
AN ALGORITHM FOR THE STOCHASTIC SIMULATION OF

GENE EXPRESSION AND CELL POPULATION DYNAMICS

Daniel A. Charlebois

Thesis submitted to the Faculty of

Graduate and Postdoctoral Studies

In partial fulfillment of the requirements for the degree of

MSc Physics

Department of Physics

Faculty of Science

University of Ottawa

Ottawa-Carleton Institute for Physics

c© Daniel A. Charlebois, Ottawa, Canada, 2010

All Rights Reserved

ABSTRACT

AN ALGORITHM FOR THE STOCHASTIC SIMULATION OF

GENE EXPRESSION AND CELL POPULATION DYNAMICS

Daniel A. Charlebois

Department of Physics

MSc Physics

Over the past few years, it has been increasingly recognized that stochastic

mechanisms play a key role in the dynamics of biological systems. Genetic

networks are one example where molecular-level fluctuations are of particular

importance. Here stochasticity in the expression of gene products can result

in genetically identical cells in the same environment displaying significant

variation in biochemical or physical attributes. This variation can influence

individual and population-level fitness.

In this thesis we first explore the background required to obtain analyti-

cal solutions and perform simulations of stochastic models of gene expression.

Then we develop an algorithm for the stochastic simulation of gene expres-

sion and heterogeneous cell population dynamics. The algorithm combines

an exact method to simulate molecular-level fluctuations in single cells and a

constant-number Monte Carlo approach to simulate the statistical character-

istics of growing cell populations. This approach permits biologically realistic

and computationally feasible simulations of environment and time-dependent

cell population dynamics. The algorithm is benchmarked against steady-state

and time-dependent analytical solutions of gene expression models, including

scenarios when cell growth, division, and DNA replication are incorporated

into the modelling framework. Furthermore, using the algorithm we obtain the

steady-state cell size distribution of a large cell population, grown from a small

initial cell population undergoing stochastic and asymmetric division, to the

size distribution of a small representative sample of this population simulated

to steady-state. These comparisons demonstrate that the algorithm provides

an accurate and efficient approach to modelling the effects of complex biolog-

ical features on gene expression dynamics. The algorithm is also employed

to simulate expression dynamics within ‘bet-hedging’ cell populations during

their adaption to environmental stress. These simulations indicate that the

cell population dynamics algorithm provides a framework suitable for simu-

lating and analyzing realistic models of heterogeneous population dynamics

combining molecular-level stochastic reaction kinetics, relevant physiological

details, and phenotypic variability and fitness.

FORWARD

Throughout the master’s program I had the opportunity to attend and

present posters on my research at two conferences:

1. 2009 Progress in Systems Biology, April 23-24, Ottawa, Canada. ‘De-

velopment of a parallel algorithm for the stochastic simulation of gene

regulatory network dynamics in cells of a lineage and fixed populations’.

Daniel A. Charlebois and Mads Kaern.

2. HiBi09 - 2009 International Workshop on High Performance Computa-

tional Systems Biology, October 14-16, Trento, Italy. ‘Benchmarking

a Parallel Algorithm for the Stochastic Simulation of Gene Expression

and Population Dynamics’. Daniel A. Charlebois, Dawn Fraser, Jukka

Intosalmi and Mads Kaern.

Additionally, an article titled ‘An Algorithm for the Stochastic Simulation

of Gene Expression and Heterogeneous Population Dynamics’ [1] has been pub-

lished in the journal Communications in Computational Physics. The major

contribution of this article is the augmentation and validation of an accurate

and efficient framework for simulating and analyzing biologically realistic mod-

els of heterogeneous population dynamics. This work embodies the results of

my master’s research and is presented in Section 4.

ACKNOWLEDGMENTS

The author would like to especially thank Dr. Mads Kaern and Dawn Fraser

for their guidance and support, and also Nezar Abdennur for editing the the-

sis. This work was carried out and supported financially by the Dynamical

Systems Biology Laboratory at the University of Ottawa, Canada, and the au-

thor would like to extend his thanks to the entire laboratory, whose members,

in one way or another, enhanced his graduate experience.

This thesis is dedicated to my mother, Stephanie Marie Gillespie-Charlebois.

Ottawa, April 2010

Daniel Charlebois

Contents

Table of Contents vii

List of Figures ix

List of Symbols xii

1 Introduction 1
1.1 Noise in Biochemical Reactions . 1
1.2 Stochasticity in Gene Expression . 2
1.3 Modelling Gene Expression . 3
1.4 Quantifying Noise in Gene Expression 8
1.5 Heterogeneous Cell Populations and Fitness 11
1.6 Simulating the Dynamics of Heterogeneous Cell Populations 12
1.7 Summary . 14

2 Background 16
2.1 Analytically Solving the Chemical Master Equation 17

2.1.1 Exact Analytical Methods . 17
2.1.2 Approximate Analytical Methods 25

2.2 Stochastically Simulating the Chemical Master Equation 33
2.2.1 Exact Simulation Methods . 33
2.2.2 Approximate Simulation Methods 36
2.2.3 Stochastic Simulation Algorithm Augmentations 38

3 Algorithm 40
3.1 Implementation: Stochastic Simulation Algorithm 40
3.2 Implementation: Constant-Number Monte Carlo Method 43
3.3 Cell Population Dynamics Algorithm 46

4 Results 49
4.1 Numerical Results . 50

4.1.1 Steady-State Validation . 50
4.1.2 Time-Dependent Population Distributions 51
4.1.3 Gene Duplication, Cell Division, and Time-Dependent Validation 54

vii

viii CONTENTS

4.2 Simulating Complex Population Dynamics 62
4.2.1 Asymmetric Cell Division . 62
4.2.2 Bet-Hedging Cell Populations 64

5 Conclusion 69

References 72

Appendices 81
Appendix A: Poisson Process . 83
Appendix B: Fortran 90 Code . 85

List of Figures

1.1 A simple model for the expression of a single gene (each step represents
several biochemical reactions). All steps are modelled as first-order
reactions with the indicated rate constants (units of inverse time) as-
sociated with these steps. Figure used with permission from Scott et
al. [10]. 3

1.2 Time series of protein number resulting from constant gene expression
generated by deterministic and stochastic simulations (black and gray
curves, respectively). The histogram in the right-hand panel shows
the probability that a cell will have a given intracellular protein level.
Parameter were set to (units s−1): sA = 0.02, sR = 0, sP = 0.05,
δM = 0.0005, and δP = 0.01. V was set to unity (a.u.). 5

1.3 (a) P53-MDM2 network (reproduced from [11]). (b) Time series ob-
tained from simulations of a deterministic P53-MDM2 model [11] - the
number of oscillations either end abruptly after the damaged DNA is
repaired and ATM is switched off, or they continue indefinitely. (c)
Time series from a single realisation (representing one cell) of a stochas-
tic P53-MDM2 model [25]. (d) Average number of P53 molecules ob-
tained from 10 realisations (representing a population of cells) of the
model used in c. Note that figures (c) and (d) were obtained from
simulations carried out as part of a previous project [25]). 6

1.4 Schematic of flow cytometry revealing heterogeneity of phenotype (ex-
pression level of protein X) in a clonal cell population. Three idealized
interpretations for the spread in the level of X obtained from a popu-
lation snapshot are shown. All of them give rise to the distribution in
the histogram (shown here as a Gaussian distribution, but other dis-
tributions are possible). (a) Fast random fluctuations sufficiently fast
such that each cell visits all possible states. (b) Asynchronous (but
deterministic) slow fluctuations such as oscillatory processes. (c) An
extreme case in which each cell has one more or less stable (i.e. time-
invariant) but cell-specific level of X. Figure used with permission from
Brock et al. [26]. 9

ix

x LIST OF FIGURES

3.1 Flow diagram of the present algorithm for the parallel stochastic sim-
ulation of gene expression and heterogeneous population dynamics. . 47

4.1 Comparison of analytical solutions and simulation results. (a) Gene
product monomer mean steady-state (µM) and (b) coefficient of varia-
tion (CV M) are plotted for a range of transcription/translation param-
eter values (α0 and α1). Open circles indicate simulation results and
black curves analytical solutions [72]. Protein population distributions
corresponding to (a) are shown in (c) for α0 = α1 = 0.1 and (d) for
α0 = 0.9 and α1 = 0.5. 52

4.2 Simulation results and time-dependent analytical solutions of a two-
stage model of gene expression [50]. The distributions of protein num-
bers for a population of cells at two different dimensionless times,
τ = 0.2 and τ = 10, are shown. 54

4.3 Simulation results and time-dependent analytical solutions of a two-
stage model of gene expression [50]. Mean protein µP (top) and noise
ηP (bottom) are plotted as a function of dimensionless time τ . Open
circles indicate simulation results and black curves analytical solutions
[50]. 55

4.4 Time series of a single cell within a growing and dividing population.
Protein number (top) and concentration (middle), and mRNA number
(bottom), were obtained and found to be in agreement with a model
of translation provided in [13]. Gene duplication occurs every td =
0.4Tcdiv into the cell cycle and results in an increased rate of protein
production until the next cell division event where the number of genes
prior to duplication is restored. 59

4.5 Comparison of simulation results and analytic solutions. Mean mRNA
values are plotted as a function of gene copy number n (top). The noise
in mRNA number is also plotted as a function of n (bottom). Note
that mean mRNA values increase and the noise decreases after gene
duplication as expected. Black curves indicate analytical values [13]
and open circles simulation results. 60

4.6 Comparison of simulation results and analytic solutions. Mean protein
number (top) and noise (bottom) as a function of time t for two differ-
ent values of the protein degradation parameter d1. Note the increase
in protein production rate and decrease in noise levels that occur after
gene duplication at t = 0.4. Open circles indicate simulation results
and black curves analytical values [13]. 61

LIST OF FIGURES xi

4.7 Simulation of a stochastic population dynamics model [32] of a Saccha-
romyces cerevisiae population undergoing stochastic (size at division)
and asymmetric (partitioning of cell volume) division. (a) Steady-state
distribution of cell sizes for a population of 100000 cells. (b) Steady-
state size distribution of a representative sample (8000 cells) obtained
using the constant-number Monte Carlo method [45, 46] of the ‘true’
population shown in (a). (c) Plot of the probabilities population shown
in (b) against the probabilities of the population shown in (a) along
with linear regression. 63

4.8 Simulations of populations of slow and fast-switching cells (20 real-
isations). (a) Growth rates of cells transfered from an environment
containing uracil and 5-FOA (E2) to one containing no uracil (E1) at
t = 0. (b) Growth rates of cells transfered from E1 to E2 at t = 0. Note
that the transient before the steady-state region is shorter in (a) than
in (b), and that the slow-switching cells have a higher steady-state
growth after recovery from the environmental change, in agreement
with experimental results found in [77]. 67

4.9 Simulations of environmental effects on phenotypic distribution. (a)
Steady-state (top and bottom figures) and time-dependent (middle
figures) protein distributions of cells resulting from an environment
change from E1 to E2. (b) Steady-state (top and bottom figures) and
time-dependent (middle figures) protein distributions of cells resulting
from an environment change from E2 to E1. Note that when a sufficient
amount of time has elapsed after the environmental transition from ei-
ther E1 to E2 or vice versa, cells with either the OFF (represented
in each pannel by the distribution with the lower mean protein, P ,
value) or ON (represented in each pannel by the distribution with the
higher mean P value) phenotype proliferate, respectively, in agreement
with experimental results found in [77]. The following parameters were
used: d0 = 0.005s−1, v1 = 0.1s−1, d1 = 0.008s−1, K = 200, n = 10.
For fit cells in E1 v0,A = 0.2 and for unfit cells v0,R = 0.05 - vice versa
in E2. Additionally τφ was set to the mean doubling time (MDT) of
1.5 hours for Saccharomyces cerevisiae [78]. 68

1 Probability mass function for a Poisson (λ = 2) distribution (a) and
Poisson (λ = 8) distribution (b). 84

List of Symbols

T Promoter
TA Active promoter (also denoted by A)
TR Repressed promoter (also denoted by R)
M Messenger RNA (mRNA)
P Protein
sX Production rate of molecule X
δX Decay rate of molecule X
Vi Volume of cell i
V0 Initial cell volume (i.e. volume following cell division)
Vdiv Critical volume at which the cell divides (also represented by Vc)
tdiv Time since last cell division
tcdiv Cell division time interval
τ0 Time interval between cell volume doublings
td Time at which gene replication occurs (also denoted by trep)
trestore Time interval at which population is restored to some fixed number of individuals
tsample Time interval at which data for in silico population is obtained
[X] Number concentration of X
〈X〉 Expected value of X
µX Mean number of X
σX Standard deviation of X
σ2
X Variance of X

η Relative deviation from the average, or noise
CV Coefficient of variation
Y s Steady-state value of quantity Y (also denoted by Ȳ)
pk Probability of the system to occupy each one of a discrete set of states k
Ek

i Step operator which describes addition/removal of k molecules of species i∏
Probability density (as opposed to

∏N
i=1 which represents the product of the N terms)

ξ Gaussian noise term
τ Time at which next reaction occurs (also used to denote dimensionless time)
Rµ Next reaction (index µ) to occur
ai Propensity of reaction i
a0 Sum of reaction propensities

xii

Chapter 1

Introduction

1.1 Noise in Biochemical Reactions

Biochemical reactions are discrete events as molecular population numbers can only

change by discrete integer amounts. Furthermore, reactions are stochastic since they

occur as a result of collisions between randomly moving molecules. Consequently this

leads to the non-deterministic timing of individual reactions and an inherently noisy

time evolution of molecular population levels [2].

Specific physical reasons exist as to why the dynamics of chemically reacting sys-

tems are non-deterministic. Chemical systems are not usually mechanically isolated,

but rather in contact with a ‘heat bath’ which keeps the system in thermal equi-

librium at some temperature. When the system is in thermodynamic equilibrium,

the molecules will at all times be distributed randomly and uniformly throughout

the containing volume. These molecules move with erratic motions as a result of

the uneven bombardment of underlying fluid molecules (Brownian motion), which

themselves have essentially random motions due to thermal fluctuations from the

environment and collisions with other fluid molecules (self-diffusion). These erratic

1

2 Chapter 1 Introduction

motions result in erratic collisions, and any resulting reactions occur in an essentially

random manner [2–4]. Another reason for the non-deterministic time-evolution of a

chemical system involves quantum indeterminacy. For example, in a unimolecular

reaction it is impossible to know exactly when a molecule will transform itself into a

different isometric form [3].

1.2 Stochasticity in Gene Expression

Advancement in experimental techniques for empirically measuring single cells and

in corresponding theoretical methods have enabled the rigorous design and interpre-

tation of experiments that provide incontrovertible proof that there are important

endogenous sources of stochasticity that drive biological processes [5].

One example of particular importance is the stochastic expression of gene products

(mRNA and protein) [5–9]. Specifically, the multistep processes that lead to the

synthesis and degradation of messenger RNA (mRNA) and protein molecules are

inherently stochastic due to the underlying binding events which occur as a result of

the random collisions between small numbers of molecules (e.g. transcription factors

binding to one or two copies of a gene) [6]. A model of the process of expressing a

single gene is shown in Figure 1.1. Although this depiction is simple compared to the

true complexity of gene expression, it captures the essential features including the

switching of the DNA template between transcriptionally active (A) and repressed

(R) states at rates that depend on the binding of transcriptional regulators to the

promoter region of the gene (rates kon and koff), the synthesis of mRNA (M) from

a single gene copy (at a rate sR or sA, depending on whether the promoter is in the

R or A state, respectively), the synthesis of protein (P) from mRNA templates (rate

sP), and the decay of mRNA and protein molecules (rates δM and δP respectively)

1.3 Modelling Gene Expression 3

Figure 1.1 A simple model for the expression of a single gene (each step
represents several biochemical reactions). All steps are modelled as first-order
reactions with the indicated rate constants (units of inverse time) associated
with these steps. Figure used with permission from Scott et al. [10].

[6, 10]. Note that kon/(kon + koff) and koff/(kon + koff) are the fractions of time

that the gene spends in the active and repressed states, respectively. Although more

complex models of gene expression have been developed (e.g. [11–14]), the simple

model depicted in Figure 1.1 is sufficient for the purpose of this thesis.

1.3 Modelling Gene Expression

Traditionally, the time evolution of a chemical system is modelled as a deterministic

process using a set of ordinary differential equations (ODEs). This approach is based

on the empirical law of mass action, which provides a relation between reaction rates

and molecular concentrations [15]. Generally, the instantaneous rate of a reaction is

directly proportional to the concentration (which is in turn proportional to mass) of

each reactant raised to the power of its stoichiometry.

In the deterministic description of the model shown in Figure 1.1, the cellular

mRNA and protein concentrations ([M] and [P], respectively) are governed by the

macroscopic rate equations

4 Chapter 1 Introduction

d[M]

dt
=

sA
V

kon
kon + koff

+
sR
V

koff
kon + koff

− δM [M], (1.1)

d[P]

dt
= sP [M] − δP [P], (1.2)

where V is the cell volume; the terms δM [M] and δP [P] are the degradation rates

for mRNA and proteins respectively; the term sP [M] is the rate of protein synthesis.

Here the promoter is assumed to be in chemical equilibrium and consequently mRNA

production occurs at a constant rate given by the weighted average of the activated

(sA) and repressed (sR) mRNA synthesis rates (denoted by Λ). The steady-state

concentrations are given by

[Ms] =
Λ

δM
, (1.3)

[P s] =
ΛsP
δMδP

, (1.4)

and are related to the average steady-state number of M and P by V .

Note that the deterministic mathematical model (Eqs. (1.1) and (1.2)) was ob-

tained by treating each step as a first-order chemical reaction and applying the law

of mass action. The law of mass action was developed to describe chemical reactions

under conditions where the number of each chemical species is so large that concen-

trations can be approximated as continuous variables without introducing significant

error [10].

The conditions that need to be satisfied for the deterministic approach to provide

a valid approximation of the exact stochastic description (see Section 2.1.1) are fast

reaction kinetics (here large kon and koff values) and large system size in terms of

large numbers of each species and system volume (here large sR, sA and V so that

the number of expressed mRNA and protein molecules is high with their ratios sR/V

and sA/V remaining constant) [6]. When these conditions are not satisfied, the

1.3 Modelling Gene Expression 5

0 1 2 3 4 5 6 7 8 9
0

50

100

150

200

250

300

p
ro

te
in

 n
u
m

b
e
r

time (h)
0.05 0.1

probability

Figure 1.2 Time series of protein number resulting from constant gene ex-
pression generated by deterministic and stochastic simulations (black and
gray curves, respectively). The histogram in the right-hand panel shows the
probability that a cell will have a given intracellular protein level. Parameter
were set to (units s−1): sA = 0.02, sR = 0, sP = 0.05, δM = 0.0005, and
δP = 0.01. V was set to unity (a.u.).

effects of molecular noise can be significant. These conditions are not satisfied for

gene expression, due to low copy number of genes, mRNAs, and transcription factors

within the cell [16].

When the deterministic ODEs presented in Eqs. (1.1) and (1.2) are numerically

simulated, although they can in certain parameter regimes capture the mean behavior

of these types of systems, they cannot capture the fluctuations about the mean and

therefore the resulting probability distributions (Fig. 1.2). Futhermore, when rates

depend nonlinearly on randomly fluctuating components, macroscopic rate equations

may be far off the mark even in their estimates of averages [17]. Reliable averages

over cell populations can then only be found from ensembles of probabilistic single-cell

descriptions as the behavior of the system at deviations below the average expression

may not compensate for deviations above.

One case which emphasizes the importance of using a stochastic framework for

6 Chapter 1 Introduction

Figure 1.3 (a) P53-MDM2 network (reproduced from [11]). (b) Time series
obtained from simulations of a deterministic P53-MDM2 model [11] - the
number of oscillations either end abruptly after the damaged DNA is repaired
and ATM is switched off, or they continue indefinitely. (c) Time series from
a single realisation (representing one cell) of a stochastic P53-MDM2 model
[25]. (d) Average number of P53 molecules obtained from 10 realisations
(representing a population of cells) of the model used in c. Note that figures
(c) and (d) were obtained from simulations carried out as part of a previous
project [25]).

1.3 Modelling Gene Expression 7

modeling biological systems is the P53-MDM2 network [18]. P53 is a human tumour

suppressor protein (encoded by the p53 gene) which is activated (phosphorylated) by

the presence of DNA damage (which can be induced by ionizing radiation). Activated

P53 then upregulates the transcription of the Mdm2 gene, which in turn negatively

regulates (degrades) the P53 protein (Fig. 1.3a). This negative feedback loop results

in oscillatory dynamics in P53 and MDM2 concentrations until the DNA damage

present in the system is repaired (Fig. 1.3b - when the DNA damage sensing pro-

tein kinase ATM is modelled as a switch, and Fig. 1.3c) [11, 19, 20]. Experiments

show that the number of oscillations in response to DNA damage can vary among

individual cells of a population, and as a result, a damped oscillation is observed at

the population-level [19–22]. The deterministic models (e.g., [11, 23]) do not capture

the full dynamics of the P53-MDM2 system as they inevitably fail to account for the

observed heterogeneity in cellular response to DNA damage [18]. Specifically, in the

deterministic models cellular P53 and MDM2 concentrations either oscillate a finite

or indefinite number of times (Fig. 1.3b), with no variability in response to DNA

damage across the cell population. This lack of agreement between the deterministic

models and experimental results cannot be attributed to genetic or environmental ef-

fects, as these have been largely eliminated by experimental design [18]. On the other

hand, stochastic models of the P53-MDM2 system (e.g., [24, 25]) can capture both

the cell-to-cell variability (Fig. 1.3c) and population-level behavior that is observed

experimentally (Fig. 1.3d).

Another advantage of using a stochastic framework (see Section 2.2) to simulate

the model of gene expression under consideration (Fig. 1.1) can be seen in Figure 1.2.

Specifically, the stochastic methods capture not only the mean protein concentration,

but also the fluctuations in protein abundance. These fluctuations provide the in-

formation necessary for the histograms that describe the probability that a cell will

8 Chapter 1 Introduction

have a given level of a particular molecular species. Futhermore, population level

probability distributions can be obtained from the ensemble of single-cell time-series,

or when the ergodic hypothesis is satisfied, from the time-series of a single cell. Cap-

turing these probability distributions is often required to describe and predict the

dynamics of biological systems. Take for example the development of drug resis-

tance during chemotherapy. When the drug Imatinib is used to treat chronic myeloid

leukemia, the disease recurs with a frequency of 20-30 %. Even though numerous

genetic mutations have been shown to render the drug ineffective, in two-thirds of

the cases no mutations have been found. Instead, elevated levels of survival pathway

proteins in Imatinib-resistant leukaemia cell lines were detected. The rapid rate of

resistance development, its dose dependence and high frequency of upregulation of

the correct pathways are consistent with non-genetic heterogeneity which generates

enduring outlier cells with distinct phenotypes (i.e. any observable biochemical or

physical attribute), some of which may be subject to selection [26]. This non-genetic

heterogeneity, or variance within the population, can be captured in probability his-

tograms (where outlier cells would be accounted for in the tails of the distribution),

generated from a nondeterministic modeling framework.

1.4 Quantifying Noise in Gene Expression

The term ‘noise’ when used in the context of gene expression is a broad reference to

observed variation in protein content among apparently identical cells exposed to the

same environment [27]. This noise can be divided up into extrinsic and intrinsic com-

ponents. Extrinsic noise can generally be defined as fluctuations and variability that

arise in a system due to disturbances originating from its environment, and there-

fore depends on how the system of interest is defined [10]. Extrinsic gene expression

1.4 Quantifying Noise in Gene Expression 9

Figure 1.4 Schematic of flow cytometry revealing heterogeneity of pheno-
type (expression level of protein X) in a clonal cell population. Three ideal-
ized interpretations for the spread in the level of X obtained from a population
snapshot are shown. All of them give rise to the distribution in the histogram
(shown here as a Gaussian distribution, but other distributions are possible).
(a) Fast random fluctuations sufficiently fast such that each cell visits all
possible states. (b) Asynchronous (but deterministic) slow fluctuations such
as oscillatory processes. (c) An extreme case in which each cell has one more
or less stable (i.e. time-invariant) but cell-specific level of X. Figure used with
permission from Brock et al. [26].

10 Chapter 1 Introduction

noise arises from several sources including: the metabolic state of the cell, cell-cycle

phase, cell age, and variability in upstream signal transduction [6, 8, 13, 27–32]. In-

trinsic expression noise, which is the focus of this thesis, refers to variation that arises

from ‘finite-number’ molecular-level fluctuations inherent to reaction kinetics in the

nanomolar range during the expression of individual alleles and is illustrated by the

following example. At equilibrium, nuclear and cytoplasmic protein concentrations

are, on average, equal. However, because the volume of the nucleus is much less than

that of the cytoplasm, a larger fluctuation occurs as a result of a protein moving

from the cytoplasm to the nucleus than vice-versa. So if 10 molecules are present in

the nucleus and 1000 protein molecules in the cytoplasm, a translocation of a single

protein molecule across the nuclear membrane will result in a 10 % change in the

nuclear concentration and only a 0.1 % in the cytoplasmic protein concentration.

This differential effect resulting from the difference in molecule numbers in the two

compartments is referred to as the ‘finite-number effect’, which is perhaps the most

commonly recognized manifestation of molecular-level noise in cellular regulation [6].

Several noise measures are used to quantify the degree of heterogeneity in gene

expression. The relative deviation from the average is measured by the ratio of the

standard deviation σ to the mean µ, and is what is generally referred to as noise η.

Although the term ‘coefficient of variation’ (CV) is sometimes used interchangeably

with η, it will here be used to specifically to define the ratio σ2/µ2. Furthermore,

unless otherwise specified, η will here refer to intrinsic noise. Another more sensitive

measure of noise is known as the ‘fano factor’ (ϑ = σ2/µ), can be used to uncover

trends that would otherwise be obscured by the characteristic 1/
√
N scaling of the

noise, where N is the average molecular abundance, arising from finite-number effects

[6, 33].

Heterogeneity within a clonal population of cells of a single cell type can be mea-

1.5 Heterogeneous Cell Populations and Fitness 11

sured using flow-cytometry analysis, which produce histograms for the abundance of

a given protein per cell in a population of cells (see Figure 1.4). Within the peak of

the histogram, the abundance of the protein in the cells with the lowest and highest

expression level typically differs by three or more orders of magnitude; this spread far

exceeds signal measurement noise [26].

1.5 Heterogeneous Cell Populations and Fitness

Genetically identical cells in the same environment can display significant variation

in molecular content and thus exhibit significant variation in phenotypes [6,34]. This

heterogeneity in a cell population is probably the most apparent manifestation of

stochastic gene expression. In the simplest case, the concentration of a constitu-

tively expressed protein could display some variability from cell to cell [28, 35]; more

interestingly, a cell population could split into two or more groups, each of which

is characterized by a distinct state of gene expression [34]. For example, stochastic

mechanisms can cause a population of isogenic bacteria, where the entire population

is subject to the same environment, to exhibit diverse patterns of gene expression

with the resulting phenotypic subpopulations displaying distinct growth rates [34].

These fluctuations in gene expression provide a mechanism for ‘sampling’ physiolog-

ically distinct states, which can increase the probability of survival during times of

stress without the need for genetic mutation [6, 34].

Under fixed environmental conditions, the net growth rate (fitness) of the popula-

tion is maximized when all cells are of the fastest growing phenotype. However, in a

changing environment, it is thought that a statically heterogeneous population (i.e. a

population where transitions between states are not influenced by environmental con-

ditions) can deal with an uncertain future by hedging its bets, that is by generating

12 Chapter 1 Introduction

a broad distribution of phenotypes in the hope that some of these will remain viable

after an external change [34]. In contrast, a dynamically heterogeneous population

has a more reliable strategy: individuals in such populations sense and respond to

external changes by actively switching to the fit state. In this case if the response rate

is sufficiently rapid compared to the rate of environmental fluctuations, as is the case

for many real systems, then transitions into the unfit state are actually detrimental

and so bet-hedging is only beneficial if response rates are sufficiently low.

The probabilistic features arising from gene expression noise led to the hypothesis

that evolution has fine-tuned noise-generating mechanisms and genetic architectures

to derive beneficial population diversity [36–38]. Direct evidence that genome se-

quence contributes to cell-cell variability indicates that gene expression noise, like

other genome-encoded traits, is inheritable and subject to selective pressures, and

therefore evolvable. Specifically, large-scale proteomic studies in yeast have shown

that genes associated with stress response pathways have elevated levels of intrinsic

noise [39–41]. Stress-response genes have thus experienced positive pressure toward

high population variability, presumably by providing a selective advantage during

periods of stress.

1.6 Simulating the Dynamics of Heterogeneous Cell

Populations

Biological systems can be modelled at multiple scales, from detailed physical descrip-

tions of molecular interactions to phenomenological representations of populations

of organisms. Due to the importance of noise in many biological systems, models

involving stochastic formulations of chemical kinetics are increasingly being used to

simulate and analyze cellular control systems [42]. In many cases, obtaining analytical

1.6 Simulating the Dynamics of Heterogeneous Cell Populations 13

solutions for these models are not feasible due to the intractability of the correspond-

ing system of nonlinear equations. Thus, Monte Carlo (MC) simulation procedures

for numerically calculating the time evolution of a spatially homogeneous mixture of

molecules are commonly employed (see Section 2.2). Among these procedures, the

Gillespie stochastic simulation algorithm (SSA) is the de-facto standard for simu-

lating biochemical systems in situations where a deterministic formulation may be

inadequate [2, 43].

As the SSA tracks the molecular number of each species in the system, as op-

posed to the variation in concentrations in the deterministic framework, high network

complexity, large separation of time-scales and high molecule numbers can result in

computationally intensive executions. Another challenge is the need to simulate cell

populations. In many cases, gene expression is measured for 10-100 thousand indi-

viduals sampled from an exponentially growing culture of continuously dividing cells.

While the dynamics of these individual cells can be appropriately simulated by dis-

regarding daughter cells, repeating such simulations for a fixed number of cells will

not capture, for example, cell lineage dynamics. The alternative, tracking and simu-

lating all cells within the population, is intractable beyond a few divisions due to an

exponential increase in CPU demands as a function of time [44].

In order to address the issues outlined above, we present a flexible algorithm to

enable simulations of heterogeneous cell population dynamics at single-cell resolution

(Section 3). Deterministic and Langevin approaches to account for changes in intracel-

lular content and the constant-number MC method [45,46] were previously combined

to simulate and analyze gene expression across cell populations [44, 47]. In these

studies, extrinsic heterogeneity associated with stochastic division and partitioning

mechanisms, and intrinsic heterogeneity associated with molecular reaction kinetics

were considered. Specifically, Mantzaris [44, 47] demonstrated the importance of us-

14 Chapter 1 Introduction

ing a fully stochastic model that can quantitatively account for heterogeneity arising

from noise at the single-cell and population levels (in gene expression and from the

unequal partitioning of cellular content at cell division, respectively). Specifically,

for a genetic network with a positive feedback architecture, the author found that

accounting for both of these sources of stochasticity resulted in a shrinkage of the

parameter space where bistability was observed and a decrease in average expression

levels (when compared with a fully deterministic model, and a cell population bal-

ance model which accounted for population heterogeneity only in terms of unequal

partitioning at cell division). Furthermore, the effect of intrinsic expression noise at

the cell population level was found to be substantially different than at the single-

cell level (namely bistable regime shrinkage at the population level and expansion at

the single cell level), emphasizing the importance of simulating the dynamics of entire

populations of growing a dividing cells to understand behavior at the population level.

Our algorithm, which combines the exact SSA for single-cell molecular-level model-

ing and a constant-number MC method for population-level modeling, is designed

to incorporate user-defined biologically relevant features, such as gene duplication

and cell division, as well as single cell, lineage and population dynamics at specified

sampling intervals. Additionally, the SSA, which can be replaced by approximate

methods if desired, is implemented along with growth and division dynamics within

a shared-memory CPU parallelization framework to reduce simulation run-times.

1.7 Summary

The transcription of DNA into mRNA and the translation of mRNA into protein are

noisy processes and therefore stochastic models are used to theoretically investigate

gene expression dynamics. However, often these models are analytically intractable

1.7 Summary 15

and therefore stochastic simulation algorithms are employed to obtain numerical so-

lutions. Futhermore, in order to accurately simulate the dynamics of a population of

growing and dividing cells, one must account for the gene expression dynamics of the

daughter cells in addition to those of the mother cells. This presents a computational

challenge as the number of cells then increases in an exponential fashion. Thus, we

develop an algorithm which combines an exact stochastic simulation algorithm for

simulating gene expression dynamics with a Monte Carlo method for simulating a

fixed number of cells representing the exponentially growing population as a whole.

In order to benchmark the accuracy of the algorithm, we compare simulation results

with analytical solutions for several scenarios where the corresponding exact and ap-

proximate analytical solutions are available. To further benchmark the algorithm,

we implement a coarse-grain two-state model of a bet-hedging yeast population in

order to simulate fitness (growth-rate) dynamics under environmental stress - these

results are compared with available experimental data. Finally, for the same yeast

population, we simulate a fine-grain model which explicitly incorporates both gene

expression and fitness in order to capture environmental effects on phenotype distribu-

tions - these simulations exemplify the utility of the present algorithm in a case where

deterministic methods are unable to account for the full dynamics of the system.

In the next chapter, some of the exact and approximate analytical and simulation

methods used in the modelling of stochastic gene expression are presented.

Chapter 2

Background

A small class of stochastic gene expression models can be solved using exact analytical

methods (see Section 2.1.1). In many instances, the dynamics of the reaction system

of interest are nonlinear and it is not possible to solve the corresponding system of

equations exactly. In these cases, approximate analytical methods (see Section 2.1.2)

or stochastic simulations (see Section 2.2) are required [10]. Stochastic simulation

methods typically take into account explicitly the random formation and decay of

single molecules and multi-component complexes and thus capture the potentially

significant effects of factors that cause stochasticity in gene expression. Accordingly,

stochastic models are being used increasingly in preference to deterministic models to

describe biochemical network dynamics at the single-cell level [18]. As with analytical

solutions, both exact and approximate methods exist, the tradeoff of the former

being more computationally intense simulations and the latter in the exactness of the

numerical results obtained.

Although the focus of this thesis is on the development of the cell population dy-

namics algorithm presented in Section 3.3 and its validation in cases where analytical

solutions already exist, for completeness, here we provide an overview of some of the

16

2.1 Analytically Solving the Chemical Master Equation 17

exact and approximate methods that are commonly employed to obtain these ana-

lytical solutions. These analytical solutions are an essential tool for benchmarking

algorithms used to simulate the dynamics of biological systems.

2.1 Analytically Solving the Chemical Master Equa-

tion

2.1.1 Exact Analytical Methods

Chemical Master Equation

A master equation (ME) is a set of first-order differential equations describing the

time evolution of the probability of a system to occupy each one of a discrete set of

states. These equations are useful as it is often desirable to predict the probability of

a given system state without having to calculate it from repeated runs of a computer

program (see Section 2.2). The ME can be expressed as the differential form of the

Chapman-Kolmogorov equation for Markov processes, and is usually written in the

following form when dealing with a discrete set of states k

dpk(t)

dt
=
∑
k′

{Wk′→kpk′(t)−Wk→k′pk(t)} . (2.1)

Here Wk′→k is the transitional probability per unit time from k′ to k and pk′ the

time-dependent probability associated with state k′. In this form it is clear that the

ME is a gain-loss equation for the probabilities of the separate states k. The gain of

state k due to the transitions from other states k’ is represented by the first term,

and the loss due to transitions from k into other states k’ is represented by the second

term [48].

In the stochastic formulation of chemical kinetics, the time evolution of a biochemi-

18 Chapter 2 Background

cal system is analytically described by a single differential-difference equation in which

time and the N distinct reacting species populations, where Xi : i ∈ {1, 2, . . . , N}
is the population of species Si : i ∈ {1, 2, . . . , N}, all appear as independent vari-

ables [2, 43]. The finite differential-difference equation in this context is commonly

referred to as the chemical master equation (CME), and the function which satisfies

it, namely p(X1, . . . , XN ; t), is known as the grand probability function (GPF).

The GPF describes the probability that there will be X1 molecules of S1, X2

molecules of S2, . . . , andXN molecules of SN , in a volume V at time t; the CME is the

equation governing the time-evolution of this function. The state of the chemically

reacting system can be described by the integer vector x = [X1, . . . , XN]
T . The

system’s state can change through any one of the M reactions Rµ : µ ∈ {1, 2, . . . ,M}.
An Rµ reaction results in a state transition from x to x + sµ, where sµ is a vector

which represents the changes in molecular species numbers that occurred as a result

of Rµ. The propensity for a reaction to occur aµ (units T−1) is given by aµ = cµxi,

where cµ is a reaction parameter that characterises reaction Rµ, and xi is the number

of distinct molecular reactant combinations for reaction Rµ found to be present in V

at t. The fundamental hypothesis of the stochastic formulation of chemical kinetics

is that the probability that a particular combination of Rµ reactant molecules will

react within the next infinitesimal time interval dt is given by aµdt.

The CME and can be expressed as follows [2, 43]

∂

∂t
p(x, t) =

M∑
µ=1

[aµ(x− sµ)p(x− sµ, t)− p(x, t)aµ(x)] . (2.2)

The first and second moments of p(x, t) with respect to a species i are the average

number 〈ni(t)〉 of that molecule and variance σ2
i (t) = 〈n2

i 〉 − 〈ni〉2. The intrinsic

noise for species i is defined by ηint(t) = σi(t)/ 〈ni(t)〉 and is thus directly related

to the moments of p(x, t) [10]. Note that another generalization of the CME is the

2.1 Analytically Solving the Chemical Master Equation 19

Fokker-Planck equation which describes the time evolution of a continuous probability

distribution (see Section 2.1.2).

For example, the CME corresponding to the following birth and death process

together with the associated transition probabilities: n → n + 1 : kcdt, n → n − 1 :

nkddt, n → n : 1− (kc + nkd)dt, is as follows

∂

∂t
p(n, t) = kcp(n− 1, t) + kd(n + 1)p(n+ 1, t)− (kc + nkd)p(n, t). (2.3)

Note, since nkddt is the probability per unit time for a degradation event given there

are n molecules, the probability of the system moving from a state with n molecules

to a state with n−1 molecules is nkddtpn, where pn is the time-dependent probability

for having n molecules [17].

If we set ∂
∂t
p(n, t) = 0 then in some cases it is possible to directly obtain the

stationary probability distribution ps(n). In the steady-state, the probability of tran-

sition from a state with n molecules to the state with n+ 1 molecules must be equal

to the probability of transition from a state with n+ 1 molecules to the state with n

molecules. Hence, ∂
∂t
p(n, t) = 0 is satisfied for n ≥ 0 when

kcp
s(n− 1) = kdnp

s(n) (2.4)

and thus obtain

ps(n) =
kc
kdn

ps(n− 1). (2.5)

From here ps(n) can be found in an iterative fashion starting from the probability of

having zero molecules in the reaction volume

ps(n) = ps(0)
n∏

m=1

kc
kdm

= ps(0)

(
kc
kd

)n
n!

(2.6)

Since the sum of the probabilities
∑n

m=0 p
s(n) must equal one

ps(0)
n∑

m=0

(kc
kd
)m

m!
= 1, (2.7)

20 Chapter 2 Background

and the value of ps(0) can be obtained using the power series of the exponential

function,

ps(0) = e−kc/kd. (2.8)

The ratio kc
kd

is equal to the steady-state value ns obtained from the macroscopic

description and ps(0) is given by the Poisson distribution (Appendix A).

In order to construct the CME associated with the model of gene expression shown

in Fig. 1.1 we proceed as follows:

To keep the CME in a compact form, we introduce a step operator Ek
i which describes

the addition or removal of k molecules of species i when a particular reaction occurs.

For a function f(ni, nj) with two integer arguments, Ek
i increments ni by an integer

k, such that

Ek
i f(ni, nj) = f(ni + k, nj). (2.9)

Now we consider a change in the system due to degradation of mRNA. The change

in probability is given by

dp(A,M, P, t)

dt
= δM (M + 1)p(A,M + 1, P, t)− δMMp(A,M, P, t), (2.10)

where the first and second terms describe, respectively, the flux in an out of state

A,M, P, t due to the removal of one mRNA. Using the step operator and letting

p(A,M, P, t) = p, the above equation can be expressed in compact form as

dp

dt
= δM(E1

M − 1)Mp. (2.11)

The contributions to the probability flux due to single promoter binding is obtained

in a similar way

dp

dt
= kon(E

−1

A − 1)(1− A)p+ koff(E
1
A − 1)Ap

+ sA(E
−1

M − 1)Ap+ sP (E
−1

P − 1)Mp

+ δM (E1
M − 1)Mp + δP (E

1
P − 1)Pp. (2.12)

2.1 Analytically Solving the Chemical Master Equation 21

Because the CME is linear in the state variables A,M, P the moments of the probabil-

ity distribution can be calculated using moment generating functions (Section 2.1.1).

The first moment of p yields the average steady-state numbers of mRNA

〈Ms〉 = 〈As〉 sA
δM

(2.13)

and protein molecules

〈P s〉 = 〈Ms〉 sP
δP

= 〈As〉 sAsP
δMδP

, (2.14)

where 〈As〉 = kon/(kon+koff) is the average probability of the promoter being active.

The variances in the state variables can be obtained from the second moment of p, and

thus an expression for the intrinsic noise in the steady-state protein abundance can

be determined. Assuming that the protein decay is slow compared to the promoter

kinetics (δP << kon+koff) the coefficient of variation in steady-state protein number

can be expressed as

CV s
P =

(
1

P s
+

1

1 + φ

1

Ms

)
+

δMkoff/kon
(1 + φ)(kon + koff)

, (2.15)

where φ = δM/δP [10, 30]. Note that the first term in Eq. (2.15) arises from mRNA

and protein kinetics and the second term from kinetics of the promoter [10]. Since

(σs
M)2 = 〈Ms〉 as described by Poisson statistics, the coefficient of variation in steady-

state mRNA number CV s
M is simply 1/ 〈Ms〉.

Although there are a few specific cases were the CME can be solved exactly,

in general analytical solving or numerically simulating the master equation for a

system of realistic size and complexity is not possible, and the only practical approach

for gaining insight into system’s dynamics is via a MC simulation of the CME (see

Section 2.2) [2, 16, 43].

22 Chapter 2 Background

Moment-Generating Functions

The moments of a random variable can be calculated via moment-generating functions

[49]. Noting that the expected value 〈X〉 of a continuous random variable X is given

by

〈X〉 =
∫ ∞

−∞
xp(x)dx, (2.16)

where p(x) is the probability density, and that by definition the moment-generating

function Mx(t) of X is the expected value of the function etx, where t is an auxiliary

variable,

Mx(t) =
〈
etx
〉

(2.17)

and so,

Mx(t) =
∫ ∞

−∞
etxp(x)dx. (2.18)

The moments

〈Xn〉 =
∫ ∞

−∞
p(x)xndx (2.19)

can be written as

〈Xn〉 = limt→0

∫ ∞

−∞
dxp(x)

(
d

dt

)n

(etx) = limt→0

(
d

dt

)n

Mx(t). (2.20)

Thus, the moment 〈Xn〉 is the limit as t → 0 of the nth derivative of Mx(t) with

respect to the auxiliary variable t.

For the system described by Eq. (2.3), for a single species X1 with n molecules

per V , the moment generating function is

Mx(s, t) =
∞∑
n

∏
snp(n, t), (2.21)

where s is an integer [49]. Since

Mx(s, t)|s=1 =
∞∑
n=0

p(n, t) = 1, (2.22)

2.1 Analytically Solving the Chemical Master Equation 23

the first derivative generates the first moment

∂sMx(s, t)|s=1 =
∞∑
n=0

n(t)p(n(t), t) = 〈n〉 = µn (2.23)

and the second derivative the second moment

∂ssMx(s, t)|s=1 =
∞∑
n=0

n(t)2p(n(t), t)−
∞∑
n=0

n(t)p(n(t), t)

=
〈
n(t)2

〉
− 〈n(t)〉 = 〈n(t)〉2f , (2.24)

where 〈n(t)2〉f is known as the factorial moment. Since 〈n〉f = 〈n〉, one obtains

∂ssMx(s, t)|s=1 = σ2
n = 〈n〉 . (2.25)

Note µs and σ2
n are as expected for this birth-death process (i.e. Poissonian - Sec-

tion 2.1.1).

The moment-generating function can be used to find the mean and variance for

the gene expression model presented in Fig. 1.1 as well as an approximative protein

distribution as a function of time. The approximation is based on the assumption

that the degradation of mRNA is fast compared to the degradation of proteins (i.e.

δM/δP � 1). Consequently, the dynamics of mRNA are at the steady-state for

most of a protein’s lifetime. The essential steps of the derivation are as follows (see

supplementary materials in [50] for a complete derivation):

Eq. (2.12), the CME describing the probability of having M and P for this system

at time t, can also be written as

∂pM,P

∂t
= sA(pM−1,P − pM,P) + sPM(pM,P−1 − pM,P)

+ δM [(M + 1)pM+1,P −MpM,P]

+ δP [(M + 1)pM,P+1 − PpM,P]. (2.26)

By defining the generating function F (z
′
, z), by F (z

′
, z) =

∑
M,P (z

′
)MzPpM,P , Eq. (2.26)

24 Chapter 2 Background

can be converted into a first-order partial differential equation, namely

1

v

∂F

∂τ
+

∂F

∂v
− γ

[
b(1 + u)− u

v

]
∂F

∂u
= a

u

v
F, (2.27)

where a = sA/δP , b = sP/δM , γ = δM/δP , and τ = δP t, and where u = z
′ − 1 and

v = z−1 [50]. Using the method of characteristics, Eq. (2.27) can be solved to obtain

du

dv
= −γ

[
b(1 + u)− u

v

]
. (2.28)

Integration of Eq. (2.28) yields the solution

u(v) = e−γbvvγ

⎡
⎣C − bγ

∫ v

dv
′ eγbv

′

v′γ

⎤
⎦ (2.29)

for a constant C. By Taylor expansion of eγbv such that eγbv =
∑

n(γbv)
n/n! the

integral in Eq. (2.29) can be evaluated, and if Stirling’s approximation is subsequently

applied, u(v) is found for γ >> 1 to obey

u(v) ∼=
(
u0 − bv0

1− bv0

)
e−γb(v−v0)

(
v

v0

)γ

+
bv

1− bv
(2.30)

or

u(v) ∼= bv

1− bv
. (2.31)

When γ >> 1, u tends rapidly to a fixed function of v and the generating function

describing the distribution of proteins can be obtained from Eq. (2.27)

dF

dv
∼= ab

1− bv
F. (2.32)

Integrating Eq. (2.32) yields the probability distribution for protein number as a

function of time

F (z, τ) =

[
1− b(z − 1)e−τ

1 + b− bz

]a
. (2.33)

By definition of a generating function, expanding F (z) in z yields

Pn(τ) =
Γ(a+ n)

Γ(n+ 1)Γ(a)

[
b

1 + b

]n [
1 + be−τ

1 + b

]a

×2F1

[
−n,−a, 1 − a− n;

1 + b

eτ + b

]
, (2.34)

2.1 Analytically Solving the Chemical Master Equation 25

where 2F1 and Γ are the hypergeometric and the gamma function, respectively [50].

When the initial number of proteins n is set to zero, the mean and noise of the process

are described, respectively by

µP = ab(1 − e−τ), (2.35)

ηP =
[
(1 + b+ be−τ)/ab(1− e−τ)

]1/2
. (2.36)

Note that these results are in agreement with the steady-state results found using

the CME approach (Section 2.1.1) when the conditions τ >> 1 (i.e. the system has

reached steady-state) and δM >> δP are satisfied.

2.1.2 Approximate Analytical Methods

Linear Noise Approximation

The LNA [51,52] is an efficient method for estimating (and in some cases it is exact,

e.g., the CV expression presented in this section for the model of single gene expression

shown in Fig. 1.1) the internal and external variability in nonlinear oscillatory systems

(e.g. genetic networks [53–55]). Furthermore, it allows the possibility of calculating

the intrinsic noise in systems with nonlinear reaction rates where moment generating

functions cannot be used, or where due to feasibility, stochastic simulations may not

be desirable [10].

In the LNA, the discrete state space (number of molecules) is smoothed into a

continuum (macroscopic concentrations) and additional terms describing the fluctu-

ations about the macroscopic trajectory are calculated. Specifically, the number of

molecules ni(t) of a species i is approximated as a continuous variable in terms of the

concentration ci(t), and a term αi(t) describing the deviation from ci(t). Since the

impact of this fluctuation is expected to scale with the square root of system size Ω,

26 Chapter 2 Background

the number of molecules is approximated by

ni(t) ≈ Ωci(t) +
√
Ωαi(t). (2.37)

The LNA assumes that the step operator (Eq. (2.9)) associated with the transition

probabilities in the CME is well described by a Taylor series for large Ω. The basis

for this assumption lies in the fact that an integer change in molecule number will

have a negligible effect on the concentration in the macroscopic limit. If k molecules

are added to the system, the value of αi in Eq. (2.37) increases by k/
√
Ω. Therefore,

for large Ω, a single reaction brings about only a small change in concentration and

the operator Ek
i is well approximated by a truncated Maclaurin series

Ek
i ≈

[
1 +

k√
Ω
∂i +

k2

2Ω
∂2
i

]
, (2.38)

where ∂i = ∂/∂αi and ∂2
i = ∂2/∂α2

i . From here it is necessary to derive an equation

that describes the fluctuations �α(t) = α1, . . . , αd, where d is the number of distinct

species in the system, in order to calculate the average fluctuations 〈αi〉 and the

variances 〈αiαj〉. To do this the probability density

∏
=
∏

(�α, t) = Ωd/2p(n, t) (2.39)

is introduced, where the scaling Ωd/2 ensures that
∏

is normalized appropriately. If

Eqs. (2.37) and (2.38) are inserted into the CME, and the terms in which Ω appears

with the same order are collected [52], an approximation of the equations that governs

the evolution of
∏

can be obtained [10]. The equation that governs the evolution of

∏
(�α, t) contains terms multiplied by 1/

√
Ω; the general form of a linear Fokker-Planck

equation (FPE) results when these terms are collected

∂
∏
∂t

= −∑
i,j

Aij∂i(αj

∏
) +

1

2

∑
i,j

Bij∂ij
∏

, (2.40)

2.1 Analytically Solving the Chemical Master Equation 27

where Aij are the drift (or dissipation) terms, and Bij are the diffusion terms. Note

that the matrix A reflects the local stability of the macroscopic system to small per-

turbations and the matrix B describes the strength of the local fluctuations. Also,

since the time-dependent coefficient matrices A and B are independent of the fluctu-

ations �α, which appear only linearly in Eq. (2.40), the solution p(n, t) is normal and

completely characterized by the first two moments [10].

If Eq. (2.40) is multiplied by αi and then is integrated over all �α, evolution equa-

tions describing the the means 〈αi〉 and the variances 〈(αi − 〈αi〉)(αj − 〈αj〉)〉 can be

obtained. For the means

d

dt
〈�α〉 = A 〈�α〉 (2.41)

and for the variances Cij = 〈αiαj〉, if one assumes that 〈α〉 = 0, a set of equations

are given in compact matrix-vector form

dC

dt
= AC+CAT +B. (2.42)

The following example obtained from Scott et al. [10] demonstrates how the LNA

can be used to calculate the intrinsic noise in the expression of a single gene shown

in Fig. 1.1. When mRNA synthesis occurs with a constant rate sA, the CME given

in Eq. (2.12) can be expressed as follows

dp

dt
= sAA(E

−1
M − 1)p+ sP (E

−1
P − 1)Mp

+ δM(E1
M − 1)Mp + δP (E

1
P − 1)Pp. (2.43)

Eq. (2.43) can then be expressed in terms of
∏

=
∏
(α1, α2, t) by applying the chain

rule [52],

dp

dt
=

1√
Ω

[
1√
Ω

∂
∏
∂t

− dM

dt

∂
∏

∂αM

− dP

dt

∂
∏

∂αP

]
. (2.44)

Inserting Eq. (2.37) in the form M = Ω([M] + αM/
√
Ω) and P = Ω([P] + αP/

√
Ω),

and the approximate step-operator (Eq. (2.38)), into Eq. (2.43), yields an intermittent

28 Chapter 2 Background

equation

1√
Ω

∂
∏
∂t

=
dM

dt
∂M

∏
+

dP

dt
∂P
∏

+sA

[
∂2
M

2
√
Ω

− ∂M

]∏

+

(
sP

[
∂2
P

2
√
Ω

− ∂P

]
+ δM

[
∂M +

∂2
M

2
√
Ω

])(
M +

αM√
Ω

)∏

+ δP

[
∂P +

∂2
P

2
√
Ω

](
P +

αP√
Ω

)∏
, (2.45)

where M and P are now, until the end of this section, being used to denote [M] and

[P]. Isolating terms entering Eq. (2.45) independent of Ω, corresponding to zeroth

order in 1/
√
Ω, yields

dM

dt
∂M

∏
+
dP

dt
∂P
∏

= [sA − δMM] ∂M
∏

+ [sPM − δPP] ∂P
∏

(2.46)

Equating the coefficients of ∂
∏
/∂αi then yields the macroscopic rate equations in

Eqs. (1.1)-(1.2).

A first order approximate evolution equation for
∏
(αM , αP) is obtained by isolat-

ing terms entering Eq. (2.45) with first order in 1/
√
Ω

d
∏
dt

=
sA
2
∂2
M

∏
+
sPM

2
∂2
P

∏−sP∂P (αM

∏
) + δM∂M(αM

∏
)

+
δMM

2
∂2
M

∏
+
δPP

2
∂2
P

∏
+δP∂P (αP

∏
), (2.47)

which is a FPE with the coefficient matrices

A =

⎡
⎢⎢⎣ −δM 0

sP −δP

⎤
⎥⎥⎦ ,

B =

⎡
⎢⎢⎣ sA + δMM 0

0 sPM + δPP

⎤
⎥⎥⎦ .

The intrinsic noise in the steady-state can be found by setting the LHS of Eq. (2.42)

to zero and solving for 〈αiαj〉 yielding the following set of equations

− 2δM 〈αMαM〉+ sA + δMMs = 0,

2.1 Analytically Solving the Chemical Master Equation 29

−(δM + δP) 〈αMαP 〉+ sP 〈αMαM〉 = 0,

−2δP 〈αPαP 〉+ sP 〈αMαP 〉+ sPM
s + δPP

s = 0, (2.48)

the solution of which is found to be

Cs =

⎡
⎢⎢⎣ Ms P s

1+φ

P s

1+φ

(
P s + (P s)2

Ms(1+φ)

)
⎤
⎥⎥⎦ ,

where φ = δM/δP . Using the definition 〈αPαP 〉s = Cs
22 the coefficient of variation for

the protein concentration is calculated to be

CV =
1

Ω

[
1

P s
+

1

Ms(1 + φ)

]
, (2.49)

in agreement with the exact analytical methods (Section 2.1.1), in the limit of fast

promoter kinetics.

Stochastic Differential Equations

A set of stochastic differential equations (SDEs) can also be used to model biochemical

reactions [15, 56]. A SDE can be thought of as a way of constructing a realisation of

X from a realisation of Brownian motion (Wiener process) W (t) = W [16]. Although

like ODEs this approach is based on the law of mass action, here the stochastic Itô

process (stochastic processes described through Itô integrals, i.e. integrals of the form

Y (t) =
∫ t
o H(s)dW (s)) is used to describe the time evolution of the system.

The following example of how to obtain an analytical solution to a one-dimensional

SDE was obtained from [57–59]:

We begin by assuming that we have an ODE, namely

dX

dt
= µX, µX ∈ �, (2.50)

and we want to incorporate stochasticity into the constant µ. This can be accom-

plished by incorporating a noise term ξt with a parameter ν ∈ � to µ, which results

30 Chapter 2 Background

in a SDE of the form

dX = (µ+ νξ)Xdt = µXdt+ νXξdt, µX, νX ∈ �. (2.51)

Since the random fluctuation at a certain moment can often be described by a Gaus-

sian random variable, ξt is often referred to as a Gaussian noise term (or process).

However, from a mathematical point of view, as the mathematical formalism to han-

dle a Gaussian noise process as part of an ODE does not exist, one must resort

to using fractions of a suitable Gaussian process as a noise term, namely Brownian

motion [57]. Thus Eq. (2.51) can be expressed as follows

dX

dt
= µX + νXdW, (2.52)

where dW is now a fraction of Brownian motion. In order to obtain an analytical

solution to the case discussed above, we proceed as follows considering an Itô process

of the form

X = X(0) +
∫ t

0
µX(s)ds+

∫ t

0
νX(s)dWds, (2.53)

which is equivalent to Eq. (2.52). Rearranging Eq. (2.52) we obtain

dX

X
= µdt+ νdWdt, (2.54)

hence, ∫ t

0

dX

X
=
∫ t

0
µdt+

∫ t

0
νdWdt = µt+ νW. (2.55)

Evaluating the integral on the L.H.S. of Eq. (2.55) using the Itô formula yields [57]

dX

X
= d ln(X) +

1

2
ν2dt. (2.56)

From Eqs. (2.55) and (2.56) we obtain

∫ t

0
d ln(X) +

∫ t

0

1

2
ν2ds = µt+ νW

2.1 Analytically Solving the Chemical Master Equation 31

lnX − lnX(0) +
1

2
ν2t = µt+ νW

ln
X

X(0)
= µt+ νW − 1

2
ν2t

ln
X

X(0)
= (µ− 1

2
ν2)t + νW (2.57)

or equivalently,

X = X(0) exp
[
(µ− 1

2
ν2)t+ νW

]
. (2.58)

Similarly, multi-dimensional SDEs can be constructed by adding noise terms in a

set of ODEs. Here we consider the model of gene expression depicted in Fig. 1.1, again

where transcription occurs with a constant rate sA such that the CME describing the

system is given by Eq. (2.43). The Fokker-Planck approximation corresponding to

Eq. (2.43) is as follows [60, 61]

∂pM,P

∂t
= −∂[(sA − δMM)pM,P]

∂M
− ∂[(sP − δPP)pM,P]

∂P

+ 2−1∂
2[(sA + δMM)pM,P]

∂M2
+ 2−1∂

2
P [(sPM + δPP)pM,P]

∂P 2
. (2.59)

Eq. (2.59) is equivalent to the following set of nonlinear SDEs (or Chemical Langevin

Equations) [62]

dM

dt
= sA − δMM +

√
sA + δMMηM,t,

dP

dt
= sPM − δPP +

√
sPM + δPPηP,t, (2.60)

where ηM,t and ηP,t are Gaussian white noise processes. If we are close to the steady-

state, then for the system described by Eq. (2.60) sA ≈ δM 〈Ms〉 and sP 〈Ms〉 ≈
δP 〈P s〉 and therefore can be described by the following system of linear-approximations

dM

dt
= sA − δMM +

√
qMηM,t,

dP

dt
= sPM − δPP +

√
qPηP,t, (2.61)

32 Chapter 2 Background

where qM = 2sA and qP = 2sPM
s. The general integral solution to Eq. (2.61) is given

by

M = M0e
−δM t + e−δM t

∫ t

0
(sA + ηM,s)e

δMsds,

P = P0e
−δP t + e−δP t

∫ t

0
(sPMs + ηP,s)e

δP sds. (2.62)

Defining the Fourier transforms of the variables M and P as Ms
w =

∫∞
−∞Me−iwtdt

and P s
w =

∫∞
−∞ Pe−iwtdt, then Eq. (2.62) can be rewritten in the frequency domain as

follows

Ms
w = 2πsA(δM + iw)−1(δ(w) + ηM,w),

P s
w = (δP + iw)−1(sP2πsA(δM + iw)−1(δ(w) + ηM,w) + ηP,w), (2.63)

where the noise terms are defined as ηM,w =
∫∞
−∞ ηM,te

−iwtdt and ηP,w =
∫∞
−∞ ηP,te

−iwtdt.

Using Eq. (2.63) the mean steady-state values for the number of mRNA and protein

molecules can be obtained [62]

〈Ms〉 = sA

∫ ∞

−∞
(δM + iw)−1δ(w)eiwtdw =

sA
δM

,

〈P s〉 = sP

∫ ∞

−∞
(δP + iw)−1(sA(δM + iw)−1δ(w))eiwtdw =

sAsP
δMδP

, (2.64)

which, when the gene is constitutively expressed, are in agreement with the analytical

results found in Section 2.1.1. Similarly, the stationary state variance is found to be

〈
(Ms)2

〉
− 〈Ms〉2 = qM/(2δM),

〈
(P s)2

〉
− 〈P s〉2 = qP/(2δP) + s2P qM/(2δMδP (δM + δP)). (2.65)

The CV can be obtained from Eqs. (2.64) and (2.65) [62]

CV s
M = δM/sM =

1

〈Ms〉 ,

CV s
P = δMδP/(sA + sP) + δMδP/(sA(δM + δP))

=
1

〈P s〉 + δP/sA, (2.66)

2.2 Stochastically Simulating the Chemical Master Equation 33

and is in agreement with the solutions found using exact methods in Section 2.1.1.

In the following sections we present an overview of the exact and approximate

methods commonly employed to simulate models of gene expression.

2.2 Stochastically Simulating the Chemical Mas-

ter Equation

2.2.1 Exact Simulation Methods

Direct and First-Reaction Methods

The physical basis of the stochastic formulation of chemical kinetics is a consequence

of the fact that collisions in a system of molecules in thermal equilibrium are essen-

tially a random process. This stochasticity is correctly accounted for by the Gillespie

stochastic simulation algorithm (SSA) [2, 43], a Monte Carlo (MC) procedure to nu-

merically simulate the time evolution of chemical and biochemical reaction systems.

While based on an assumption of intracellular homogeneity and mass-action kinet-

ics, it is the standard for simulations of gene expression. This method is extremely

important as it is rarely possible to solve the chemical master equation (CME) (see

Section 2.1.1), either analytically or numerically, except for simplest of chemical sys-

tems [63].

The SSA tracks the molecular number of each species in the system as opposed

to the variation in concentrations in the deterministic framework. The SSA however

does not try to simulate the CME numerically but rather the very Markov process

that the CME describes using rigorously derived MC techniques. The SSA is fully

equivalent to the CME, even though the CME itself is never used [2, 43].

In the direct method Gillespie SSA, M chemical reactions {R1, . . . , RM} with re-

34 Chapter 2 Background

action parameters c1, ..., cM among N chemical species X1, ..., XN , are simulated one

reaction event at a time. The fundamental hypothesis of the stochastic formulation of

chemical kinetics is that the average probability of a given reaction i occurring in the

next infinitesimal time interval dt is given by aidt, where ai is the reaction propensity

obtained by multiplying ci by the number of reactants (for first order reactions) or

reactant combinations (for second order and higher reactions) hi available for reac-

tion Ri. The next reaction to occur (index µ) and its timing τ are determined by

calculating the M reaction propensities a1, ..., aM to obtain an appropriately weighted

probability for each reaction. The SSA determines when (τ = ln(1/r1)/a0) and which

(min{ µ | ∑µ
i=1 ai ≥ r2a0}) reaction will occur next, using uniformly distributed ran-

dom numbers r1 and r2, and the sum of the reaction propensities a0. See Section 3.1

for an algorithmic implementation of the Gillespie direct method.

One alternative, but equivalent method to the direct SSA method, is the first-

reaction method. In this method, the τ for each of the M reaction channels is com-

puted directly and then the reaction with the smallest τ is selected as the next

reaction to occur. As the τ for each i of the M reactions must be computed (via

τ = ln(1/r1)/ai) at each SSA step, this method is computationally less efficient than

the direct method when M ≥ 3 (since in this case more than the two random numbers

required in the direct method need to be generated) and is therefore not commonly

employed [3, 63].

We note that the SSA can be extremely computationally intensive since the step

size τ becomes very small when the total number of molecules is high or the fastest

reaction occurs on a time-scale that is much shorter than the time-scale of interest.

Thus, the exact nature of the SSA comes at the expense of efficiency and it can

be incapable of simulating larger systems because of computational inefficiency [3,

42]. It is therefore useful to develop techniques that can be used to speed up the

2.2 Stochastically Simulating the Chemical Master Equation 35

simulation. This can be done, for example, using approximate simulation methods

(see Section 2.2.2). Additionally, since many independent realisations are required

in order to compute population statistics, parallel computing can be used to further

optimize simulation run-times (see Section 3.3).

Next-Reaction Method

The next-reaction method is a reformulation of the SSA which significantly decreases

simulation times as compared with the direct and first-reaction methods for a large

number of molecular species N and reactions M [64]. In this method, as in the first-

reaction method, the putative times τi for each reaction to occur (i.e. a time each

reaction would occur if no other reaction occurred first) are generated. However, the

next-reaction method does away with each of the following three steps (each of which

takes a time proportional to M) which occur during each iteration of the Gillespie

loop in the first-reaction method: (1) updating all M of the ais; (2) generating M

τis; (3) identifying the smallest τi. Specifically, each τi is stored along with each ai

and is recalculated only if it changes as a result of the previously selected reaction.

This allows for only one uniform random number to be used in each iteration of the

Gillespie loop in contrast to the two required by the direct method or the M required

by the first-reaction method.

Although the next-reaction method can be significantly faster than the direct and

first-reaction methods, it is more challenging to implement algorithmically [3]. The

reason for this is because in order to know whether ai has changed or not without

recalculating it and comparing it to its old value, one needs to analyze the set of

reactions beforehand and determine which reactions change which ais. Specifically,

a data structure, known as a dependency graph, needs to be introduced in order

to allow the minimum number of ais to be updated. Furthermore, one also needs

36 Chapter 2 Background

to generate an indexed priority queue to store the time and index of each reaction

channel [64].

2.2.2 Approximate Simulation Methods

Tau-Leaping Method

The stochastic simulation methods described in Section 2.2.1, although essentially ex-

act procedures for numerically simulating the time evolution of well-stirred chemically

reacting system, are often very demanding in terms of the computer time required

to simulate a desired amount of system time [18, 63]. The tau-leaping method [63],

can in some cases, produce significant reductions in simulation times with acceptable

losses in accuracy. This method accelerates the SSA by calculating a time step τ

which advances the system through possibly many reaction events. A leap condition,

an accuracy-assuring restriction, requires that τ be small enough that no propen-

sity function changes by a significant amount during the infinitesimal time interval

[t, t+ τ).

More specifically, in order to implement the tau-leaping method we again consider

a system of N species that react through M reaction channels, where the number of

i species molecules at time t is a random variable described by the vector X(t) =

[X1(t), . . . , XN(t)]. Here, a propensity function aj(X) and a state change vector vj

specify the dynamics of each reaction channel Rj . The quantity aj(X)τ represents

the probability that a reaction of type Rj will occur in the time interval [t, t+ τ), and

the ith element vj,i of vj denotes the change in the number of i species molecules as a

result of one Rj reaction. A value for tau is chosen such that |aj(X+ vj)− aj(X)| is
‘effectively infinitesimal’ [63]. The basic tau-leaping formula can be expressed by [3]:

X(t + τ) = x +
M∑
j=1

Poj(aj(x)τ)vj, (2.67)

2.2 Stochastically Simulating the Chemical Master Equation 37

where x = X(t) and Poj(λ) is a Poisson random variable.

Numerically Simulating Stochastic Differential Equations

Biochemical reactions can also be modelled stochastically using a system of stochastic

differential equations (SDEs) [57]. Although the SDE model sacrifices discreteness, it

takes into account natural fluctuations and is therefore able to capture the dynamics of

certain systems in cases where the ODE model fails to capture the temporal behavior

(e.g. the Lotka-Volterra predator-prey system). In the physical sciences, SDEs are

commonly written as Langevin equations in the form

dx

dt
= f(x, µ) + ξ(t) (2.68)

where f(x, µ) is a linear or non-linear function, µ is a parameter, and ξ(t) = ξ is some

noise process. As random fluctuations at a given moment can often be described by

a Gaussian random variable, ξ is referred to as a ‘Gaussian noise process’.

SDEs are rarely explicitly solvable (see Section 2.1.2 for a simple case which per-

mits analytical solution) and therefore numerical methods for solving these equations

have been developed. The most common approach used in solving SDEs numerically

involves the simulation of sample paths over discretized times. The Euler-Maruyama

method, a generalization of the Euler method for solving ODEs to SDEs, is one such

method for obtaining the approximate numerical solution to a SDE [57].

As an example of the Euler-Maruyama method the SDE, Eq. (2.52) is considered

on the discrete time interval [t0, T] such that t0 = τ0 < τ1 < . . . < τn < . . . < τN = T

[57]. Here W represents Brownian motion. If the process has the initial value X0 then

an Euler-Maruyama approximation of the process Xt is a continuous time stochastic

process Yt satisfying the iterative equation

Yn+1 = Yn + µ(Yn)(τn+1 − τn) + ν(Yn)(Wn+1 −Wn), (2.69)

38 Chapter 2 Background

with the initial value Y0 = X0, where n = 0, 1, 2, . . . , N − 1. Eq. (2.69) can be

expressed in a simplified form as

Yn+1 = Yn + µ(Yn)∆τ + ν(Yn)∆W, (2.70)

where ∆τ = τn+1 − τn and ∆W = Wn+1 − Wn. The increments of Brownian mo-

tion ∆W are independent and identically distributed normal random variables with

expected value zero and variance σ2 = (T − t0)/N > 0 (for N equal subintervals).

Although the Euler-Maruyama method is defined to be a continuous time stochastic

process, only values at the discrete times are evaluated and values not belonging to

the discretization are usually determined by interpolation [57].

2.2.3 Stochastic Simulation Algorithm Augmentations

Several augmentations to the SSA have been made in recent years. For example,

Roussel and Zhu [14] extended the the SSA to include time delayed reactions (de-

layed SSA). While also accounting for the stochastic nature of chemical reactions,

the delayed-SSA, unlike the original SSA, can model multi-step processes in a single

step by accounting for the time duration required for these events to be completed.

Specifically, delayed output events (e.g. production of a protein from an mRNA) are

stored on a waitlist, each to be released some time after the reaction that produced

them occurred.

Another augmentation to the SSA is the incorporation of extrinsic noise, that is

the variability in factors considered to be external to the system of interest (discussed

briefly in Section 1.4), into the simulation framework. In [13] the authors show how

the total variation in the level of expression of a given gene can be decomposed

into its intrinsic and extrinsic components and integrated within a single framework.

In models of gene expression, extrinsic-noise sources such as cell-to-cell variation in

2.2 Stochastically Simulating the Chemical Master Equation 39

growth rates and gene expression capacity can be incorporated by varying the rate

constants (i.e. drawing the values for rate constants from appropriate distributions)

associated with these events [6].

Stochastic simulation software packages based on the original or augmented SSA

have started to appear in the literature. One example is CellLine, a simulator of the

dynamics of gene regulatory networks in cells of a lineage, that I co-developed [25].

From user-defined reactions and initial substance quantities, CellLine can generate

cell lineages, where each cell’s dynamics is driven by the delayed SSA. Furthermore,

cells of the lineage can be individually subject to ‘perturbations’, such as gene dele-

tion, duplication and mutation. External interventions, such as adding or removing a

substance at a given time can also be specified. These augmentations allow the mod-

elling of, for example, cell differentiation lineages. In the cell population dynamics

algorithm presented in Section 3.3, the time to next division, which can be calculated

for each cell the moment it is ‘created’, is also a delayed event that can be listed on

a stack as is done in the delayed SSA for delayed reaction events.

In the next chapter, an algorithm we developed for simulating stochastic effects

on population dynamics is presented.

Chapter 3

Algorithm

The Gillespie stochastic simulation algorithm (SSA) is a Monte Carlo (MC) simula-

tion of the chemical master equation and is the standard for simulating models of

stochastic gene expression [2, 43]. The constant-number MC method, used in the

simulation of particle systems to keep the number of particles constant throughout

the simulation, can be employed to simulate the time-dependent statistical character-

istics of growing and dividing cell populations [45, 46]. In this chapter, we begin by

presenting implementations of these two methods (Sections 3.1 and 3.2, respectively).

Then in Section 3.3, we present a parallel algorithm that combines the SSA and the

constant-number MC method within a single framework, in order to stochastically

simulate the heterogeneous genotypic and phenotypic dynamics of a cell population.

3.1 Implementation: Stochastic Simulation Algo-

rithm

The direct method Gillespie SSA discussed in Section 2.2.1 was implemented via the

following pseudocode [2, 43]:

40

3.1 Implementation: Stochastic Simulation Algorithm 41

1: if t < tend and a0 =
∑M

i=1 ai �= 0 then

2: for i = 1,M do

3: Calculate ai and a0 =
∑i

v=1 av

4: end for

5: Generate uniformly distributed random numbers (r1,r2)

6: Determine when (τ = ln(1/r1)/a0) and which (min{ µ | ∑µ
i=1 ai ≥ r2a0})

reaction will occur

7: Set t = t+ τ

8: Update {Xi}
9: end if

The SSA can be augmented to incorporate biologically relevant features, such

as changes in the volume of the cell during growth, the partitioning of cell volume

and content at division, and gene duplication (see e.g. [25, 65, 66]). Changes in cell

volume may have significant effects on reaction kinetics. First order reactions have

deterministic rate constants (wM) and stochastic rate constants (cM) that are equal

and independent of volume [67]. However, for higher order reactions, it is necessary

to incorporate changing cell volume V (t) into calculation of reaction propensities in

order to perform an exact SSA simulation. For example, the stochastic rate constant

for a bimolecular second order reaction Rµ at time t is given by

cµ =
wµ

NAVk(t)
, (3.1)

where NA is Avogadro’s number [65]. This scaling of higher-order reaction rates

by the current (i.e. at the moment of the reaction) cell volume before calculating

reaction propensities (known as the adiabatic time-dependent Gillespie approach)

42 Chapter 3 Algorithm

was previously shown to provide a good approximation when the cell volume changes

slowly as compared with the time scale of the fastest chemical reaction [65].

Once the SSA incorporates a continuously increasing cell volume, it is necessary

also to specify rules that govern cell division. One option is ‘sloppy cell-size control’

[68] where the cell division is treated as a discrete random event that take place with

a volume-dependent probability. Another simpler option is to assume that division

occurs once the cell has exceeded a critical size Vdiv corresponding to one doubling

of its initial volume, Vdiv = 2V0. The volume doubling time τ0 then becomes cell

division time and t becomes the time since the last division tdiv. When cell division

is triggered, that is when Vk(tdiv) ≥ Vdiv, additional rules must be specified to model

the partitioning of cellular content between mother and daughter cells. For example,

asymmetric cell division can be modeled by setting Vdaughter < Vmother. The molecules

of the cell can then be partitioned probabilistically between the two volumes [13, 50,

67, 69].

The SSA can accommodate additional discrete events. For example, the G2/M cell

cycle checkpoint which ensures proper duplication of the cell’s chromosomes before

division, can be modeled by defining a variable representing the completion of DNA

replication such that cell division is delayed until the DNA content of the cell has

doubled. The replication of individual genes, which doubles the maximum rate of

gene transcription by doubling the number of corresponding DNA templates, can be

modeled as a discrete event that occurs at a fixed time trep after cell division, that is

when tdiv ≥ trep, or as a random event that occurs with some variable probability. In

both cases, the DNA-replication event can be placed in a cell-specific stack of future

events that is compared against tdiv (or t in the above pseudocode) following each

SSA step. Events in the stack scheduled to occur before this time are then executed

and removed from the stack. This can be incorporated into the above pseudocode by

3.2 Implementation: Constant-Number Monte Carlo Method 43

inserting the following two lines:

8a: if length(tevent) ≥ 0 then (there are scheduled events)

8b: if t > tevent(i) then execute event(i) and delete tevent(i) from stack

This approach also provides a convenient basis for simulating the effects of time-

delays [14, 25].

The exact SSA can be extremely computationally intensive since the step size τ

becomes very small when the total number of molecules is high or the fastest reac-

tion occurs on a time-scale that is much shorter than the time-scale of interest. It is

therefore useful to develop techniques that can be used to speed up the simulation.

This can be done, for example, using approximate simulation methods (discussed in

Section 2.2.2) such as the tau-leaping procedure in which each time step τ advances

the system through possibly many reaction events [3]. Additionally, since many inde-

pendent runs are required to compute population statistics, parallel computing can be

used to further optimize simulation run-times. We have chosen to combine the later

method with the direct method SSA in order to increase computational efficiency

while preserving the statistical accuracy of the simulation results (see Section 3.3).

3.2 Implementation: Constant-NumberMonte Carlo

Method

Implementations of the augmented SSA presented in the previous section that track

only one of the two cells formed during cell division may introduce artifacts in the

calculation of population characteristics. For example, growth and reproductive rates

may be influenced by the accumulation of genetic mutations within a specific cell lin-

44 Chapter 3 Algorithm

eage or by the current levels of gene expression within individual cells. By discarding

the daughter cells in these cases, it is not only no longer possible to track cell lineages,

but the full dynamics of these populations may not be captured. Thus to simulate

stochastic models of gene expression incorporating such features, it is necessary to

couple the SSA with simulation techniques used in studies of population dynamics.

In the modeling of dispersed systems (e.g. colloidal suspensions, cell populations,

etc.) the population balance equation (PBE) accounts for all the processes that

generate and remove particles, or more generally individuals, from a system of inter-

est [70]. In a general molecular-dynamics framework, the PBE contains terms due

to coagulation, fragmentation, and so forth, and is mathematically represented by

an integro-differential equation that typically must be solved numerically to obtain

particle size distributions as a function of time [46]. Specifically, one can use MC

methods to sample a finite subset of a system in order to infer its properties and

study finite-size effects and local fluctuations not captured by a mean field approxi-

mation [3,45,46,70]. Futhermore, a MC method is appropriate as its discrete nature

lends itself naturally to growth processes involving discrete events, and can simulate

growth over arbitrarily long times with finite numbers of simulation particles while

maintaining constant statistical accuracy [45].

One approach for constructing a reliable and efficient algorithm to simulate cell

populations, is to adopt the constant-number MC method to simulate the birth-death

processes that take place within such populations [44–47]. Here, by choosing at ran-

dom a sufficient number N of individuals, one obtains a representative sample in such

a way that population-wide dynamics (e.g. epigenetic effects) are captured. Thus the

constant-number MC approach permits the modeling of growing populations using a

fixed number of cells while avoiding the alternative (i.e. an infinitely growing popu-

lation) by sampling N particles representing the population as a whole. Specifically,

3.2 Implementation: Constant-Number Monte Carlo Method 45

individuals are stored in an array during simulation; when the actual processes result

in net gain (e.g. particle fragmentation or cell division), positions in the array are ran-

domly selected and are overwritten with the ‘surplus’ individuals. When the process

results in net loss (e.g. particle coagulation or cell death), individuals are selected at

random and are placed in the vacated positions of the array. This essentially amounts

to expanding and contracting the physical volume represented by the simulation as

required to continuously maintain a constant number of individuals [45].

The constant-number MC approach has been successfully applied to a variety of

non-biological particulate processes [45, 46, 71] as well as cell population dynamics

[44, 47]. However, it should be noted that when one employs the constant-number

MC method, a fixed number of individuals, which are randomly chosen, are being

used to represent the population as a whole and therefore there is error associated

with the method. This error was shown to be (ln x)0.89/
√
2N , where x is the extent

of growth [46].

In our implementation of the constant-number MC, we keep track of individual

mother and daughter cells in two separate arrays. Each time a cell divides, the

daughter cell is placed in the daughter array and the time of birth recorded. Then, at

specified intervals, cells within the mother array are replaced one at a time, with the

oldest daughter cells being inserted first. Because every mother cell is equally likely

to be replaced during the sample update, the size distribution of the population

remains intact for sufficiently large populations [46]. In our case, the size distribution

corresponds to the distribution of cell ages (or volumes) across the population.

Our implementation of the constant-number MC method can be described by the

following pseudocode:

1: if t > trestore and NCdaughter ≥ 1 then

46 Chapter 3 Algorithm

2: for all NCdaughter do

3: Randomly select mother cell

4: Replace mother cell with oldest available daughter cell

5: end for

6: end if

Here, trestore is the interval between population updates and NCdaughter the number

of daughter cells born since the last update. To avoid simulating the daughters of

daughter cells, trestore is chosen such that mother cells divide at most once, and

daughter cells not at all, during a particular trestore interval.

3.3 Cell Population Dynamics Algorithm

Simulations using the cell population dynamics algorithm are carried out from an

initial population distribution. Gene expression in each cell is described by a user

defined set of equations, and population statistics are obtained at a specified sampling

interval. Here, the direct method SSA [2,43] is used for stochastic simulation, however

any stochastic simulation method can be implemented. The volume of each cell k is

modeled using an exponential growth law

Vk(tdiv) = V0 exp
[
ln(2)

(
tdiv
τ0

)]
, (3.2)

where V0 is the cell volume at the time of its birth, t is the time and τ0 is the interval

between volume doublings.

Parallelism is implemented across the simulation, as a large number of independent

simulations need to be performed when simulating the dynamics of a cell population,

in a shared memory multiprocessor environment.

The present algorithm can be expressed by the flow diagram (Fig. 3.1) and the

3.3 Cell Population Dynamics Algorithm 47

Figure 3.1 Flow diagram of the present algorithm for the parallel stochastic
simulation of gene expression and heterogeneous population dynamics.

48 Chapter 3 Algorithm

following pseudocode (see Appendix B for the full Fortran 90 code):

1: while t < tend do

2: begin parallel region

3: for all NCpopulation such that t < tsample do

4: Gillespie SSA (see pseudocode in Section 3.1)

5: Update Vk via Eq. 3.2

6: Execute events in stack with tevent < tdiv

7: if Vk(tdiv) ≥ Vdiv then

8: Execute cell division

9: Increment NCdaughter

10: end if

11: end for

12: Update tsample

13: end parallel region

14: Execute constant-number MC (see pseudocode in Section 3.2)

15: Compute statistics

16: end while

Here, NCpopulation is the total number of cells in the population, Vk the volume of cell

k, and tsample the user defined population sampling interval.

The algorithm can execute simulations of considerable size in reasonable times.

For example, an IBM with 2 quad-core processors (1.86GHz cores) and 2.0GB of RAM

completed a 105s simulation of the network presented in Section 4.1.2 for 8000 cells

in 81s when v0 = 0.3s−1, v1 = 0.05s−1, d0 = 0.05s−1, d1 = 5× 10−5s−1, tdiv = 3600s,

and trestore = 3300s.

Chapter 4

Results

In this section, we present the numerical results obtained from the stochastic sim-

ulation of gene expression, where models describing increasingly realistic biological

features are considered. Specifically, in order to benchmark the algorithm, we compare

these simulation results with steady-state and time-dependent analytical solutions for

several scenarios, including steady-state and time-dependent gene expression and the

effects of cell growth, division, and DNA replication.

Details corresponding to methods used to obtain analytical solutions can be found

in Sections 2.1.1 and 2.1.2 and the references provided within this chapter. Part of the

motivation for developing the algorithm is the anticipation that analytical solutions

corresponding to models incorporating complex biochemical reaction network and

cellular physiology will be intractable.

We begin in Subsection 4.1.1 with the simplest case - the steady-state expression of

gene (production of monomer from a gene) in the absence of cell growth and division.

In Subsection 4.1.2, we consider time-dependent gene expression, that is, transcrip-

tion (production of RNA from a gene) and translation (production of protein from

an mRNA), and benchmark this scenario against the corresponding time-dependent

49

50 Chapter 4 Results

analytical distributions. In Subsection 4.1.3 we consider both time-dependent and

time-independent gene expression using a model that incorporates the effects of gene

duplication and cell division on gene expression dynamics in individual cells using the

constant-number Monte Carlo (MC) method. All simulations statistics were obtained

from populations consisting of 8000 cells.

4.1 Numerical Results

4.1.1 Steady-State Validation

Kepler and Elston [72] presented a model of constant gene expression in which the

state space consists of the number of gene product monomers M (integer variable rep-

resenting the combination of mRNA and protein), and a binary variable to represent

the occupancy of the gene’s promoter region by a regulatory protein. This system is

described by reactions [72]:

M
δ−→ (4.1)

ϑ0
k0K−→ ϑ1 (4.2)

ϑ1
k1K−→ ϑ0 (4.3)

 αs−→ M (4.4)

Eqs. (4.1) and (4.4) describe, respectively, the degradation and production of the gene

product, where δ is the degradation rate, αs the rate for protein production (s = 0 or

4.1 Numerical Results 51

1, depending on the chemical state of the operator), and the protein sink. Eqs. (4.2)

and (4.3) account for the spontaneous transitions between operator states (ϑ0 and ϑ1

denote occupied and unoccupied operator states respectively). In these equations,

K sets the time scale and k0 and k1 are dimensionless constants constrained to obey

k0 + k1 = 1.

This model was shown to have the following equations for steady-state values

(denoted by overbars) of the mean µ (Eq. (4.5)), variance σ2 (Eq. (4.6)), and the

coefficient of variation CV (Eq. (4.7)), corresponding to M :

µM =
1

δ
(α0k1 + α1k0) (4.5)

σ2
M = µM + k0k1

[
α0 − α1

δ

]2 δ

δ +K
(4.6)

CV M ≡ σ2
M

(µM)2
=

1

µM

+ k0k1
δ

δ +K

[
(α0 − α1)

α0k1 + α1k0

]2
(4.7)

In order to validate our parallel implementation of the SSA, we simulated Eqs. (4.1)-

(4.4) and compared the results to the corresponding steady-state analytical solutions

(Eqs. 4.5 and 4.7). In Figure 4.1, the steady-state simulation and analytical results

obtained for µM and CV M are plotted for a range of α0 and α1 values. The simulation

results and analytical solutions were found to be in excellent agreement.

4.1.2 Time-Dependent Population Distributions

Population-based simulation algorithms have the advantage of yielding time-dependent

population-distributions as the output. To evaluate the accuracy of our approach in

this respect, further validation against a time-dependent distribution is of interest.

52 Chapter 4 Results

0 0.2 0.4 0.6 0.8 1
0

5000

10000

α0(s−1)

µ
M

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2
x 10

−3

α0(s−1)

C
V

M

900 1000 1100 1200 1300 1400 1500
0

200

400

600

800

M

n
u
m

b
e
r
 o

f
c
e
ll
s

7800 8000 8200 8400 8600 8800
0

100

200

300

400

500

M

n
u
m

b
e
r
 o

f
c
e
ll
s

a) b)

d)c)

α
1
= 0.1

α
1
= 0.1

α
1
= 0.5

α
1
= 0.5

Figure 4.1 Comparison of analytical solutions and simulation results. (a)
Gene product monomer mean steady-state (µM) and (b) coefficient of vari-
ation (CV M) are plotted for a range of transcription/translation parameter
values (α0 and α1). Open circles indicate simulation results and black curves
analytical solutions [72]. Protein population distributions corresponding to
(a) are shown in (c) for α0 = α1 = 0.1 and (d) for α0 = 0.9 and α1 = 0.5.

4.1 Numerical Results 53

For this purpose, we simulated a two-stage gene expression model consisting of the

following biochemical reactions:

T
v0−→ mRNA (4.8)

mRNA
d0−→ (4.9)

mRNA
v1−→ P (4.10)

P
d1−→ (4.11)

Eq. (4.8) describes transcription at a rate v0, Eq. (4.9) the degradation of the mRNA

at a rate d0, Eq. (4.10) translation at a rate v1, and Eq. (4.11) the protein degradation

at a rate d1. Here it is assumed that the promoter T is always active and thus the

model has two stochastic variables, the number of mRNA and the number of proteins

P .

Shahrezaei and Swain [50] studied the system described by Eqs. (4.8)-(4.11) and

derived an approximate protein distribution as a function of time (Eq. 2.34). The

approximation is based on the assumption that the degradation of mRNA is fast

compared to the degradation of proteins. Consequently, the dynamics of mRNA are

at the steady-state for the most of a protein’s lifetime. Here, when the initial number

of proteins n is set to zero, equations describing protein mean and noise (Eqs. (2.35)-

(2.36), respectively) can be obtained (see Section 2.1.1).

To benchmark the ability of the algorithm to accurately generate time-dependent

population distributions, we simulated Eqs. (4.8)-(4.11) under conditions where the

assumptions of Eq. (2.34) are satisfied, and compared the resulting distributions with

corresponding time-dependent analytical distributions. Figure 4.2 shows the simu-

lated and analytical distributions at two different values of dimensionless time τ . The

population statistics, namely µP and ηP , as a function of τ are shown in Figure 4.3.

54 Chapter 4 Results

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

P

p
r
o
b
a
b
il
it
y

τ
1
 simulation

τ
2
 simulation

τ
1
 analytical

τ
2
 analytical

Figure 4.2 Simulation results and time-dependent analytical solutions of a
two-stage model of gene expression [50]. The distributions of protein numbers
for a population of cells at two different dimensionless times, τ = 0.2 and
τ = 10, are shown.

In both cases, the simulated protein distributions and statistics are in good agreement

with analytical results (Eqs. (2.35) and (2.36)).

4.1.3 Gene Duplication, Cell Division, and Time-Dependent

Validation

To explore the accuracy of the algorithm when simulating models incorporating cell

growth, division, and DNA replication, we implemented the simplified reaction net-

work presented in Swain et al. [13]. The reduced reaction network was obtained

from a model of gene expression consisting of 8 molecular species and 11 chemical

4.1 Numerical Results 55

0

20

40

60

80

µ
P

0 0.5 1 1.5 2 2.5 3 3.5 4
0.2

0.4

0.6

0.8

1

η
P

τ

Figure 4.3 Simulation results and time-dependent analytical solutions of a
two-stage model of gene expression [50]. Mean protein µP (top) and noise
ηP (bottom) are plotted as a function of dimensionless time τ . Open circles
indicate simulation results and black curves analytical solutions [50].

56 Chapter 4 Results

reactions. For this simplified network, it is possible to derive time-dependent an-

alytical results for the mean protein number and coefficient of variation in protein

number. Importantly, by making the appropriate approximations, the effects of gene

replication and cell division can be included in the analytical solutions. The reduced

model has two components - one described by the reactions in Eqs. (4.8)-(4.11) (note

that the reaction rates v1 and d0 can be directly related to v
′
1 and d

′
0 in the original

model [13]), and another describing pre-transcription kinetics. This component cap-

tures the reversible binding of RNA polymerase to the promoter (rate constants b0

and f0), and the formation of an open promoter complex (rate constant k0). These

steps are described by the reactions

D
f0⇀↽
b0

C (4.12)

C
k0−→ D + T (4.13)

where D, C and T represent the promoter with polymerase unbound, the promoter

with polymerase bound and the open promoter complex, respectively. Since the total

number n of DNA molecules is conserved before and after replication, D and C can

be constrained by

n0 + n1 = n, (4.14)

where n0 and n1 are the number of promoter copies in state D and C respectively.

To derive an analytical solution, the authors invoked the assumption that the

distributions of C, T , and mRNA can be approximated by their steady state distri-

butions. While this assumption thus ignores the transient dynamics of these species, it

is expected to introduce a minimal error since the protein degradation rate d1 is much

smaller compared to the other reaction rates. As a consequence, the mean and coeffi-

cient of variation protein P are time-dependent while the moments of the distributions

of the other species are constant. Even with this approximation, the derivation of

4.1 Numerical Results 57

the analytical solutions for the mean and coefficient of variation is rather arduous.

The derivation consists of three separate stages: the derivation of time-dependent

expression for the population mean and noise (analogous to the derivation of time-

dependent moments in Section 2.1.1), the incorporation of gene replication, and the

addition of cell division. The complete derivation can be found in the supplementary

material of Swain et al. [13] and the corresponding steady-state and time-dependent

analytical solutions are as follows

µmRNA =
f0k0n

d
′
0l

(4.15)

CV mRNA =
(µ2

mRNA)− (µmRNA)
2

(µmRNA)
2

=
1

µmRNA

− d
′
0v0(d

′
0 + l + v0)

n(d
′
0 + l)(l + v0)(d

′
0 + v0)

(4.16)

µP (t) =
v

′
1

d1
µmRNAφ0(t) (4.17)

where φ0 is a continuous function of t,

φ0(t) = 1− e−d1(T−td+t)

2− e−d1T
, for 0 ≤ t ≤ td (4.18)

φ0(t) = 2

[
1− e−d1(t−td)

2− e−d1T

]
, for td ≤ t ≤ Tcdiv (4.19)

CVP (t) =
1

µP (t)
+

1

µmRNA

[
1− f0k0

l2

]
d1
d

′
0

φ1(t) (4.20)

with,

φ1(t) =
2− e−d1T

2 + e−d1T
× 4− e−2d1T − 2e−2d1t − e−2d1(T+t−td)

(2− e−d1T − e−d1(T+t−td))
2 , for 0 ≤ t ≤ td (4.21)

and,

φ1(t) =
2− e−d1T

2 + e−d1T
× 4− e−2d1T − e−2d1t − 2e−2d1(t−td)

2 (2− e−d1T − e−d1(t−td))
2 , for td ≤ t ≤ Tcdiv (4.22)

Eq. (4.15) describes the mean mRNA number before gene duplication (t < td), noting

58 Chapter 4 Results

that the value is twice this result after gene replication (t > td), and Eq. (4.16) gives

the mRNA coefficient of variation. Here, l = f0 + b0 + k0.

It is noted that Eqs. (4.15) and (4.16) are time independent. This is due to an

assumption by the authors that the RNA is in a quasi-steady state proportional to

the gene copy number n, and that all other time dependencies are absorbed into the

protein distribution. The mean protein number as a function of time is then described

by Eqs. (4.17) and (4.18) before gene duplication, and by Eqs. (4.17) and (4.19) after

duplication. Similarly, Eqs. (4.20) and (4.21) describe the time-dependent coefficient

of variation in protein number before duplication, and Eqs. (4.20) and (4.22) describe

the coefficient of variation after duplication.

Our simulation results are compared to the corresponding steady-state and time-

dependent analytical solutions Figures 4.4-4.6. In these simulations, we use the same

assumptions as in [13]; the cell volume increases linearly up to time of cell division

Tcdiv, gene replication occurs at trep = 0.4Tcdiv and cell division is symmetric with

binomial partitioning of molecules. Simulated protein number and concentration,

as well as mRNA number dynamics, for single cells (Fig. 4.4) are comparable with

the simulation results obtained by Swain et al. [13]. Figures 4.5 and 4.6 further

compare population characteristics estimated from simulations to those predicted

by the corresponding steady-state analytical solutions. Both RNA (µmRNA(n) and

CV mRNA(n), Fig. 4.5) and protein (µP Fig. 4.6) characteristics are in good agreement

with analytical results in Eqs. (4.15)-(4.22). The average percent error between the

simulation and analytical results in ηP shown in Figure 4.6 was calculated to be 1.84%

and 0.85% for d1 = 6.42 x 10−5 and d1 = 6.42 x 10−6, respectively. These errors can be

explained by the fact that the corresponding analytical solutions (Eqs. (4.20)-(4.22))

are approximate; simlar results were obtained in Swain et al. [13].

4.1 Numerical Results 59

4000

6000

8000

10000

p
r
o
te

in
 n

o
.

2

2.5

3

3.5

p
r
o
te

in
 c

o
n
c
.

50 51 52 53 54 55 56 57 58 59 60
0
5

10
15
20
25

m
R

N
A

 n
o
.

time (in units of cell division time)

noise=0.44

noise=0.11

noise=0.23

Figure 4.4 Time series of a single cell within a growing and dividing popula-
tion. Protein number (top) and concentration (middle), and mRNA number
(bottom), were obtained and found to be in agreement with a model of trans-
lation provided in [13]. Gene duplication occurs every td = 0.4Tcdiv into the
cell cycle and results in an increased rate of protein production until the next
cell division event where the number of genes prior to duplication is restored.

60 Chapter 4 Results

0

50

100

150

200

250

µ
m

R
N

A

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

n (gene copy no. prior to duplication)

η
m

R
N

A

2n

n

2n

n

Figure 4.5 Comparison of simulation results and analytic solutions. Mean
mRNA values are plotted as a function of gene copy number n (top). The
noise in mRNA number is also plotted as a function of n (bottom). Note that
mean mRNA values increase and the noise decreases after gene duplication
as expected. Black curves indicate analytical values [13] and open circles
simulation results.

4.1 Numerical Results 61

4000

6000

8000

10000

12000

µ
P

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.04

0.045

0.05

time (in units of cell division time)

η
P

d
1
= 6.42 x 10−6

d
1
= 6.42 x 10−5

d
1
= 6.42 x 10−5

d
1
= 6.42 x 10−6

Figure 4.6 Comparison of simulation results and analytic solutions. Mean
protein number (top) and noise (bottom) as a function of time t for two
different values of the protein degradation parameter d1. Note the increase
in protein production rate and decrease in noise levels that occur after gene
duplication at t = 0.4. Open circles indicate simulation results and black
curves analytical values [13].

62 Chapter 4 Results

4.2 Simulating Complex Population Dynamics

4.2.1 Asymmetric Cell Division

To investigate sources of external variability in eukaryotic gene expression, Volfson et

al. [32] combined computational modelling with fluorescence data. As part of this

study, the authors simulated the distribution of cell sizes within a population of Sac-

charomyces cerevisiae (budding yeast). In these simulations, cells grew exponentially

until they reached a critical volume Vc where they divide. The volume at division was

drawn from a normal distribution with a mean specified as a function of genealogi-

cal age and coefficient of variation 0.15. Following division, the mother cell retained

70 % of the volume (V0 = 0.7Vc) while daughter cells were correspondingly smaller

(V0 = 0.3Vc). The resulting distribution of cell sizes obtained from an initial popula-

tion of 1000 cells allowed to grow to 100000 cells was found to be in agreement with

experimental and analytical results [32].

The model by Volfson et al. [32] is ideally suited for benchmarking the constant-

number MC method. As in Volfson et al. [32], we first simulated the growth of a

population initially consisting of 1000 cells and obtained the steady-state size distri-

bution once the population grew to 100000 cells (Fig. 4.7a). Next, we repeated the

simulations using the constant-number MC method to estimate the size distribution

from a representative sample (8000 cells) of this cell population (Fig. 4.7b). A plot

of the probabilities for the sample population against the probabilities of the ‘true’

population shows that the difference between these variables is minimal (Fig. 4.7c).

These results complement previous studies [44–47, 71] demonstrating the ability of

the constant-number MC method to capture complex population dynamics.

4.2 Simulating Complex Population Dynamics 63

0 0.50 1.0 1.5 2.0 2.5
0

0.01

0.02

0.03

cell size (a.u.)

p
ro

b
a

b
il
it
y

0 0.50 1.0 1.5 2.0 2.5
0

0.01

0.02

0.03

cell size (a.u.)

p
ro

b
a

b
il
it
y

0 0.0050 0.010 0.015 0.020 0.025 0.030
0

0.01

0.02

0.03

p(100k)

p
(8

k
)

R2 = 0.98
y = 1*x − 9.3e−005

 Data
 Linear Regression

b)

a)

c)

Figure 4.7 Simulation of a stochastic population dynamics model [32] of
a Saccharomyces cerevisiae population undergoing stochastic (size at divi-
sion) and asymmetric (partitioning of cell volume) division. (a) Steady-state
distribution of cell sizes for a population of 100000 cells. (b) Steady-state
size distribution of a representative sample (8000 cells) obtained using the
constant-number Monte Carlo method [45,46] of the ‘true’ population shown
in (a). (c) Plot of the probabilities population shown in (b) against the
probabilities of the population shown in (a) along with linear regression.

64 Chapter 4 Results

4.2.2 Bet-Hedging Cell Populations

One of the most interesting potential applications of the simulation algorithm de-

scribed in Section 3.3 is the investigation of interactions between environmental

changes, population dynamics, and gene expression in individual cells. For example,

this algorithm can be used to study the optimization of fitness in fluctuating envi-

ronments, which is a classic problem in evolutionary and population biology [73–76].

Acar et al. [77] experimentally investigated how stochastic switching between phe-

notypes in changing environments affected growth rates in fast and slow-switching

populations by using the galactose utilization network in Saccharomyces cerevisiae

(budding yeast). Specifically, a strain was engineered to randomly transition between

two phenotypes, ON and OFF , characterized respectively by high or low expression

of a gene encoding the Ura3 enzyme necessary for uracil biosynthesis. Each phenotype

was designed to have a growth advantage over the other in one of the two environ-

ments. In the first environment (E1) which lacks uracil, cells in the ON phenotype

have an advantage. In the second environment (E2), cells in the OFF phenotype have

an advantage due to the presence of a drug (5-FOA) which is converted into a toxin

by the Ura3 enzyme. In this environment, which also contains uracil, cells expressing

Ura3 will have low viability while cells not expressing Ura3 will grow normally.

We first follow the approach that was used in Acar et al. [77] to describe the

dynamics of phenotype switching, where cells are in either the ON or the OFF state:

k1

ON ⇀↽ OFF

k2

(4.23)

In this scenario, cells randomly switch between the high and low expressing states at

rates k1 and k2 (see [77] for parameter values corresponding to slow and fast-switching

cells). The growth rate (Eq. (3.2)) of fit cells was set higher than the corresponding

4.2 Simulating Complex Population Dynamics 65

growth rate for unfit cells in the same environment. In order to avoid synchronization

in the population level dynamics, we set Vdiv = 2V0 + ξ, where ξ is a small random

number drawn from a normal distribution with zero mean and 0.2 variance.

Figure 4.8 shows the growth rates obtained from simulations of slow and fast-

switching cell populations, where cells were transfered from E2 to E1, and vice versa,

at t = 0. Growth rates show a transition period and a steady-state region. In

agreement with experimental results [77], the transient corresponding to the E2 to

E1 change (Fig. 4.8a) is shorter than the transient corresponding to the E1 to E2

change (Fig. 4.8b), and slow-switching cells have a higher steady-state growth after

recovery from either of the environmental changes.

Next, we implemented a full model of gene expression described by the following

biochemical reaction scheme [6]:

k1

TA ⇀↽ TR,

k2

(4.24)

TA
v0,A−→ TA +mRNA (4.25)

TR
v0,R−→ TR +mRNA (4.26)

mRNA
d0−→ (4.27)

mRNA
v1−→ mRNA + P (4.28)

P
d1−→ (4.29)

Eq. (4.24) describes the transitions to the active (upregulated level of gene expression)

TA and repressed (basal level of gene expression) TR promoter states at rates k1 and

k2 respectively, Eqs. (4.25) and (4.26) the mRNA production from the TA (at a rate

v0,A) and TR (at a rate v0,R) states respectively, Eq. (4.28) the protein production

66 Chapter 4 Results

from mRNA at a rate v1, and Eqs. (4.27) and (4.29) respectively the mRNA (at a

rate d0) and protein (at a rate d1) degradation. The fitness wk of each cell k, which is

here defined as a function of the environment and cellular protein concentration [P],

was described by a Hill function

wk(E, P) =

⎧⎪⎪⎨
⎪⎪⎩

[P]n

[P]n+Kn , if E = E1

Kn

Kn+[P]n
, if E = E2.

(4.30)

This equation describes partitioning of cells into fit (wk(E, P) ≥ 0.5) and unfit

(wk(E, P) < 0.5) phenotypes corresponding to whether or not their [P] in a par-

ticular environment is above or below a particular value given by the Hill coefficient

K. The volume of each cell was described by Eq. (3.2), except here τ0 = τφ/w, where

τφ is the cell division time in absence of selection. To incorporate the effect of fitness

on gene expression, the value of transcription rate parameter v0 depended on whether

or not a cell was fit in either E1 or E2 (see Fig. 4.9 and [77] for parameters).

The population distributions obtained for this model are shown in Figure 4.9.

Specifically, we first obtained the steady-state protein concentration distributions for

cells in E1 and E2 (Fig. 4.9a and 4.9b, respectively). Here, the majority of cells

either fell within a distribution centered at higher value characterizing the ON cells,

or a distribution centered at a lower value of P characterizing the OFF cells, in E1

or E2 respectively. The rest of the cells fell within the distribution capturing the

unfit subpopulation in both environments. These results were found experimentally

in [77] and are expected, as higher levels of the uracil enzyme are either favorable

or unfavorable with respect to the fitness of the cells depending on the environment.

Additionally, the time-dependent population distributions after the transition to E1

from E2, and vice versa, were obtained (Fig. 4.9a and 4.9b, respectively). Here, the

dynamics of the two distinct subpopulations of cells in transition between the steady-

4.2 Simulating Complex Population Dynamics 67

0 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

g
ro

w
th

 r
a
te

 (
h
o
u
rs

−
1
)

time (hours)

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time (hours)

g
ro

w
th

 r
a
te

 (
h
o
u
rs

−
1
)

slow

fast

fast

slow

E2 E1

E1 E2

a)

b)

Figure 4.8 Simulations of populations of slow and fast-switching cells (20
realisations). (a) Growth rates of cells transfered from an environment con-
taining uracil and 5-FOA (E2) to one containing no uracil (E1) at t = 0. (b)
Growth rates of cells transfered from E1 to E2 at t = 0. Note that the tran-
sient before the steady-state region is shorter in (a) than in (b), and that the
slow-switching cells have a higher steady-state growth after recovery from the
environmental change, in agreement with experimental results found in [77].

states are visible. As time progresses after the environmental transition, fewer and

fewer of the cells are in the unfit state (ON in Fig. 4.9a and OFF in Fig. 4.9b), as the

cells in the more fit state (OFF in Fig. 4.9a and ON in Fig. 4.9b) grow and divide

at a faster rate and therefore come to dominate the population in terms of absolute

numbers.

68 Chapter 4 Results

0

0.1

0.2

0

0.1

0.2

0

0.1

0.2

0

0.1

0.2

0

0.1

0.2

p
ro

b
a

b
il
it
y

0

0.1

0.2

p
ro

b
a

b
il
it
y

0

0.1

0.2

0

0.1

0.2

0 100 200 300 400 500 600 700 800
0

0.1

0.2

P
0 100 200 300 400 500 600 700 800

0

0.1

0.2

P

a) b)

E2

E2 E1

E1

E1 E2

E1 E2

 E1 E2

 E2 E1

 E2 E1

E2 E1

Figure 4.9 Simulations of environmental effects on phenotypic distribution.
(a) Steady-state (top and bottom figures) and time-dependent (middle fig-
ures) protein distributions of cells resulting from an environment change from
E1 to E2. (b) Steady-state (top and bottom figures) and time-dependent
(middle figures) protein distributions of cells resulting from an environment
change from E2 to E1. Note that when a sufficient amount of time has elapsed
after the environmental transition from either E1 to E2 or vice versa, cells
with either the OFF (represented in each pannel by the distribution with
the lower mean protein, P , value) or ON (represented in each pannel by the
distribution with the higher mean P value) phenotype proliferate, respec-
tively, in agreement with experimental results found in [77]. The following
parameters were used: d0 = 0.005s−1, v1 = 0.1s−1, d1 = 0.008s−1, K = 200,
n = 10. For fit cells in E1 v0,A = 0.2 and for unfit cells v0,R = 0.05 - vice
versa in E2. Additionally τφ was set to the mean doubling time (MDT) of
1.5 hours for Saccharomyces cerevisiae [78].

Chapter 5

Conclusion

Our understanding of the origins and consequences of stochasticity in gene expression

has advanced significantly in recent years. This advance has been fueled by theoretical

developments enabling biological hypothesis formulation using stochastic process and

dynamical systems theory, as well as experimental breakthroughs in measurements of

gene expression at the single cell level [10].

Noise in gene expression was originally viewed as being detrimental in terms of

cellular function due to the corruption of intracellular signals negatively affecting cel-

lular regulation with possible implications for disease. However, noisy gene expression

can also be advantageous, providing the flexibility needed by cells to adapt to stress

such as a changing environment [27,34,77]. Stochasticity in gene expression provides

a mechanism for the occurrence of heterogeneous populations of genetically identical

cells, in terms of phenotypic and cell-type diversity, which can be established dur-

ing cellular growth and division [5, 6, 26]. Furthermore, it has been suggested that

intrinsic stochasticity in gene expression is an evolvable trait [35, 41].

It is important to note that heterogeneity exists in all biological systems, not just

those commonly discussed in the literature involving single-celled organisms such as

69

70 Chapter 5 Conclusion

bacteria and yeast. This is likely to become increasingly important in the context of

human genetics and diseases in the near future. For example, it was recently proposed

by Brock et al. [26] that non-genetic variability resulting from gene expression noise

can contribute to the somatic evolution of cancer cells, thus accelerating tumour

progression independently of genetic mutation.

The construction of models describing biological systems is a fundamental part

of systems biology. Traditionally, diagrammatic models were used to summarize

a mechanistic understanding of a system obtained from experimental observations.

These models, despite their benefits, yield a rather static picture of cellular processes.

The need to translate these models into more dynamic forms that can capture time-

dependent processes, together with increases in the model’s scale and complexity, has

prompted scientists to harness computational resources (e.g. parallel programming

and cluster computing) to build and analyze ever-larger models. The long-term vision

is that these large-scale models will revolutionise the way biological and biomedical

research is conducted, ultimately enabling the design of new therapies [79]. Building

the capacity to simulate cell populations at the single cell resolution is an important

step towards harnessing this potential.

In this thesis we explored the theoretical background required to analytically de-

rive solutions and perform simulations of models of stochastic gene expression. This

theory was then used to develop an algorithm for the stochastic simulation of hetero-

geneous population dynamics. Specifically, we combined the stochastic formulation

of chemical kinetics that is commonly used to simulate complex interaction networks

in biological cells, and a MC method to sample a finite subset of cells that pre-

serves population-level statistics of fluctuating intrinsic variables. The accuracy of

the proposed method was verified by comparing simulation results of gene expression

models with corresponding steady-state and time-dependent analytical solutions and

71

experimental results. Parallel execution of the algorithm was found to significantly

decrease run-times in comparison to simulations run on a single processor, and did

not introduce errors in numerical results.

The algorithm was also shown to be capable of simulating and capturing the dy-

namics of a cell population in a fluctuating environment, where phenotypic variability

strongly influences gene expression dynamics. Agreement between this framework and

the experimental and theoretical results obtained using a deterministic reaction-rate

method in Acar et al. [77], serves as a further benchmark for the proposed method.

Furthermore, the algorithm’s ability to capture the steady-state and time-dependent

phenotypic distributions in this system exemplifies the utility of this approach, as

these distributions cannot be obtained using a deterministic framework.

Current cellular population simulation methods, including the present algorithm,

treat the extracellular environment as homogeneous (e.g. the spatial-temporal con-

centration profile of a nutrient required for growth is held constant). This prohibits,

for example, the inclusion of competition for a limiting resource in the present im-

plementation. However, it is possible to model feedback between cells and their

environment. The simplest approach would be to assume that the environment is

constant over short time intervals. The change in total population cell volume at the

end of each interval could then be used to calculate how much nutrients have been

consumed and the parameters describing the environment adjusted accordingly. Since

the time intervals would have to be sufficiently short so that the change in concen-

tration of the nutrient during any particular interval is negligible, the computational

workload would increase substantially. The focus of future work will be on develop-

ing and benchmarking accurate and efficient augmentations that permit population

simulators to handle these and other more complex scenarios.

References

[1] D.A. Charlebois, J. Intosalmi, D. Fraser, M. Kaern, ‘An Algorithm for the

Stochastic Simulation of Gene Expression and Heterogeneous Population Dy-

namics’, Commun. Comput. Phys. 9 (2011) 89-112.

[2] D.T. Gillespie, ‘Exact stochastic simulation of coupled chemical reactions’,

J. Phys. Chem. 81 (1977) 2340-2361.

[3] D.T. Gillespie, ‘Stochastic Simulation of Chemical Kinetics’,

Annu. Rev. Phys. Chem. 58 (2007) 35-55.

[4] D.T. Gillespie, ‘Markov processes: an introduction for physical scientists’, Lon-

don: Academic Press Limited, 1992.

[5] M.S. Samoilov, G. Price, A.P. Arkin, ‘From fluctuations to Phenotypes: The

Physiology of Noise’, Sci. STKE 366 (2006) re17.

[6] M. Kaern, T.C. Elston, W.J. Blake, J.J. Collins, ‘Stochasticity in gene expres-

sion: From theories to phenotypes’, Nat. Rev. Genet. 6 (2005) 451-464.

[7] B.B. Kaufmann, A. van Oudenaarden, ‘Stochastic gene expression: from single

molecules to the proteome’, Curr. Opin. Genet. Dev. 17 (2007) 107-112.

72

REFERENCES 73

[8] N. Maheshri, E.K. O’Shea, ‘Living with noisy genes: how cells function reliably

with inherent variability in gene expression’, Annu. Rev. Biophys. Biomol. Struct.

36 (2007) 413-434.

[9] J. Paulsson, ‘Summing up the noise in gene networks’, Nature 427 (2004) 415-

418.

[10] M. Scott, B. Ingalls, M. Kaern, ‘Estimations of intrinsic and extrinsic noise in

models of nonlinear genetic networks’, Chaos 16 (2006) 026107.

[11] L. Ma, J. Wagner, J.J. Rice, H. Wenwei, J.L. Arnold, G.A. Stolovitzky, ‘A

plausible model for the digital response of p53 to DNA damage’, PNAS 102

(2005) 14266-14271.

[12] A.S. Ribeiro, R. Zhu, S.A. Kauffman, ‘A General Modeling Strategy for Gene

Regulatory Networks with Stochastic Dynamics’, J. Comput. Biol. 13 (2006)

1630-1639.

[13] P.S. Swain, M.B. Elowitz, E.D. Siggia, ‘Intrinsic and extrinsic contributions to

stochasticity in gene expression’, PNAS 99 (2002) 12795-12800.

[14] M. Roussel, R. Zhu, ‘Validation of an algorithm for the delay stochastic simula-

tion of transcription and translation in prokaryotic gene expression’, Phys. Biol.

3 (2006) 274-284.

[15] T.E. Turner, S. Schnell, K. Burrage, ‘Stochastic approaches for modelling in vivo

reactions’, Comput. Biol. Chem. 28 (2004) 165-178.

[16] D.J. Wilkinson, ‘Stochastic Modelling for Systems Biology’, Boca Raton: Chap-

man & Hall, 2006.

74 REFERENCES

[17] J. Paulsson, ‘Noise in a minimal regulatory network: plasmid copy number con-

trol’, Quart. Rev. Biophys. 34 (2001) 1-59.

[18] D.J. Wilkinson, ‘Stochastic modelling for quantitative description of heteroge-

neous biological systems’, Nat. Rev. Genet. 10 (2009) 122-133.

[19] R.L. Bar-Or, R. Maya, L.A. Segel, U. Alon, et al., ‘Generation of oscillations by

the p53-Mdm2 feedback loop: A theoretical and experimental study’, PNAS 97

(2000) 11250-11255.

[20] N. Geva-Zatorsky, N. Rosenfeld, S. Itzkovitz, R. Milo, et al., ‘Oscillations and

variability in the p53 system’, Mol. Syst. Biol. 2 (2006) doi:10.1038/msb4100068.

[21] G. Lahav, N. Rosenfeld, A. Sigal, N. Geva-Zatorski, et al., ‘Dynamics of the

p53-mdm2 feedback loop in individual cells’, Nat. Genet. 36 (2004) 147-150.

[22] N.A.M. Monk, ‘Oscillatory Expression of Hes1, p53, and NFκB Driven by Tran-

scriptional Time Delays’, Curr. Biol. 13 (2003) 1409-1413.

[23] L.J. Zhang, S.W. Yan, Y.Z. Zhuo, ‘A dynamical model of DNA-damage derived

p53mdm2 interaction’, Acta Physica Sinica 56 (2007) 2442-2447.

[24] K. Puszynski, B. Hat, T. Lipniacki, ‘Oscillations and bistability in the stochastic

model of p53 regulation’, J. Theor. Biol. 254 (2008) 452-465.

[25] A.S. Ribeiro, D.A. Charlebois, J. Lloyd-Price, ‘CellLine, a stochastic cell lineage

simulator’, Bioinf. 23 (2007) 3409-3411.

[26] A. Brock, H. Chang, S. Huang, ‘Non-genetic heterogeneity - a mutation-

independent driving force for the somatic evolution of tumours’, Nat. Rev. Genet.

10 (2009) 336-342.

REFERENCES 75

[27] D. Fraser, M. Kaern, ‘A chance at survival: gene expression noise and phenotypic

diversification strategies’, Molec. Microbiol. 71 (2009) 1333-1340.

[28] M.B. Elowitz, A.J. Levine, E.D. Siggia, P.S. Swain, ‘Stochastic gene expression

in a single cell’, Science 297 (2002) 1183-1186.

[29] J.M. Pedraza, A. van Oudenaarden, ‘Noise propagation in gene networks’, Sci-

ence 307 (2005) 1965-69.

[30] J.M. Raser, E.K. O’Shea, ‘Control of stochasticity in eukaryotic gene expression’,

Science 304 (2004) 1811-1814.

[31] J.M. Raser, E.K. O’Shea, ‘Noise in gene expression: origins, consequences, and

control’, Science 309 (2005) 2010-2013.

[32] D. Volfson, J. Marciniak, W.J. Blake, N. Ostroff, et al., ‘Origins of extrinsic

variability in eukaryotic gene expression’, Nature 439 (2006) 861-64.

[33] M. Thattai, A. van Oudenaarden, ‘Intrinsic noise in gene regulatory networks’,

PNAS 98 (2001) 8614-8619.

[34] M. Thattai, A. van Oudenaarden, ‘Stochastic Gene Expression in Fluctuating

Environments’, Genetics 167 (2004) 523-530.

[35] E.M. Ozbudak, M. Thattai, I. Kurtser, A.D. Grossman, et al., ‘Regulation of

noise in the expression of a single gene’, Nat. Genet. 31 (2002) 69-73.

[36] L. Lopez-Maury, S. Marguerat, J. Bahler, ‘Tuning gene expression to changing

environments: from rapid response to evolutionary adaptation’, Nat. Rev. Gen.

9 (2008) 583-593.

76 REFERENCES

[37] W.K. Smits, O.P. Kuipers, J.W. Veening, ‘Phenotypic variation in bacteria: the

role of feedback regulation’, Nat. Rev. Microbiol. 4 (2006) 259-271.

[38] J.W. Veening, W.K. Smits, O.P. Kuipers, ‘Bistability, epigenetics, and bet-

hedging in bacteria’, Annu. Rev. Microbiol. 62 (2008) 193-210.

[39] A. Bar-Even, J. Paulsson, N. Maheshri, M. Carmi, et al., ‘Noise in protein ex-

pression scales with natural protein abundance’, Nat. Genet. 38 (2006) 636-643.

[40] J.R.S. Newman, S. Ghaemmaghami, J. Ihmels, D.K. Breslow, et al., ‘Single-cell

proteomic analysis of S. cerevisiae reveals the architecture of biological noise’,

Nature 441 (2006) 840-846.

[41] H.B. Fraser, A.E. Hirsh, G. Giaever, J. Kumm, et al., ‘Noise minimization in

eukaryotic gene expression’, PLoS Biol. 2 (2004) e137.

[42] D.T. Gillespie, ‘Stochastic Chemical Kinetics’, Published as Section 5.11 of

Handbook of Materials and Modeling, S. Yip, Ed., Berlin, Heidelberg, New York:

Springer Dochdrecht, 2005.

[43] D.T. Gillespie, ‘A general method for numerically simulating the stochastic time

evolution of coupled chemical reactions’, J. Comput. Phys. 22 (1976) 403-434.

[44] N.V. Mantzaris, ‘From Single-Cell Genetic Architecture to Cell Population Dy-

namics: Quantitatively Decomposing the Effects of Different Population Het-

erogeneity Sources for a Genetic Network with Positive Feedback Architecture’,

Biophys. J. 92 (2007) 4271-4288.

[45] Y. Lin, K. Lee, T. Matsoukas, ‘Solution of the population balance equation using

constant-number Monte Carlo’, Chem. Eng. Sci. 57 (2002) 2241-2252.

REFERENCES 77

[46] M. Smith, T. Matsoukas, ‘Constant-number Monte Carlo simulation of popula-

tion balances’, Chem. Eng. Sci. 53 (1998) 1777-1786.

[47] N.V. Mantzaris, ‘Stochastic and deterministic simulations of heterogeneous cell

population dynamics’, J. Theor. Biol. 241 (2006) 690-706.

[48] N.G. van Kampen, ‘Stochastic Processes in Physics and Chemistry’, Amsterdam:

North-Holland, 1992.

[49] D.S. Lemons, ‘An Introduction to Stochastic Processes in Physics’, Baltimore

and London: Johns Hopkins University Press, 2002.

[50] V. Shahrezaei, P.S. Swain, ‘Analytical distributions for stochastic gene expres-

sion’, PNAS 105 (2008) 17256-17261.

[51] N.G. van Kampen, ‘A Power Series Expansion of the Master Equation’,

Can. J. Phys. 39 (1961) 551.

[52] N.G. van Kampen, ‘The expansion of the master equation’, Adv. Chem. Phys.

34 (1976) 245.

[53] J. Elf, M. Ehrenberg, ‘Fast Evaluation of Fluctuations in Biochemical Networks

With the Linear Noise Approximation’, Genome Res. 13 (2003) 2475-2484.

[54] J. Elf, J. Paulsson, O.G. Berg, M. Ehrenberg, ‘Near-Critical Phenomena in In-

tracellular Metabolite Pools’, Biophys. J. 84 (2003) 154-170.

[55] R. Tomioka, H. Kimura, T.J. Kobayashi, K. Aihara, ’Multivariate analysis of

noise in genetic regulatory networks’, J. Theor. Biol. 229 (2004) 501-521.

[56] T. Manninen, M.-L. Linne, K. Ruohonen, ‘Developing Itô stochastic differential

equation models for neuronal signal transduction pathways’, Compt. Biol. Chem.

30 (2006) 280-291.

78 REFERENCES

[57] J. Intosalmi, ‘On Stochastic Differential Equations: Theory and Biochemical Ap-

plications’, Published Thesis (MSc), University of Tampere, Tampere, Finland,

2007.

[58] I. Karatzas, S.E. Shreve, ‘Brownian Motion and Stochastic Calculus’, New York:

Springer-Verlag, 1988.

[59] B. Øksendal, ‘Stochastic Differential Equations’, Berlin: Springer, 2007.

[60] H. Risken, ‘Fokker-Plank Equations’, Berlin: Springer, 1992.

[61] C.W. Gardiner, ‘Handbook of Stochastic Methods’, Berlin: Springer, 1992.

[62] R. Murugan, ‘Multiple Stochastic Point Processes in Gene Expression’,

J. Stat. Phys. 131 (2008) 153-165.

[63] D.T. Gillespie, ‘Approximate accelerated stochastic simulation of chemically re-

acting systems’, J. Chem. Phys. 115 (2001) 1716-1733.

[64] M.A. Gibson, J. Bruck, ‘Exact stochastic simulation of chemical systems with

many species and many channels’, J. Phys. Chem. 105 (2000) 1876-1889.

[65] T. Lu, D. Volfson, L. Tsimring, J. Hasty, ‘Cellular growth and division in the

Gillespie algorithm’, Syst. Biol. 1 (2004) 121-128.

[66] D. Adalsteinsson, D. McMillen, T.C. Elston, ‘Biochemical Network Stochastic

Simulator (BioNetS): software for stochastic modeling of biochemical networks’,

BMC Bioinfo. 5 (2004) 24.

[67] A.M. Kierzek, ‘STOCKS: STOChastic Kinetic Simulations of biochemical sys-

tems with Gillespie algorithm’, Bioinf. 18 (2002) 470-481.

REFERENCES 79

[68] J.J. Tyson, O.J. Diekmann, ‘Sloppy size control of the cell division cycle’, Theor.

Biol. 118 (1986) 405-426.

[69] N. Rosenfeld, T.J. Perkins, U. Alon, M.B. Elowitz, P.S. Swain, ‘A Fluctuation

Method to Quantify In Vivo Fluorescence Data’, Biophys. J. 91 (2006) 759-766.

[70] D. Ramkrishna, ‘The status of population balances’, Rev. Chem. Engng. 3 (1985)

49-95.

[71] K. Lee, T. Matsoukas, ‘Simultaneous coagulation and break-up using constant-N

Monte Carlo’, Powder Technol. 110 (2000) 82-89.

[72] T.B. Kepler, T.C. Elston, ‘Stochasticity in Transcriptional Regulation’, Biophys.

J. 81 (2001) 3116-3136.

[73] D. Cohen, ‘Optimizing reproduction in a randomly varying environment’, J.

Theor. Biol. 12 (1966) 119-129.

[74] R. Levins, ‘Evolution in Changing Environments: some Theoretical Explo-

rations’, New Jersey: Princeton University Press, 1968.

[75] W.M. Schaffer, ‘Optimal efforts in fluctuating environments’, Am. Nat. 108

(1974) 783-790.

[76] S.C. Stearns, ‘Life-history tactics: a review of the ideas’, Q. Rev. Biol. 51 (1976)

3-47.

[77] M. Acar, J.T. Mettetal, A. van Oudenaarden, ‘Stochastic switching as a survival

strategy in fluctuating environments’, Nat. Genet. 40 (2008) 471-475.

[78] B.J. Brewer, E. Chlebowicz-Sledziewska, W.L. Fangman, ‘Cell Cycle Phases in

the Unequal Mother/Daughter Cell Cycles of Saccharomyces cerevisiae’, Mol.

Cell. Biol. 4 (1984) 2529-2531.

80 REFERENCES

[79] J. Fisher, T.A. Henzinger, ‘Executable cell biology’, Nat. Biotechnol. 25 (2007)

1239-1249.

[80] A. Longtin, ‘Physique numérique stochastique’, lecture notes, University of Ot-

tawa, 2009.

[81] J. Paulsson, ‘Models of stochastic gene expression’, Phys. Life Rev. 2 (2005)

157-75.

Appendices

81

83

Appendix A: Poisson Process

An understanding of the Poisson process is key to understanding more sophisticated

stochastic processes. For example, the stochastic processes of transcription and trans-

lation can under certain conditions (i.e. a fixed number of active promoters and mR-

NAs, respectively) be described by a birth-death process whose steady-state can be

described by the Poisson distribution. The Poisson distribution, a discrete probabil-

ity distribution (a limit of a binomial distribution when the number of trials n → ∞
and the probability of individual success p → 0 in such a way that the product np

remains constant) of the number of independent events found in a limited region, is

particularly important in the stochastic modelling of biochemical networks, as the

number of reaction events occurring in a short time interval is approximately Pois-

son. In physics, this distribution has often been used to describe radioactive decay

experiments where there may be a very large number of trials (e.g., a reading for each

microsecond when the counter is on), but a low probability of a decay event occurring

within this one microsecond [16, 48, 80].

A Poisson random variable, X with parameter λ is written as

X ∼ Po(λ) (1)

and the corresponding probability mass function (PMF) of X as

P (X = k) =
λk

k!
e−λ, k = 0, 1, 2, . . . (2)

A PMF is defined for any discrete random variable X to be the function which

gives the probability of each k ∈ SX , where SX is the sample space. Note that for

smaller values of λ (e.g. λ = 2 shown in Fig. 1a) can be quite asymmetric and in this

way quite different from a Gaussian distribution (which it approaches for λ >> 1 -

this can be seen in Fig. 1b where λ = 8). If X ∼ Po(λ), the expectation and variance

84

Figure 1 Probability mass function for a Poisson (λ = 2) distribution (a)
and Poisson (λ = 8) distribution (b).

can be computed directly from the PMF, or can be obtained from the binomial limit,

and are as follows [16]

E(X) = λ and V ar(X) = λ (3)

That is, the mean and variance are both found to be λ.

A sequence of timed observations follows a Poisson process with rate λ if the

number of observations, X, in any interval of length t is such that

X ∼ Po(λt) (4)

and the numbers of events in disjoint intervals are independent of each another.

Transcription and translation are often assumed to follow Poisson processes where

the production probabilities per unit time are proportional to the number of active

genes and mRNAs [81]. Thus, the size of fluctuations in the number of a certain

85

molecule type (e.g. mRNA) is assumed to be of the order of the square root of

the average (e.g.
√
mRNA), as is often approximately the case at thermodynamic

equilibrium [17]. Thus the probability of observing a significant deviation from the

average decreases as the number of molecules in the reaction volume increases.

Appendix B: Fortran 90 Code

This parallel Fortran 90 program simulates the population dynamics (includes sin-

gle cell tracking and statistics) of gene regulatory networks (default GRN, a single

gene with no feedback in E. coli., and default theoretical formulas for benchmarking

are from Swain et al. [13]) using the Gillespie direct method stochastic simulation

algorithm [2, 43] and the constant-number Monte Carlo method [45, 46].

Parallelism is here implemented across the simulation and designed for execu-

tion in a shared memory multiprocessor environment using OpenMP. The parallel

region includes the execution of the SSA and growth and division for each cell of the

population.

Note that the version of the code that follows was used to obtain the results in

Section 4.1.3 and incorporates gene duplication, cell growth and division, and time-

dependent analytical solutions for benchmarking, and can be modified to reproduce

any of the results presented in this thesis.

86

!**MAIN CALLER PROGRAM**

!‘CELL_PASSED.f90’ is the main caller program which seeds the random number

!generator and calls the SSA from module ‘SSA_Parallel.f90’ in order to

!simulate the dynamics of a GRN and output the results at the user defined

!sampling interval.

!***

PROGRAM CELL_PASSED_Parallel

use SSA_Parallel

implicit none

integer, allocatable :: iseed(:)

integer :: idate(8), isize

integer :: nc=8000 !number of cells

real :: t_cumm=0 !simulation start time

call DATE_AND_TIME(VALUES=idate)

print *, "Simulation start date/time = ", idate

!obtain random seed from date_and_time intrinsic

call random_seed(SIZE=isize)

allocate(iseed(isize))

call random_seed(GET=iseed)

iseed = iseed * (idate(8)-500) !idate(8) contains millisecond

call random_seed(PUT=iseed)

87

deallocate(iseed)

call main(nc,t_cumm)

call DATE_AND_TIME(VALUES=idate)

print *, "Simulation end date/time = ", idate

END PROGRAM CELL_PASSED_Parallel

!***

!**SSA_Parallel MODULE**

!This module contains the constant-number MC in subroutine ‘main’ which

calls the SSA in subroutine ‘next_reaction’. Subroutine ‘next_reaction’

in turn calls the module ‘reactions_Parallel’ in order to simulate gene

expression for the user defined GRN after it determines the next reaction

from the reaction propensities calculated from a call to the subroutine

‘propensities’. Note that module ‘results_Parallel’ is called every

‘sample_intervl’ in order to calculate statistics and output/save results.

!***

MODULE SSA_Parallel

use reactions_Parallel

use globals_Parallel

use results_Parallel

implicit none

88

contains

SUBROUTINE main(nc,t_cumm)

use globals_Parallel

!random number arrays for r1 and r2

real, dimension(n_threads,num_rand) :: rand_array1,rand_array2

!array to store random number counters for each thread

real, dimension(n_threads) :: rand_cnt_array

!array to store data for cell(s) with index

![t_sample,P,M,D,k,mu,cell_vol,t_last_div_array(k),t_cumm,cell_age,mother_ID]

real, dimension(nc,11) :: u

!temporary mother and daughter cell arrays

real, dimension(11) :: u_temp_mothers, u_temp_daughters

real, dimension(2,11) :: u_daughters_temp

!array to store data for cell(s):

real, dimension(nc,11) :: u_daughters

!array to store molecular species values: P,Act,unAct

real, dimension(1,3) :: s

!array to store reaction propensities

real, dimension(1,4) :: a

!array to store intial last division times

real, dimension(nc) :: t_last_div_array, cell_vol_array

!sample interval,simulation time,next reaction time

real :: t_sample=0,t_cumm,dt=0,t_marker

!initial conditions

real :: D,M=0,P=0,cell_age=0,mother_ID=0

89

!sum of reaction propensities,value holder for next reaction

real :: a0=0, amu=0

!counter for random numbers,cell I.D.,next reaction marker

integer :: num_rand,k=0,mu=0,i=0,result_cnt,nc,rand_cnt=0

!statistics run counter,OpenMP variables

integer :: stat_cnt=0,TID,OMP_GET_THREAD_NUM

!logical to indicate to SSA whether to simulate mother or daughter cells

integer :: mother_sim,daughter_sim

!counter for number of births since last constant-number MC restore event

integer :: daughter_cnt,d_count

!Constant-number algorithm variables

real, dimension(10*nc) :: CNA_array

integer, dimension(nc) :: CNA_rand_index_array

real :: CNA_rand

integer :: j,jj,l,ii,t_restore_cnt,CNA_rand_index,CNA_rand_index_cnt

integer :: CNA_cnt1,CNA_cnt2,mRNA_cnt_mother=0,mRNA_cnt_daughter=0

integer :: protein_cnt_mother=0,protein_cnt_daughter=0

!file to store time series for selected cell(s)

open(1,file=’time_series_Parallel.dat’)

!file to store analytical results

open(2,file=’analytical_stats_Parallel.dat’)

!file to store population statistics

open(3,file=’population_stats_Parallel.dat’)

!obtain theoretical values for cell(s)

90

call stats_theoretical()

!initialize arrays

rand_array1=0;rand_array2=0;rand_cnt_array=1;a=0;s=0;u=0;u_temp_mothers=0;

u_daughters=0;u_temp_daughters=0

!initialize logicals

mother_sim=1; daughter_sim=0

!intialize misc.

t_restore_cnt=1;d_count=0;daughter_cnt=0

!generate uniform distribution of time since last division for initial pop.

call random_number(t_last_div_array)

t_last_div_array=t_div*t_last_div_array

!intial values for cell(s)

do k=1,nc

!calculate initial cell volumes (Linear)

cell_vol_array(k)=init_cell_vol !*(1+t_last_div_array(k)/t_div)

!calculate initial cell volumes (Exponential)

!cell_vol_array(k)=init_cell_vol*EXP(log(2.)*t_last_div_array(k)/t_div)

u(k,1)=0; u(k,2)=0; u(k,3)=0; u(k,4)=1; u(k,5)=k; u(k,6)=0;

u(k,7)=cell_vol_array(k); u(k,8)=t_last_div_array(k); u(k,9)=t_cumm;

u(k,10)=cell_age;u(k,11)=mother_ID

!u(k,8)=0 !note: to start all cell in phase

91

end do

!fill random number arrays and initialize counter

call random_number(rand_array1)

call random_number(rand_array2)

rand_cnt=1

!obtain initial values for time series and statistics for cell(s)

!call time_series(u,u_daughters,nc,daughter_cnt,t_cumm)

stat_cnt=stat_cnt+1

call pop_stats(u,u_daughters,nc,daughter_cnt,t_cumm)

t_sample=sample_intervl

!*note: ensure t_sample is set such that t_cumm will always be < t_sample*

do while (t_cumm < t_end)

!note: t_marker is time at begining of this t_sample (so that each cell

!starts at the beggining of interval each iteration)

t_marker=t_cumm

if (t_cumm < t_sample) then

!PARALLEL REGION: simulate dynamics of mother cells

!$OMP PARALLEL PRIVATE(D,M,P,k,t_cumm,dt,s,a,a0,amu,mu,i,u_temp_mothers,

u_temp_daughters,mRNA_cnt_mother,mRNA_cnt_daughter,protein_cnt_mother,

protein_cnt_daughter) NUM_THREADS(n_threads)

!$OMP DO

do k=1,nc

92

u_temp_mothers = u(k,1:11)

call next_reaction(t_cumm,t_sample,t_marker,D,M,P,rand_array1,rand_array2,

k,nc,rand_cnt_array,dt,s,a,a0,amu,mu,i,u_temp_mothers,u_temp_daughters,

u_daughters,daughter_cnt,mother_sim,daughter_sim,d_count,mRNA_cnt_mother,

mRNA_cnt_daughter,protein_cnt_mother,protein_cnt_daughter)

u(k,1:11) = u_temp_mothers

end do

!$OMP END DO

!$OMP END PARALLEL

!set logicals

mother_sim=0; daughter_sim=1

!PARALLEL REGION: simulate dynamics of daughter cells

if (daughter_cnt >= 1) then

!$OMP PARALLEL PRIVATE(D,M,P,k,t_cumm,dt,s,a,a0,amu,mu,i,u_temp_mothers,

u_temp_daughters,mRNA_cnt_mother,mRNA_cnt_daughter,

protein_cnt_mother,protein_cnt_daughter) NUM_THREADS(n_threads)

!$OMP DO

do d_count=1,daughter_cnt

u_temp_daughters = u_daughters(d_count,1:11)

call next_reaction(t_cumm,t_sample,t_marker,D,M,P,rand_array1,rand_array2,

k,nc,rand_cnt_array,dt,s,a,a0,amu,mu,i,u_temp_mothers,u_temp_daughters,

u_daughters,daughter_cnt,mother_sim,daughter_sim,d_count,mRNA_cnt_mother,

mRNA_cnt_daughter,protein_cnt_mother,protein_cnt_daughter)

u_daughters(d_count,1:11) = u_temp_daughters

93

end do

!$OMP END DO

!$OMP END PARALLEL

end if

!reset logicals

mother_sim=1;daughter_sim=0

t_cumm=t_sample

t_sample=t_sample+sample_intervl

!obtain time series for cell(s)

!call time_series(u,u_daughters,nc,daughter_cnt,t_cumm)

stat_cnt=stat_cnt+1

!obtain population statistics for cell(s)

call pop_stats(u,u_daughters,nc,daughter_cnt,t_cumm)

end if

!Constant Number Algorithm

if (daughter_cnt >= 1) then

if (t_restore*t_restore_cnt <= t_cumm) then

!sort daughter cell array (oldest to youngest)

u_daughters_temp=0

if (daughter_cnt >= 2) then

ii=1

do while (ii <= daughter_cnt-1)

94

CNA_cnt1=u_daughters(ii,10)

CNA_cnt2=u_daughters(ii+1,10)

if (CNA_cnt2 > CNA_cnt1) then

do k=1,11

u_daughters_temp(1,1:11)=u_daughters(ii,1:11)

u_daughters_temp(2,1:11)=u_daughters(ii+1,1:11)

end do

u_daughters(ii,1:11)=u_daughters_temp(2,1:11)

u_daughters(ii+1,1:11)=u_daughters_temp(1,1:11)

ii=1

else

ii=ii+1

end if

end do

end if

!replace random cells in mother cell array with cells from daughter

!array (oldest daughter cells being inserted first)

CNA_array=0; call random_number(CNA_array); CNA_rand_index_cnt=0

do j=1,daughter_cnt

CNA_rand_index_cnt=CNA_rand_index_cnt+1

CNA_rand_index_array(j)=nint(CNA_array(CNA_rand_index_cnt)*nc)

!ensure that random index array is non-zero

!(i.e. there must be a cell to replace!)

do while (CNA_rand_index_array(j)==0)

CNA_rand_index_cnt=CNA_rand_index_cnt+1

95

CNA_rand_index_array(j)=nint(CNA_array(CNA_rand_index_cnt)*nc)

!code to track first cell for Swain validation

!do while (CNA_rand_index_array(j)==1)

! CNA_rand_index_cnt=CNA_rand_index_cnt+1

! CNA_rand_index_array(j)=nint(CNA_array(CNA_rand_index_cnt)*nc)

!end do

end do

u(CNA_rand_index_array(j),1:11)=u_daughters(j,1:11)

end do

daughter_cnt=0; u_daughters=0

t_restore_cnt=t_restore_cnt+1

end if

end if

end do

close(1); close(2); close(3)

END SUBROUTINE main

!**********************************

!**********************************

SUBROUTINE next_reaction(t_cumm,t_sample,t_marker,D,M,P,rand_array1,

rand_array2,k,nc,rand_cnt_array,dt,s,a,a0,amu,mu,i,u_temp_mothers,

u_temp_daughters,u_daughters,daughter_cnt,mother_sim,daughter_sim,d_count,

96

mRNA_cnt_mother,mRNA_cnt_daughter,protein_cnt_mother,protein_cnt_daughter)

use globals_Parallel

implicit none

real, dimension(n_threads,num_rand) :: rand_array1, rand_array2

real, dimension(n_threads) :: rand_cnt_array

real, dimension(nc,11) :: u_daughters

real, dimension(11) :: u_temp_mothers, u_temp_daughters

real, dimension(1,3) :: s

real, dimension(1,4) :: a

real :: dt,t_cumm,t_sample,t_marker

real :: D,M,P,a0,amu,g1,g2,aa=0.0,bb=0.5

integer :: k,i,nc,mu,idate(8),TID,OMP_GET_THREAD_NUM

integer :: mother_sim,daughter_sim,daughter_cnt,d_count,mRNA_cnt_mother,

mRNA_cnt_daughter,protein_cnt_mother,protein_cnt_daughter

!Mothers

if (mother_sim==1) then

P=u_temp_mothers(2)

M=u_temp_mothers(3)

!Gene Duplication ’On’ (Swain)

if (u_temp_mothers(8) >= 0.4*t_div) then

D=2*D_init

elseif (u_temp_mothers(8) < 0.4*t_div) then

D=D_init

end if

!D=D_init !Gene Duplication ’Off’

97

t_cumm=t_marker

end if

!Daughters

if (daughter_sim==1) then

P=u_temp_daughters(2)

M=u_temp_daughters(3)

!Gene Duplication ’On’ (Swain)

if (u_temp_daughters(8) >= 0.4*t_div) then

D=2*D_init

elseif (u_temp_daughters(8) < 0.4*t_div) then

D=D_init

end if

!D=D_init !Gene Duplication ’Off’

t_cumm=u_temp_daughters(9)

end if

TID = OMP_GET_THREAD_NUM()

do while (t_cumm < t_sample)

s(1,1)=P

s(1,2)=M

s(1,3)=D

call propensities(s,a)

a0 = sum(a)

98

!check and replenish random number arrays as required

if (rand_cnt_array(TID+1) >= num_rand) then

!print *, ’Replenishing rand_arrays’, k

call random_number(rand_array1(TID+1,num_rand))

call random_number(rand_array2(TID+1,num_rand))

rand_cnt_array(TID+1)=1

end if

!calculate time of next reaction

dt = log(1./rand_array1(TID+1,rand_cnt_array(TID+1)))/a0

!update time and time since last division

t_cumm = t_cumm+dt

if (mother_sim==1) then

u_temp_mothers(8)=u_temp_mothers(8)+dt

u_temp_mothers(9) = u_temp_mothers(9)+dt

u_temp_mothers(10)=u_temp_mothers(10)+dt

else

u_temp_daughters(8)=u_temp_daughters(8)+dt

u_temp_daughters(9) = u_temp_daughters(9)+dt

u_temp_daughters(10)=u_temp_daughters(10)+dt

end if

!cell volume

99

if (mother_sim==1) then

!Linear growth (Swain)

u_temp_mothers(7)=init_cell_vol*(1+(u_temp_mothers(8)/t_div))

!Exponential growth (Kaern)

!u_temp_mothers(7)=init_cell_vol*EXP(log(2.)*u_temp_mothers(8)/t_div)

!division based on cell volume

if (u_temp_mothers(7) >= 2*init_cell_vol) then

!division based on fixed division time (t_div)

!if (u_temp_mothers(8) >= t_div+sample_intervl) then

!check and replenish random number arrays as required

if (rand_cnt_array(TID+1)+1 >= num_rand) then

!print *, ’Replenishing rand_arrays’, k

call random_number(rand_array1(TID+1,num_rand))

call random_number(rand_array2(TID+1,num_rand))

rand_cnt_array(TID+1)=1

end if

daughter_cnt=daughter_cnt+1

!rand_cnt_array(TID+1)=rand_cnt_array(TID+1)+1

!Box-Muller transform

!g1=sqrt(-2*log(rand_array1(TID+1,rand_cnt_array(TID+1))))

!*COS(2*pi*rand_array2(TID+1,rand_cnt_array(TID+1)+1))

!g1=(aa*g1)+bb

!conservation of mass equations

!if (mod(u_temp_mothers(2),2.)==0) then

P=u_temp_mothers(2)

100

!Uniform

!u_temp_mothers(2)=nint(rand_array1(TID+1,rand_cnt_array(TID+1))

!*P)u(k,8)=t_last_div_array(k)

!u_daughters(daughter_cnt,2)=nint((1-rand_array1

!(TID+1,rand_cnt_array(TID+1)))*P)

!Gaussian

!u_temp_mothers(2)=nint(g1*P)

!u_daughters(daughter_cnt,2)=nint((1-g1)*P)

!P=u_temp_mothers(2)

!Binomial

protein_cnt_mother=0

protein_cnt_daughter=0

do i=1,P

!check and replenish random number arrays as required

if (rand_cnt_array(TID+1) >= num_rand) then

call random_number(rand_array1(TID+1,num_rand))

rand_cnt_array(TID+1)=1

end if

rand_cnt_array(TID+1)=rand_cnt_array(TID+1)+1

if (rand_array1(TID+1,rand_cnt_array(TID+1))>0.5) then

protein_cnt_mother=protein_cnt_mother+1

else

protein_cnt_daughter=protein_cnt_daughter+1

end if

end do

u_temp_mothers(2)=protein_cnt_mother; P=u_temp_mothers(2)

101

u_temp_daughter(2)=protein_cnt_daughter

!elseif (mod(u_temp_mothers(2),2.)/=0) then

! if (nint(rand_array1(TID+1,rand_cnt_array(TID+1)))==0) then

! u_temp_mothers(2)=nint(0.5*u_temp_mothers(2)); P=u_temp_mothers(2)

! u_daughters(daughter_cnt,2)=P-1

! else

! u_temp_mothers(2)=nint(0.5*u_temp_mothers(2))-1; P=u_temp_mothers(2)

! u_daughters(daughter_cnt,2)=P+1

! end if

!end if

!if (mod(u_temp_mothers(3),2.)==0) then

!rand_cnt_array(TID+1)=rand_cnt_array(TID+1)+1

!g2=sqrt(-2*log(rand_array1(TID+1,rand_cnt_array(TID+1))))

!*SIN(2*pi*rand_array2(TID+1,rand_cnt_array(TID+1)+1))

!g2=(aa*g2)+bb

M=u_temp_mothers(3)

!Uniform

!u_temp_mothers(3)=nint(rand_array1(TID+1,rand_cnt_array(TID+1))*M)

!u_daughters(daughter_cnt,3)=nint((1-rand_array1(TID+1,rand_cnt_array(TID+1)))*M)

!Gaussian

!u_temp_mothers(3)=nint(g2*M)

!u_daughters(daughter_cnt,3)=nint((1-g2)*M)

!M=u_temp_mothers(3)

!Binomial

102

mRNA_cnt_mother=0

mRNA_cnt_daughter=0

do i=1,M

!check and replenish random number arrays as required

if (rand_cnt_array(TID+M) >= num_rand) then

call random_number(rand_array1(TID+1,num_rand))

call random_number(rand_array2(TID+1,num_rand))

rand_cnt_array(TID+1)=1

end if

rand_cnt_array(TID+1)=rand_cnt_array(TID+1)+1

if (rand_array1(TID+1,rand_cnt_array(TID+1))>0.5) then

mRNA_cnt_mother=mRNA_cnt_mother+1

else

mRNA_cnt_daughter=mRNA_cnt_daughter+1

end if

end do

u_temp_mothers(3)=mRNA_cnt_mother; M=u_temp_mothers(3)

!else

! if (nint(rand_array2(TID+1,rand_cnt_array(TID+1)))==0) then

! u_daughters(daughter_cnt,3)=nint(0.5*u_daughters(daughter_cnt,3))

! M=u_temp_mothers(3)

! u_daughters(daughter_cnt,3)=M-1

! else

! u_temp_mothers(3)=nint(0.5*u_temp_mothers(3))-1; M=u_temp_mothers(3)

! u_daughters(daughter_cnt,3)=M+1

103

! end if

!end if

u_temp_mothers(4)=u_temp_mothers(4)/2 !gene duplication ’on’

u_temp_mothers(7)=init_cell_vol

u_temp_mothers(8)=0

u_daughters(daughter_cnt,1)=u_temp_mothers(1)

u_daughters(daughter_cnt,4)=u_temp_mothers(4)

!note: correct daughter cell number (may not be same as ’k’)

u_daughters(daughter_cnt,5)=daughter_cnt

u_daughters(daughter_cnt,6)=u_temp_mothers(6)

u_daughters(daughter_cnt,7)=u_temp_mothers(7)

u_daughters(daughter_cnt,8)=0

u_daughters(daughter_cnt,9)=t_cumm

u_daughters(daughter_cnt,10)=0

u_daughters(daughter_cnt,11)=k

!snap shot at moment of division

!print*, ’mother’, u_temp_mothers

!print*, ’daughter’, u_daughters(daughter_cnt,1:11)

end if

else

!Linear growth (Swain)

u_temp_daughters(7)=init_cell_vol*(1+(u_temp_daughters(8)/t_div))

!Exponential growth (Kaern)

!u_temp_daughters(7)=init_cell_vol*EXP(log(2.)*u_temp_daughters(8)/t_div)

104

!division based on cell volume

if (u_daughters(d_count,7) >= 2*init_cell_vol) then

!division based on fixed division time (t_div)

!if (u_daughters(d_count,8) >= t_div) then

write(1,*) ’DAUGHTER CELL HAS DIVIDED!

SET t_restore < SHORTEST CELL DIVISION TIME!’

end if

end if

rand_cnt_array(TID+1)=rand_cnt_array(TID+1)+1

!calculate which reaction occurs next (if outside of dimension of

!rand_array2 then replenish with random numbers)

i=1; mu=0; amu=0 !set i=1 for each cyle

do while (amu < rand_array2(TID+1,rand_cnt_array(TID+1))*a0)

mu=mu+1

do while (i <= mu)

amu=amu+a(1,i)

i=i+1

end do

end do

!carry out reaction

call rxns(mu,M,P) !call rxns subroutine in ’reactions_Parallel’ module

!save cell specific data to u_temp

if (mother_sim==1) then

105

u_temp_mothers(1) = t_sample

u_temp_mothers(2) = P

u_temp_mothers(3) = M

u_temp_mothers(4) = D

u_temp_mothers(5) = k

u_temp_mothers(6) = mu

end if

!save data to u_daughters

if (daughter_sim==1) then

u_temp_daughters(1) = t_sample

u_temp_daughters(2) = P

u_temp_daughters(3) = M

u_temp_daughters(4) = D

u_temp_daughters(5) = d_count

u_temp_daughters(6) = mu

end if

end do

END SUBROUTINE next_reaction

!**********************************

!**********************************

SUBROUTINE propensities(s,a)

use globals_Parallel

106

implicit none

real, dimension(1,3) :: s

real, dimension(1,4) :: a

real :: P,M,D

!conversion into P,M,D from ’s’ array

P=s(1,1)

M=s(1,2)

D=s(1,3)

!compute reaction propensities

a(1,1)= D*v0

a(1,2)= M*d0_prime

a(1,3)= M*v1_prime

a(1,4)= P*d1

end subroutine propensities

!**********************************

END MODULE SSA_Parallel

!***

!**MODULE reactions_Parallel**

!This module contains the reactions for the user defined gene regulatory network.

107

!***

MODULE reactions_Parallel

implicit none

contains

!**********************************

SUBROUTINE rxns(mu,M,P)

use globals_Parallel

implicit none

integer :: mu

real :: M,P

if (mu==1) then

M=M+1

end if

if (mu==2) then

M=M-1

end if

if (mu==3) then

P=P+1

end if

if (mu==4) then

P=P-1

end if

END SUBROUTINE rxns

108

!**********************************

END MODULE reactions_Parallel

!***

!**Module globals_Parallel**

!This module contains the global parameters.

!***

MODULE globals_Parallel

real, parameter :: sample_intervl=100 !population sampling interval

real, parameter :: t_end=216000 !simulation end time (default ‘100000’)

integer, parameter :: num_rand=100000 !number of random numbers

real, parameter :: log2=log10(2.), pi=3.14159265

!note: (default ‘1’ --> represents 1.0*10^-15 liters)

real, parameter :: init_cell_vol=2.5 !initial/following division cell volume

real, parameter :: t_div=3600 !cell division time (default ‘6000’) !

real, parameter :: t_restore=3300 !cell population restore time (default ‘5500’)

real, parameter :: D_init=1 !initial gene copy number on chromosome

integer, parameter :: n_threads=8 !number of threads

!parameters for <mRNA(n)> results

real, parameter :: v0=0.3,d0=0.1,d0_prime=0.0221,v1=0.048,v1_prime=0.16,

real, parameter :: d1=0.0000642,f0=0.42,b0=0.1,n=8,k0=0.1

109

real, parameter :: k1=0.3,mb1=0.4,mf0=0.114,mf1=4.0

!parameters for <protein(t)>

!real, parameter :: v0=0.3,d0=0.1,d0_prime=0.0221,v1_prime=0.075,v1=0.048,k1=0.3

!real, parameter :: d1=0.00000642,f0=0.42,b0=0.1,n=1,k0=0.1,mb1=0.4,mf0=0.114,mf1=

!parameters for single-cell

!real, parameter :: v0=0.3,d0=0.1,d0_prime=0.05,v1=0.048,v1_prime=0.16,

!real, parameter :: d1=0.0000642,f0=0.42,b0=0.1,n=1,k0=0.1

!real, parameter :: k1=0.3,mb1=0.4,mf0=0.114,mf1=4.0

END MODULE globals_Parallel

!***

!**MODULE results_Parallel**

!This module obtains simulation results and statistics,

!and calculates analytical results from subroutines

!‘time_series’, ‘pop_stats’, and ‘stats_theoretical’.

!***

MODULE results_Parallel

implicit none

contains

!**********************************

110

SUBROUTINE time_series(u,u_daughters,nc,daughter_cnt,t_cumm)

use globals_Parallel

implicit none

real, dimension(nc,11) :: u

real, dimension(nc,11) :: u_daughters

real :: t_cumm

integer :: j,k,nc,daughter_cnt

!obtain time series for mother cells

write(1,*) ’Mother Cells’

do k=1,nc

!obtain values for a single cell (comment for all cell values)

if (k==1) then

!obtain values for select cells

!if (k==etc.or.3.or.2.or.1) then

write(1,*) (u(k,1)),(u(k,2)),(u(k,3)),(u(k,4)),(u(k,5)),(u(k,6)),

(u(k,7)),(u(k,8)),(u(k,9)),(u(k,10)),(u(k,11))

end if

end do

!obtain time series for daughter cells

if (daughter_cnt >= 1) then

write(1,*) ’Daughter Cells’

do j=1,daughter_cnt

!if (j==1) then

!if (j==etc.or.3.or.2.or.1) then

111

write(1,*) (u_daughters(j,1)),(u_daughters(j,2)),(u_daughters(j,3)),

(u_daughters(j,4)),(u_daughters(j,5)),(u_daughters(j,6)),

(u_daughters(j,7)),(u_daughters(j,8)), (u_daughters(j,9)),

(u_daughters(j,10)), (u_daughters(j,11))

!end if

end do

end if

END SUBROUTINE time_series

!**********************************

!**********************************

SUBROUTINE pop_stats(u,u_daughters,nc,daughter_cnt,t_cumm)

use globals_Parallel

implicit none

real, dimension(nc,11) :: u

real, dimension(nc,11) :: u_daughters

real :: avg_mRNA,tot_mRNA,tot_mRNA_mothers,tot_mRNA_daughters,avg_protein,

real :: tot_protein,tot_protein_mothers,tot_protein_daughters,var_cnt_mRNA_mothers

real :: var_cnt_mRNA_daughters,var_mRNA_population,noise_mRNA_population,t_cumm

real :: var_cnt_protein_mothers, var_cnt_protein_daughters, var_protein_population

real :: noise_protein_population

integer :: nc,i,j,k,l,daughter_cnt

!calculate mean population mRNA (includes mother and daughter cells)

tot_mRNA=0;tot_mRNA_mothers=0;tot_mRNA_daughters=0;avg_mRNA=0

112

do i=1,nc

tot_mRNA_mothers=tot_mRNA_mothers+u(i,3)

end do

!if (daughter_cnt >= 1) then

! do k=1,daughter_cnt

! tot_mRNA_daughters=tot_mRNA_daughters+u_daughters(k,3)

! end do

!end if

tot_mRNA=tot_mRNA_mothers+tot_mRNA_daughters

avg_mRNA=tot_mRNA/(nc+daughter_cnt)

!calculate variance population mRNA (includes mother and daughter cells)

var_cnt_mRNA_mothers=0; var_cnt_mRNA_daughters=0; var_mRNA_population=0

do i=1,nc

var_cnt_mRNA_mothers=var_cnt_mRNA_mothers+((u(i,3)-avg_mRNA)**2)

end do

!if (daughter_cnt >= 1) then

! do k=1,daughter_cnt

! var_cnt_mRNA_daughters=var_cnt_mRNA_daughters+((u_daughters(k,3)

! -avg_mRNA)**2)

! end do

!end if

var_mRNA_population=(var_cnt_mRNA_mothers+var_cnt_mRNA_daughters)

!/(nc+daughter_cnt-1)

!calculate noise population mRNA (includes mother and daughter cells)

113

noise_mRNA_population=0

noise_mRNA_population=sqrt(var_mRNA_population/(avg_mRNA**2))

!calulate mean population protein (includes mother and daughter cells)

tot_protein=0;tot_protein_mothers=0;tot_protein_daughters=0;avg_protein=0

do j=1,nc

tot_protein_mothers=tot_protein_mothers+u(j,2)

end do

!if (daughter_cnt >= 1) then

! do l=1,daughter_cnt

! tot_protein_daughters=tot_protein_daughters+u_daughters(l,2)

! end do

!end if

tot_protein=tot_protein_mothers+tot_protein_daughters

avg_protein=tot_protein/(nc+daughter_cnt)

!calculate variance population protein (includes mother and daughter cells)

var_cnt_protein_mothers=0; var_cnt_protein_daughters=0; var_protein_population=0

do i=1,nc

var_cnt_protein_mothers=var_cnt_protein_mothers+((u(i,2)-avg_protein)**2)

end do

!if (daughter_cnt >= 1) then

! do k=1,daughter_cnt

! var_cnt_protein_daughters=var_cnt_protein_daughters+((u_daughters(k,2)

! -avg_protein)**2)

! end do

114

!end if

var_protein_population=(var_cnt_protein_mothers+var_cnt_protein_daughters)

/(nc+daughter_cnt-1)

!calculate noise population protein (includes mother and daughter cells)

noise_protein_population=0

noise_protein_population=sqrt(var_protein_population/(avg_protein**2))

!write statistics to file

write(3,*) ’t_sample = ’, t_cumm

write(3,*) ’avg mRNA sim = ’, avg_mRNA, ’noise mRNA sim = ’,

noise_mRNA_population, ’avg protein sim = ’, avg_protein,

’noise protein sim = ’, noise_protein_population

END SUBROUTINE pop_stats

!**********************************

!**********************************

SUBROUTINE stats_theoretical()

use globals_Parallel

implicit none

real, dimension(1,t_div) :: avg_protein_array, protein_noise_array

real :: avg_mRNA_theor,mRNA_noise_theor,avg_mRNA_theor_dupl,mRNA_noise_theor_dupl

real :: l,l0,l1,d0_prime_theor,v1_prime_theor,b

integer :: i,j,n_duplicated

115

!Analytical values via Swain et al. formulas

!Compute mean mRNA and mRNA noise - *before gene duplication*

l=f0+b0+k0

l1=k1+mb1+mf0+mf1

l0=sqrt((l1**2)-(4*mf0*(k1+mb1)))

d0_prime_theor=log10(2.)*((l1-l0)/2)

!print*, ’d0_prime_theor = ’, d0_prime_theor

avg_mRNA_theor=(f0*k0*n)/(d0_prime_theor*l)

!Compute mean number of proteins produced per transcript

b=(1/mf0)*((k1*mf1)/(k1+mb1))

v1_prime_theor=b*d0_prime_theor

!print*, ’v1_prime_theor = ’, v1_prime_theor

!Compute mRNA noise

!mRNA noise squared

mRNA_noise_theor=(1/avg_mRNA_theor)-((d0_prime_theor*v0*

(d0_prime_theor+l+v0))/(n*(d0_prime_theor+l)*(l+v0)*(d0_prime_theor+v0)))

!write(2,*) ’Before gene duplication’

!write(2,*) ’avg mRNA theor = ’, avg_mRNA_theor,

’avg protein per transcript = ’, b, ’mRNA noise theor = ’,

sqrt(mRNA_noise_theor)

116

!Compute mean mRNA and mRNA noise - *after gene duplication*

n_duplicated=2*n

avg_mRNA_theor_dupl=(f0*k0*n_duplicated)/(d0_prime_theor*l)

!Compute mRNA noise

mRNA_noise_theor_dupl=(1/avg_mRNA_theor_dupl)-((d0_prime_theor*v0

(d0_prime_theor+l+v0))/(n_duplicated(d0_prime_theor+l)*(l+v0)

*(d0_prime_theor+v0))) !mRNA noise squared

!write(2,*) ’After gene duplication’

!write(2,*) ’avg mRNA theor = ’, avg_mRNA_theor_dupl,

’avg protein per transcript = ’, b, ’mRNA noise theor = ’,

sqrt(mRNA_noise_theor_dupl)

!Compute mean protein number and noise (note <mRNA> before gene duplication

is used for (0,t_dvi) as specified in Swain et al.)

j=0

do i=0,t_div,100

!before gene duplication

if (i <= 0.4*t_div) then

j=j+1

avg_protein_array(1,j)=(v1_prime_theor/d1)*(avg_mRNA_theor)

(1-((exp(-d1(t_div-(0.4*t_div)+i)))/(2-(exp(-d1*t_div)))))

protein_noise_array(1,j)=(1/avg_protein_array(1,j))

+(1/avg_mRNA_theor)*(1-(f0*k0/(l**2)))*(d1/d0_prime_theor)

*((2-exp(-d1*t_div))/(2+exp(-d1*t_div)))*((4-exp(-2*d1*t_div)

117

-2*exp(-2*d1*i)-exp(-2*d1*(t_div+i-(0.4*t_div))))/((2-exp(-d1*t_div)

-exp(-d1*(t_div+i-(0.4*t_div))))**2)) !protein noise squared

!after gene duplication

elseif (i > 0.4*t_div) then

j=j+1

avg_protein_array(1,j)=(v1_prime_theor/d1)*(avg_mRNA_theor)

(2(1-((exp(-d1*(i-(0.4*t_div))))/(2-(exp(-d1*t_div))))))

protein_noise_array(1,j)=(1/avg_protein_array(1,j))+(1/avg_mRNA_theor)

*(1-(f0*k0/(l**2)))*(d1/d0_prime_theor)*((2-exp(-d1*t_div))

/(2+exp(-d1*t_div)))*((4-exp(-2*d1*t_div)-exp(-2*d1*i)

-2*exp(-2*d1*(i-(0.4*t_div))))/(2*(2-exp(-d1*t_div)

-exp(-d1*(i-(0.4*t_div))))**2)) !protein noise squared

end if

write(2,*) i, avg_protein_array(1,j), sqrt(protein_noise_array(1,j))

end do

END SUBROUTINE stats_theoretical

!**********************************

END MODULE results_Parallel

!***

	Title Page
	Copyright
	Abstract
	Forward
	Acknowledgments
	Table of Contents
	List of Figures
	List of Symbols
	1 Introduction
	1.1 Noise in Biochemical Reactions
	1.2 Stochasticity in Gene Expression
	1.3 Modelling Gene Expression
	1.4 Quantifying Noise in Gene Expression
	1.5 Heterogeneous Cell Populations and Fitness
	1.6 Simulating the Dynamics of Heterogeneous Cell Populations
	1.7 Summary

	2 Background
	2.1 Analytically Solving the Chemical Master Equation
	2.1.1 Exact Analytical Methods
	2.1.2 Approximate Analytical Methods

	2.2 Stochastically Simulating the Chemical Master Equation
	2.2.1 Exact Simulation Methods
	2.2.2 Approximate Simulation Methods
	2.2.3 Stochastic Simulation Algorithm Augmentations

	3 Algorithm
	3.1 Implementation: Stochastic Simulation Algorithm
	3.2 Implementation: Constant-Number Monte Carlo Method
	3.3 Cell Population Dynamics Algorithm

	4 Results
	4.1 Numerical Results
	4.1.1 Steady-State Validation
	4.1.2 Time-Dependent Population Distributions
	4.1.3 Gene Duplication, Cell Division, and Time-Dependent Validation

	4.2 Simulating Complex Population Dynamics
	4.2.1 Asymmetric Cell Division
	4.2.2 Bet-Hedging Cell Populations

	5 Conclusion
	References
	Appendices
	Appendix A: Poisson Process
	Appendix B: Fortran 90 Code

