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Coherent feedforward transcriptional regulatory motifs enhance drug resistance
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Fluctuations in gene expression give identical cells access to a spectrum of phenotypes that can serve as
a transient, nongenetic basis for natural selection by temporarily increasing drug resistance. In this study, we
demonstrate using mathematical modeling and simulation that certain gene regulatory network motifs, specifically
coherent feedforward loop motifs, can facilitate the development of nongenetic resistance by increasing cell-to-
cell variability and the time scale at which beneficial phenotypic states can be maintained. Our results highlight
how regulatory network motifs enabling transient, nongenetic inheritance play an important role in defining
reproductive fitness in adverse environments and provide a selective advantage subject to evolutionary pressure.
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I. INTRODUCTION

Gene expression is a stochastic process that enables ge-
netically identical cells to exhibit phenotypic variation [1–4].
This noise-induced phenotypic variability can provide a fitness
advantage in clonal cell populations experiencing the same
drug environment [5–8]. This phenomenon may contribute to
limiting the efficacy of drug therapy, including those used to
treat disease caused by uncontrolled proliferation in bacterial
infections [9] and cancer [10].

It was recently argued by Brock et al. [10] that gene
expression noise may result in enduring and transiently
heritable phenotypes that accelerate tumor progression by
contributing to the development of drug-resistant cancer cells.
In this hypothesis, phenotypic variability arising from noisy
expression of a drug resistance gene allows some cells to
develop a temporary insensitivity, which in turn increases
the probability that a mutation conferring permanent drug
immunity is acquired.

In a previous study, we investigated the effect of gene
expression noise on the reproductive fitness of isogenic cell
populations under stress as a first-passage time problem [11].
This study generalized and expanded previous theoretical work
that explained the acute effects of drug exposure [6–8], and
considered the interplay between the fluctuation amplitude
and the fluctuation frequency in defining the long-term impact
of gene expression noise. To analyze the problem in general
terms, we used the Ornstein-Uhlenbeck process [12] to model
gene expression in individual cells. This analysis revealed
that the fluctuation time scale of gene expression noise is a
critical parameter in determining long-term survival, and that
time scales comparable to those measured in human cancer
cells [13] allow for the emergence of permanent drug resistance
independently of mutations [11].

Here, we investigate how the architecture of transcriptional
regulatory networks can impact the development of drug
resistance. This analysis is inspired by a relatively well-
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characterized network, the pleiotropic drug resistance (PDR)
network, that provides budding yeast Saccharomyces cere-
visiae with resistance to a broad range of drugs, and confers a
drug resistance phenotype similar to that of mammalian cells
by regulating the expression of ATP binding cassette (ABC)
transporter genes [14]. These highly conserved genes represent
the largest class of transmembrane efflux pumps responsible
for multidrug resistance in microbes [15], fungi [14,16], and
cancer cells [17–19]. Notably, resistance to chemotherapeutic
drugs has been correlated to the expression of ABC transporter
genes in tumors [18,19] and human breast cancer cells [20],
and the pumps are the target of several anticancer drugs [21].

Among the 16 ABC transporter genes found in budding
yeast, the pump encoded by the PDR5 gene plays several
particularly important roles in cellular detoxification [22–24].
In addition to removing a broad range of structurally unrelated
antibiotics from the cell, the PDR5 protein also exports toxic
metabolites that accumulate during growth, and transports
steroids phospholipids across the plasma membrane (see [25]
for a review). PDR5 is also of particular interest with respect
to fungal infections and cancers because the overexpression
of drug efflux pumps belonging to the same ABC superfamily
confer resistance to antibiotics in pathogenic fungi [16,26] and
resistance to chemotherapy in cancerous tumors [17].

Coherent feedforward loop (FFL) motifs are ubiquitous
in gene regulatory and human signaling networks [27,28]
and could play important roles in the development of drug
resistance. In this motif, an upstream regulatory factor
activates the expression of a downstream gene directly and
indirectly through a second regulator. In cases where the two
regulators have redundant or partially overlapping functions,
the coherent FFL naturally has a positive feedback loop (PFL)
nested within it.

This combination of a coherent FFL and a PFL, hereafter
denoted FFL + PFL, forms a core component of the PDR
network and arises from the regulation of several ABC
transporters, including the PDR5 gene, by two homologue
transcription factors encoded by PDR1 and PDR3 (Fig. 1) [22],
the latter of which has been shown to be autoregulated [23]. A
FFL + PFL network is also known to control the expression of
the ABC-transporter MDR1 that confers multidrug resistance
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FIG. 1. Regulation of PDR5 transcription by the transcriptional
regulators encoded by the PDR1 and PDR3 genes. Regular arrows
denote activation and flat-head arrow denotes repression.

in human breast cancer cells [20]. However, the potential ef-
fects on the development of drug resistance of these particular
network architectures have not previously been investigated.

We hypothesize that FFL motifs can facilitate the develop-
ment of drug resistance by enhancing population heterogeneity
in gene expression and by increasing the time scale of gene
expression fluctuations to enable nongenetic inheritance. This
hypothesis is based on the findings of our previous theoretical
analysis [11], and previous experimental studies showing that
the FFL and PFL motifs individually act to increase gene
expression noise [29–31]. Moreover, it has been demonstrated
experimentally that the FFL + PFL motif allows bacterial cells
to prolong the maintenance of high gene expression states [32].

To examine the possible contribution of FFL motifs to the
development of nongenetic drug resistance, we characterize
and compare the deterministic and stochastic dynamics of
individual PDR5 network components. This is done in Sec. II.
Subsequently, in Sec. III, we use stochastic simulations of
population dynamics to investigate how these network compo-
nents impact the development of drug resistance when drug-
dependent gene activation and transport of the drug across
the cellular membrane is incorporated. This analysis confirms
our hypothesis and demonstrates that the FFL architecture of
the PDR5 transcriptional regulatory network may contribute
significantly to drug resistance. Correspondingly, our study
underscores that the architecture of certain gene regulatory
network motifs may provide an evolutionary advantage by
enhancing reproductive fitness under high-stress conditions.

II. MINIMAL MODEL

A. Modeling and simulation

The PDR5 transcriptional regulatory network in Fig. 1
can be decomposed into three elements: the direct activation
(DA) of PDR5 transcription by PDR1, an FFL that combines
DA with indirect activation through PDR3, and a PFL in
which PDR3 activates its own expression. This decomposition
defines the three distinct networks, DA, FFL, and FFL + PFL,
illustrated in Fig. 2 where the three genes, PDR1, PDR3, and
PDR5, are labeled X, Y , and Z, respectively.

Treating the activity of PDR1 as an adjustable, possibly
time-dependent parameter x, the DA, FFL, and FFL + PFL
networks have two variables whose dynamics can be described
by the following system of coupled ordinary differential
equations:

dy

dt
= αyω1fy(x,y) − y (1)

dz

dt
= αzfz(x,y) − z, (2)

X Z

X Y Z

X Y Z
(a)

(b)

(c)

FIG. 2. PDR5 transcriptional network elements considered in the
minimal model. (a) Coherent feedforward loop with positive feedback
loop (FFL + PFL). (b) Coherent feedforward loop (FFL). (c) Direct
activation (DA). X, Y , and Z represent respectively the PDR1, PDR3,
and PDR5 genes. Arrows denote activation.

where y and z are respectively the protein concentrations
associated with the expression of genes Y and Z, and αy and
αz are the maximum level of activated protein production for
Y and Z, respectively. The dilution and degradation rate of y

and z are set to unity. The gene regulatory functions in Eq. (1)
and Eq. (2) are defined by the Hill-type functions given by

fy(x,y) = (x + ω2y)n/[Kn + (x + ω2y)n], (3)

fz(x,y) = (x + y)n/[Kn + (x + y)n], (4)

where n and K are respectively the Hill coefficient and Hill
constant, which for simplicity are here kept at equal values
for the two genes. The activation of y by x, and the presence
of positive feedback on y, are represented by the Boolean
variables ω1 and ω2, respectively, and can be either ON (ω = 1)
or OFF (ω = 0). Consequently, the model of the DA network is
defined by ω1 = ω2 = 0, the FFL network by ω1 = 1 and ω2 =
0, and the FFL + PFL by ω1 = 1 and ω2 = 1. These equations
were solved numerically using a medium order MATLAB
intrinsic nonstiff differential equation solver (ode45).

Equations (1) and (2) can be translated into the following
set of birth-death processes:

� ky−→ y, (5)

� kz−→ z, (6)

y
δy−→ �, (7)

z
δz−→ �, (8)

where Eq. (5) and Eq. (6) respectively describe the production
of y and z. In Eq. (5), ky = αω1fy(x,y), and in Eq. (6), kz =
αfz(x,y), where fy(x,y) is described in Eq. (3) and fz(x,y) in
Eq. (4). The degradation of y and z are described by Eq. (7)
and Eq. (8), respectively, where the degradation rates δy and δz

are set to unity. Stochastic simulation of the chemical reactions
were performed using the Gillespie algorithm [33].

To investigate the development of nongenetic drug re-
sistance in clonal cell populations expressing one of these
network topologies, we perform population-level simulations
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FIG. 3. Coherent feedforward networks enable fast and prolonged activation. (a) Response time tON (time for z to reach 50% of steady-state
level) for the DA, FFL, and FFL + PFL networks as a function of an activating signal x. (b) Relaxation time tOFF (time for z to fall to 50% of
steady-state level) for the same network motifs considered in (a) as a function of x. Parameters were set to α = 10, n = 2, and K = 1.

at single-cell resolution using the population dynamics al-
gorithm (PDA) [34]. The PDA combines an exact method
to simulate molecular-level fluctuations in single cells and
a constant-number Monte Carlo approach to simulate the
statistical characteristics of growing cell populations. In
these simulations, gene expression in each of N individual
cells is obtained by stochastically simulating Eqs. (5)–(8).
Simulations were initiated by drawing the initial values of
the cell cycle clock from a uniform distribution [0,tD],
where tD is the cell division time in absence of selection.
Cell volume (v) was modeled using an exponential growth
law,

v(tdiv) = v02tdiv/w(z)tD , (9)

where v0 is the initial volume and tdiv is the time since last
division. At cell division, tdiv is reset to zero, cell volume is
reset to v0, and proteins are partitioned binomially between the
two daughter cells. We first model microscopic fitness (w), that
is the reproductive fitness of an individual cell in the presence
of a drug, using a step function. If z falls below a critical
concentration (zc) the cell is flagged and is subsequently unable
to reproduce or change its protein levels. Then, we model
microscopic fitness using a Hill function,

w(z) = znw/
(
Knw

w + znw
)
, (10)

where nw and Kw are respectively the Hill coefficient and the
Hill constant used to set the fitness threshold. The macroscopic
fitness (W ) of the population is determined by the number of
cell divisions that occur during a given generation divided by
the fixed number of cells in the population.

All time scales in this study are reported with respect to tD ,
which is set to unit time. No qualitative difference in the results
presented below was observed for up to a twofold change in
parameters.

B. Results and discussion

1. FFLs accelerate and prolong transcriptional responses

To characterize the behavior of the DA, FFL, and
FFL + PFL networks following changes in an upstream
activating signal x, the response time tON and the relaxation
time tOFF for different values x were obtained. tON was defined
as the time for z to rise from zero to 50% of the steady-state
value corresponding to the DA network when x is turned
ON [35,36]. tOFF was similarly defined as the time, after x is
turned OFF, for z to fall to 50% of the corresponding steady-
state value when x is ON. The 50% DA steady-state value was
chosen to ensure a controlled comparison of the three network
topologies, such that the response and relaxation times for each
network were determined for the same absolute change in z.

Both coherent feedforward networks decrease tON com-
pared to the DA network [Fig. 3(a)]. There is a minimum tON

at an x of about 0.5 for the FFL and FFL + PFL networks. The
FFL has the quickest response time for nonzero values of x less
than about 8, when the FFL and FFL + PFL tON values begin to
converge. The result for FFL + PFL is particularly interesting
as positive autoregulation on its own generally increases re-
sponse time [37]. tON is shorter for the FFL and FFL + PFL net-
works for low values of x due to the presence of multiple addi-
tive activating inputs to z. The FFL + PFL network has a longer
tON than the FFL network because of the positive autoregula-
tion. For high values of x, tON for the FFL and FFL + PFL
networks are similar to those of the DA network as the activa-
tion of z is dominated by the direct activation of z by x. The
response time for the DA network is unaffected by varying x.

The FFL and FFL + PFL networks exhibit prolonged
expression relative to the DA network [Fig. 3(b)]. These
results are in qualitative agreement with previous theoretical
predictions [38] and experimental results [32]. Notably, the
FFL + PFL network has the longest tOFF for x values larger
than 1, and the FFL network has the longest tOFF for nonzero x
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FIG. 4. Response of z to a fluctuating upstream activating signal. (a) The mean of z (μz) is shown for the DA, FFL, and FFL + PFL
networks as a function of the ON-OFF switching frequency of x (�x). (b) The standard deviation of z (σz) is shown for the same network
motifs considered in (a) as a function of �x . (c) z as a function of a randomly fluctuating �x (dark gray rectangles denote the presence of an
activating signal) for the same network motifs considered in (a). Parameters were set to xON = 5, xOFF = 0, α = 10, n = 2, and K = 1.

values less than 1. The relatively long tOFF of the FFL + PFL
network can be attributed to the PFL which has been shown
to increase relaxation time [35,36]. The threshold occurs at 1
as K (which specifies the input value at which half-maximal
protein production occurs in the output) rate was set to unity.
When x is increased above K , the positive feedback on y is
activated and the response time increases. The tOFF for the DA
network is unaffected by changing x values [Fig. 3(b)].

When considering the tON and tOFF together for x values
less than 1, the FFL has both a larger tON and tOFF compared
to the FFL + PFL and DA networks (Fig. 3). When x is
increased by an order of magnitude, though the three networks
have similar tON values, the FFL + PFL network has a larger
tOFF. These results suggest that if z confers drug resistance, the
FFL network provides a fitness advantage when the activating
signal (i.e., the drug dose) is low, and the FFL + PFL network
a fitness advantage when the drug dose is high.

2. FFLs provide stable high expression
in fluctuating environments

To investigate how the three networks respond to a
fluctuating upstream activating signal, x was set to switch
between ON and OFF at a frequency �x . The value of x was
set to 5 when it was ON and zero when it was OFF.

When x fluctuates periodically, the mean concentration of z

(μz) is higher in the FFL + PFL network compared to the other
two networks [Fig. 4(a)], despite all three networks having the
same mean when x is held constant (data not shown). μz is
higher in the FFL network than the DA network, with both
networks increasing μz with increasing values of �x until
they level off at around �x = 2. The higher μz in the FFL and
FFL + PFL networks occurs because coherent feedforward
networks buffer against input fluctuations [39].

The frequency-response plot for the three networks shows
that the standard deviation of z (σz) in the FFL and FFL + PFL
is lower than σz for the DA when �x is less than about 4.5

[Fig. 4(b)]. As �x is increased above 4.5, σz for the DA network
falls below the σz values for the FFL and the FFL + PFL
networks. The FFL + PFL network has lower values of σz

than the FFL network until �x is increased to about 2; then
the σz value for the FFL falls below that of the FFL + PFL for
higher values of �x .

When x is set to fluctuate randomly, the FFL + PFL network
provides stable high expression compared to the FFL and DA
networks [Fig. 4(c)].

3. FFLs increase population heterogeneity and mixing times

The set of chemical reactions [Eqs. (5)–(8)] corresponding
to the deterministic model [Eqs. (1) and (2)] were simulated
stochastically to compare the noise and mixing times of the
three networks. The mixing time was defined previously by
Sigal et al. [13] as the time for the autocorrelation function to
decay by half.

The noise in network output z (ηz = σz/μz) for the three
network motifs was compared at the same μz [Fig. 5(a)]. For
a given μz, ηz = σz/μz is the highest for the FFL + PFL
network. The increase in noise due to positive feedback is
expected as it amplifies fluctuations [40]. ηz for the DA and
FFL are similar, with ηz for all three networks beginning to
converge for μz around 5.

As x is varied, the relaxation times are highest for the
FFL + PFL network, followed by the FFL network and then
the DA network [Fig. 5(b)]. The longer relaxation time in
the FFL + PFL network compared to the DA network is
qualitatively in agreement with results found experimentally
by Kalir et al. [32].

4. FFLs enhance drug resistance

Gene expression [Eqs. (5)–(8)] was coupled to population
dynamics using the PDA [34] to investigate the effects of
feedforward network motifs on drug resistance.
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FIG. 5. Coherent feedforward networks increase noise and relaxation time. (a) The noise in z (ηz) for the DA, FFL, and FFL + PFL
networks as a function of the mean level of z (μz). (b) The response times for z (τz) for the same network motifs considered in (a) as a function
of an activating signal x. Parameters were set to α = 10, n = 2, and K = 10. Ten realizations for 103 arbitrary time units were performed.
Error bars show standard deviation.

Prior to the application of the drug at generation 10 the
fitness is 1, as all the cells in the population divide once
per generation (Fig. 6). When we consider a threshold fitness
function, all the cells in DA population are unable to reproduce
immediately following application of the drug [Fig. 6(a)].
A significant fraction of cells in the FFL and FFL + PFL
populations remain fit even after 40 generations of drug
treatment.

Next we model microscopic fitness using Eq. (10). Inter-
estingly, in this model, drug resistance develops in all three

populations [Fig. 6(b)]. A much lower number of cells in the
generation subsequent to the application of the drug reproduce
as a result of low z level due to the transient time of z to
the new steady state. After a couple of oscillations, the fitness
levels off such that a fraction of the pretreatment population
reproduces in each generation. The fraction of fit cells during
drug treatment is roughly double for the FFL and FFL + PFL
populations compared to the DA population.

These results, together with the results from Secs. II B 1–
II B 3, suggest that in natural populations the coherent
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FIG. 6. Effect of network topology and fitness threshold on reproductive fitness (W ). W for each of the DA, FFL, and FFL + PFL
populations over 50 generations. Drug treatment is initiated at the tenth generation. (a) Population simulations using a step fitness function. (b)
Population simulations performed using a Hill type fitness function. Parameters were set to x = 1, αy = 10, αz = 100, K = 1, and n = 2. In
(a) zc = 35 and in (b) Kw = 35, and nw = 2. Ten realizations of 1000 cells were performed. Error bars show standard deviation.

052708-5
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feedforward network architecture may provide cells with a
fitness advantage in adverse environments due to increased
noise, faster response, and longer relaxation times. The PFL
enhances all of these properties except the response time.
Interestingly, the FFL + PFL network forms the topology
of a network which regulates the expression of the PDR5 and
MDR1 multidrug resistance conferring proteins in yeast [14]
and breast cancer cells [20]. It is plausible that the FFL + PFL
architecture, investigated in the next section in the context of
the PDR5 transcriptional network, evolved by means of natural
selection due to the fitness advantage it provides in the drug
environment.

III. PDR5 TRANSCRIPTIONAL NETWORK MODEL

A. Modeling and simulation

In this section, we develop a mathematical model and
simulate the dynamics of the PDR5 transcriptional regulatory
network in order to investigate the development of drug
resistance in the context of a more biologically realistic
feedforward genetic network, incorporating passive and active
diffusion of a drug across the cellular membrane. This section
presents a model of the PDR5 transcription network.

To examine if the conclusions from the analysis of minimal
network models have bearing on PDR5-mediated drug resis-
tance, we analyzed a model of the regulatory network in Fig. 1.
This network differs from the FFL + PFL network in Sec. II by
the presence of a negative feedback loop caused by the PDR5
efflux pump eliminating drugs and toxins from the cell. We
note that the additivity of the gene regulatory functions in the
minimal model [Eqs. (1) and (2)] are justified in the context
of PDR5 transcriptional regulation because PDR1 and PDR3
are highly homologous and bind to the same elements in the
PDR5 promoter [22]. Consequently, the PDR5 network can
be modeled by extending the minimal model to include the
upstream activating factor (PDR1) and the intracellular drug
(Dint) as dynamic variables. The resulting ordinary differential
equations (note that in the equations below PDR1, PDR3, and
PDR5 are represented by x, y, and z, respectively) describing
the network are given by

dx

dt
= α0 + α1

Dint

K1 + Dint
− δ1x, (11)

dy

dt
= α3

(x + y)n3

[
K

n3
3 + (x + y)n3

] − δ3y, (12)

dz

dt
= α5

(x + y)n5

[
K

n5
5 + (x + y)n5

] − δ5z, (13)

d(Dint)

dt
= kdiff(Dext − Dint) − kpumpzDint

kpump + Dint
, (14)

when it is assumed that the drug enters and leaves the cell
through a combination of passive and active transport, and
that the activation of PDR1 by the drug can be captured
by Michaelis-Menten kinetics. Equation (11) describes the
activation of PDR1 by Dint, where α0 is the basal rate
of transcription and α0 + α1 the maximal activated rate of
transcription. Equations (12) and (13) are the same as those
presented in Eqs. (1) and (2). The last equation, Eq. (14),

describes the passive diffusion of the drug across the cell
membrane [first term on the right-hand side (RHS)], as well
as the pumping of the drug out of the cell via PDR5 (second
term on the RHS). In Eq. (14), Dext is the extracellular drug
concentration, kdiff the rate of passive diffusion across the
cell membrane, and kpump the rate of PDR5 mediated drug
efflux.

The PDR network model [Eqs. (11)–(14)] can be translated
into the corresponding birth-death processes:

� k1−→ x, (15)

� k3−→ y, (16)

� k5−→ z, (17)

x
δ1−→ �, (18)

y
δ3−→ �, (19)

z
δ5−→ �, (20)

� kDint−→ Dint, (21)

Dint
δDint−→ �, (22)

where k1 = α0 + α1D
n1
int/(Kn1

1 + D
n1
int), k3 = α3(x +

y)n3/[Kn3
3 + (x + y)n3 ], k5 = α5(x + y)n5/[Kn5

5 + (x + y)n5 ],
kDint = kdiffDext, and δDint = kdiff + kpumpz/(kpump + Dint).
Equations (15)–(17) respectively describe the production of
PDR1, PDR3, and PDR5. The degradation of PDR1, PDR3,
and PDR5 is described by Eqs. (18)–(20), respectively. The
passive diffusion of the drug into the cell is described by
Eq. (21). The removal of the drug from the cell by both
passive diffusion and pumping is described by Eq. (22). Here
we model cell growth using Eq. (9) and cellular fitness in the
presence of a drug as follows:

w(z) = z/(Dint + z). (23)

This equation describes cellular fitness increasing with in-
creasing PDR5 relative to the intracellular drug concentration,
and it assumes that there is no fitness cost associated with
maintaining a high level of PDR5.

B. Results and discussion

In order to investigate if persistent nongenetic drug resis-
tance would develop in the PDR5 transcriptional network
model, we tracked cellular and fitness dynamics over 50
generations.

In Fig. 7(a), the population PDR5 histogram prior to
drug treatment is shown (generation 9) together with the
population PDR5 histogram after 40 generations of drug
treatment (generation 50). The corresponding mean PDR5
expression increases threefold upon application of the drug,
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FIG. 7. Adaptation and fitness (W ) facilitated by the PDR5 transcriptional network. (a) Number of cells in the population has the
corresponding PDR5 expression level. Distributions are shown for the generation prior (dark gray) to drug application and 40 generations
after (light gray) drug application. (b) W over 50 generations. Inset shows W at generation 50 for different rates of PDR5 mediated drug
efflux (kpump). Drug treatment is initiated at the tenth generation. Unless otherwise indicated, parameters were set to α0 = 1, α1 = 10, K1 = 1,
n1 = 1, α3 = 10, K3 = 1, n3 = 2, α5 = 100, K5 = 20, n5 = 2, kdiff = 100, kpump = 1, and Dext = 100. Ten realizations of 1000 cells were
performed.

in agreement with preliminary experimental data obtained in
our laboratory for budding yeast populations after 24 h of drug
(Nocodazole) treatment (data not shown).

The resulting drug resistance dynamics in Fig. 7(b) are
similar to those obtained using the minimal model with a Hill
type fitness function [Fig. 6(b)]. Namely, a stable fraction of
reproductively viable cells develops after about 10 generations
of drug treatment. When the rate of passive diffusion (kdiff) and
extracellular drug concentration (Dext) are changed the level
of fitness changes accordingly. For instance, when kdiff and
Dext are decreased 10 fold, the steady-state W increases to 0.9
(data not shown).

The main difference between the minimal model and the
PDR5 model is the incorporation of negative feedback on
the activating signal in the latter. In order to investigate the
effects of the negative feedback on fitness, we varied kpump

over several orders of magnitude [inset Fig. 7(b)]. Fitness
after 40 generations of drug treatment increased from 0.39
when kpump = 1 to 0.51 when kpump = 104. As expected, when
kpump = 0, W is zero for all generations subsequent to drug
application (data not shown).

These results demonstrate that the presence of a negative
feedback in a drug-efflux pump network does not impede
the development of persistent nongenetic drug resistance.
Increasing the strength of the negative feedback had little
effect on the fraction of drug resistant cells in the population.
This is because although PDR5 functions to increase cellular
fitness by actively pumping the drug out of the cell, it also
reduces its own activation by indirectly reducing the activity of
PDR1.

IV. CONCLUSION

This study demonstrates that certain transcriptional regula-
tory network motifs can facilitate the development of drug
resistance by providing a broader spectrum of potentially
advantageous fitness phenotypes upon which selection can act,
and by enabling the inheritance of these transient phenotypes
to subsequent generations. While it is well established that
genetic mutations can cause drug tolerance [41–45], much
less is known about how gene expression noise can influence
drug resistance. Correspondingly, the findings in our study
make an important contribution to a growing body of research
establishing that drug resistance can result from phenotypic
heterogeneity in clonal cell populations [9,11,46,47].

Previous work on the role of noise in drug resistance has in-
vestigated the possible effects of stochastic switching between
distinct phenotypic states (e.g., [46,48,49]). Such switching
may be linked to bistability in an underlying gene regulatory
network with state transitions driven by gene expression noise.
Bistability may arise from positive feedback loops, and has, for
example, been demonstrated experimentally to enable robust
inheritance of gene expression states [50]. However, while
bistability provides a mechanism for nongenetic inheritance
in nonresponsive adaptation, it is not a prerequisite for the
development of permanent drug resistance.

The development of drug resistance through nonresponsive
adaptation requires that beneficial gene expression levels be
maintained over subsequent generations [6,8,11]. For example,
it was recently proposed that the selection of lineages char-
acterized by infrequent pulses of gene expression could allow
nonresponsive adaptation during prolonged drug exposure [9],
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and the authors proposed several hypothetical scenarios that
might facilitate lineage selection without bistability. We have
demonstrated previously that the minimum time scale for
noise-induced drug resistance is on the order of the cell
cycle [11].

In the present work, we have focused on investigating how
transcriptional regulatory motifs may impact the development
of drug resistance in a system, the pleiotropic drug resistance
network, that is known to reduce the sensitivity of budding
yeast to a broad range of structurally and functionally
unrelated drugs [22]. Although the presence of a coherent
feedforward loop and positive feedback loop in this network
has been known for some time, it has not previously been
demonstrated that this particular network architecture may
be highly beneficial during prolonged drug exposure even
in the case of responsive adaptation. A similar coherent
feedforward network has also been proposed to be critical
in the context of drug resistance of human cancer cells [20]. In
addition to feedforward networks, other motifs may facilitate
the development of drug resistance such as those that regulate
bursty gene expression [11].

Our study demonstrates that the coherent feedforward
network impacts the development of drug resistance by

prolonging the time that beneficial gene expression states
can be maintained. This potential mechanism for transient
nongenetic inheritance has been demonstrated experimentally
in E. coli [32]. Positive feedback regulation can further amplify
this effect even without enabling an underlying bistability.
However, positive feedback regulation is not necessary for the
development of permanent drug immunity as the feedforward
motif can provide the required nongenetic inheritance on its
own. The selective advantage provided by coherent feedfor-
ward networks in the context of reduced sensitivity to toxic
compound exposure may have contributed to the prevalence
of this motif in present day organisms.
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