: Randomly select mother cell
4: Replace mother cell with oldest available daughter cell
5: end for
6: end if

3 Numerical results and discussion

To evaluate the accuracy and the speedup of the accelerated method, we compare simula-
tion results obtained using the AMSPD algorithm to those obtained using the previously
validated PDA [4].

For benchmarking we first examine a univariate model of protein production and
decay (Section 3.1). Then we consider a multivariate model of gene expression where
mRNA and protein production and decay are both incorporated (Section 3.2). To further
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benchmark the algorithm when the reproductive fitness of the cell population in the pres-
ence of a drug is incorporated, we reproduce the results from [5]. In this work, we used
an Ornstein-Uhlenbeck (OU) model to simulate gene expression (Section 3.3). Finally,
in Section 3.4, we demonstrate that the accelerated method can enable efficient and nu-
merically accurate coarse-grained exploration of the parameter space corresponding to a
population model. Specifically, we use the AMSPD algorithm to perform a scan of the
parameter space of the OU model of gene expression, and compare the resulting fitness
landscape of the population with results obtained using the PDA.

Both algorithms were implemented in Fortran 90 and executed on an IBM with 2
quad-core processors (1.86GHz cores) and 2.0GB of RAM. All units unless indicated oth-
erwise are arbitrary. Statistics were estimated from 10 realisations of populations consist-
ing of 1000 cells unless otherwise indicated.

3.1 Univariate model

We consider gene expression as a birth-death process modeled by the following equations

⊘ kP−→P, (3.1)

P
δP−→⊘, (3.2)

where P is a protein produced in a single step at a rate kP (Eq. (3.1)), and decays at a rate
δP (Eq. (3.2)).

We first model cell division without incorporating cellular volume, that is each cell
divides once its cellular ‘clock’, or time since last division div, reaches or exceeds a pre-
defined cell division time divc . In this case, excellent agreement is found between the
AMSPD algorithm and PDA (Fig. 2a). The runtime of the AMSPD algorithm is shown
in Fig. 2b. When the time to generate the time series for the AMSPD algorithm is incor-
porated into the runtime of the AMSPD algorithm, then the AMPSD’s runtime increases
linearly with kP. However, if the time to generate the time series is not factored into AM-
SPD’s runtime, then the runtime of the AMSPD algorithm does not vary with kP since
a time series of the same length is used in each of the simulations. This applies for in-
stance if a time series that was previously generated can be used again, for example, if
the simulation is to be repeated, or if a variable assumed not to affect gene expression
(such as divc) is changed. The AMSPD algorithm is found to be significantly faster as the
rate of protein production is increased (Fig. 2c). For instance, when kP is 1 the AMSPD
algorithm is three times faster than the PDA. However, when kP is increased to 100, the
speedup is sixty times. If the time to generate the time series for the AMSPD algorithm is
not factored into the speedup calculation, then speedups of several hundred times are ob-
served. We attribute the speedup to the fact that the AMSPD algorithm does not simulate
every reaction occurring inside each cell of the population as the PDA does. Rather, the
AMSPD algorithm performs a random access lookup in an array containing the values of
the time series.
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Figure 2: Comparison of accuracy and performance of the AMSPD algorithm and PDA [4] for a birth-death
model of gene expression. Panels (a)-(c) correspond to simulation results for volume independent cell division
and (d)-(f) volume dependent cell division. (a) and (d) show the average steady-state protein numbers and
concentrations, respectively, as a function of the rate of protein production kP for the AMSPD algorithm
(gray) and the PDA (black). (b) and (e) show the runtime of the AMSPD simulation. (c) and (f) show the
speedup of the AMSPD algorithm, when compared to the runtime of the PDA, as a function of the rate of
protein production kP. Gray x’s in (b) and (e), and in (c) and (f), are the results obtained when the time to
produce the gene expression time series is incorporated into the AMSPD’s runtime and the speedup calculation,
respectively. Black dots in (b) and (e), and in (c) and (f), are the results obtained when the time to produce
the gene expression time series is not incorporated into the AMSPD’s runtime and the speedup calculation,
respectively. Simulations were started from steady-state (ps = kP/δP), the initial time since last division div
drawn from a uniform distribution [0,div], and the protein time series generated by the AMPSD algorithm

contained 104 values. The parameters were set to δP =0.01, ǫ=10, divc =100, and tend=1000.

The incorporation of changing cellular volume throughout the cell cycle into simu-
lations can be important when concentration dependent, rather than absolute number,
effects are to be considered (e.g., [36, 40]). In a more complex model, we describe cell
growth by an exponential growth law [4, 12, 13]

Vk(tdiv)=V0 2(tdiv/τ0), (3.3)

where V0 is the cell volume at the time of its birth, and τ0 is the interval between volume
doubling. Cell division occurs when the cell volume reaches 2V0.
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Again, there is excellent numerical agreement between the two simulation methods
(Fig. 2d), and a significant speedup when using the AMSPD algorithm (Fig. 2f). For
example, when kP is 1 the speedup is thirteen times. However, when kP is increased to
100, the AMSPD algorithm is about forty times faster than the PDA, and seventy five
times faster when the time to generate the time series for the AMSPD algorithm is not
included in the speedup calculation. As in the previous case (Fig. 2b), AMPSD’s runtime
either increases linearly with kP or does not vary with kP, depending on whether the
time to generate the time series for the AMSPD algorithm is or is not incorporated into
the runtime, respectively (Fig. 2e). The runtimes shown in Fig. 2e are longer than those
in Fig. 2b due to the incorporation of cellular volume dynamics.

The results presented in this section indicate that the AMSPD algorithm can accu-
rately simulate models that incorporate a univariate description of biochemical dynam-
ics occurring inside of growing and dividing cells with a significant reduction in runtime
when compared to the PDA.

3.2 Multivariate model

The previous section considered a univariate analysis. However, it is in the multiple
variate scenario that the AMSPD algorithm is likely to be employed since any model
incorporating a biologically realistic level of detail will require more than one variable.
Due to the nonlinearity and dimensionality of the corresponding system of equations,
a computational approach rather than an analytical one will generally be required to
obtain solutions. However, as the dimensionality of the system increases so does the
computation time along with the need for an accelerated simulation approach.

In order to benchmark the AMSPD algorithm in the multivariate case, we use a
slightly more complex model where gene expression is simulated as a two-step process
described by the following equations

D
kM−→D+M, (3.4)

M
kP−→M+P, (3.5)

M
δM−→⊘, (3.6)

P
δP−→⊘, (3.7)

where Eqs. (3.4)-(3.5) respectively describe the transcription and translation processes.
The degradation of mRNA M and protein P are accounted for by Eqs. (3.6)-(3.7), respec-
tively.

As in the univariate case, we consider volume independent (Fig. 3a-3d) and volume
dependent cell division (Fig. 3e-3h). Excellent agreement is found between the algo-
rithms for mRNA and protein steady-states (Fig. 3a and 3e, and Fig. 3b and 3f, respec-
tively). AMPSD’s runtime again either increases linearly with kP or does not vary with
kP, depending on whether the time to generate the time series for the AMSPD algorithm
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Figure 3: Comparison of accuracy and performance of the AMSPD algorithm and PDA [4] for a two-step model
of gene expression. Panels (a)-(d) correspond to simulation results for volume independent cell division and
(e)-(h) volume dependent cell division. (a) and (e) show the steady-state mRNA numbers and concentrations,
respectively, as a function of the rate of mRNA production kM for the AMSPD algorithm (gray) and the PDA
(black). (b) and (f) show the average steady-state protein numbers and concentrations, respectively, as a
function of the rate of protein production kP for the AMSPD algorithm (gray) and the PDA (black). (c) and
(g) show the runtime of the AMSPD simulation. (d) and (h) show the speedup of the AMSPD algorithm,
when compared to the runtime of the PDA, as a function of the rate of protein production kP. Gray x’s in
(c) and (g), and in (d) and (h), are the results obtained when the time to produce the gene expression time
series is incorporated into the AMSPD’s runtime and the speedup calculation, respectively. Black dots in (c)
and (g), and in (d) and (h), are the results obtained when the time to produce the gene expression time series
is not incorporated into the AMSPD’s runtime and the speedup calculation, respectively. Simulations were
started from steady-state (Ms = kM/δM and Ps = kMkP/δMδP), the initial time since last division div drawn
from a uniform distribution [0,div], and the protein time series generated by the AMPSD algorithm contained

104 values. The parameters were set to kM =1 (when kP was varied), kP =1 (when kM was varied), δM =0.1,
δP =0.01, ǫ=10, divc=100, and tend=1000.

is or is not incorporated into the runtime, respectively (Fig. 3c and 3g). The AMSPD algo-
rithm is significantly faster especially when the rate of protein production was high. For
instance, considering volume independent division when kP is 10, the AMSPD algorithm
is roughly forty times faster than the PDA, and one hundred and forty times faster when
the time to generate the time series for the AMSPD algorithm is not factored into the
speedup calculation (Fig. 3d). When volume dependent division is incorporated and kP

is 10, the AMSPD algorithm is twenty five times faster than the PDA, and fifty five times
faster when the time to generate the time series for the AMSPD algorithm is not included
in the speedup calculation (Fig. 3h).
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Together the results in this section demonstrate that the AMSPD algorithm can be
extended to accurately and efficiently simulate multivariate biochemical networks when
cell growth and division are incorporated into the model.

3.3 Environmental stress

In this section we use the AMSPD algorithm to reproduce the results obtained in [5] us-
ing the PDA to simulate the reproductive fitness of a cell population exposed to a drug.
In that study, gene expression in individual cells was simulated as an OU process to cap-
ture the effect of fluctuations in gene expression x on the development of drug-resistant
cell populations. It was found that if the fluctuation relaxation time scale in gene expres-
sion (non-genetic memory) was sufficiently long then drug resistant population could
emerge independently of genetic mutations (genetic memory) [5]. The range of values for
the non-genetic memory parameter for which drug resistance emerged independently of
mutations was in agreement with ‘mixing time’ (defined as the lag where the autocor-
relation function has decreased by 50%) results found experimentally in a human lung
cancer cells [33].

The OU process can be described by the following Langevin equation

dx(t)

dt
=

1

τ
(µ−x(t))+c1/2ξt, (3.8)

where c and τ are the diffusion constant and the relaxation time, respectively, and ξt is
Gaussian white noise (〈ξt〉= 0, 〈ξtξt′〉= δ(t−t′)) [38]. Without loss of generality, we set
the mean µ equal to zero and use the fluctuation time-scale τ to model the time-scale of
non-genetic memory.

As in [5], ‘microfitness’ w(x) describes the effect of a drug on the reproductive fitness
of individual cells with a given level of expression. For simplicity, in this model microfit-
ness is described using a Heaviside step function, such that a cell is unable to reproduce
if their expression level is below a critical value, w(x<xc)=0, and unaffected by the drug
otherwise, w(x≥xc)=1. For the OU process with a mean of zero, 50% of the cell popula-
tion is instantaneously unable to reproduce when the drug is applied at generation zero.
The ‘macrofitness’ W, or reproductive fitness of the cell population, is here calculated by
dividing the number of cells that reproduced during a specified sampling interval by the
total number of cells (held fixed by the constant-number MC method) in the population.
Since we have set the cell division time such that each cell can only divide once during a
given sampling interval, the maximum macrofitness that the cell population can attain is
one.

Fig. 4 illustrates that as the number of generations increase, the cell population will
reach a steady-state level of fitness. The level of drug resistance that the cell population
develops depends on the degree of non-genetic memory. When the non-genetic memory
is sufficiently low (i.e. τ <= 1) the population completely succumbs to the drug, and
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Figure 4: Comparison of accuracy of the AMSPD algorithm (gray) and PDA (black) [4] for a model capturing
the effect of non-genetic memory τ on drug resistance at various timescales [5]. The reproductive fitness of
the cell population (macrofitness) W as a function of generation is plotted for various values of τ. Simulations
were started from the steady-state OU distribution (with mean µ= 0 and variance σ2 = cτ/2= 1), the initial
time since last division div was drawn from a uniform distribution [0,div], and the protein time series generated
by the AMPSD algorithm contained 106 values. The parameters were set to ǫ=1 and divc =1, and scaled by
divc. The threshold below which cells were unable to reproduce xc was set to µ.

when non-genetic memory is sufficiently high (τ>1) the macrofitness of the cell popula-
tion increases (Fig. 4). This phenomenon occurs because higher values of τ have a higher
probability of enabling individual cells to reside for sufficiently long times in advanta-
geous regions of the fitness landscape, such that they can reproduce before succumbing
to the effects of the drug. These results are in quantitative agreement with results previ-
ous obtained using the PDA algorithm [5] and demonstrate that the AMSPD algorithm
can be used to simulate more biologically complex scenarios such as the effect of stress
and noisy gene expression on the reproductive fitness of a cell population.

3.4 Parameter scans

In order to investigate the dynamics of a given population model, one can perform sim-
ulations across the corresponding parameter space. However, the use of a more accurate
method, such as the PDA, to perform these simulations can prohibit a comprehensive
parameter scan due to its computationally intensive nature. The use of an approximate
method such as the AMSPD algorithm can enable an efficient preliminary exploration of
the parameter space.

Using the OU model of gene expression and the framework presented in Section 3.3 to
capture fitness dynamics, we simulate the reproductive fitness of a cell population after
being exposed to a stress for 10 generations.

In Section 3.3 the variance of the OU distribution was fixed to 1 by varying the diffu-
sion constant c as the relaxation time τ was increased. Here, τ and c are varied indepen-
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Figure 5: Parameter scans of an OU model of gene expression for the development of drug resistance. (a)

Stochastic simulations carried out using the AMSPD algorithm. Here, 104 parameter combinations for the
relaxation time τ and the diffusion constant c were generated using a Latin hypercube sampling method [23,24],
in order to determine the reproductive fitness of the cell population (macrofitness) W after 10 generations. (b)
A systematic scan of a region of the parameter space shown in (a) using the more accurate PDA [4]. Simulations
were started from the steady-state OU distribution (with mean µ=0 and variance σ2 = cτ/2), the initial time
since last division div was drawn from a uniform distribution [0,div], and the protein time series generated by
the AMPSD algorithm contained 106 values. The parameters were set to ǫ=1 and divc=1, and scaled by divc.
The threshold below which cells were unable to reproduce xc was set to µ.

dently to further examine the role that these parameters have on fitness. Using a Latin
hypercube sampling method [23, 24], we generate 104 different parameter combinations
and simulate the population dynamics using AMSPD (Fig. 5a). Based on the results of
these simulations we then identify a region of parameter space of interest (reduced by
a factor of 5 compared to the original parameter space), namely where the macrofitness
of the cell population changes rapidly, and then perform the simulations using the PDA
(Fig. 5b). The parameter scans show that in this model the diffusion constant does not
affect population fitness independently of τ (Fig. 5a and 5b).

The fitness landscapes obtained using the two methods are qualitatively in agreement
(Fig. 5a and 5b). This suggests that the AMSPD algorithm can be used to efficiently
identify coarse parameter regimes, which can then be further refined by more accurate
simulation using the PDA.

4 Conclusion

We have presented an accelerated method for simulating cellular population dynam-
ics. The method generates and employs single representative time series to simulate the
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gene expression and reproductive fitness dynamics of all the cells in the population. A
constant-number MC method [17,21,22,28,34] is used by the AMPSD algorithm in order
to simulate a statistically representative sample of an exponentially growing cell popu-
lation. This approach allows for accurate simulations with a significant speedup com-
pared to simulations obtained using a previously developed population dynamics algo-
rithm [4]. The accelerated algorithm is a course-grained method designed for scenarios
when all the variables of an intracellular biochemical reaction network can be assumed to
be at steady-state and cells to divide symmetrically (e.g., [3, 8, 14, 39]). In order to reduce
the complexity of the model and simulation times, these assumptions are often invoked
when simulating gene expression and cellular dynamics (e.g., [1,3,5,6,18,19,31,37]). Al-
though these assumptions are not always biologically realistic, due to speed of the accel-
erated method, efficient scans over a large parameter space can be performed in order to
identify regions of interest. Once the parameter space region of interest is identified, sim-
ulations can then be performed using a more accurate population simulation algorithm.
Correspondingly, this method should prove useful for the simulation of gene expression
and population models of ever increasing complexity. Furthermore, it is anticipated that
the method will apply more generally to other scenarios, for example, to speedup sim-
ulations of biochemical reaction networks during periods when the rate parameters are
not varying due to noise external to the system [32].
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Chapter 4

Modeling and Simulating

Replicative Aging and Cell

Competition

The models and simulations presented in this chapter were performed to exemplify

the utility of an object-oriented population simulation framework (a brief overview of

the framework is presented in Section 4.1; for a more detailed description including

pseudocode see Abdennur [2]). This work incorporates additional biologically relevant

details, namely cell aging and competition, not considered elsewhere in this thesis.

4.1 Object-Oriented Framework for Simulating Het-

erogeneous Cell Populations

The AMSPD and PDA have many advantages including accurately simulating cellular

population dynamics at a single-cell resolution. However, “real-time” cell communica-

tion cannot efficiently be incorporated into these algorithms. This is because in order
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to permit parallelization of the AMSPD and PDA, each cell must be simulated inde-

pendently and can only communicate with the other cells at specified synchronization

barriers (time intervals at which the simulation briefly exits the parallel region). As

the time between synchronization barriers is reduced to permit frequent communica-

tion events, the speedups gained from parallelization are lost. Likewise, the ability to

couple cells to an external environment (e.g., to a growth-limiting resource in media

such as glucose) is limited.

Abstracting cells as interacting objects with various associated attributes and

behaviours is perhaps the most natural and versatile approach for modeling cellular

and population dynamics. An object-oriented framework for simulating individual-

based models of heterogeneous cell populations was presented in Abdennur [2].

The framework, inspired by Gillespie’s reaction channel concept [5, 6], makes use

of objects called “simulation channels” to handle the scheduling and firing of state-

updating events on individual cells. This is analogous to Gillespie’s algorithm, where

the propensities of different reaction channels are used to determine when the next

reaction will occur (scheduling) and how the numbers of molecules are changed when

it occurs (firing). These state-updating events represent the outcome of arbitrary cell

intrinsic processes, such as gene expression, that in some way, deterministically or

stochastically, alter the continuous or discrete attributes of cells.

More generally, state-updating events that involve multiple cells are controlled

by another set of objects, which are conceptually identical to single-cell simulation

channels, but that act on global variables that impact the entire population or a

smaller subset of cells. To increase simulation efficiency, dependency graphs are used

to determine which simulation channels require rescheduling when another simulation

channel modifies cell or global attributes. This was introduced by Gibson et al. [4] to

improve the performance of the Gillespie algorithm, but can readily be generalized to
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simulation channels.

Since each cell is simulated individually, complete cell lineages can be tracked

until the size of the population becomes prohibitively large. To simulate population

dynamics beyond this point, the framework allows a simulation to begin with as few

as one cell and proceed until a pre-specified maximum population size is reached.

Once the population size limit is reached, the CNMC method (Section 1.3.2) is used

to keep a fixed sample population size with the appropriate composition.

In this framework, the dynamics of single cells and their interaction with the en-

vironment is facilitated by making each cell a unique “simulation engine” responsible

for scheduling and firing its own simulation channels. Another engine controls the

simulation channels that affect global attributes. These together constitute another

entity called the “world”. For example, a fluctuating environment can be simulated

by defining a set of global environmental parameters and simulation channels that

change these parameters. Channels associated with the world can fire channels asso-

ciated with one or more cells and vice versa.

Cell-cell communication is possible when simulation channels are fired in a first-

come, first-served basis by a global scheduler. This approach is referred to as the

“synchronous method”, since updates can be performed on some, or all, of the cells

in the population every time a simulation channel is fired. Simulations can also be

performed in this framework using an “asynchronous method” (i.e., the method imple-

mented in the AMSPD and PDA where cells are simulated independently in between

the synchronization barriers), which is ideal and parallelizable for non-interacting

cells. The asynchronous method was used to simulate a model of replicative aging in

yeast (Section 4.2) and the synchronous method is used to model resource competition

between cell populations (Section 4.3).
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4.2 Volume and Age-Dependent Growth in Yeast

4.2.1 Background

In many metazoan and yeast cells, there exists a limit on the number of cell divisions

that a cell can achieve in its lifetime, known as the replicative lifespan of the cell. Cul-

tured human cells have a limited capacity to divide (e.g., human fibroblasts), called

the Hayflick limit [7,14], and therefore the population eventually goes extinct. These

cells are non-immortal due to the accumulation of DNA damage resulting from the

progressive shortening at each cell division of the telomere tips at the ends of chro-

mosomes [14]. In contrast, there are also cell populations that can exist indefinitely

(e.g., germline cells, stem cells, and cancer cells). Budding yeast cell populations are

immortal as the older cells eventually stop replicating while the younger cells continue

to replicate.

Unique to eukaryotes, the aptly named budding yeast cells divide asymmetrically

by budding. The formation of the bud begins in S-phase and pinches off at the end of

the cell cycle. A recent study suggested that the replicative lifespan of the cell is lim-

ited by the progressive increase in cell volume resulting from asymmetric division [19].

The authors of this study used three wild-type laboratory strains together with mu-

tant versions of these strains with various defects in antioxidant enzymes. Each pair

of wild-type and mutant strains demonstrated a cessation of budding after reaching

the same final volume, but had different replicative lifespans. Based on these obser-

vations and results from a previous study that investigated the relationship between

replicative age and cell volume, the authors proposed that a genetically determined

critical cell volume may be the main factor limiting the ability of mother yeast cells

to continue to divide. The authors suggested that progressive growth of cell volume

with each cycle is an unavoidable consequence of the mechanism of reproduction,
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because the mother cell experiences incremental growth during each G1 phase, before

a new bud has formed. In the mutant cells, oxidative stress leading to DNA dam-

age was presumed to cause delays at cell cycle checkpoints without hindering volume

growth, so that mutants attain the limiting cell volume after a smaller number of

cell divisions. A more recent study supports these findings [17]. The authors found

that cells that underwent fewer replications accrued more volume per generation and

vice-versa, reaching senescence at similar volumes.

4.2.2 Model

We implement a simple phenomenological model of this system in order to investigate

single-cell and population-level dynamics when age-dependent effects are considered.

Cell volume growth was assumed to be linear at a given age (generation) and was

modeled using the following equation

V (t) = V (t− 1) + dv, (4.1)

where dv was obtained (for fixed time step dt = 1) using

dv =
kg

1 + (g/k)2
dt, (4.2)

where k is the maximum growth rate and g is the generation (number of divisions

since birth). The growth rate is a non-monotonic function of age, as it is faster when

the cell is young, and slower when the cell is old. Here, cells divide asymmetrically,

producing a larger mother and a smaller daughter (g = 0). At each division, the

daughter cell receives a fixed fraction (β) of the total predivision mother cell volume,

while the mother receives the remaining fraction (1-β). Cell division was set to occur

every time a pre-specified (strain specific) volume increment ∆V was reached. When

a critical volume is achieved after cell division (Vcrit), the cell was flagged as senescent

and no longer allowed to divide.
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4.2.3 Results and Discussion

Figure 4.1a shows the growth pattern of a single-mother cell undergoing successive

budding and division until reaching senescence after its cell volume crosses Vcrit after

division. The periodic volume decreases are a result of the budding off of daughter

cells which are also successively larger after each division. Figure 4.1b presents a plot

of the cell volume as a function of generation for a wild-type strain (BY4741) and

an antioxidant defective mutant strain (∆prx). Different values of k and ∆V were

selected to reproduce the experimental results of Zadrag-Tecza et al. [19] (Appendix -

Fig. 4). Despite both strains having a similar initial volume at age g = 0, the mutant

strain accumulates volume at a faster rate and displays a shorter replicative lifespan.

The simulation data fit well to a linear trend as did the experimental data.

An important result is obtained if we compare the steady state volume distribu-

tions obtained from simulations of a set of cell chains (Fig. 4.1c) with a statistical

ensemble of cells using the CNMC method (Fig. 4.1d). Namely, the second peak

of cells at large volume in Fig. 4.1c is an artifact because senescent cells are never

outcompeted by younger actively replicating cells. This highlights the importance of

the CNMC method for simulating population dynamics.

It was shown recently by Levy et al. [90] that replicative age in budding yeast

cells correlates with a stress resistance state. Specifically, older cells were found to be

more likely to resist heat shock than younger cells due to the accumulation of a stress

resistance protein. This phenomenon should be considered in future simulations of

budding yeast populations under stress.
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Figure 4.1 Age-dependent cell volume dynamics. a) History of a single
mother cells volume over time. (b) Age distribution of strains of yeast with
different k and ∆V . For “wild-type” BY4741, k = 4.6 and ∆V = 12µm3. For
∆prx, k = 1.15 and ∆V = 42.3µm3. (c) Volume distribution obtained from
of a collection of 10,000 ∆prx cell chains. (d) Volume distribution obtained
from a statistical ensemble of 10,000 ∆prx cells. Figure used with permission
from Abdennur [2].
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4.3 Resource Competition

4.3.1 Background

Cell competition was discovered almost 40 years ago in the fruit fly Drosophila

melanogaster [8]. This phenomenon was described as a situation in which slowly di-

viding, but otherwise viable, cells were eliminated from a population of more rapidly

dividing cells [8,15,16]. In these studies, competition was between wild-type and mu-

tant fruit fly cells, where the mutants were heterozygous for a deletion of a Minute

gene. Heterozygous Minute mutations result in a smaller, less fertile fly with a longer

cell division cycle (flies homozygous for a Minute mutation cannot be used in compe-

tition studies as they do not form viable populations). Minute-induced competition

also appears to be conserved in mouse tissues [12]. Interestingly, especially in light of

the CNMC method used in this thesis, it has been observed in fruit flies that com-

petitor cells can proliferate by killing wild-type cells by inducing apoptosis, such that

the total number of cells in the population does not change [3, 9, 10]. Consequently,

clonal expansion of this form may not result in any morphological aberrations and it

has been suggested that it may pose a challenge for the early detection of cancer [11].

4.3.2 Model

In this section a toy model of competition, for a shared resource between two cell

populations is presented. Inspired by the Minute gene studies [8,15,16], the mutation

negatively influences cellular growth and division. Each cell can uptake or excrete

the resource across its cell membrane by passive diffusion. The individual cells can

also consume the resource for use in their cellular processes. The two populations are

identical except for the membrane permeability of the constitutive members. In this

model, the mutation changes the permeability of the cell membrane. The wild-type
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(wt) cells have an equal or higher membrane permeability than the mutant-type (mt)

cells for an extracellular resource (R(t)) critical to growth. Resource diffusion and

consumption is modeled in each cell as follows

ri(t) = ri(t− dt) + (V −1i kdiff,j(R− ri)− kdegri)dt, (4.3)

where ri is the intracellular concentration of the resource and Vi the cell volume of a

given cell i, kdiff,j is the membrane permeability (units of LT−1) multiplied by the

surface area of the cell in a given population j (wt or mt), and kdeg is the cellular

consumption rate of the nutrient.

Each time the cell updates its resource level, the concentration of the global re-

source is updated by

R(t) = R(t− dt) + (−V −1kdiff (R− ri)(Ntotal/NCNMC) + kdil(Rres −R))dt, (4.4)

where V is the volume of the environment (e.g., a test tube with fixed volume), kdil is

the dilution rate or steady flow rate of the media in and out of the environment, and

Rres the constant nutrient concentration of a large resource reservoir. NCNMC is the

number of cells in the constant-number sample population while Ntotal is the estimated

number of cells in the ‘true’ population that the sample represents. According to one

interpretation of the CNMC algorithm [93, 100], each cell of the sample population

represents Ntotal/NCNMC cells of the true population. The Ntotal global attribute is

incremented or decremented by the appropriate amount every time a birth or death

event occurs in the sample population, respectively.

Cell division is modeled as a reaction whose propensity depends on the resource

concentration inside the cell over time (ri(t)λ, where division rate λ is a constant).

Since the kinetic rate depends on time, the object-oriented framework uses an algo-

rithm developed by Shahrezaei et al. [13] that extends the standard SSA to include

extrinsic fluctuations to include rate constants that change continuously with time [2].
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Population dynamics were accounted for using the synchronous method which enables

real-time coupling of cell populations. Note that in this model there is no apoptosis.

Cell competition is captured naturally by CNMC replacement (see Section 1.3.2), as

the probability that a given mother cell will be replaced in the next generation by

a daughter cell from the more fit population is higher than that of the mother cell

being replaced by a daughter cell from the less fit population.

4.3.3 Results and Discussion

As expected, when the membrane permeability of the wt and mt populations are the

same, we see an equal number of cells from each population in the total composite

population (Fig. 4.2). However, when the rate of diffusion for the wt population

is higher than the mt population, the wt population can acquire resources more

rapidly and outcompetes the other population. For example, when the membrane

permeability of the cell in the wt population is 1.2 times greater than the membrane

permeability of the cells in the mt population, the total population is composed of

roughly 80% of cells from the wt population after 10 generations (Fig. 4.2). The

results of this model suggest that a relatively small phenotypic change in one of the

subpopulations can have a significant effect on the composition of the population.

The high degree of variability in the results stems from the small size of the CNMC

sample compared to the true population size (Fig. 4.2). A small sample size was

chosen to reduce simulation times because the simulation could not be parallelized.

Another source of error is introduced because the dynamics of the cells in the sample

depends on the number of cells in the true population, which itself is estimated from

birth and death events in the sample.
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Figure 4.2 Resource competition between two cell populations. The frac-
tion of cells from the wild-type wt population in the total composite popula-
tion (wt and mutant-type mt cells) is plotted as a function of the ratio of the
diffusion constants for each of the populations. The insets a single stochastic
realization of the number of cells in each population for two different ratios of
the diffusion constants (black line - wt population, gray line - mt population)
over 10 generations. The following parameters were used: NCNMC = 1000,
V = 1, Vi(t = 0) = 0.0001, Rres = 1, kdiff,wt = 0.01− 0.015, kdiff,mt = 0.01,
kdeg = 0.05, and kdil = 0.01. The cell division and death rates were set to 1
and 0.02, respectively.
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We show that the effect of stress on the reproductive fitness of noisy cell populations can be modeled as

a first-passage time problem, and demonstrate that even relatively short-lived fluctuations in gene

expression can ensure the long-term survival of a drug-resistant population. We examine how this effect

contributes to the development of drug-resistant cancer cells, and demonstrate that permanent immunity

can arise independently of mutations.
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Gene expression is a stochastic process that enables
genetically identical cells in the same environment to
exhibit phenotypic variation [1–3]. This noise-induced
nongenetic (epigenetic) variability can be beneficial to
cell populations experiencing acute stress by providing a
temporary basis for natural selection [4–7].

Experimental observations suggest that gene expression
is inherently associated with ‘‘epigenetic memory,’’ de-
fined by the fluctuation relaxation time of a gene product
within a cell lineage. In human lung cancer cells, this
relaxation time can be as long as four generations [8].

Brock et al. [9] recently argued that epigenetic memory
might accelerate tumor progression by contributing to the
development of drug-resistant cancer cells. In this hypothe-
sis, phenotypic variability from the noisy expression of
gene X that confers resistance renders some cells (and
their offspring) temporarily insensitive to the drug, thereby
increasing the probability of acquiring a mutation
conferring permanent immunity. In the present work, we
develop a minimal model to study this phenomenon
quantitatively.

To study how gene expression noise impacts the dynam-
ics of isogenic cell populations under stress, we define the
reproductive fitness (W) as the number of offspring pro-
duced in the presence of the stressor (i.e., a drug) relative to
that produced in its absence. For simplicity, we assume that
all cells produce offspring at the same rate in the absence of
the drug, and define the generation time (tD) as the time it
takes for each cell to reproduce once. We set the generation
time as unit time and report all time scales relative to tD.
We also assume that cells carry the gene X conferring drug
resistance when its expression level x is sufficiently high,
and that this gene is expressed stochastically in individual
cells.

The effects of gene expression noise on populations
under stress have previously been analyzed to explain
why certain genes have high expression noise [5–7]. In
these analyses, the dependency between gene expression
and reproductive fitness was defined by the integral

WðtÞ ¼
Z

wðxÞpxðx; tÞdx; (1)

where pxðx; tÞ is the probability distribution function
(PDF) describing the concentration (x) of the gene product
across the population, and wðxÞ is the microscopic fitness
function describing the effect of the drug on the fitness of
cells with a given expression level. The basic concept is
illustrated in Fig. 1(a) using a model where wðxÞ is de-
scribed by the Heaviside step function, such that cells are
unable to reproduce if their expression level is below a
critical value, wðx < xcÞ ¼ 0, and unaffected by the drug
otherwise, wðx � xcÞ ¼ 1. In this case, previous theoreti-
cal work [5–7] concluded that high gene expression noise
is beneficial at high drug doses, since the fraction of cells
expressing above a reproductive threshold xc increases
with the width of the initial expression distribution
[Fig. 1(a)]. However, because pxðx; tÞ is assumed fixed at
the time of drug treatment, this conclusion is valid only for
instantaneous selection effects. The analysis of prolonged
stress exposure necessitates an approach where selection,
inheritance, and gene expression dynamics all contribute to
the evolution of the population.
Population survival during prolonged drug exposure is a

first-passage time problem. In the absence of mutations
conferring permanent immunity, cells that survive the ini-
tial selection will eventually succumb to the drug since
they cannot maintain high expression indefinitely.
Consider a subpopulation of cells with the same level of
x above xc [Fig. 1(b)]. The time interval in which a given
cell can reproduce is the first-passage (or sojourn) time
tSðxÞ, where the threshold xc represents an absorbing bar-
rier. Although cells are initially identical, the expression of
the drug-resistance gene evolves differently in different
cells, and the time to reach the reproductive threshold is
a random variable described by the first-passage time
distribution pSðx; tSÞ [Fig. 1(b), Inset]. Since only cells
with tSðxÞ> tD reproduce, wðxÞ in Eq. (1) is given by
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wðxÞ ¼
Z 1

tD

pSðx; tSÞdt0S; (2)

and the overall fitness of the population at time t can be
written as

WðtÞ ¼
Z 1

xc

�Z 1

tD

pSðx; tSÞdt0S
�
pxðx; tÞdx: (3)

The population fitness in Eq. (3) has an explicit solution
only in special cases. Previous analyses [5–7] circum-
vented this problem, in part, by focusing on initial selection
effects (t ! 0). However, even in this limit, it is also
necessary to assume that all cells above the threshold
contribute to fitness [i.e., wðxÞ ¼ 1 for x > xc].

To investigate more general cases, we used the Ornstein-
Uhlenbeck (OU) process to model the level of gene ex-
pression in individual cells [10]. This process can be
described by the Langevin equation

dxðtÞ
dt

¼ 1

�
½�� xðtÞ� þ c1=2�t; (4)

where c and � are the diffusion constant and the relaxation
time, respectively, and �t is Gaussian white noise [h�ti¼0,
h�t�t0 i ¼ �ðt� t0Þ] [11]. The steady-state PDF of the OU
process is a Gaussian distribution with mean � and vari-
ance �2 ¼ c�=2. Without loss of generality, we set � ¼ 0
and use the fluctuation time scale � to model the time scale
of epigenetic memory.

The fluctuation time scale of gene expression has been
determined experimentally in human lung cancer cells in
terms of the ‘‘mixing time’’ �m, defined as the lag where
the autocorrelation function has decreased by 50% [8]. The
mixing time for the stationary OU process is �m ¼ � lnð2Þ.
The measured values of �m varied between 0.5 to 3.0
generations for different genes, corresponding to values
of � between 0.7 to 4.0 generations for the OU process.
First, we examined the effect of drug treatment on

reproductive fitness after one generation time when the
absorbing barrier is located at xc ¼ 0. In this case, the
first-passage time PDF for x > xc is given by [12]

pSðx; tSÞ ¼ xffiffiffiffiffiffiffiffiffi
2�c

p exp

��x2 expð�tS=�Þ
2c� sinhðtS=�Þ þ tS

2�

�

�
�

1

� sinhðtS=�Þ
�
3=2

: (5)

We evaluated the effects of varying the time scale of
epigenetic memory and the noise amplitude by numerical
integration of Eq. (3), using the steady-state OU
distribution to describe the initial gene expression distri-
bution. Figure 1(c) shows the results for fixed noise
(�2 ¼ 1) and variable �, and fixed time scale (� ¼ 2)
and variable �2.
The time scale of epigenetic memory significantly af-

fects ‘‘acute’’ reproductive fitness, even for very long
fluctuation relaxation times. For example, when � ¼ 20,
W is reduced to 0.4, compared with the value of 0.5
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FIG. 1 (color online). Epigenetic effects on a cell population exposed to stress. (a) Schematic of instantaneous selection effects.
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obtained (irrespectively of the noise amplitude) in the
permanent epigenetic memory limit � ! 1 [Fig. 1(c)].
For � ¼ 2, the reproductive fitness is approximately 0.2,
and the majority of cells starting with x > xc are unable to
maintain above-threshold gene expression long enough to
reproduce. In this case, the acute reproductive fitness re-
mains constant, presumably because changing the noise
amplitude for xc ¼ 0 does not change the fraction of cells
with x > xc.

To examine cases where xc > 0, it is necessary to use
numerical simulations since a general closed-form solution
of the first-passage time PDF is not available. For this
purpose, we employed a population simulation algorithm
[13] in which gene expression in each ofN individual cells,
xiðtÞ for i ¼ 1; . . . ; N, is obtained by solving Eq. (4) nu-
merically [14]. In these simulations (20 realizations of 104

cells unless indicated otherwise), cell division occurs when
a deterministic cell cycle ‘‘clock,’’ which is reset at each
division, reaches tD. Each cell keeps track of the time since
its birth and can only advance its clock if they maintain
gene expression above the threshold. Moreover, cells
where xiðtÞ � xc are assumed to be fixed and unable to
change their expression level (i.e., � ¼ 1). Simulations
were initiated by assigning, to each cell, random initial
values of gene expression and the cell cycle clock from the
steady-state distribution of the OU process and a uniform
distribution ½0:tD�, respectively.

Numerical calculations of fitness for xc > 0 identified �
as a critical determinant of population survival.
Specifically, the fitness of a population with low gene
expression noise can be greater than that of a population

with high noise if the fluctuation relaxation time is suffi-
ciently long. We observed this in simulations, shown in
Fig. 1(d), with an increased threshold xc for fixed time
scales (� ¼ 2 or � ¼ 5) and two different fluctuation am-
plitudes (�2 ¼ 1 or �2 ¼ 10). When the two populations
had the same finite value of �, we observed that increased
gene expression noise always provides a fitness benefit
(data not shown). However, as expected from Fig. 1(c),
incorporating stochastic gene expression dynamics (i.e.,
finite values of �) generally yields a significant reduction
in fitness compared to the asymptotic permanent memory
limit. The magnitude of this reduction is sensitive to both
the value of the threshold xc and the value of �. This is
illustrated in Fig. 1(d) where the fitness of the high noise
population is greater than the low noise population only
when the value of xc is sufficiently high.
In our second case, we analyzed the long-term effects of

varying the time scale of epigenetic memory on population
dynamics and reproductive fitness. For simplicity, we focus
on the case where xc ¼ 0 and noise is fixed (�2 ¼ 1).
Figure 2(a) shows representative gene expression distribu-
tions obtained after 10 generation times for short- and
long-term epigenetic memory. When the fluctuation time
scale is short (� ¼ 0:5, top panel), the number of cells that
may reproduce (i.e., cells with xiðtÞ> xc) is reduced over
time since, on average, cells reach the absorbing barrier
faster than they reproduce. Correspondingly, given enough
time, the population will go extinct. This is not the case
when memory is long (� ¼ 10, bottom panel) and the birth
rate exceeds the rate of loss at the absorbing barrier.
In addition, the mode of gene expression distribution shifts
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to higher values, in resemblance of experimental observa-
tions [7].

Relatively short-term epigenetic memory can result in
permanent drug resistance even in the absence of muta-
tions. This is illustrated in Fig. 2(b), which shows how the
reproductive fitness of populations with different memory
time scales evolves over time. In populations with long-
term memory (e.g., � ¼ 5, 10, or 1), the number of cells
that may reproduce increases steadily over time and settles
in a steady state where more than half of them reproduce
every generation time (i.e., WðtÞ> 0:5). Importantly, pop-
ulations with memory at intermediate time scales (e.g.,
� ¼ 1:5, 2, or 3) may retain long-term viability and finite
rates of reproductive fitness. Because the simulations in-
volve finite populations, the outcome of a given realization
cannot always be predicted. For example, when � ¼ 1:5, a
viable population was observed to develop in 29% of the
simulations while the population went extinct in the re-
maining 71% of simulations. While populations with short
memory (e.g., � ¼ 0:5 or 1) eventually go extinct, several
cell cycles were needed for the drug to fully affect all cells.

In the third and final case, we investigated the added
effect of genetic mutations on the development of drug-
resistance. A central element of the Brock et al. hypothesis
is that temporary drug resistance due to slow fluctuations in
gene expression may contribute to tumor development by
increasing the overall probability that some cells acquire a
mutation conferring permanent immunity. To model this
scenario, we allowed each cell with an expression level

above xc the chance to mutate once per generation time.
We denote this probability PM. If a cell acquired the
mutation, it and its offspring were permanently resistant
to the drug, and the survival of a continuously growing
population inevitable.
We first investigated the added effect of mutations on the

reemergence of a cancerous tumor under constant drug
treatment. In these simulations, we chose xc such that the
drug instantaneously removed 95% of the population, and
measured the time it took for the remaining cells to double
in number. Figure 3(a) shows the dependency of this dou-
bling time on � when PM is equal to 0.01 and 0.1. These
mutation rates are unrealistically high biologically and
were chosen to illustrate the effect of epigenetic memory
in an extreme limit.
As expected, increasing the mutation probability signifi-

cantly reduces the doubling time when the gene expression
fluctuations are short-lived. Unexpected, however, the
value of � beyond which mutations do not have an addi-
tional effect is remarkably short despite the unrealistically
high mutation rates. Specifically, the doubling time is more
or less unaffected by PM when � is roughly above 4
generations, corresponding to the upper range of mixing
times observed experimentally [8].
We confirmed our results using a semirealistic model of

gene expression noise [15] where proteins are synthesized
in irregular bursts at irregular intervals [Fig. 3(a), Inset].
We also tested the effect of replacing the fitness threshold
with a more realistic sigmoidal fitness function and found
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no qualitative difference (data not shown). In reality, gene
expression dynamics may follow more complex kinetics
than that of a simple mean-reverting process due, for
example, to multistability and noise-driven switching
[16,17]. Our simulation results demonstrate that such com-
plexity is not required for gene expression noise to have a
significant impact on population dynamics under pro-
longed stress.

We also determined how the probability of remission
depends on the mutation rate, the initial number of cancer
cells with above-threshold expression, and the time scale
of gene expression noise. In these simulations, the cancer is
in remission if no cells have above-threshold gene expres-
sion and have not acquired a mutation conferring perma-
nent immunity within 10 generation times. As expected
[Fig. 3(b)], the probability of remission is greatly de-
creased when the number of initial surviving cancer cells
or the mutation rate is increased. Also, when � is very
short, remission is virtually guaranteed. However, the
probability that a drug-resistant cell population will
emerge can be quite substantial within the experimentally
observed range of �. Even with a relative low mutation rate
(PM ¼ 0:01) and 10 surviving cells, the probability of
remission is only 42% when � ¼ 4:0.

In summary, we have analyzed the effect of gene ex-
pression noise on the reproductive fitness of isogenic cell
populations under stress as a first-passage time problem.
By explicitly incorporating the ‘‘epigenetic memory’’ of
this noise (i.e., the fluctuation relaxation time), we have
generalized previous theoretical work that explained the
acute effects of noise amplitude but did not incorporate
gene expression dynamics [5–7]. This generalization is
important for two reasons. First, it has allowed us to
demonstrate using a minimal model that gene expression
noise with biologically realistic time scales has a signifi-
cant effect on reproductive fitness under stress and is a
critical determinant of population survival. Second, it en-
ables theoretical and computational investigations of ex-
perimentally observed phenomena associated with
prolonged stress exposure, including reversible shifts in
gene expression distributions [7], and drug resistance. In
this context, we have demonstrated that the time scale of
epigenetic memory required to develop a drug-resistant
cell population independently of mutations is comparable
to that measured for certain genes in human cancer cells
[8]. Correspondingly, long-term population survival may
not require specialized memory-conferring mechanisms.
It might, for example, be achieved without a significant
fitness cost through bursty gene expression. An important
next step is to confirm our findings using more
realistic models of gene expression incorporating

additional stochastic effects, such as partitioning errors
[18], and correspondingly, to employ various analytical
and numerical methods that may permit solution in these
more complex cases (e.g., [19,20]). We anticipate that
future analysis of such models will provide a deeper under-
standing of epigenetic interactions between genes, drugs,
and population dynamics.
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Fluctuations in gene expression give identical cells access to a spectrum of phenotypes that can
serve as a transient, nongenetic basis for natural selection by temporarily increasing drug resistance.
In this study, we demonstrate using a minimal mathematical model that certain gene regulatory
network motifs, specifically the coherent feedforward and positive autoregulatory motifs, can facili-
tate the development of nongenetic resistance by increasing cell-to-cell variability and the time scale
at which beneficial phenotypic states can be maintained. We also demonstrate that a regulatory
network known to control the expression of genes conferring resistance to structurally and func-
tionally unrelated drugs can facilitate persistent immunity to drug treatment. Our results highlight
how regulatory network motifs enabling transient, nongenetic inheritance play an important role in
defining reproductive fitness in adverse environments and provide a selective advantage subject to
evolutionary pressure.

I. INTRODUCTION

Gene expression is a stochastic process that enables
genetically identical cells to exhibit phenotypic varia-
tion [10, 11, 18, 20]. This noise-induced phenotypic
variability can provide a fitness advantage in clonal
cell populations experiencing the same drug environ-
ment [5, 13, 41, 42]. This phenomenon may contribute
to limiting the efficacy of drug therapy, including those
used to treat disease caused by uncontrolled proliferation
in bacterial infections [38] and cancer [6].
It was recently argued by Brock et al. [6] that gene ex-

pression noise, independent of DNA mutation, may result
in enduring and transiently heritable phenotypes that ac-
celerate tumour progression by contributing to the devel-
opment of drug-resistant cancer cells. In this hypothe-
sis, phenotypic variability arising from noisy expression
of a drug resistance gene allows some cells to develop a
temporary insensitivity, which in turn could increase the
probability that these cells acquire a mutation conferring
permanent immunity to the drug.
In a previous study, we investigated the effect of gene

expression noise on the reproductive fitness of isogenic
cell populations under stress as a first-passage time prob-
lem [7]. This study generalized and expanded previous

∗ daniel.charlebois@uottawa.ca
† mkaern@uottawa.ca

theoretical work that explained the acute effects of drug
exposure [13, 41, 42], and considered the interplay be-
tween the fluctuation amplitude and the fluctuation fre-
quency in defining the long-term impact of gene expres-
sion noise. To analyze the problem in general terms, we
used the Ornstein-Uhlenbeck (OU) process [37] to model
gene expression in individual cells. This analysis revealed
not only that fluctuation frequency is a critical parame-
ter in determining long-term survival, but also that gene
expression noise with fluctuation time scales compara-
ble to those measured for certain genes in human cancer
cells [36] may allow for the development of permanent
drug resistance independently of mutations [7]. However,
it remains unclear to what extent these conclusions are
supported by more biologically realistic models of gene
expression dynamics.

To expand on our previous analysis, we investigate
in the present study how the architecture of transcrip-
tional regulatory networks can impact the development
of drug resistance using more realistic models of gene
expression. This analysis is inspired by the transcrip-
tional regulation of a gene, PDR5, known to provide the
budding yeast Saccharomyces cerevisiae with resistance
to a broad range of drugs [21]. The PDR5 gene is a
member of the highly conserved family of ATP binding
cassette (ABC) transporters that are the cause of multi-
drug resistance in microbes [24], fungi [21, 33], and cancer
cells [4, 29, 34]. These transporters represent the largest
class of transmembrane pumps, and are responsible for
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the transport of hundreds of substrates, including hor-
mones, lipids, drugs and other toxins, across intracellu-
lar and extracellular membranes [34]. Notably, resistance
to chemotherapeutic drugs has been correlated to the ex-
pression of ABC transporter genes in tumors [29, 34], and
the pumps are the target of several anticancer drugs [23].

Budding yeast is an ideal organism for investigat-
ing how ABC transporters facilitates the development
of drug resistance [29] because it carries a network of
genes, the pleiotropic drug resistance (PDR) network,
that confers a drug resistance phenotype similar to that
of mammalian cells [21]. Among the 16 ABC trans-
porter genes found in budding yeast, the PDR5 gene
plays several particularly important role in cellular detox-
ification [3, 9, 16]. For example, in addition to remov-
ing externally added toxic compounds from the cell, the
PDR5 protein also exports toxic metabolites that accu-
mulate during growth, transports steroids, and translo-
cates phospholipids across the plasma membrane (see [30]
for a review). PDR5 is of particular interest with respect
to fungal infections and cancers because the overexpres-
sion of drug efflux pumps belonging to the same ABC
superfamily in Candida and cancerous tumours that are
respectively known to confer drug resistance to antibi-
otics [17, 33] and chemotherapy [4].

The transcriptional regulatory network controlling the
transcription of the PDR5 gene consists of a coherent
feedforward loop (FFL) with a positive feedback loop
(PFL) nested within it (Fig. 1). These motif arises from
the transcriptional regulation of PDR5 by two homo-
logue transcription factors (TFs) encoded by PDR1 and
PDR3 [3], the latter of which has been shown to be au-
toregulated [9].

We hypothesize that the combination of a FFL and
the PFL motif (FFL+PFL) facilitates the development
of drug resistance by enhancing population heterogeneity
in PDR5 expression and enabling nongenetic inheritance.
This hypothesis is based on previous work demonstrat-
ing that the FFL and PFL motifs individually act to
increase gene expression noise [1, 27, 35], and that they
allow bacterial cells to maintain high gene expression lev-
els following a transient stimulation [19].

To examine the possible contribution of the FFL and

PDR1 PDR5PDR3Drug
FIG. 1. The PDR5 transcriptional network. Regular arrows
denote activation and flat-head arrow denotes repression.

PFL motifs to the development of nongenetic drug re-
sistance, we first use a minimal mathematical model to
characterize and compare the deterministic and stochas-
tic dynamics of individual PDR5 network components.
This is done in Section II. Subsequently, in Section III,
we investigate the development of drug resistance in a
budding yeast cell population by stochastically simulat-
ing a model of the PDR network incorporating drug-
dependent gene activation and diffusion across the cellu-
lar membrane. The minimal model facilitates a general
and comprehensive characterization of each the compo-
nents of the PDR network. The PDR network model
allows us to investigate the results obtained for the min-
imal model using a more biologically realistic modeling
strategy incorporating cellular and fitness dynamics. The
results of our analyses demonstrate that the architecture
of the PDR5 transcriptional regulatory network may con-
tribute significantly to the resistance conferred by the
PDR5 gene, and that certain gene regulatory network
motifs may provide an evolutionary advantage by en-
hancing reproductive fitness under high stress conditions.

II. MINIMAL MODEL

A. Modeling and Simulation

The PDR5 transcriptional regulatory network in Fig. 1
can be decomposed in to three elements: the direct acti-
vation (DA) of PDR5 transcription by PDR1, a FFL that
combines DA with indirect activation through PDR3,
and a PFL in which PDR3 activates its own expression.
This decomposition defines the three distinct networks,
DA, FFL, and FFL+PFL, illustrated in Fig. 2 where the
three genes, PDR1, PDR3 and PDR5, are labeled X, Y

X Z

X Y Z

X Y Z
a)

b)

c)

FIG. 2. PDR5 transcriptional network elements considered in
the minimal model. (a) Coherent feedforward loop with pos-
itive feedback loop (FFL+PFL). (b) Coherent feedforward
loop (FFL). (c) Direct activation (DA). X, Y , and Z repre-
sent respectively the PDR1, PDR3, and PDR5 genes. Arrows
denote activation.
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and Z, respectively.
Treating the activity of PDR1 as an adjustable, pos-

sibly time-dependent parameter x, the DA, FFL, and
FFL+PFL networks have two variables whose dynam-
ics can be described by the following system of coupled
ordinary differential equations

dy

dt
= αyω1fy(x, y)− y (1)

dz

dt
= αzfz(x, y)− z, (2)

where y and z are respectively the protein concentrations
associated with the expression of genes Y and Z, and
αy and αz are the maximum level of activated protein
production for Y and Z, respectively. The dilution and
degradation rate of y and z are set to unity. The gene
regulatory functions in Eq. (1) and Eq. (2) are defined
by the Hill-type functions given by

fy(x, y) = (x+ ω2y)
n/(Kn + (x + ω2y)

n) (3)

fz(x, y) = (x+ y)n/(Kn + (x + y)n), (4)

where n and K are respectively the Hill coefficient and
Hill constant, which for simplicity are here kept at equal
values for the two genes. The activation of y by x, and
the presence of positive feedback on y, are represented by
the Boolean variables ω1 and ω2, respectively, and can
be either ON (ω = 1) or OFF (ω = 0). Consequently,
the model of the DA network is defined by ω1 = ω2 =
0, the FFL network by ω1 = 1 and ω2 = 0, and the
FFL+PFL by ω1 = 1 and ω2 = 1. These equations
were solved numerically using a medium order MATLAB
intrinsic non-stiff differential equation solver (ode45).
Equations (1)-(2) can be translated into the following

set of birth-death processes

� ky−→ y (5)

� kz−→ z (6)

y
δy−→ � (7)

z
δz−→ �, (8)

where Eq. (5) and Eq. (6) respectively describe the pro-
duction of y and z. In Eq. (5), ky = αω1fy(x, y), and
in Eq. (6), kz = αfz(x, y), where fy(x, y) is described
in Eq. (3) and fz(x, y) in Eq. (4). The degradation of y
and z are described by Eq. (7) and Eq. (8), respectively,
where the degradation rates δy and δz are set to unity.
Stochastic simulation of the chemical reactions were per-
formed using the Gillespie algorithm [14].
To investigate the development of nongenetic drug re-

sistance in clonal cell populations expressing one of these
network topologies, we perform population-level simula-
tions at single-cell resolution using the population dy-
namics algorithm (PDA) [8]. The PDA combines an ex-
act method to simulate molecular-level fluctuations in
single cells and a constant-number Monte Carlo approach
to simulate the statistical characteristics of growing cell

populations. In these simulations, gene expression in
each of N individual cells is obtained by stochastically
simulating Eqs. (5)-(8). Simulations were initiated by
drawing the initial values of the cell cycle clock from a
uniform distribution [0, tD], where tD is the cell division
time in absence of selection. Cell volume (v) was modeled
using an exponential growth law

v(tdiv) = v02
tdiv/w(z)tD , (9)

where v0 is the initial volume and tdiv is the time since
last division. At cell division, tdiv is reset to zero and the
cell volume reset to v0. We first model microscopic fitness
(w), that is the reproductive fitness of an individual cell
in the presence of a drug, using a step function. If z falls
below a critical concentration (zc) the cell is flagged and
is subsequently unable to reproduce or change its protein
levels. Then, we model microscopic fitness using a Hill
function

w(z) = znw/(Knw
w + znw), (10)

where nw and Kw are respectively the Hill coefficient and
the Hill constant used to set the fitness threshold. The
macroscopic fitness (W) of the population is determined
by the number of cell divisions that occur during a given
generation divided by the fixed number of cells in the
population.
All timescales in this study are reported with respect

to tD, which set to unit time. No qualitative difference
in the results presented below was observed for up to a
two-fold change in parameters.

B. Results and Discussion

1. FFLs accelerate and prolong transcriptional responses

To characterize the behaviour of the DA, FFL, and
FFL+PFL networks following changes in an upstream
activating signal x, the response time tON and the re-
laxation time tOFF for different values x were obtained.
tON was defined as the time for z to rise from zero to
50% of the steady-state value corresponding to the DA
network when x is turned ON. tOFF was similarly defined
as the time, after x is turned OFF, for z to fall to 50% of
the corresponding steady-state value when x is ON. The
50% DA steady-state value was chosen to ensure a con-
trolled comparison of the three network topologies, such
that the response and relaxation times for each network
were determined for the same absolute change in z.
Both coherent feedforward networks decrease tON

compared to the DA network [Fig. 3(a)]. There is a mini-
mum tON at an x of about 0.5 for the FFL and FFL+PFL
networks. The FFL has the quickest response for non-
zero values of x less than about 8, when the FFL and
FFL+PFL tON values begin to converge. This result is
particularly interesting as positive autoregulation on its
own generally increases response time [19, 25]. The tON
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for the FFL and FFL+PFL approaches the tON of the
DA network for higher levels of x. tON for the DA net-
work is unaffected by varying x.
The FFL and FFL+PFL networks exhibit prolonged

activation times relative to the DA network [Fig. 3(b)].
These results are in qualitative agreement with previous
theoretical predictions [26] and experimental results [19].
Notably, the FFL+PFL network has the longest tOFF

for x values larger than 1, and the FFL network has the
longest tOFF for non-zero x values less than 1. The tOFF

for the DA network is unaffected by changing x values
[Fig. 3(b)].
When considering the tON and tOFF together for x

values less than 1, the FFL has both a larger tON and
tOFF compared to the FFL+PFL and DA networks
(Fig. 3). When x is increased by an order of magni-
tude, though the three networks have similar tON values,
the FFL+PFL network has a larger tOFF . These results
suggest the if z confers drug resistance, the FFL network
provides a fitness advantage when the activating signal
(i.e., the drug dose) is low, and the FFL+PFL network
a fitness advantage when the drug dose is high.

2. FFLs provide stable high expression in fluctuating
environments

To investigate how the three networks respond to
a fluctuating upstream activating signal, x was set to
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FIG. 3. Coherent feedforward networks enable fast and pro-
longed activation. (a) Response time tON (time for z to reach
50% of steady-state level) for the DA, FFL, and FFL+PFL
networks as a function of an activating signal x. (b) Relax-
ation time tOFF (time for z to fall to 50% of steady-state level)
for the same network motifs considered in (a) as a function of
x. Parameters were set to: α = 10, n = 2, and K = 1.

switch between ON and OFF at a frequency Ωx.

When x fluctuates periodically, the mean concentra-
tion of z (μz) is higher in the FFL+PFL network com-
pared to the other two networks [Fig. 4(a)], despite all
three networks having the same mean when x is held con-
stant (data not shown). μz is higher in the FFL network
than the DA network, with both networks increasing μz

with increasing values of Ωx until they level off at around
Ωx = 2.

The frequency-response plot for the three networks
shows that the standard deviation of z (σz) in the FFL
and FFL+PFL is lower than σz for the DA when Ωx is
less than about 4.5 [Fig. 4(b)]. As Ωx is increased above
4.5, σz for the DA network falls below the σz values for
the FFL and the FFL+PFL networks. The FFL+PFL
network has lower values of σz than the FFL network un-
til Ωx is increased to about 2, then the σz value for the
FFL falls below that of the FFL+PFL for higher values
of Ωx.

When x is set to fluctuate randomly, the FFL+PFL
network provides stable high expression compared to the
FFL and DA networks [Fig. 4(c)].
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FIG. 4. Response of z to a fluctuating upstream activating
signal. (a) The mean of z (μz) is shown for the DA, FFL, and
FFL+PFL networks as a function of the ON-OFF switching
frequency of x (Ωx). (b) The standard deviation of z (σz) is
shown for the same network motifs considered in (a) as a func-
tion of Ωx. (c) z as a function of a randomly fluctuating Ωx

(dark gray rectangles denote presence of an activating signal)
for the same network motifs considered in (a). Parameters
were set to: xON = 5, xOFF = 0, α = 10, n = 2, K = 1.
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3. FFLs increase population heterogeneity and mixing times

The set of chemical reactions [Eqs. (5)-(8)] correspond-
ing to the deterministic model [Eqs. (1)-(2)] were sim-
ulated stochastically to compare the noise and mixing
times of the three networks. The mixing time was de-
fined previously by Sigal et al. [36] as the time for the
autocorrelation function to decay by half.
The noise in network output z (ηz = σz/μz) for a given

μz is the highest for the FFL+PFL network [Fig. 5(a)].
The increase in noise due to positive feedback is expected
as it amplifies fluctuations [2]. ηz for the DA and FFL
are similar, with ηz for all three networks beginning to
converge for μz around 5.
As x is varied, the relaxation times are highest for the

FFL+PFL network, followed by the FFL network and
then the DA network [Fig. 5(b)]. The longer relaxation
time in the FFL+PFL network compared to the DA net-
work is qualitatively in agreement with results found ex-
perimentally by Kalir et al. [19].

4. FFLs enhance drug resistance

Gene expression [Eqs. (5)-(8)] was coupled to popula-
tion dynamics using the PDA [8] to investigate the effects
of feedforward network motifs on drug resistance.
Prior to the application of the drug at generation 10
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FIG. 5. Coherent feedforward networks increase noise and
relaxation time. (a) The noise in z (ηz) for the DA, FFL,
and FFL+PFL networks as a function of the mean level of z
(μz). (b) The relaxation times for z (τz) for the same network
motifs considered in (a) as a function of an activating signal x.
Parameters were set to: α = 10, n = 2, K = 10. 10 realization
for 103 arbitrary time units were performed. Error bars show
standard deviation.

the fitness is 1, as all the cells in the population divide
once per generation (Fig. 6). When we consider a thresh-
old fitness function, all the cells in DA population are
unable to reproduce immediately following application
of the drug [Fig. 6(a)]. A significant fraction of cells in
the FFL and FFL+PFL populations remain fit even after
40 generations of drug treatment.

Next we model microscopic fitness using Eq. (10). In-
terestingly, in this model, drug resistance develops in all
three populations [Fig. 6(b)]. A much lower number of
cells in the generation subsequent to the application of
the drug reproduce as a result of low z level due to the
transient time of z to the new steady-state. After a cou-
ple of oscillations, the fitness levels off such that a fraction
of the pre-treatment population reproduces in each gen-
eration. The fraction of fit cells during drug treatment is
roughly double for the FFL and FFL+PFL populations
compared to the DA population.

These results suggest that in natural populations the
FFL+FPL network architecture may provide cells with a
fitness advantage in adverse environments. This hypoth-
esis is further supported by the fact that the FFL+PFL
network forms the topology of a network which regulates
the expression of the PDR5 multidrug resistance confer-
ring protein in yeast. It is plausible that the FFL+PFL
architecture of the PDR5 transcriptional network inves-
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FIG. 6. Effect of network topology and fitness threshold on
reproductive fitness (W). W for each of the DA, FFL, and
FFL+PFL populations over 50 generations. Drug treatment
is initiated at the tenth generation. (a) Population simula-
tions using a step fitness function. (b) Population simulations
performed using a Hill type fitness function. Parameters were
set to: x = 1, αy = 10, αz = 100, K = 1, and n = 2. In (a)
zc = 35 and in (b) Kw = 35, and nw = 2. 10 realizations of
1000 cells were performed. Error bars show standard devia-
tion.
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tigated in the next section provided yeast cells with an
fitness advantage and evolved by means of natural selec-
tion.

III. PDR5 TRANSCRIPTIONAL NETWORK
MODEL

A. Modeling and Simulation

In this section, we develop a mathematical model and
simulate the dynamics of the PDR5 transcriptional regu-
latory network in order to investigate the development of
drug resistance in the context of a more biologically real-
istic feedforward genetic network, incorporating passive
and active diffusion of a drug across the cellular mem-
brane. To the best of our knowledge, this section presents
the first modeling of the PDR5 transcription network de-
spite years of experimental investigation.
To examine if the conclusions from the analysis of min-

imal network models have bearing on PDR5-mediated
drug resistance, we analyzed a model of the regula-
tory network in Fig. 1. This network differs from the
FFL+PFL network in Section II by the presence of a
negative feedback loop caused by the PDR5 efflux pump
eliminating drugs and toxins from the cell. We note
that the additivity of the gene regulatory functions in
the minimal model [Eqs. (1)-(2)] are justified in the con-
text of PDR5 transcriptional regulation because PDR1
and PDR3 are highly homologous and bind to the same
elements in the PDR5 promoter [3]. Consequently, the
PDR5 network can be modeled by extending the minimal
model to include the upstream activating factor (PDR1)
and the intercellular drug (drugint) as dynamic variables.
The resulting ordinary differential equations describing
the network are given by

dPDR1

dt
= α0 + α1

drugint
K1 + drugint

− δ1PDR1 (11)

dPDR3

dt
= α3

(PDR1 + PDR3)n3

(Kn3

3 + (PDR1 + PDR3)n3)

− δ3PDR3 (12)

dPDR5

dt
= α5

(PDR1 + PDR3)n5

(Kn5
5 + (PDR1 + PDR3)n5)

− δ5PDR5 (13)

d(drugint)

dt
= kdiff (drugext − drugint)

− kpumpPDR5drugint
kpump + drugint

, (14)

when it is assumed that the drug enters and leaves the
cell through a combination of passive and active trans-
port, and that the activation of PDR1 by the drug can
be captured by Michaelis-Menten kinetics. Eq. (11) de-
scribes the activation of PDR1 by drugint, where α0 is
the basal rate of transcription and α0 + α1 the maximal
activated rate of transcription. Eqs. (12) and (13) are

the same as those presented in Eqs. (1)-(2). The last
equation, Eq. (14), describes the passive diffusion of the
drug across the cell membrane (1st term on the R.H.S.)
as well as the pumping of the drug out of the cell via
PDR5 (2nd term on the R.H.S.). In Eq. (14), drugext
is the extracellular drug concentration, kdiff the rate of
passive diffusion across the cell membrane, and kpump the
rate of PDR5 mediated drug efflux.
The PDR network model [Eqs. (11)-(14)] can be trans-

lated into the corresponding birth-death processes

� k1−→ PDR1 (15)

� k3−→ PDR3 (16)

� k5−→ PDR5 (17)

PDR1
δ1−→ � (18)

PDR3
δ3−→ � (19)

PDR5
δ5−→ � (20)

� kdrugint−→ drugint (21)

drugint
δdrugint−→ �, (22)

where k1 = α0 + α1drug
n1

int/(K
n1
1 + drugn1

int), k3 =

FIG. 7. Adaptation and fitness (W) facilitated by the PDR5
transcriptional network. (a) Number of cells in the population
has the corresponding PDR5 expression level. Distributions
are shown for the generation prior (dark gray) to drug appli-
cation and 40 generations after (light gray) drug application.
(b) W over 50 generations. Inset shows W at generation 50 for
different rates of PDR5 mediated drug efflux (kpump). Drug
treatment is initiated at the tenth generation. Unless oth-
erwise indicated, parameters were set to: α0 = 1, α1 = 10,
K1 = 1, n1 = 1, α3 = 10, K3 = 1, n3 = 2, α5 = 100,
K5 = 20, n5 = 2, kdiff = 100, kpump = 1, and drugext = 100.
10 realizations of 1000 cells were performed.
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α3(PDR1 + PDR3)n3/(Kn3
3 + (PDR1 + PDR3)n3),

k5 = α5(PDR1+PDR3)n5/(Kn5
5 +(PDR1+PDR3)n5),

kdrugint = kdiffdrugext, and δdrugint = kdiff +
kpumpPDR5/(kpump + drugint). Eqs. (15)-(17) respec-
tively describe the production of PDR1, PDR3, and
PDR5. The degradation of PDR1, PDR3, and PDR5
is described by Eqs. (18)-(20), respectively. The passive
diffusion of the drug into the cell is described by Eq. (21).
The removal of the drug from the cell by both passive
diffusion and pumping is described by Eq. (22). Here we
model cell growth using Eq. (9) and cellular fitness in the
presence of a drug as follows

w(z) = PDR5/(drugint + PDR5). (23)

This equation describes cellular fitness increasing with
increasing PDR5 relative to the intracellular drug con-
centration, and it assumes that there is no fitness cost
associated with maintaining a high level of PDR5.

B. Results and Discussion

In order to investigate if persistent nongenetic drug re-
sistance would develop in the PDR5 transcriptional net-
work model, we tracked cellular and fitness dynamics over
50 generations.
In Fig. 7a, the population PDR5 histogram prior to

drug treatment is shown (generation 9) together with
the population PDR5 histogram after 40 generations of
drug treatment (generation 50). The corresponding mean
PDR5 expression increases three fold upon application
of the drug, in agreement with preliminary experimental
data obtained in our laboratory for budding yeast pop-
ulations after 24 hours of drug (Nocodazole) treatment
(data not shown).
The resulting drug resistance dynamics in Fig. 7b are

similar to those obtained using the minimal model with
a Hill type fitness function (Fig. 6b). Namely, a sta-
ble fraction of reproductively viable cells develops after
about 10 generations of drug treatment. When the rate
of passive diffusion (kdiff ) and extracellular drug concen-
tration (drugext) are changed the level of fitness changes
accordingly. For instance, when kdiff and drugext are
decreased 10 fold, the steady-state W increases to 0.9
(data not shown).
The main difference between the minimal model and

the PDR5 model is the incorporation of negative feed-
back on the activating signal in the latter. In order to
investigate the effects of the negative feedback on fit-
ness, we varied kpump over several orders of magnitude
(inset Fig. 7b). Fitness after 40 generations of drug treat-
ment increased from 0.39 when kpump = 1 to 0.51 when
kpump = 104. As expected, when kpump = 0, W is zero
for all generations subsequent to drug application (data
not shown).
These results demonstrate that the presence of a neg-

ative feedback in a drug-efflux pump network does not
impede the development of persistent nongenetic drug

resistance. Increasing the strength of the negative feed-
back had little effect on the fraction of drug resistant
cells in the population. This is because although PDR5
functions to increase cellular fitness by actively pumping
the drug out of the cell, it also reduces its own activation
by indirectly reducing the activity of PDR1.

IV. CONCLUSION

This study demonstrates how certain transcriptional
regulatory network motifs can facilitate the development
of drug resistance by providing a broader spectrum of
potentially advantageous fitness phenotypes upon which
selection can act, and by enabling the their nongenetic
inheritance to subsequent generations. This is important
because while it is well established that genetic mutations
can cause drug tolerance (e.g., [12, 15, 31, 32, 40]), less
is known about how gene expression noise can influence
drug resistance. Gaining an understanding of the genetic
and nongenetic mechanisms underlying drug resistance,
and in particular multidrug resistance, is critical for deal-
ing with situations ranging from bacterial infections to
cancer.
The results presented in our investigation suggest that

the topology of the PDR5 network may have provided
an evolutionary advantage for yeast cells. This network
topology was found to decrease activation time, increase
relaxation time, and increase noise. It was also able to
buffer against a fluctuating drug environment. Fungal
drug resistance is an especially important issue due to the
limited number of antifungal compounds [22] and the in-
creasing number of immunocompromised patients world-
wide relying on these drugs [28, 39]. Our study provides
novel foundational knowledge on the development of drug
resistance and presents new opportunities to address this
growing problem.
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Chapter 7

Other contributions

In addition to the research presented in this thesis, at the beginning of my PhD I

co-authored a book chapter (my contribution was based in part on my master’s thesis

research):

• Daniel A. Charlebois, Theodore J. Perkins, Mads Kærn. “Stochastic Gene

Expression and the Processing and Propagation of Noisy Signals in Genetic

Networks”, in Information Processing and Biological Systems, A.S. Ribeiro and

S. Niiranen (Eds.), Springer-Verlag, pg. 89-112, ISBN: 978-3-642-19620-1.

During the course of my doctoral studies I contributed to the master’s research of

Mr. Nezar Abdennur, an alumni of Dr. Mads Kærn’s group. The follow manuscript

based on this work is presently in preparation:

• “A general framework for simulating heterogeneous cell populations at single

cell resolution”. Nezar Abdennur, Daniel A. Charlebois, Andrei Anisenia,

Mads Kærn.

In this study, I helped with benchmarking of the algorithm, model development,

and simulations. Specifically, Mr. Abdennur and I developed models of resource
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competition between two cell populations and replicative aging in budding yeast. I

performed the simulations of these models (see Sections 4.2 and 4.3). I also wrote a

draft of the manuscript.

I recently reviewed a book on numerical methods that is to be published in the

near future:

• Review of “Number-Crunching: Taming Unruly Computational Problems from

Mathematical Physics to Science Fiction”, by Paul Nahin. Daniel A. Charlebois,

Physics in Canada, in press.

Finally, my research was presented in poster and oral form at a number of scientific

conferences listed below:

• 3rd Student/Postdoc Poster Day in Computational Biology and Biomedical In-

formatics, October 17, 2013, University of Ottawa, Ottawa, Canada. “Implica-

tions of Gene Network Architecture on Variations in Gene Expression” (poster

presentation). Ian Roney, Daniel A. Charlebois, Mads Kærn.

• 3rd Student/Postdoc Poster Day in Computational Biology and Biomedical

Informatics, October 17, 2013, University of Ottawa, Ottawa, Canada. “Feed-

forward and feedback loop motifs conjoin in PDR5 regulatory network to en-

hance drug resistance in yeast” (poster presentation). Afnan Azizi, Daniel A.

Charlebois, Mads Kærn.

• International Conference on Systems Biology, August 30-September 3, 2013,

Copenhagen, Denmark. “Modeling and Experimental Investigation of the PDR5

Network Architecture and its Effects on Drug Resistance in Yeast” (poster pre-

sentation). Afnan Azizi, Daniel A. Charlebois, Mads Kærn.
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• Institute for Systems Biology Symposium 2013, June 11-12, 2013, Mont Trem-

blant, Canada. “Modeling and Experimental Investigation of the PDR5 Net-

work Architecture and its Effects on Drug Resistance in Yeast” (poster presen-

tation). Afnan Azizi, Daniel A. Charlebois, Mads Kærn.

• Mathematical Tools for Evolutionary Systems Biology, May 26-31, 2013, BIRS,

Banff, Canada. “Modeling & Simulation of Cellular Population Dynamics:

The Case for Noise-Mediated Drug Resistance” (oral presentation). Daniel

A. Charlebois, Mads Kærn.

• 4th IRCM Meeting on Systems Biology, Institut de recherches cliniques de

Montréal, April 2-3, 2013, Montreal, Canada. “PDR5 network architecture

and its effects on drug resistance in yeast” (poster presentation). Afnan Azizi,

Daniel A. Charlebois, Mads Kærn.

• Gordon Research Conference on Stochastic Physics in Biology, January 13-18,

2013, Ventura, USA. “Coloured gene expression noise endows in silico cell popu-

lations with drug resistance independently of mutations” (poster presentation).

Daniel A. Charlebois, Nezar Abdennur, Mads Kærn.

• International Conference on Stochastic Processes in Systems Biology, Genetics

& Evolution, August 21-25, 2012, Rice University, Houston, USA. “Coloured

gene expression noise endows in silico cell populations with drug resistance

independently of mutations” (poster presentation). Daniel A. Charlebois,

Nezar Abdennur, Mads Kærn.

• Cell Symposia: Epigenetics and the Inheritance of Acquired States, October

31-November 2, 2011, Boston, USA. “Coloured gene expression noise endows in

silico cell populations with drug resistance independently of mutations” (poster
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presentation). Daniel A. Charlebois, Nezar Abdennur, Mads Kærn.

• Student/Postdoc Poster Day in Computational Biology and Biomedical Infor-

matics, October 24, 2011, University of Ottawa, Ottawa, Canada. “A frame-

work for individual based simulation of heterogeneous cell populations” (poster

presentation). Nezar Abdennur, Andrei Anisenia, Daniel Charlebois, Mads

Kærn.

• RECOMB 2010: 3rd Annual Joint Conference on Systems Biology, Regula-

tory Genomics and Reverse Engineering Challenges, November 16-20, 2010,

Columbia University, New York, USA. “A framework for ensemble simula-

tions of cell population heterogeneity” (poster presentation). Nezar Abdennur,

Daniel Charlebois, Mads Kærn.
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Conclusion

In theory, theory and practice are the same. In practice, they are not.

- Albert Einstein

My work over the past five years, both as a master’s and a doctoral student under

the supervision of Dr. Mads Kærn, can be divided into two components: 1) the devel-

opment of algorithms to investigate gene expression and cellular population dynamics,

and 2) the application of these tools to investigate the effects of noise and network

topology on the fitness of cell populations under stress. This work has resulted in

novel accurate and efficient cell population simulation frameworks (Chapters 3 and 4)

and has furthered our understanding of the development of epigenetic drug resistance

(Chapters 5 and 6).

8.1 Population Simulation Algorithms

Biological systems are not exempt from the laws of physics. However, biophysics is

much more than doing physics with the names of the variables changed. A model

must account for both the underlying physics and relevant biological features of the
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system under investigation. An accurate mathematical model is a powerful tool that

can lead to a deeper understanding of a system and can be used to perform in silico

experiments when in vivo or in vitro experimentation is not possible due to techno-

logical or other practical constraints. These models can also be used to identify from

the state space of possible wet laboratory experiments the ones most likely to yield

significant results. This is particularly important as experiments in the biological

sciences are often resource intensive. Furthermore, model development is an iterative

process, where the model is refined based on the experimental results, which then

leads to new experiments, and so forth.

The approach used to develop models in this thesis has been, as eloquently stated

by Einstein, that “everything should be made as simple as possible, but not simpler”.

However, even with this in mind, it is astonishing how rapidly a model can become

analytically intractable with the addition of a small amount of biological complexity.

Thus, rather than trying to develop exact analytical solutions for a very limited subset

of possible cases, I developed simulation algorithms that could model the entire cell

populations at the single-cell level with an appropriate degree of biological complexity.

Chapter 3 presents an Accelerated Method for Simulating Population Dynamics.

The AMSPD employs a single time series to simulate the dynamics of every cell in

the population. Simulation results from this algorithm were found to be in good

agreement with those produced using the Population Dynamics Algorithm (devel-

oped and published during my master’s degree and used to perform the simulations

in Chapters 5 and 6 of this thesis), which was previously benchmarked against analyt-

ical solutions 1. The AMPSD algorithm was found to be significantly faster than the

PDA. This is extremely useful as runtimes using the PDA can be extensive. However,

the trade off for the gain in speed is that the AMPSD is valid only when steady-state

1D.A. Charlebois, J. Intosalmi, D. Fraser, M. Kærn. Commun. Comput. Phys., 9:89-112, 2011.
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and symmetric division assumptions hold. The AMSPD is an ideal tool for perform-

ing large parameter scans to identify parameter regimes of interest for more exact

methods, such as the PDA or the object-oriented framework presented in Chapter 4.

Thus, the AMPSD and PDA are tools that a researcher can use together to optimize

the model development and simulation process.

Chapter 4 presents models incorporating the biologically relevant phenomena of

cellular aging and competition that were originally developed as examples for an

object-oriented simulation framework developed by a former master’s student Mr.

Nezar Abdennur 2. This framework allows for cell communication, an important

phenomenon that is difficult to incorporate efficiently in the AMSPD and PDA al-

gorithms due to the parallel nature of their design. The models and simulations

presented exemplified the utility of the object-oriented framework. Furthermore, the

replicative aging example provides a novel mathematical model of this phenomenon

in budding yeast. The numerical results were found to be in qualitative agreement

with experimental observations. Additionally, results from the aging model provide

a concrete example of why the constant-number Monte Carlo method should be used

in population simulations over cell chains when fitness is incorporated into the model.

The results of the cell competition model suggest that a relatively small phenotypic

change in one of the subpopulations can have a significant effect on the composition

of the population and, importantly, allow wild-type cells to outcompete mutant cells.

The synchronous method proved to be particularly suited for simulating cell com-

petition. A potential future application of this framework is to simulate coevolving

populations, for example, the increased exchange of resistance genes between phage

and bacteria in the gut during antibiotic treatment 3.

2N. Abdennur. Master’s thesis, University of Ottawa, 2012.
3S.R. Modi, H.H. Lee, C.S. Spina, J.J. Collins. Nature, 499:219-223, 2013.
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As a result of my graduate research, there are now several new algorithms avail-

able to investigate cell population dynamics. However, there is still a need for a cell

population simulator that can be readily used by other scientists. The AMSPD and

PDA were developed in Fortran and their use requires familiarity with the source

code. Also, extensive modification can be required when a new model is to be simu-

lated. The object-oriented framework presented in Chapter 4 was developed in part

to address these concerns. This framework has now been implemented in the inter-

preted languages of Matlab and Python, but as a result is not sufficiently fast to

perform complex and large scale population simulations. Though using Python does

have certain advantages, namely, it is high-level dynamically typed language which

renders program development and user modification relatively straightforward. We

are presently exploring the possibility of using Cython to develop C extensions to

speedup performance-critical parts. A C++ version of this framework was developed

to decrease runtimes, but still requires extensive customization to handle general

inputs. Since C++ is a low-level statically typed language, the development of a gen-

eral, fast, and user friendly population simulator has proven challenging. This project

is a work in progress and will likely involve the collaboration of several laboratories

as well as professional programmers.

8.2 Epigenetic Drug Resistance

Drug resistance has been recognized as a threat to human health since the early

1940s, and the problem continues to grow and to evolve from one decade into the

next 4. In fact, there are more than 15 classes of antibiotics and none have escaped

the development of a drug resistance mechanism. Not only are many pathogens drug

4S.B. Levy, B. Marshall. Nat. Med., 10:S122-S129, 2004.
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resistant, but they display resistance to multiple drugs. Multiple drug resistance

was first observed among enteric bacteria, namely, Escherichia coli, Shigella and

Salmonella in the late 1950s to early 1960s 5. Since the 1980s, there has been a

re-emergence of tuberculosis that is often multiple drug resistant 6. Furthermore,

the intensive use of antibiotics (which was estimated in 2002 to be 100,000-200,000

tonnes per annum worldwide 7 and which is, in total, well over 1 million tonnes since

the 1940s 8) has dramatically increased the frequency of resistance among human

pathogens and threatens a loss of therapeutic options and a post-antibiotic era in

which the medical advances to date are negated 9. To successfully deal with drug

resistance, we first need to understand all the underlying mechanisms, genetic and

epigenetic, the latter of which is just beginning to come to light. This is the motivation

behind the work presented in Chapters 5 and 6.

Chapter 5 presents a framework for modeling the effect of stress on the fitness of a

noisy cell population as a first-passage problem. This study generalized previous work

by incorporating the timescale of gene expression fluctuations. We demonstrated in

silico that even relatively short-lived expression fluctuations can ensure the long-term

survival of a drug resistant cell population. The range of values of the relaxation time

parameter over which this survival occurred was in agreement with experimentally

determined values in human lung cancer genes 10, which suggests that this novel

nongenetic drug resistance mechanism could occur in natural systems. The goal is now

to verify the model experimentally. However, there are challenges to investigating this

in living cells. In particular, it is difficult to differentiate noise induced drug resistance

5S.B. Levy. Clin. Infect. Dis., 33:S124-S129, 2001.
6B.R. Bloom, C.J.L. Murray. Science, 257:1055-1064, 1992.
7R. Wise. J. Antimicrob. Chemother., 49:585-586, 2002.
8D.I. Andersson, D. Hughes. Nat. Rev. Microbiol., 8:260-271, 2010.
9D.R. Guay. Drugs, 68:1169-1205, 2008.

10A. Sigal, R. Milo, A. Cohen, N. Geva-Zatorsky, et al. Nature, 444:643-646, 2008.
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from a sense-response mechanism (in which a gene regulatory network responds by

changing expression levels to a particular environmental stimulus). One possibility is

to use single-cell imaging to distinguish between cells that survive a drug by activating

a sense-response pathway, and highly expressing cells that have sufficient nongenetic

memory and can stay above a critical protein threshold long enough to reproduce and

contribute to the fitness of the cell population. Of course, it is also entirely possible

that these two mechanisms act in combination. Future work for theoreticians includes

deriving expressions for the probability and FPT distributions required for working

analytically with our model. At present, these expressions are only available for the

most simplistic cases.

Chapter 6 presents an investigation of the role that the topology of a gene regula-

tory network can play in the development of drug resistance. Here, we demonstrate

that transcriptional regulation by feedforward and positive feedback loops can en-

hance drug resistance by increasing cell-to-cell variability in gene expression, and

by enabling prolonged activation of gene expression in response to transient signals.

These results further highlight how mechanisms enabling transient, nongenetic in-

heritance may play important roles in defining the effectiveness of drug treatment.

Additionally, we performed the first mathematical modeling and simulation of the

PDR5 transcriptional network, known to confer resistance to multiple drugs in Sac-

charomyces cerevisiae, despite decades of experimental research. The PDR5 gene is

of particular significance because the overexpression of drug efflux pumps belonging

to the same ABC transporter protein family in Candida albicans 11 and Candida

glabrata 12, and cancers 13 are respectively known to confer drug resistance to an-

tibiotics and chemotherapy. In agreement with what is known experimentally, up-

11K. Izumikawa, H. Kakeya, H.F. Tsai, B. Grimberg, et al. Yeast, 20:249-261, 2003.
12D. Sanglard, F.C. Odds. Lancet Infect. Dis., 2:73-85, 2002.
13B.E. Bauer, K. Kuchler, H. Wolfger. Biochimica et Biophysica Acta, 1461:217-236, 1999.
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regulation of PDR5 expression and drug resistance were observed in our simulations.

The mathematical model should have other applications considering that the same

network topology is also found in the human pathogenic fungi Candida albicans and

Candida glabrata. I am presently collaborating with experimentalists in the labora-

tories of Dr. Mads Kærn and Dr. Gábor Bálazsi to use the modeling and simulation

results to propose and direct experiments, and in turn obtain experimental data to

refine and validate the models. This research will set the stage for studies in hu-

man cells, where the expression of ABC transporters is immensely complicated and

currently not as amenable to the same level of quantitative analysis.

8.3 Final Thoughts

It has been known since as early as 1976 that bacterial cells grown in homogeneous

conditions can display differences in phenotype that persist over their lifespans 14.

Our understanding of the origins and consequences of stochasticity in gene expres-

sion have advanced significantly since then. This advancement has been fueled by

theoretical developments enabling biological hypothesis formulation using stochastic

process and dynamical systems theory, as well as experimental breakthroughs in mea-

surements of gene expression at the single cell level 15. These advances have provided

incontrovertible proof that there are important endogenous sources of stochasticity

that drive biological processes 16.

Noise induced cellular heterogeneity has typically been ignored by molecular biol-

ogists 17. In this thesis we have seen that noise can be more than just a nuisance and

14J.L. Spudich, D.E. Koshland. Nature, 262:467-471, 1976.
15M. Scott, B. Ingalls, M. Kærn. Chaos, 16:026107, 2006.
16M.S. Samoilov, G. Price, A.P. Arkin. Sci. STKE, 366:re17, 2006.
17S. Huang. Development, 136:3853-3862, 2009.
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may be beneficial to cell populations under stress. There however is still much work

to be done and many open questions: Could noise be used to fight disease, since after

all, there is a fitness cost that a noisy diseased cell population must pay for the cells

that deviate from the fitness optimum? What definition of fitness should we be using

as reproductive fitness does not account for persister cells? Have we now come full

circle since Darwin? That is, from heritable variation being required for evolution by

natural selection, to an unwavering focus on mutations since the discovery of Wat-

son and Crick, back to a more general definition of heritable variation that includes

genetic and epigenetic mechanisms?

Stuart Kauffman told me when I started research in this field as an undergraduate

seven years ago, that life exists at the boundary of order and chaos, that way it can

function while still being able to adapt. The truth of this statement has never been

more evident, as gene expression has been shown to be a stochastic, though far

from a completely random process. This allows cells to meander around the fitness

landscape, better positioning some of them for future environmental assaults, while

others benefit the population by remaining close to the fitness optimum of the present

environment.
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Figure 1 The accelerated method for simulating population dynamics (AM-
SPD) algorithm. (a) Schematic showing how individual cells are simulated
by the AMPSD algorithm. After the cells are randomly assigned positions
on the time series (black dot), their positions are incremented until the end
of the sampling interval tsample is reached (black square). If a reproductive
stress is not incorporated into the simulations, then mother cells simply re-
produce at a specified rate. However, if the fitness of the cells depends on
the level of a particular biochemical variable, then cells can only reproduce
if this variable remains above a specified threshold. For instance, in region I,
the gene expression value x cell remains above a critical threshold xc during
the sampling interval and therefore is able to reproduce during the entire in-
terval. In region II, the gene expression value of the cell falls below xc and is
therefore flagged and unable to reproduce after this point. (b) Flow diagram
of the AMSPD algorithm presented in the main text for AMSPD variable
and parameter descriptions).
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Figure 2 Comparison of accuracy and performance of the AMSPD algo-
rithm and PDA (Charlebois et al., Commun. Comput. Phys., 9, 1, 2011)
for a birth-death model of gene expression. Panels (a) - (c) correspond to
simulation results for volume independent cell division and (d) - (f) volume
dependent cell division. (a) and (d) show the average steady-state protein
numbers and concentrations, respectively, as a function of the rate of protein
production kP for the AMSPD algorithm (gray) and the PDA (black). (b)
and (e) show the runtime of the AMSPD simulation. (c) and (f) show the
speedup of the AMSPD algorithm, when compared to the runtime of the
PDA, as a function of the rate of protein production kP . Gray x’s in (b) and
(e), and in (c) and (f), are the results obtained when the time to produce
the gene expression time series is incorporated into the AMSPD’s runtime
and the speedup calculation, respectively. Black dots in (b) and (e), and
in (c) and (f), are the results obtained when the time to produce the gene
expression time series is not incorporated into the AMSPD’s runtime and the
speedup calculation, respectively. Simulations were started from steady-state
(ps = kP/δP ), the initial time since last division div drawn from a uniform
distribution [0,div], and the protein time series generated by the AMPSD al-
gorithm contained 104 values. The parameters were set to δP = 0.01, ε = 10,
divc = 100, and tend = 1000.
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Figure 3 Comparison of accuracy and performance of the AMSPD algo-
rithm and PDA (Charlebois et al., Commun. Comput. Phys., 9, 1, 2011) for
a two-step model of gene expression. Panels (a) - (d) correspond to simulation
results for volume independent cell division and (e) - (h) volume dependent
cell division. (a) and (e) show the steady-state mRNA numbers and con-
centrations, respectively, as a function of the rate of mRNA production kM
for the AMSPD algorithm (gray) and the PDA (black). (b) and (f) show
the average steady-state protein numbers and concentrations, respectively,
as a function of the rate of protein production kP for the AMSPD algorithm
(gray) and the PDA (black). (c) and (g) show the runtime of the AMSPD
simulation. (d) and (h) show the speedup of the AMSPD algorithm, when
compared to the runtime of the PDA, as a function of the rate of protein
production kP . Gray x’s in (c) and (g), and in (d) and (h), are the results
obtained when the time to produce the gene expression time series is incorpo-
rated into the AMSPD’s runtime and the speedup calculation, respectively.
Black dots in (c) and (g), and in (d) and (h), are the results obtained when
the time to produce the gene expression time series is not incorporated into
the AMSPD’s runtime and the speedup calculation, respectively. Simula-
tions were started from steady-state (M s = kM/δM and P s = kMkP/δMδP ),
the initial time since last division div drawn from a uniform distribution
[0,div], and the protein time series generated by the AMPSD algorithm con-
tained 104 values. The parameters were set to kM = 1 (when kP was varied),
kP = 1 (when kM was varied), δM = 0.1, δP = 0.01, ε = 10, divc = 100, and
tend = 1000.
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Figure 4 Comparison of accuracy of the AMSPD algorithm (gray) and
PDA (black) (Charlebois et al., Commun. Comput. Phys., 9, 1, 2011) for
a model capturing the effect of non-genetic memory τ on drug resistance
at various timescales (Charlebois et al., Phys. Rev. Lett., 107, 218101,
2011). The reproductive fitness of the cell population (macrofitness) W as
a function of generation is plotted for various values of τ . Simulations were
started from the steady-state Ornstein-Uhlenbeck distribution (with mean
µ = 0 and variance σ2 = cτ/2 = 1), the initial time since last division div
was drawn from a uniform distribution [0,div], and the protein time series
generated by the AMPSD algorithm contained 106 values. The parameters
were set to ε = 1 and divc = 1, and scaled by divc. The threshold below
which cells were unable to reproduce xc was set to µ.
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Figure 5 Experimental data demonstrating the dependence of cell volume
on the number of cell divisions accomplished by mother yeast cells for a “wild-
type” yeast strain (BY4741) and a mutant yeast strain (∆prx) deficient in an
antioxidant defense protein. Error bars indicate standard deviation. Figure
used by permission from Springer: Biogerontology 10: 481-488, copyright
2009.
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Figure 6 Coherent feedforward networks enable fast and prolonged activa-
tion. (a) Response time tON (time for z to reach 50% of steady-state level) for
the DA, FFL, and FFL+PFL networks as a function of an activating signal
x. (b) Relaxation time tOFF (time for z to fall to 50% of steady-state level)
for the same network motifs considered in (a) as a function of x. Parameters
were set to: α = 10, n = 2, and K = 1.
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Figure 7 Response of z to a fluctuating upstream activating signal. (a)
The mean of z (µz) is shown for the DA, FFL, and FFL+PFL networks as
a function of the ON-OFF switching frequency of x (Ωx). (b) The standard
deviation of z (σz) is shown for the same network motifs considered in (a)
as a function of Ωx. (c) z as a function of a randomly fluctuating Ωx (dark
gray rectangles denote presence of an activating signal) for the same network
motifs considered in (a). Parameters were set to: xON = 5, xOFF = 0,
α = 10, n = 2, K = 1.
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Figure 8 Coherent feedforward networks increase noise and relaxation time.
(a) The noise in z (ηz) for the DA, FFL, and FFL+PFL networks as a function
of the mean level of z (µz). (b) The relaxation times for z (τz) for the same
network motifs considered in (a) as a function of an activating signal x.
Parameters were set to: α = 10, n = 2, K = 10. 10 realization for 103

arbitrary time units were performed. Error bars show standard deviation.
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Figure 9 Effect of network topology and fitness threshold on reproductive
fitness (W). W for each of the DA, FFL, and FFL+PFL populations over 50
generations. Drug treatment is initiated at the tenth generation. (a) Popu-
lation simulations using a step fitness function. (b) Population simulations
performed using a Hill type fitness function. Parameters were set to: x = 1,
αy = 10, αz = 100, K = 1, and n = 2. In (a) zc = 35 and in (b) Kw = 35,
and nw = 2. 10 realizations of 1000 cells were performed. Error bars show
standard deviation.
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Figure 10 Adaptation and fitness (W) facilitated by the PDR5 transcrip-
tional network. (a) Number of cells in the population has the corresponding
PDR5 expression level. Distributions are shown for the generation prior
(dark gray) to drug application and 40 generations after (light gray) drug
application. (b) W over 50 generations. Inset shows W at generation 50
for different rates of PDR5 mediated drug efflux (kpump). Drug treatment
is initiated at the tenth generation. Unless otherwise indicated, parameters
were set to: α0 = 1, α1 = 10, K1 = 1, n1 = 1, α3 = 10, K3 = 1, n3 = 2,
α5 = 100, K5 = 20, n5 = 2, kdiff = 100, kpump = 1, and drugext = 100. 10
realizations of 1000 cells were performed.
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