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Effect and evolution of gene expression noise on the fitness landscape
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Gene expression is a stochastic process that affects cellular and population fitness. Noise in gene expression
can enhance fitness by increasing cell to cell variability as well as the time cells spend in favorable expression
states. Using a stochastic model of gene expression together with a fitness function that incorporates the costs
and benefits of gene expression in a stressful environment, we show that the fitness landscape is shaped by
gene expression noise in more complex ways than previously anticipated. We find that mutations modulating
the properties of expression noise enable cell populations to optimize their position on the fitness landscape.
Additionally, we find that low levels of expression noise evolve under conditions where the fitness benefits of
expression exceed the fitness costs, and that high levels of expression noise evolve when the expression costs
exceed the fitness benefits. The results presented in this study expand our understanding of the interplay between
stochastic gene expression and fitness in selective environments.
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I. INTRODUCTION

Gene expression is a process fundamental to life in which
information encoded in the DNA is processed by the machinery
of the cell to produce RNA and protein [1]. This process
is stochastic (or noisy) and can introduce significant cell to
cell variation in a population of genetically identical cells
in a homogenous environment [2–4]. Gene expression noise
can be characterized by the distribution of protein levels in
individual cells and by the time scale or frequency of the
fluctuations [2,5]. Importantly, this nongenetic variation can
act as a temporary substrate for natural selection by expanding
the range of phenotypes for a given genotype and can increase
the fitness of a cell population [6–8].

Previously, a first-passage time framework was developed
to model the effect of stress on the reproductive fitness of
noisy cell populations [5]. Using this framework, it was
demonstrated in the same study that long-term drug resistance
could emerge independently of mutation, from fluctuations in
gene expression of comparable time scales to those observed in
human lung cancer cells. Although the theoretical framework
proposed in Ref. [5] is general, to enable analytic solution the
fitness function was assumed to be a Heaviside step function
where each cell of a given population was either fit (able
to divide) or unfit (no longer able to divide or change its
expression level) depending on the level of expression, and did
not incorporate expression-related fitness costs [9–13]. This
resulted in population fitness (growth rate) being independent
of gene expression noise (standard deviation divided by
the mean) and monotonically increasing with nongenetic
memory (relaxation time scale of the fluctuation), when the
step fitness function was applied at the mean level of gene
expression. The effect of expression noise on fitness when
more biologically realistic fitness functions are considered
remains to be investigated.

The cost of gene expression should be incorporated into cel-
lular and population-level models of stress resistance. A recent
study identified environmental conditions that defined a “sweet
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spot” of drug resistance that maximized the overall fitness of
the cell population [10]. In these experiments, the budding
yeast Saccharomyces cerevisiae was genetically engineered to
contain an inducible positive feedback network that controlled
the expression of an antibiotic resistance protein. Fitness was
maximized at certain concentrations of inducer and drug.
When the concentration of inducer was either too low or too
high, then the cells would succumb to an insufficient level of
resistance protein or to toxicity costs, respectively. Similarly, a
cost-benefit relationship has been observed in Escherichia coli,
where growth in antibiotics was optimized when the multiple
antibiotic resistance promoter was moderately induced [14].
Even in the absence of drugs, microorganisms have been
observed to evolve optimal expression levels that maximize
growth (e.g., E. coli growing in different lactose environments
[15]).

Natural selection may act to tune gene expression noise. The
expression of genes encoding essential and complex-forming
proteins [16,17], as well as proteasomal proteins [18], in bud-
ding yeast involves lower noise than most other budding yeast
genes. In contrast, gene expression in budding yeast associated
with stress response, heat shock, and amino acid synthesis has
been found to have elevated levels of noise [17,18]. In Ref.
[19], mutations introduced in a promoter driving the expression
of an antibiotic resistance gene increased expression noise. The
high-noise strain was found to have increased fitness under
high concentrations of an acutely applied antibiotic compared
to the low-noise strain with no mutations (and vice versa when
antibiotic concentration was low). In light of these findings,
it has been suggested that strong selective pressure selects for
high noise whereas low selective pressure selects for low noise
[2,20]. To develop a more comprehensive understanding of
how gene expression noise may evolve to optimize fitness,
investigations within a cost-benefit framework and in the
context of prolonged stress are imperative.

Fitness landscapes have long been used to visualize the ef-
fect of genetic factors on fitness (introduced by Wright in 1932
[21]). Traditionally, in a three-dimensional representation, the
X and Y axes represent genotypes or allele frequencies, and the
Z axis population fitness. The topography of a fitness landscape
is important as it contains key information on the potential
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behaviors of the cell [22]. In the present work, we employ
fitness landscapes to represent the effect of gene expression
noise on population fitness.

The present work investigates the evolution of both gene
expression noise magnitude and relaxation time. Previously,
it was shown that expression relaxation time (average time
for a fluctuation in gene expression level to dissipate back to
the mean) can increase the probability of acquiring a drug
resistance mutation [5]. However, in that study expression
noise magnitude and relaxation time were fixed in the
simulations. The effect of noise properties on the fitness
landscape for different gene expression cost-benefit scenarios
has also not been considered in prior work. Instead, either a
step-like fitness function was used and the costs associated
with the expression of a stress resistance gene were ignored
[5,23], or a cost-benefit fitness function was employed but
the effect of noise magnitude and relaxation time on the
fitness landscape was not explicitly considered [10]. Kaneko
[24] simulated a simple stochastic gene expression network
undergoing mutation and selection to study the conditions
under which genetic and nongenetic robustness increase to
maintain a high-fitness state. In contrast, here we consider how
genetic and nongenetic effects shape the fitness landscape and
show that noise magnitude and relaxation time can evolve to
attain an optimal phenotype in different cost-benefit scenarios.

II. MODELING AND SIMULATION

A. Cellular and population fitness

The phenomenological model for microscopic or cellular
fitness w was inspired by Nevozhay et al. [10]:

w(x) = αn
c

αn
c + xn

xn

αn
b + xn

, (1)

where the first and second terms on the right-hand side
respectively describe the cost and benefit of expressing the
stress resistance protein x in a stressful environment. When
there is no cost to gene expression, w is modeled using only
the benefit term. αc is a constant that describes the metabolic
cost or toxicity of expressing x (the lower αc the higher the
expression cost), αb is a constant that is related to the level
of stress resistance provided by x (the lower αb the higher
the expression benefit), and n is the Hill coefficient. Unless
otherwise indicated, αc = 2.3 for no-cost expression, αc = 1.2
for low-cost expression, αc = 1 for high-cost expression, and
n = 40 and αb = 1 for all three cases. The αc and αb values
were normalized by the mean level of gene expression. The
high n value was used in order to obtain sufficiently steep
sigmoidal and narrow bell-shaped fitness functions such that a
wide range of different fitness scenarios could be investigated
and compared (alternatively, we could have used a fitness
function with a lower value of n imposed on wider gene
expression distributions), including scenarios from previous
work that employed a Heaviside step fitness function [5]. The
resulting cellular fitness function is a sigmoidal function that
saturates when x is high when there is no cost associated with
gene expression [Fig. 1(a)]. When there is a gene expression
cost then w takes on a bell shape, with a higher maximum
fitness and increased width when the expression cost is low

[Fig. 1(b)] compared to when the expression cost is high
[Fig. 1(c)].

Macroscopic or population-level fitness W is described
by the number of cell divisions that occur during a given
generation

W = Ndiv

Ncell
, (2)

where Ndiv is the number of division events and Ncell is the
number of cells in the population fixed by the constant-number
Monte Carlo method (see Sec. II B and Refs. [5,25,26]). All
the cells in the population divide during a given generation
when W = 1, and no cells divide when W = 0.

B. Gene expression, population dynamics, and mutation

We use the Ornstein-Uhlenbeck (OU) process (originally
used to describe a particle in Brownian motion [27]) to model
gene expression generally [5,28]. The OU process can be
described by the Langevin equation

dx(t)

dt
= 1

τ
[μ − x(t)] + c1/2ξt , (3)

where c and τ are the diffusion constant and the relaxation
time, respectively, and ξt is Gaussian white noise (〈ξt 〉 = 0,
〈ξt ξt ′ 〉 = δ(t − t ′)) [27]. The steady-state probability density
function of the OU process is a Gaussian distribution with
mean μ (set to μ = 1000) and variance σ 2 = cτ/2 [thus
gene expression noise is given by η = √

(cτ/2μ2)]. The OU
process was simulated using an exact numerical simulation
method [Figs. 1(d)–1(f)] [29].

To perform the population-level simulations at a single-cell
resolution, we use a population dynamics algorithm [25].
This algorithm combines a method to simulate the gene
expression in each cell [here the numerical simulation of OU
process described by Eq. (3)] and a constant-number Monte
Carlo approach (originally developed to model particulate
processes [30]), which restores the population size to Ncell by
randomly selecting mother and daughter cells at the end of each
generation, to accurately simulate the statistical characteristics
of a growing cell population. Simulations were initialized by
drawing the initial values of the cell cycle clock from a uniform
distribution [0,tD], where the time to next cell division, tdiv,
is given by tD/w(x), where tD is the cell division time in
absence of selection. The cell cycle clock is reset to zero and
x is partitioned equally between the daughter cells at each cell
division. All time scales in this study are reported with respect
to tD , which is set to unit time. All simulation results were
obtained from 20 realizations of 1000 cells.

In order to model the effect of mutation on gene expression
noise and fitness in Sec. III B, we assigned a probability Pm

of changing parameters c or τ to the daughter cells at each
cell division event. Here, Pm accounts for mutations that can
occur when DNA is not copied correctly as well as other
sources of mutation [31]. In these simulations, the initial values
of c and τ for all the cells in the population were chosen
randomly from a uniform distribution and were allowed to
mutate at a rate of 5 × 10−3 per genome per division [32]
over 1000 generations. We note that the basal mutation rate
of stable genomes is estimated to be 10−10 per base pair per
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FIG. 1. (Color online) Fitness function describing the cost and benefit of expressing a stress resistance protein. Top row panels show
cellular fitness (w) as a function of expression level (x) for (a) no-cost, (b) low-cost, and (c) high-cost gene expression. Black lines represent
expression cost, blue (gray) lines expression benefit, and dashed red (gray) lines the resulting cellular fitness. Bottom row panels correspond
to the top row panel above them (in terms of the fitness function and gene expression cost and benefit) and show expression time series for low
(η = 0.03, τ = 10, and c = 200: black lines and histograms) and high (η = 0.1, τ = 100, and c = 200: gray lines and histograms) expression
noise (η) and corresponding histograms depict the probability that a cell will have a given x.

cell generation [33]. However, in certain conditions the rate of
mutation can increase significantly [34]. Hypermutation has
been observed in E. coli [35] and murine cells [36] resulting
in a mutation rate hundreds and tens of thousands of times
the basal mutation rate, respectively. The high mutation rate
used in our study was to render the stochastic simulations
feasible by shorting transient times to steady state, and it has
been assumed that mutation in multiple genes in the genome
affects the expression of the drug resistance gene (increasing
the effective mutation rate); no qualitative difference in the
results was observed when compared to simulations performed
using mutation rates of up to two orders of magnitude higher
(data not shown).

III. RESULTS AND DISCUSSION

A. Gene expression noise shapes the fitness landscape

We begin by generating the fitness landscape corresponding
to a model of cellular fitness w that does not consider the
metabolic or toxicity cost of protein production. In this model,
w is described by a step fitness function where cells cease to
divide and are unable to change their protein level x if it falls
below a critical threshold xc (set to μ) [5]. The result in this case
is that population fitness W is independent of gene expression
noise η and increases monotonically with relaxation time τ

(Fig. 2, left) [5,23]. When xc is increased above μ, W increases
monotonically with both η and τ (Fig. 2, center and right). As

expected, in this scenario W decreases for all values of η and
τ as xc is increased (Fig. 2).

When w is modeled using the cost-benefit fitness function
[Eq. (1)], and individual cells are allowed to recover from
low levels of w by changing x, the η-τ fitness landscapes
corresponding to no-cost, low-cost, and high-cost expression
differ qualitatively from previous work (Fig. 2, left) and each
another (Fig. 3).

Population fitness increases with η and very slightly with τ

when there is no cost to expressing a resistance conferring
protein (Fig. 3, left). For a low cost of resistance protein
expression, there is a fitness peak similar to that found in Ref.
[10] at around η = 0.2, and fitness maxima for low values of
τ (Fig. 3, center). In this case, high relaxation time values
are detrimental to fitness when η > 0.2. When the cost of
resistance protein expression is high, the fitness landscape is
flat except for a small fitness increase when the values of η

and τ are low (Fig. 3, right). The fitness landscapes are largely
unaffected by the relaxation time except at low values of τ

(high frequency gene expression fluctuations). As expected,
overall the population fitness values for a given combination
of η and τ decrease as the cost of expressing the resistance
protein increases (Fig. 3).

These results demonstrate that the relationship between
η, τ , and W can differ significantly from a monotonically
increasing fitness function when a cost-benefit fitness function
is incorporated. In agreement with previous work [5], the
monotonic fitness landscape is recovered in all cases when
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FIG. 2. (Color online) Fitness landscapes generated using a step fitness function. Left: population fitness (W ) after 10 generations (10tD)
of exposure to a stressful environment as a function of noise magnitude (η) and relaxation time (τ ) when the critical threshold step-fitness
function (xc) is set to the mean expression level (μ = 1000). Similarly, center and right panels show W when xc is set to values above μ

(xc = 1200 and xc = 2300, respectively). Left panel was first published in Ref. [23].

fitness is modeled using a critical fitness threshold function
(data not shown).

B. Evolving gene expression noise to maximize fitness

When random mutations affecting η and τ were incorpo-
rated into the simulations, the population evolved to maximize
fitness (Fig. 4). When the cost of gene expression was low and
the initial values of η and τ were such that fitness was not
optimal, the average values of η and τ across the population
continued to change until the population occupied a peak on
the fitness landscape. Once the values of η and τ were such
that the population occupied a region of maximum fitness
on the landscape, the population remained in this region for
the duration of the simulation. Similar results were found
when there was no cost and a high cost associated with gene

expression (data not shown). These results suggest that cell
populations may evolve by mutations that tune gene expression
noise magnitude and relaxation time to optimize population
fitness.

In order to investigate if cell populations will evolve high
levels of gene expression noise when the selection threshold
is high (and vice versa when the selection threshold is low),
we obtained the average η for populations with various values
of expression cost (αc) and benefit (αb) parameters after many
generations of stress exposure, both with and without mutation
in parameters affecting η (Fig. 5). Without mutation, the
landscape was rugged with the level of η randomly distributed
for the various combinations of αc and αb (Fig. 5, left). The
random pattern occurred in this case because the initial c and
τ values for each realization of a particular combination of αc

FIG. 3. (Color online) Fitness landscapes generated using a cost-benefit fitness function. Population fitness (W ) after 10 generations (10tD)
is shown as a function of gene expression noise (η) and relaxation time (τ ) for no-cost (left), low-cost (center), and high-cost (right) gene
expression.
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FIG. 4. (Color) Mutation of gene expression noise magnitude and relaxation time parameters optimizes stress resistance on the fitness
landscape. The heat map for low-cost gene expression shows how population fitness (W ) (value indicated by the color bar) depends on gene
expression noise (η) and relaxation time (τ ). The open circle and arrow respectively represent the initial position (80.0,0.800) and final position
(60.1,0.0963) of the trajectory of a representative population that evolved over 1000 generations on the fitness landscape.

FIG. 5. (Color) Evolution of gene expression noise when fitness costs and benefits are considered. The heat map shows the final level of
gene expression noise (η) after 1000 generations of stress exposure without mutation (left) and with mutation (right) for various values of
cost (αc) and benefit (αb) parameters (higher values of αc and αb respectively represent lower fitness costs and benefits of expressing a stress
resistance gene). The color bars indicate the level of η.

022713-5



DANIEL A. CHARLEBOIS PHYSICAL REVIEW E 92, 022713 (2015)

and αb were drawn from a random distribution and not allowed
to mutate. Interestingly, when mutation was permitted, lower
levels of η evolved when αc exceeded αb (Fig. 5, right). Recall
that in the present model higher αb (or lower αc) values are
indicative of higher levels of selection, as cellular fitness is
decreased if αb is increased (or αc is decreased) for the same
level of gene expression. Therefore, these simulation results
confirm that lower expression noise will evolve under a low
selection threshold and that higher expression noise will evolve
under a high selection threshold (Fig. 5, right) [2,20], when
the costs and benefits as well as the relaxation time of gene
expression are considered.

IV. CONCLUSION

In this study, we relaxed the assumptions made previously
[5] by using a fitness function that accounts for the costs
and benefits of expressing a resistance protein to study how
population fitness depends on both gene expression noise
magnitude and relaxation time. To investigate the evolution of
gene expression noise in the context of a stressful environment,
we allowed the expression noise properties of the cell to mutate
under selective pressure for different cost-benefit scenarios.

The relationship between gene expression noise and popu-
lation fitness turned out to be more complex than previously
described [5,23]. The use of a more biologically realistic
cost-benefit fitness function resulted in fitness landscapes
where the topology depended on both noise magnitude and the
fluctuation time scale, as well as the expression-related fitness
cost. The fitness landscape was shaped by the properties of
gene expression noise such that, depending on the cost of gene
expression, fitness peaks as well as plateaus defined the fitness
landscape.

Natural selection may act on random mutations to tune
noise frequency as well as noise magnitude to maximize
population fitness. The in silico cell populations in our study
evolved to occupy the plateaus and peaks of the fitness
landscapes under random mutation that modulated noise
properties. The topology of a gene regulatory network may
in fact be subject to selection in this context, as network
topology has been shown to modulate gene expression noise
and relaxation time [26,37–39].

We found that lower gene expression noise evolved
when the fitness benefits of gene expression exceeded the
fitness costs. The explanation for this phenomenon in our
model is that when expression benefits exceeded expression
costs, population fitness was maximized when the constituent
cells minimized expression noise by expressing around a
narrow optimum level of gene expression. There are many
scenarios where low levels of gene expression noise are
beneficial, including bacterial persistence against antibiotics
[9,40], bacterial competence under nutrient limitation [41,42],
and the coordination of multiple downstream stress response
mechanisms [43]. Conversely, when the expression costs
exceeded the benefits there was no longer a level of expression
that significantly enhanced fitness, and as a result there was no
selective pressure to minimize gene expression noise. The lat-
ter scenario, though possible in certain cases (e.g., phenotype
switching in fluctuating environments [44,45]), will be se-
lected against in a constant environment of sufficient duration.

Due to the general nature of the model of gene expression
and the fitness function, we anticipate that our findings will
apply to other cases of cell populations under stress. It
would be interesting to investigate, for example, how the
costs and benefits of noisy heat-shock protein expression [17]
in selective high temperature environments impact cellular
fitness, or the specific genetic and nongenetic contributions
to the evolution of phenotypic variance [24] when both
gene expression noise magnitude and frequency are explicitly
considered.

The hypotheses advanced in this study as well as in
previous work [5,26] are under experimental investigation.
Presently, we are evolving synthetic gene regulatory networks
that control inducible drug resistance genes in budding yeast
to better understand how mutation affects gene regulatory
network dynamics and the development of drug resistance.
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