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Quantitative systems-based prediction of antimicrobial
resistance evolution
Daniel A. Charlebois 1,2✉

Predicting evolution is a fundamental problem in biology with practical implications for treating antimicrobial resistance, which is a
complex system-level phenomenon. In this perspective article, we explore the limits of predicting antimicrobial resistance
evolution, quantitatively define the predictability and repeatability of microevolutionary processes, and speculate on how these
quantities vary across temporal, biological, and complexity scales. The opportunities and challenges for predicting antimicrobial
resistance in the context of systems biology are also discussed. Based on recent research, we conclude that the evolution of
antimicrobial resistance can be predicted using a systems biology approach integrating quantitative models with multiscale data
from microbial evolution experiments.
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INTRODUCTION
Predicting evolution is an important fundamental and practical
problem in biology and medicine. The ability to quantitatively
predict evolution will advance evolution from a descriptive theory
to a predictive theory1,2 that can tackle global health problems
such as antimicrobial resistance (AMR)3 (Box 1). The rapid evolution
of pathogens in response to antimicrobial drugs motivates the
need to transform evolution into a predictive, quantitative science
to develop “evolution proof” drugs4 and vaccines5, which will
respectively enable effective treatments and prophylactics to
combat AMR.
There is a pressing need to develop a predictive theory of AMR

evolution to answer numerous outstanding questions. First, what
do evolutionary predictability and evolutionary repeatability mean
in the context of AMR evolution and which aspects of resistance
can be forecasted for microbes? These questions are challenging
given the multiple scales at which AMR occurs, ranging from the
rapid emergence of resistance mutations inside of cells6,7 to the
longer-term establishment of complex resistance-conferring
dynamics among microbial communities2, along with the fact
that AMR is a complex system-level evolutionary process8. Next,
can we predict evolutionary paths (trajectories) or are we
restricted to evolutionary endpoints (outcomes)? Distinguishing
between trajectories and outcomes is essential since evolutionary
processes can follow different trajectories to arrive at the same
evolutionary outcome or they can take similar trajectories but
diverge to yield different evolutionary outcomes9. Last, which
variables are important to develop predictive models of micro-
evolution? This is critical for model development as well as the
design of microbial evolution experiments, which can generate
high-dimensional data (e.g., genetic sequence) or low-dimensional
data (e.g., phenotypic growth rate).
Throughout this article, we tackle the questions posed above

and explore the challenges and opportunities for predicting AMR
evolution from a systems biology perspective, which incorporates
the complex interactions between different scales and compo-
nents of evolving microbial systems. We conclude that the
evolution of AMR can be predicted (see “Resistance evolution

across the scales” for examples) using quantitative systems-based
models informed by multiscale data from high-replicate or high-
temporal resolution experiments on evolving microbial systems.

Predictability versus repeatability in microbial evolution
Researchers lack a shared language to describe evolution2. We
propose that evolving biological microbial systems be quantified
based on their evolutionary predictability and their evolutionary
repeatability. The predictability of an evolutionary process is
ultimately a probabilistic statement about a biological system (or
ensemble), which can be defined by the existence of a probability
distribution (Fig. 1). If a probability distribution can be derived
theoretically or obtained empirically, then an evolutionary process
can be statistically predicted. For instance, if there is a known
distribution of outcomes (e.g., of resistance mutations) for a given
antimicrobial drug applied during an AMR evolution experiment
or patient treatment, then the ensemble behavior of this system is
predictable. Predictive distributions that change over time as
biological systems evolve require a “dynamic” (time-dependent)
model, as opposed to unchanging predictive distributions that can
be described by a “steady-state” (time-independent) model10.
However, the existence of a predictive distribution does not
guarantee that any particular mutation (or other resistance traits
such as gene expression level11) will be easily repeated or realized
in an evolution experiment or during patient treatment. An
analogy can be drawn to picking cards from a deck of playing
cards; while the distribution of outcomes is predictable, picking a
specific card is not easily repeatable.
Evolutionary repeatability is related to the likelihood of

occurrence of individual events that constitute a statistical
ensemble. Repeatability can be quantified using measures from
statistical physics such as entropy (Fig. 1). If an evolutionary
trajectory or outcome is highly uncertain, stochastic, or entropic,
then it has low repeatability. This will reduce the realization of a
specific trajectory or outcome in a microbial evolution experiment
or during the treatment of a patient, such as a particular biological
replicate or patient acquiring a specific sequence of drug
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resistance mutations. Shannon entropy12

H ¼ E �log p xð Þð Þ½ � ¼ �
XN

i¼1

pi logðpiÞ or�
Z 1

�1
p xð Þlog p xð Þð Þdx

(1)

or other measures of variability can be used to quantify
repeatability. Note that the entropy associated with a deck of
cards is higher than that of a dice, due to the higher
dimensionality (i.e., more equally probable outcomes) of the deck
of cards compared to the dice. Here, if we consider an ensemble
of drug resistance mutations that may appear during an evolution
experiment or patient treatment, a uniform distribution represents
maximum uncertainty or entropy (Fig. 1a), a Dirac delta function
minimum uncertainty (Fig. 1c), and other distributions (e.g.,
Gaussian) intermediate uncertainty (Fig. 1b) in predictable
evolutionary processes. An evolutionary process may also be
unpredictable (no distribution describes it) and unrepeatable (the
state space of possible outcomes changes each time) (Fig. 1d).
AMR evolution is repeatable when different pathogen populations
evolve similar resistance to an antimicrobial drug (e.g., acquired
mutations in the same genes of the same pathogen infecting
different patients)13 and larger selection pressures are known to
generate more repeatable evolution14,15. While AMR repeatability
has been observed for some large-effect sequence changes16–18, it
has been more broadly observed for molecular resistance
phenotypes19,20.

Limits on predicting antimicrobial resistance
There are fundamental and practical limitations to predicting AMR
evolution (Fig. 2). Predictability is fundamentally constrained by
random genome mutations and genetic drift21. This requires that a
stochastic framework22 be applied to analyze and make predic-
tions based on data obtained from measurements of biological
quantities (e.g., mutations, growth rates, etc.) at low concentra-
tions during early stages or at late stages (if drug treatment is
effective) of microbial evolution experiments and infections;
genetic drift also plays a confounding role in this regime9.
Recently, stochastic systems-based population models were
proposed to guide drug therapies by providing predictions on
resistance mutation appearance probabilities and first-appearance
times, indicating timescales for substituting or combining

Fig. 1 Predictability versus repeatability in antimicrobial resistance evolution. Schematic of the probability of drug resistance mutations
occurring during an evolution experiment or patient treatment. a Predictable: described by a uniform distribution. Low repeatability:
maximum entropy (Hmax ¼ logN). b Predictable: described by a Gaussian distribution. Medium repeatability: medium entropy
(H ¼ 1

2 ðlog 2πσ2ð Þ þ 1Þ, where σ2 is the variance). c Predictable: described by a Dirac delta distribution (here δ xkð Þ ¼ 1 and δ xi≠kð Þ ¼ 0).
High repeatability: minimum entropy ðHmin ¼ logð1ÞÞ, as the same mutation emerges for every experiment or treatment. d Unpredictable: no
distribution can be derived or fit empirically to the data. Unrepeatable: different outcomes for each experiment or treatment.

Box 1 Terminology

Antimicrobial Resistance (AMR): AMR arises when bacteria, fungi, viruses, parasites,
or other microbes no longer respond to antimicrobial drugs.
Clade: A group of genetically related organisms that evolved from a common
ancestor.
Clonal Interference: Competition between beneficial mutations in different
lineages with fixed genetic backgrounds in asexual populations.
Deterministic: Describes a process that evolves along the same trajectory to the
same future state from a given initial state.
Epistasis: The phenotypic expression of a genetic mutation/gene is dependent on
the expression of one or more other mutations/genes.
Evolutionary Predictability: A statement about the evolutionary trajectory/future
state of a biological system, defined by the existence of a probability distribution
(see “Limits on predicting antimicrobial resistance” for more details).
Evolutionary Repeatability: How likely a particular evolutionary event is to
repeatedly occur in a biological system, defined by the likelihood, entropy, or
other measures of variability (see “Limits on predicting antimicrobial resistance”
for more details).
Fitness: The reproductive success of an organism. Growth rates are often used as
a proxy for fitness in microbes.
Fitness Landscape: A visual representation of the relationship between genotype
and fitness.
Genetic AMR: Drug resistance that is mediated by genetic mutations or through
the acquisition of drug resistance genes.
Genetic Drift: The change in gene variant (allele) frequency in a population due to
random chance.
Macroevolution: Large evolutionary changes such as the emergence of a novel
pathogen over long timescales.
Microevolution: Change in allele frequency over a short timescale (as compared to
macroevolution).
Nongenetic AMR: Drug resistance that arises among genetically identical microbes
exposed to the same drug, which is not the result of genetic AMR.
Stochastic: Describes a process that randomly evolves along one of many
possible trajectories to one of many possible future states from a given
initial state.
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antimicrobial drug during patient treatment23. Random genetic
drift distorts the impact of selective forces and decreases the
ability of models to predict evolution2.
Other sources of biological stochasticity also pose a challenge

for predicting the evolutionary path to resistance, including gene
expression variability among genetically identical cells22,24 and
genetic drift25. The interplay between nongenetic AMR and genetic
AMR is not fully understood26, and such knowledge gaps
negatively impact our ability to predict resistance evolution. It
has been hypothesized that nongenetic AMR facilitates evolution
by allowing a fraction of the cell population to survive and
subsequently evolve genetic resistance to antimicrobial treat-
ment11,27. Systems-based stochastic population dynamics model-
ing has shed light on the nongenetic-genetic AMR enigma by
incorporating resource competition between nongenetically
resistant and genetically resistant subpopulations; these models
predict that nongenetic resistance facilitates survival but slows
down genetic AMR evolution23. Similar models can be inferred
from coupled stochastic trajectories of gene expression and cell
division28. The architecture of systems of interconnected genes
comprising genetic networks modulates the amplitude and
timescale of gene expression fluctuations, which enhances acute,
reversible, nongenetic drug resistance11,29,30 and facilitates
prolonged, nonreversible, genetic drug resistance6,26.
The interactions and competition among mutations, along with

data limitations, are other important considerations for predicting
AMR evolution. Epistasis arises from a non-additive interaction
between mutations that affect fitness31. Mutations that arise early
in the evolution of AMR affect which mutations are subsequently
selected32. Epistatic interactions generate a nonlinear fitness
landscape33. This occurs because whether a mutation is beneficial,
detrimental, or neutral in terms of selection depends on the
genetic, extracellular, and environmental background1,34. Bene-
ficial mutations may synergistically interact to decrease selective
pressure and render evolution slower and more stochastic (since
weaker selection is less deterministic), thus reducing repeatability.
For instance, beneficial mutations in disjoint clades compete for
fixation, whereas mutations in nested clades reinforce one another
in clonal interference, a phenomenon that arises in large asexual
microbial populations subject to strong selective pressures such as
antimicrobial drug therapy34,35. Clonal interference may enhance
predictability by reducing stochastic waiting times for fitter
genetic variants and by ensuring that beneficial mutations that
fix have a large fitness effect and are driven by natural selection,

not by genetic drift or environmental noise1. Clonal interference
was found to be pervasive in an experimental model of E. coli in
the mammalian intestine, and the targets of natural selection were
similar in independently evolving bacterial populations, resulting
in similar early-stage phenotypic changes36. Another fundamental
challenge in predicting AMR evolution lies in the unknowns,
complexities, and redundancies in mapping genotype to pheno-
type. Our ability to predict AMR evolution on fitness landscapes
with considerable epistasis is highly dependent on the precision
of the initial conditions data9. Epistasis can make predictive
modeling more challenging, as the order of and interactions
between mutations must be accounted for as well as the fact that
epistasis facilitates the evolution of novel functions37; on the other
hand, epistasis can constrain evolutionary trajectories to a given
endpoint thus potentially increasing repeatability. Despite these
challenges, metabolic fitness landscapes have been utilized to
predict antibiotic resistance38. Data limitations further hinder our
ability to predict resistance evolution, such as uncertainty in initial
conditions for chaotic environmental systems in which micro-
organisms evolve39, even for evolution driven by deterministic
natural selection9.
It has been argued that biology cannot be reduced to physics,

as the complexity of living organisms and the biosphere is too vast
to predict how life will evolve40. Others have argued that physics
can be used to predict evolution on shorter timescales (Fig. 2)9,41.
Evidence now exists supporting the predictability of AMR
microevolution. For instance, in yeast mutations that emerged
during evolution experiments on cells harboring synthetic drug
resistance gene networks were computationally predicted before-
hand based on the costs and benefits of expressing the synthetic
gene network in a particular drug condition7. In bacteria, the same
set of resistance mutations have been found to repeatedly fix in
independently evolving populations18, suggesting that antibiotic
resistance evolution is predictable and repeatable. Antiviral
resistance mutations have also been predicted for SARS-CoV-2
using in silico mutational scanning inhibitor docking42. However, it
is unlikely that macroevolution can be predicted for practical as
well as fundamental reasons. Similar to the Lyapunov time (i.e., the
characteristic timescale beyond which the chaotic trajectory of a
dynamical system can no longer be predicted43), there exists a
characteristic timescale for predicting evolving biological systems
(τe) due to stochasticity in the data and errors in the predictive
model1. Fluctuating selective pressures can also decrease repeat-
ability due to the evolution on continuously changing fitness

Fig. 2 Limits on evolutionary predictability and repeatability. a The predictability of microevolution decreases at long timescales (e.g.,
longer than the generation time of a microorganism), small biological scales (e.g., single-nucleotide polymorphisms), and high dimensionality/
complexity (e.g., genomic profiles), whereas the predictability of microevolution increases at short timescales (e.g., shorter than the generation
time of a microorganism), large biological scales (e.g., whole pathogen populations), and low dimensionality (e.g., phenotypic fitness
measurements). τe is the characteristic time for predicting evolution beyond which predictions become random. b The repeatability of
evolution decreases as the stochasticity of evolutionary trajectories/outcomes increases, or as the uncertainty/entropy of the associated
probability distribution increases. This schematic was made in part using BioRender.com (2023).
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landscapes; the selection timescale for beneficial mutations to
emerge is reduced and the outcome of selection becomes more
divergent44.

Resistance evolution across the scales
Evolutionary predictability and repeatability vary across temporal,
biological, and complexity scales (Fig. 2). Evolution has been
shown to be more convergent at “higher” biological scales (e.g.,
the acquisition of drug resistance genes during treatment) than at
“lower” biological scales (e.g., individual resistance mutations
within a gene)45. For instance, the majority of single-nucleotide
and amino acid changes occur in a single population in laboratory
evolution experiments45–47 (i.e., different populations follow
divergent paths in sequence space1). Additionally, patients
respond to an infection or vaccination by different immune
receptor sequences48. However, even at the genetic scale notable
examples exist where microevolution is highly repeatable, such as
the establishment of the same mutation due to extensive standing
variation49 or strong selective pressure50.
AMR resistance evolution is more predictable when the

dimensionality of the state space is reduced. For instance, the
state space of all genotypes is high-dimensional, whereas the state
space of fitness is one dimensional. Even despite the constraints
imposed by the number of paths by selection, genome evolution
is generally unpredictable as sequence space contains an
effectively infinite number of possible evolutionary paths1. On
the other hand, AMR evolution is more predictable than general
genome evolution due to the finite number of AMR mutations and
resistance mechanisms51. Phenotype space (e.g., fitness46,52) is
also more predictable, as different mutations can have similar
effects on fitness (i.e., different sequence changes map onto the
same phenotypic effects). However, analyzing low-dimensional
traits may be less informative than high-dimension traits, as low-
dimensional traits are expected to yield a lower information
gain relative to a prior, which can be quantified as the log ratio
of predicted probability (q(t)) to prior probability (p(t)):
(IðtÞ ¼ ðqðtÞ=pðtÞÞ)53. Though few mutations have been found to
be shared between replicates in high-replicate bacterial evolution
experiments, adaptive convergence has been shown to emerge at
higher levels of biological organization, including genes, operons,
and functional complexes45,54.
An important consideration for predicting AMR evolution is that

pathogens evolve within large, highly complex and intercon-
nected ecosystems that are themselves evolving55. It remains
unclear how ecological diversity in these biosystems, such as
multiple pathogenic yeast species co-infecting a patient56, or
diversity-generating processes such as negative frequency-
dependent selection (which favors rare phenotypes over common
ones)9,57, affect the predictability of AMR evolution. As the
complexity of ecological interactions increase, adaptive tradeoffs
to multiple selective pressures reduce our ability to predict
evolution58,59. Though ecological-evolutionary feedbacks can
increase our ability to predict evolution through negative
frequency-dependent selection60.

Opportunities and challenges for systems-based prediction of
antimicrobial resistance
Machine learning is not yet prevalent in evolutionary studies,
although it shows promise for predicting AMR. For instance,
machine learning models have been trained to predict the
evolutionary success of complex systems, such as the human
influenza virus variants61. However, at present, machine learning
models largely function as context-specific “black boxes” that do
not elucidate the mechanisms underlying AMR evolution51,
though this situation may change depending on progress made
in of the field of explainable artificial intelligence62. In contrast,
quantitative systems-based models coupled with evolution

experiments on pathogens with well-cataloged resistance muta-
tions would serve as powerful tools for elucidating the mechan-
isms underlying AMR evolution. It remains to be seen if
quantitative systems-based modeling will possess the same
predictive power as machine learning.
The performance of quantitative systems-based models trained

on data generated from computationally or microbial evolution
experiments can be evaluated using information measures63,64.
This approach may prove valuable in identifying the characteristic
time for predicting evolution (Fig. 2) over which evolutionary
dynamics can be predicted by quantitative and machine learning
models. Testing the predictions made by AMR evolution models in
evolution experiments on microbes carrying genetically engi-
neered drug resistance networks65 would be particularly useful for
the iterative “test, build, deploy” cycle that is common in synthetic
biology. As drug resistance genes do not function or evolve in
isolation, a systems approach rather than a reductionist approach
has led to new targets against AMR mediated by genetic networks
that control resistance genes6,29,30,65,66. For instance, therapeuti-
cally targeting regulator genes as opposed to resistance genes has
been predicted to mitigate AMR65.
A promising avenue is to take a systems-based approach to

predict AMR evolution based on properties that are not exhibited
by individual resistance genes or microbial species, such as the
emergent properties that are associated with interacting genes or
microbes9,67. Models of rare, random evolutionary events could be
validated by performing massively parallel simulations68 or
microbial evolution experiments with many replicates (ranging
from tens to hundreds) and analyze a large collection of endpoint
measurements65. Alternatively, researchers could perform in silico
or in vitro/in vivo evolution experiments with a small number of
replicates and track the evolutionary dynamics at a higher
temporal resolution. Ideally, these experiments would measure
evolutionary trajectories as well as endpoints at multiple scales
(including growth assays, imaging, and high-throughput “omics”
data generated from genomics, transcriptomics, proteomics, and
metabolomics technologies). Another promising approach is to
use DNA barcoding, which can detect mutations at low
frequencies in cellular lineages and estimate their time of
occurrence as well as fitness effects69,70. DNA barcoding is
particularly helpful at the beginning of microbial evolution
experiments when many mutations are present at low frequen-
cies, in contrast to whole genome sequencing which is beneficial
at the end of microbial evolution experiments when few
resistance mutants have fixed in the population. Genome editing
and deep mutational scanning open the possibility of quantifying
the number AMR mutations and their individual fitness effects to
predict drug resistance71 and guide drug development72. The
systems biology approach of combining different levels of omics
technologies with genome-scale metabolic models can provide
precision and robustness to AMR predictions8. Finally, systems-
based epidemiological models of AMR evolution that include the
structure of the host population, interactions between genetic
loci, and integration of within- and between-host levels can
predict strategies to limit the spread of drug-resistant
pathogens73.

DISCUSSION
Microbial evolution spans temporal, biological, and complexity
scales, which differentially impact our ability to predict AMR. We
can quantitatively define evolutionary predictability in terms of
our ability to define probability distributions and evolutionary
repeatability in terms of likelihood or entropy. Evolutionary
predictability and repeatability can also be thought of in terms
of information gain relative to a prior64, which is related to the
entropy of the system74. The predictability of microevolutionary
processes such as AMR increases on short timescales41, whereas
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macroevolution, such as the emergence of a new pathogen, takes
place on timescales well beyond the characteristic timescale for
predicting evolution. AMR evolution is anticipated to be more
predictable but less repeatable at larger biological scales, while at
small biological scales it is less predictable but more repeatable.
The complexity of biological systems presents practical challenges
for making predictions but is also imposes constraints that can
increase predictability. In particular, constraints arising from
competing infectious agents23 or from drug combinations75 may
aid the prediction of resistance evolution.
Predicting AMR evolution is an interdisciplinary endeavor that

will require combining multiple fields including physics, mathe-
matics, computer science, and the biological sciences to achieve
breakthroughs. One promising strategy is to develop predictive
models of evolution using a systems-based approach76, which
incorporates dynamics across multiple scales ranging from the
interactions between genes in a genetic drug resistance net-
work29,30 to species interactions in microbial communities9. The
application of machine learning is another approach which
promises to play an increasingly important role in drug design,
patient diagnostics, and predicting AMR77. Ultimately, to predict
AMR evolution we need to overcome two challenges: (1) develop
quantitative, multiscale models of complex fast-resistance evol-
ving biological systems and (2) generate high-replicate data that
span time, space, and biological organization from systems-based
evolution experiments to inform and test predictive models.
Overcoming these challenges will enable clinicians to predict AMR
evolution, revolutionizing the treatment of patients with drug-
resistant infections.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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