
In Silico Biology 13 (2018/2019) 21–39
DOI 10.3233/ISB-180470
IOS Press

21

Modeling cell population dynamics
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Abstract. Quantitative modeling is quickly becoming an integral part of biology, due to the ability of mathematical models
and computer simulations to generate insights and predict the behavior of living systems. Single-cell models can be incapable
or misleading for inferring population dynamics, as they do not consider the interactions between cells via metabolites or
physical contact, nor do they consider competition for limited resources such as nutrients or space. Here we examine methods
that are commonly used to model and simulate cell populations. First, we cover simple models where analytic solutions are
available, and then move on to more complex scenarios where computational methods are required. Overall, we present a
summary of mathematical models used to describe cell population dynamics, which may aid future model development and
highlights the importance of population modeling in biology.
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1. Introduction

“Let theory guide your observations” - Charles
Darwin [1]

Just as a gene seldom functions in isolation from
other genes, cells exist as part of a population of
cells that affect each other’s function, dynamics, and
survival. Cell populations can be genetically homo-
geneous or heterogeneous, and even in the former
case, a significant amount of phenotypic cell-to-cell
variability can exist within a population [2–4] and
influence fitness [5–8]. Genetic variance has long
been known to affect organismal fitness attributable to
natural selection through changes in gene frequencies
[9, 10], and more recently, nongenetic phenotypic
diversity is thought to facilitate evolution [11–14].
Populations of cells generate a myriad of complex
behaviors as cells share or compete for resources.
There are interesting cases where the short-term
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fitness of some individuals is sacrificed to “bet-
hedge” against future hostile environmental con-
ditions to maximize the long-term fitness of the
population [15, 16]. Population-level effects can
increase phenotypic diversity via processes such as
negative frequency-dependent selection, where rare
phenotypes are favored over common ones [17, 18].

While some of these ideas can be investigated
using experimentation alone, there are many aspects
of these concepts that are hidden from experimental
measurement. For example, it is difficult to measure
fluctuating intracellular protein concentrations, or the
cascade of interactions that occur when the expres-
sion of one gene regulates the expression of other
genes in the same cell or in other members of the
population. The complexity of this process and the
difficulty of measuring all aspects of it underpin the
necessity of modeling. An experimentalist may be
limited in what they can measure (e.g., a handful of
fluorescence signals for a few mutants). As a result,
they may have several hypotheses which can explain
an observed biological phenomenon. By convert-
ing these hypotheses into mathematical models, the
experimentalist can rigorously test these hypotheses
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by comparing the models’ predictions against the
experimental data (for articles on quantitative model-
ing in biology see refs. [19–22]). Following Occam’s
razor, the simplest model which can predict the data
is generally regarded as the best explanation for
the biological phenomenon being investigated. As
population-level dynamics cannot be captured by
modeling a single cell in isolation, we need to develop
theoretical and computational population-level mod-
els. Population models also make experimentally
testable predictions, which narrows down the almost
infinite state space of possible wet-lab experiments,
and generate insights from the large amounts of data
these experiments produce. Some subfields of biol-
ogy, such as ecology and evolutionary biology, have
been adept at utilizing models of population dynam-
ics [23, 24], while other subfields have further to go.

To understand and predict the dynamical behavior
of a population of cells, it is imperative to develop
models describing the whole cell population and not
just a single cell. For instance, it has been shown by
several authors that stochasticity in biochemical reac-
tions and unequal partitioning at cell division can lead
to complex population dynamics [25–29], the latter of
which is not amenable to single-cell models. Further-
more, the growth and evolution of a colony or tumor is
often affected by indirect interactions between cells
through metabolites or direct physical contact [30,
31], which can only be captured using population
models. Another consideration is that in many cases
calibrating a model of a single “typical cell” is not
possible [32]; though single-cell experimental meth-
ods are advancing rapidly [33], at present much of
the data are still generated from bulk assays (e.g.,
western blotting). This is particularly problematic
for single-cell models when there is large degree of
cell-to-cell variability in the population, as inferring
single-cell models from this data can lead to biologi-
cally meaningless results [32]. Also, cellular growth
dynamics are affected by fluctuating population den-
sities and nutrient availability [34]. In cases such
as those outlined above, population-level dynamics
differ from those of a single-cell and can generally
not be derived or “averaged out” from single-cell
observations. Therefore, often the best approach is to
develop population models from experimental popu-
lation data, so that the cell population dynamics are
described in a statistically accurate manner.

The literature contains many studies that incorpo-
rate cell population models, ranging from differential
equation models [35, 36] to complex single-cell
agent-based population simulations [37–39], which

have led to profound biological insights and guided
experiments. For instance, a simple analytic deter-
ministic model of colon cancer cells demonstrated
that tumor development is sometimes associated with
exponential growth (see Section 2.1) of a population
previously at equilibrium, and other times with an
increase in cell number at equilibrium as a result of
differentiation and apoptosis failure [40]. This model
was subsequently refined to incorporate the effect of
cell age distribution and mutation to explain long lag
phases observed in tumor growth [41]. On the other
end of the spectrum, probabilistic models have been
used to describe a wide range of phenomena, includ-
ing stem cell and progenitor population dynamics
that arise from cell proliferation and fluctuations in
the state of differentiation [42], and the reprogram-
ming of somatic cells into induced pluripotent stem
cells [43]. In some cases, models have predicted com-
pletely novel phenomena after being fit to existing
data, and subsequently verified by population-level
experiments (e.g., [44]). These studies are all exam-
ples where modeling has led to deeper insights
into biological systems, by providing hypotheses
that are quantitatively consistent with the observed
phenomena.

The focus of this review is on methods that can
be employed to quantitatively model and simulate
cell population dynamics. For the sake of brevity,
we do not discuss spatial models or the theoretical
work from classical population genetics. For reviews
on spatial models, see refs. [45–47], for a review on
molecular population genetics, see ref. [48], and for
books on mathematical population genetics, see refs.
[49, 50]. We begin by introducing a few simple sce-
narios that can be solved analytically, which can be
useful for describing cell populations while avoid-
ing potentially significant computational complexity
[51], and are also useful for benchmarking computer
algorithms [52–54]. Computational methods which
are required for more complex biological systems are
introduced next, followed by a discussion of what is
presently lacking and future directions for the field.

2. Population growth models

2.1. Exponential growth

The exponential growth rate of a cell population is
commonly used as a measure of “fitness” in exper-
imental microbiology studies (see Section 4.5.1 for
a brief discussion of fitness) [14]. This measure of
fitness is especially suited for well-controlled single-
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species experiments, where daily dilutions can be
performed to ensure that the cell culture remains in
an exponential growth phase. The exponential growth
phase is often referred to as the “log phase”, because
growth rates are often obtained via linear regres-
sion of logarithmic plots of cell growth (which is
linear on a log-scale during the exponential growth
phase), in addition to fitting an exponential function
to linear-scale data obtained experimentally from cell
counters, spectrophotometers, and plate readers.

Exponential growth has the advantage of being
simple to describe

dN

dt
= rN (1)

where N is the number of cells and r is the population
growth rate. This model assumes that the population
rate of change is proportional to the population size
N. By integration we can obtain an analytic solution
that describes the number of cells in the population
as a function of time t and growth rate

N(t) = N0e
rt (2)

where N0 is the initial number of cells in the popula-
tion. A typical exponential growth curve is shown in
Fig. 1A.

The major limitation of modeling growth as an
exponential process is that the exponential phase of
growth is short-lived in biologically realistic scenar-
ios, as exponential growth is only one phase of growth
for cell populations (see Section 2.2). Another lim-
itation is that natural populations of single species
do not often exist in isolation and it is unclear how
exponential growth relates to competition assays (see
Section 4.5.1).

2.2. Logistic growth

Logistic growth models were first established by
Verhulst in 1838 [55]. Since then, logistic-type mod-
els have been widely applied to topics ranging from
the role of autophagy in yeast cell population dynam-
ics in response to starvation [56] to evolutionary
studies of cancer [57]. As with the exponential growth
model, the logistic model describes how population
size changes in time

dN

dt
= rN − rN2

K
(3)

but it also incorporates the environmental carrying
capacity K. The logistic equation is the same as
the exponential growth equation, except it has one

Fig. 1. Modeling cell population growth. (A) Exponential growth,
logistic growth, and the Allee effect. (B) Growth curves for the
Baranyi model. A single run with no noise [noise strength was
set equal to 0 for the numerical solution of Equation (13); red
solid line] and ten independent runs of the Baranyi model with
noise [noise strength was set equal to 0.035 in the numerical
solution of Equation (13); blue dashed lines]. The Matlab codes
and parameters used to generate (A) and (B) are available at:
https://github.com/dacharle42/MCPD ISB (Color online).

additional term proportional to N2. This N2 term
describes the pairwise interactions between the cells
and captures interaction effects such as competition
for resources and space, among other things. The neg-
ative sign in front of the N2 term is important because
it assumes that the pairwise interactions reduce the
total population rate of change.

Equation (3) can be derived from the following set
of coupled ordinary differential equations (ODEs)

dN

dt
= aNS (4)

dS

dt
= −baNS (5)

where, for example,S is the concentration of the sugar
glucose, a is the rate of growth per sugar concentra-
tion, and b is the amount of sugar needed to produce
new cells. The initial cell density and sugar concentra-
tion will be denoted here by N0 and S0, respectively.
Noting that the right-hand sides of Equations (4) and
(5) only differ by a constant yields the following
relationship between the derivatives

https://github.com/dacharle42/MCPD_ISB.
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b
dN

dt
= −dS

dt
(6)

which can be solved by integration to yield

S = S0 − b(N − N0). (7)

Substituting Equation (7) into Equation (4) we
obtain

dN

dt
= aN(S0 − bN + bN0). (8)

Factoring the above equation yields

dN

dt
=ab

(
1

b
S0 + N0

)
N

⎛
⎝1 − N(

1
b
S0 + N0

)
⎞
⎠ , (9)

which is the logistic equation for cell growth in which
the carrying capacity reflects the initial amount of
sugar present. By letting r = a(S0 + bN0) and K =
1/

bS0 + N0 in Equation (9) we recover Equation (3).
The logistic equation [Equation (3)] can be solved

analytically to obtain the population size as a function
of time

N = KN0

N0 + (K − N0)e−rt
. (10)

Note that in the case where the number of cells
in the population is small compared to the environ-
mental carrying capacity (N � K), we recover from
Equations (3) and (10) exponential growth [Equa-
tions (1) and (2), respectively, noting that since we
are modeling exponential growth that N0 ≤ N and
thus N0 � K]; that is, exponential growth is a spe-
cial case of the more general logistic growth model.
Unlike the exponential model, which only has a triv-
ial (unstable) fixed point at zero, the logistic model
also has a stable fixed point at K (Fig. 1A). Eventu-
ally, N will approach the value of K, which denotes
the size of the population at the stationary phase
where the net population growth rate is zero. This
contrasts with exponential growth, in which the pop-
ulation size tends towards infinity, showing that on
longer timescales logistic growth is more realistic.
Logistic growth models do not account for cell death,
which for instance can occur from a lack of nutrients,
high concentrations of accumulated toxic wastes,
or other stressful conditions. This is the final por-
tion of the standard growth curve, characterized by
an exponential decrease in N. The cell-death phase,
where some cells loose viability or are destroyed
by lysis, is avoided by properly timed cell culture

dilutions but still occurs in certain experimental con-
ditions and natural settings that are stressful to the cell
population.

2.3. Monod kinetics

The Monod model is a widely used mathematical
model that relates population growth rate r to the con-
centration of a limiting resource [58, 59]. The Monod
equation is

r = rmax
S

Ks + S
(11)

where rmax is the maximum growth rate of the
microorganisms, S is the concentration of the limiting
substrate required for growth, and Ks is the value of
S where the growth rate is half the maximum. Note
that rmax and Ks are empirical coefficients whose
values depend on the species and environmental con-
dition. In scenarios where more than one nutrient or
growth factor has the potential to be limiting, multi-
ple equations of the form given by Equation (11) can
be multiplied together to describe the growth kinetics
of the cell population.

2.4. Allee effect

The Allee effect, a biological phenomenon where
the size of the population affects individual growth,
is a common deviation from logistic growth [57, 60,
61]. Allee effects are generally applied in ecology
to mating populations, but have also been incorpo-
rated into models of cancerous cell populations [62].
A strong Allee effect describes a population that can
grow at intermediate population densities but declines
when the number of organisms is either too small or
too large (i.e., per-capita growth rate reaches a maxi-
mum at intermediate population size). A weak Allee
effect is where the population growth rate is small but
positive for small N, but without a critical population
size or density under which the growth rate becomes
negative. Populations that are subject to Allee effects
can collapse and become extinct if their population
size falls below the critical threshold; this poses a
challenge for conservation biologists but provides a
therapeutic avenue for oncologists [57]. The strong
Allee effect where growth rate is negative at small N
is described by the following ODE

dN

dt
= rN(1 − N/K)(N/Nc − 1) (12)
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where Nc is the critical population size (threshold)
required for growth. This model has stable fixed
points at 0 and K and an unstable fixed point at Nc.
The population has a negative growth rate when 0 <

N < Nc and a positive growth rate when Nc < N <

K (Fig. 1A).
Unlike the exponential and logistic growth equa-

tions, an exact explicit solution does not exist for the
Allee effect equation [Equation (12)] and therefore a
solution must be obtained numerically.

2.5. Baranyi model

Lag-time (or adaptation time) is one critical aspect
of the growth curve that is not well captured by the
models presented in Sections 2.1–2.4. For example,
lag-time optimization has been shown to contribute to
antibiotic tolerance in evolved bacterial populations
[63]. The Baranyi model accurately describes the lag-
phase and transition to exponential phase and takes
the form [64, 65]

dN

Ndt
= μmaxα(t)f (N) + ξ(t). (13)

where μmax is the maximum growth rate, α (t) is an
adjustment function, and f (N) is an inhibition func-
tion describing end-of-growth inhibition. Here we
have also incorporated a Gaussian white noise term
ξ (t) to model stochastic fluctuations in population
size. Equation (13) is thus a stochastic differential
equation that can be solved using, for instance, the
Euler-Maruyama method [66] (Fig. 1B). Stochas-
tic differential equation models have been shown to
capture experimental lag times resulting from envi-
ronmental adaptation in bacteria [67]. The role of the
adjustment function is to describe the delay time to
the growth phase while the cells adapt to their new
environment [65]

α(t) = tn

ln + tn
, (14)

where l is the lag time (and the point at which α (t) is
half-maximal). If n = 1, then α (t) is described accord-
ing to well-known Michaelis-Menten kinetics [68,
69] (in this case, l would be called the Michaelis-
Menten constant) and if n > 1 α (t) is described by
Hill-type kinetics [70, 71] (a sigmoidal curve that
becomes steeper as n increases and a Heaviside step
function in the limit n → ∞; in this case, n would be
called the Hill coefficient). The adjustment function
can also be expressed as [72]

α(t) = q(t)

1 + q(t)
(15)

where q represents the physiological state of the
cell population in a new environment; this form is
convenient for standard fitting procedures (see Dis-
cussion), which can also be used to estimate l and n

in Equation (14). The physiological state of the cell
population is often described as being proportional to
the concentration of a critical substance v that follows
first-order kinetics

dq

dt
= vq (16)

where the initial condition q (0) = q0 represents the
physiological state of the inoculum [64]. The inhi-
bition function describes end-of-growth inhibition,
and as in many population dynamics models, it is
described by a logistic-type function.

The Baranyi model can be applied to any of the
models presented so far in Section 2 to describe the
transition period before exponential growth or decay.
The physiological state of individual cells is affected
by their previous growth environment and exposure
to stressful conditions, which can extend the lag phase
and increase cell-to-cell lag-time variability [63, 73,
74]. Other models have been used to determine adap-
tation time, such as the lag-exponential and Gompertz
models [64, 75]. However, fits to the same data yield
similar lag-time values as the Baranyi model, which
is less influenced by the quality of the dataset and
provides the best fit in the majority of cases [64, 76].

2.6. Connecting population growth models
to experiments

In this section we present an example that demon-
strates the importance of modeling cell populations
and how population growth models can be devel-
oped to predict or interpret experimental results. We
include the relevant steps required to develop such a
model for those less familiar with quantitative mod-
eling; several of the steps also highlight the utility
of mathematical modeling for identifying quantita-
tive relationships between biological variables that
can be measured experimentally.

Consider a cell population where some cells
randomly arrest growth due to non-optimal environ-
mental conditions. Two subpopulations will emerge:
actively growing cells (C) and arrested cells (A). The
population dynamics can be described by the follow-
ing set of “reactions”
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C
gc−→ C + C

C
gr−→ A (17)

where gc is the rate at which active cells divide and
gr the rate at which active cells switch phenotype to
become growth-arrested cells. Based on mass action
kinetics, the ODEs corresponding to the above reac-
tions are

dC

dt
= gCC − grC (18)

dA

dt
= grC. (19)

This implies the following growth equation for the
total number of cells N,

dN

dt
= d(C + A)

dt
= gCC (20)

Importantly, we can conclude from Equations (18)
– (20) that the apparent growth rate of the whole pop-
ulation g must be different (smaller) than the growth
rate of the active cells. Our goal will be to estimate
gC and gr from g, C, and A (quantities that can eas-
ily be measured experimentally). The first equation
is solvable analytically

dC

dt
= (gC − gr)C ⇒ C(t) = C(0)e(gC−gr)t . (21)

Substituting Equation (21) into Equation (19) gives
the number of inactive cells

dA

dt
= grC(0)e(gC−gr)t ⇒

A(t) = gr

gC − gr

C(0)e(gC−gr)t (22)

Therefore, the total number of cells is given by

N(t) = C(t) + A(t) = C(0)e(gC−gr)t

+ gr

gC − gr

C(0)e(gC−gr)t

= C(0)e(gC−gr)t
[

1 + gr

gC − gr

]

= gC

gC − gr

C(0)e(gC−gr)t . (23)

The exponential growth of the whole population
can also be described by Equation (21) which implies

N(t) = gC

gC − gr

C(0)e(gC−gr)t = N(0)egt (24)

and

ln

[
gC

gC − gr

C(0)

]
+ (gC − gr)t

= ln [N(0)] + gt. (25)

The long-term limit (t → ∞) yields

gC = g + gr. (26)

Therefore, the growth rate of the active cells is
equal to the sum of the arrest rate and the growth
rate of the whole population. The fraction of arrested
cells will be given by the ratio

fA = A(t)

N(t)
=

gr

gC−gr
C(0)e(gC−gr)t

gC

gC−gr
C(0)e(gC−gr)t = gr

gC

. (27)

From here, we obtain another relationship between
gr and gc, namely

gr = fAgC. (28)

Finally, we find for gc

gC = g + fAgC ⇒ gC = g

1 − fA

= g

fc

. (29)

Likewise, the arrest rate gr will be given by

gr = fAgC = fA

1 − fA

g = fA

fC

g (30)

This simple example highlights the utility of
mathematical modeling for extracting quantitative
relationships from the biological systems that can be
verified experimentally. For instance, the growth rate
of the entire population (g) can be obtained by using
an automatic cell counter or a spectrophotometer to
measure the optical density of the cell culture. The
growth rates of the active subpopulation (gc) and the
arrest rates (gr) can be determined from image anal-
ysis of single-cell time-lapse microscopy data [77].
These experimental measurements can be used to val-
idate predictions made by the model or serve as input
to the model to make novel predictions to be validated
by further experimentation.

3. Markov chain models

Markov modeling has been used to infer and
annotate morphological state and multiphenotype
properties from experimental data [78, 79]. The
following is a simple illustrative example of
applying a Markov chain model to mother-bud
Saccharomyces cerevisiae yeast pair transitions
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Fig. 2. Markov chain model of mother-bud GFP expression states in a Saccharomyces cerevisiae budding yeast cell population exposed to
high-temperature stress. (A) Schematic of phenotypic expression states and possible mother-bud state transitions that form the bases of the
Markov chain model. Mother-bud pairs in cultured at high temperature (38◦C) could be in one of four possible states: S11 (GFP expressing
mother-bud cells), S10 (GFP expressing mother and arrested non-expressing bud), S01 (non-expressing mother and resistant expressing bud),
S00 (non-expressing mother-bud cells). (B) Population fractions of mother-bud states generated from the Markov chain model. Insets are
microscopy images of budding yeast cells at 38◦C, obtained in our lab using a modified high-throughput yeast aging analysis (HYAA)
microfluidics chip [33], of the possible mother-bud states for the Markov chain model exemplar. The Matlab code and parameters used to
generate (B) is available at: https://github.com/dacharle42/MCPD ISB (Color online).

among four different phenotypic green fluorescent
protein (GFP) reporter expression states (Fig. 2A) in a
stressful high-temperature environment. In the transi-
tion matrix [Equation (31)], Pij is the probability that,
if the mother-bud GFP state is i (row), then it will be
followed by state j (column). The columns (left to
right) correspond to the states S11 (GFP expressing
mother-bud cells), S10 (GFP expressing mother cell
and non-expressing bud cell), S01 (non-expressing
mother cell and expressing bud cell), and S00 (non-
expressing mother-bud cells), as do the rows (top to
bottom) in the same order. The transition matrix is
given by

P =⎡
⎢⎢⎣

(1 − PM )(1 − PB) (1 − PM )PB PM (1 − PB) PMPB

0 1 − PM 0 PM

0 0 1 − PB PB

PS 0 0 PD

⎤
⎥⎥⎦(31)

where PM and PB are the probabilities that the
mother and bud cells shut off GFP expression,
respectively, PD is the probability that an arrested
non-expressing mother-bud pair will remain in the
microfluidics trap, and PS is the probability that the
mother-bud pair will start expressing GFP. In this
example, some of the cells attempt to survive the
heat stress by autophagy [80]. Here it is assumed
that only non-expressing mother-bud pairs can leave
the microfluidics trap as a result of autophagic
cell death (the cells shrink when they die and fall

through the trap) due to persistent environmental
stress [81].

The steady-state fraction of mother-bud pairs in
each phenotypic state can be predicted by

⇀

S = [S11 S10 S01S00]Pn (32)

for n 	 1, where the vector of Sij in an initial
condition for n = 0. The results obtained from the
Markov chain model are for one possible parameter
set (Fig. 2B). If these results were validated exper-
imentally, or if the parameters had been obtained
by fitting to experimental data, then we would have
obtained useful biological information. Namely, the
rates at which the cells switch between phenotypes
(here the GFP expression states), which inform us
about cellular “memory” [82] and influence survival
in bet-hedging scenarios [83]. Previous work has
established that a phenotypically heterogeneous pop-
ulation can achieve maximal growth if its phenotype
switching rates match the environmental switching
rates [84, 85]. More recent work has shown that
this predicted population fitness optimum is valid for
environmental durations that are long compared to
the growth rates and for symmetric selection pressure
between the environments, and depends increasingly
on the growth rates of individual phenotypes as the
environmental durations shorten [86, 87]. When the
states cannot be directly observed, we then rely
on observed events called “symbols” to recover the

https://github.com/dacharle42/MCPD_ISB.
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sequence of states from the observed symbols (data);
these types of statistical models are known as hid-
den Markov models and have been extensively used
in biological sequence analysis among other applica-
tions [88–90].

4. Agent-based models and evolution

4.1. Population balance equations

Quantitative modeling plays an important role in
bridging the relationship between single-cell and cell-
population dynamics. The origins and consequences
of cell-to-cell variability are often investigated ana-
lytically or computationally using single-cell models
(e.g., [53, 91]). Such models typically ignore
or idealize cell division and rarely capture the
population-level effects of differential reproduction.
An approach known as population balance modeling
addresses this using partial differential equations [25,
92–97]. In this approach, cells are described as a con-
tinuous density flowing through a multi-dimensional
state space that quantifies different physiological
attributes (e.g., mass and chemical composition).
Integral terms are used to account for birth and death
processes along with a function describing the par-
titioning of cell contents at division. In the simplest
one-dimensional case with no nutrient limitation or
cell death, the population balance equation (PBE) can
be formulated as follows

∂F (x, t)

∂t
+ ∂

∂x
[r(x)F (x, t)] = −γ(x)F (x, t)

+2

∞∫
x

p(x, x′)γ(x′)F (x′, t)dx′ (33)

where F (x, t) is the number of cells, x is the cell
mass, r (x) is the growth rate function of x, �(x) is the
division rate function that describes how the proba-

bility of a cell division varies with x, and p
(
x, x

′)
is a partition function that describes the probability
of a cell that divides with mass x to produce two sib-
ling cells with masses x′ and x-x′. The first term on the
left-hand side of Equation (33) is a transient term and
the second is an advection term; the right-hand side
of the equation contains the source and sink terms.

The time-evolution is uniquely determined by the
initial population distribution and all cell densities
change according to the same deterministic rules.
Correspondingly, information about individual cell

trajectories is lost in this formalism. PBE models
can be extended to include growth dependence on an
external substrate and a diffusion term can be added
to account for randomness in the evolution of cells
in the state space. The modeling of discrete mor-
phological stages or phases of the cell cycle can be
represented by a set of coupled partial differential
equations. Most PBEs cannot be solved analytically
but can be discretized and integrated numerically.
Unfortunately, when more details and higher dimen-
sionality are incorporated, population balance models
quickly become very difficult to formulate and solve
computationally [25].

4.2. Cell growth and division

ODE models typically use first-order decay terms
to account for dilution due to exponential growth [2].
Similarly, discrete stochastic models approximate the
effect of growth and partitioning of cell contents at
division by increasing the degradation rates of all
components. These methods tend to average away
the dynamics resulting from growth and division,
which can play an important role in cell dynam-
ics (e.g., stochastic partitioning at cell division [98],
asynchronously dividing cells [99], and asymmetric
division [100–102]). In fact, it has been suggested by
Huh et al. [98] that much of the cell-to-cell variability
that has been attributed to gene expression “noise”
(expression differences between genetically identi-
cal cells in the same environment) instead comes
from random segregation at cell division, due to the
difficulty in separating partitioning errors and gene
expression noise profiles. Incorporating the details
of cell division and gene expression into population
models may help to resolve such controversies.

Computationally, cell growth and division can be
modeled explicitly. Recent single-cell experiments
show that the cell volume increases exponentially
in bacteria [103–106], yeast [106–110], and mam-
malian cells [106, 111], and can be modeled using an
exponential function [52, 112–114]

V (t) = V0e
ln 2(td/T ) (34)

where V0 is the cell volume at the time of “birth”,
td is the time since last division, and T is the
species/condition specific interval between volume
doublings.

If cells grow at a rate that is proportional to the
amount of protein they contain [115, 116], and if
the protein concentration is constant, cells will grow
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exponentially in mass and volume [117]. Modeling
growth at the cellular level (see Section 4.4) can be
important, as variability in single-cell growth rates
may decrease the population growth rate [118]. Such
models for volume changes can be used to better
capture intracellular protein dilution rates, since the
dilution rate of any intracellular protein is given by
ddilution = d

dt
In(V (t)). This result can be derived by

considering an intracellular protein at concentration
c with copy number n at cell volume V , and where
concentration of this protein drops only due to dilu-
tion resulting from cell growth. The rate of change of
this protein is

dc

dt
= −ddilutionc (35)

and since c = n/V , we obtain

dc

dt
= d

dt

( n

V

)
= − n

V 2

dv

dt
, (36)

this means that

ddilution = 1

V

dV

dt
= d

dt
ln (V (t)) . (37)

If V (t) happens to depend on other cell types, then
we can model dilution rates more generally using the
above formula.

In addition to considering how the cell grows,
one must also consider, based on the biology of the
cell, how a cell regulates its size and how the cell
volume and contents will be distributed at division.
Cell size homeostasis may occur through different
modes of regulation, including “sizers”, “adders”,
and “timers”. Sizer regulation requires that a cell
monitors its own size and cell division does not pro-
ceed until a minimal size has been reached [119].
Adder regulation occurs when a cell adds a fixed size
increment before division. Similarly, timer regulation
describes the case when a cell grows for a fixed time
duration before division. These three main modes of
cell size regulation can be captured by the following
equation [117]

Vd = 2(1 − α)Vb + 2αV0 (38)

where Vd is the size of the cell at division, Vb is
the size at birth, and V0 is a constant volume that
cell attempts to add to its newborn size. In Equa-
tion (38), α = 0 (Vd = 2Vb) for the timer model, α =
1/2 (Vd = Vb + V0) for the adder model, and α =
1 (Vd = 2V0) for the sizer model. The size at birth
increases with each successive generation for the
adder and sizer models, but remains constant for the

timer model [119]. However, the difference between
size grown over the cell cycle (Vc = Vd − Vb) and
the size at birth is negatively correlated for the sizer
model, positively correlated for the timer model
in cells that are growing exponentially [for a cell
growth rate g and division time td , Vd = Vbe

gtd ,
yielding Vd − Vb = Vb

(
egtd − 1

)
; for homeostatic

size control td = ln 2/g], and uncorrelated for the
adder model (since Vd − Vb = � is a constant, then
Vc = �). In models that do not explicitly incorpo-
rate the effects of cell size, division can be based on
a cell cycle “clock” which is reset at each division
[120]. Note that a constant cell division time is not
thought to control cell size, as random fluctuations in
the timing would make the size of the cell at division
perform a random walk on the volume axis [117].

Variability in size at division, or “sloppy cell-size
control”, can be incorporated by treating cell divi-
sion as a random process that takes place with a
volume-dependent probability [121]. Asymmetry in
cell division can be modeled in either of these cases
by setting the sum of the sibling cell volumes (V1 and
V2) equal to the total volume of the dividing cell (V )

V1(td = 0) + V2(td = 0) = V (td = T ) (39)

where V1 /= V2. Additional rules must be specified to
partition the cell contents between sibling cells [122].
Cell contents can be partitioned symmetrically [123]
or probabilistically, for example, by using a bino-
mial distribution to partition non-DNA molecules
[53] between the two volumes. Models of more disor-
dered segregation such as clustering due to packaging
in vesicles can be modeled as a multinomial process
[98].

4.3. Constant-number Monte Carlo method

Models of non-interacting and non-dividing cells
have been used extensively to study population vari-
ability arising from the process of gene expression.
The population statistics from these models are often
calculated from simulation of numerous independent
realizations of individual cells [124, 125]. To incor-
porate cell division into the population’s dynamics,
one might propose two approaches to investigate how
populations evolve in time:

1. Simulate the time courses of single cells, ran-
domly choosing one of the two newborn cells to
follow when a cell divides. The result is lineages
(or cell chains) containing a single individual
per generation (e.g., [53]).
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2. Simulate the time courses of single cells and
continue to simulate all newborn cells produced.
The result is a complete lineage tree (e.g., [122,
126]).

One problem with using the cell chain approach
is that it does not account for the proliferative
competition between cells in different physiological
states, and so fails to provide the correct joint distribu-
tion of cell properties except in special cases. Hence,
the second approach must be used when dealing with
a model in which cell proliferation can vary with a
number of intrinsic variables, such as age, metabolic
state, and cell type. The problem here is that the
size of the simulation ensemble rapidly grows to the
point of intractability. This can be addressed using
a Monte Carlo technique called the constant-number
Monte Carlo (CNMC) method [127–129], originally
developed to approximate the solution of popula-
tion balance models (Section 4.1) of particulate
processes.

The CNMC method is a statistically accurate
method that keeps the total number of cells in an
exponentially growing population fixed by randomly
selecting cells at a user-specified time interval (which
corresponds to experimental cell culture dilution
times). This method is particularly suited to mod-
eling well-mixed liquid cell cultures and has been
applied to simulate heterogeneous cell populations
[26, 52, 130]. The Gillespie algorithm [131, 132],
which allows exact individual-based simulation of
stochastic mass action kinetics, was combined with
the CNMC method to accurately and efficiently sim-
ulate gene expression dynamics across growing and
dividing cell populations [52].

4.4. Population dynamics algorithms

Population dynamics algorithms (PDAs) are com-
putational frameworks that are important for studying
cell population dynamics because they can account
for a wide range of phenomena that cannot be inves-
tigated analytically or by simulating a model of
a single cell. PDAs accomplish this by simulat-
ing a sufficiently large ensemble of individual cells,
serving as a representative sample of the “true” pop-
ulation. This is advantageous because it puts the
available methods for single-cell simulation at our
disposal without the difficulty of integrating compli-
cated and heterogeneous single-cell behavior into a
broader mathematical framework. Notably, the use
of individual-based models places virtually no con-

straints on the biologically relevant details that can
be formulated and simulated [133]. For instance, this
allows biologically realistic features to be modeled
with relative ease, such as cell growth and division
effects (Section 4.2), that can be difficult to formulate
and solve in an analytical framework.

Previous studies [123, 126, 134] paved the way
for the individual-cell based PDAs. Though many of
these previous approaches are extremely useful, they
can be computationally prohibitive for simulating the
dynamics of large, exponentially-growing cell popu-
lations. Motivated by this limitation, algorithms for
the simulation of intracellular content and cell growth
and division were developed, ranging from determin-
istic [130] and stochastic Langevin approaches [26],
along with methods to determine the timing of cell
divisions and partitioning of cell contents that agree
with population balance formulism (Section 4.1), to
parallel stochastic approaches that described growing
and dividing cells [52, 114]. One method, which we
refer to here as the “asynchronous PDA”, combines
the Gillespie stochastic simulation algorithm [131,
132] with a CNMC method (Section 4.3) to simulate
population dynamics in a computationally efficient
manner (Fig. 3A). Here, “asynchronous” refers to
cells being simulated independently from each other
and the global population state being determined (and
statistics calculated) at discrete and usually equally
spaced synchronization barriers to permit paralleliza-
tion of the algorithm. In the asynchronous PDA, the
population is restored at the synchronization barri-
ers to a predefined size using the CNMC method. An
accelerated version of the asynchronous PDA, which
is applicable when steady-state and symmetric cell
division can be assumed, was subsequently devel-
oped [114]. The accelerated PDA is well suited for
expediting simulations by performing coarse-grained
explorations of parameter space, to be subsequently
investigated in more detail using the asynchronous
PDA.

Another more general framework, inspired by the
concept of “reaction channels” in Gillespie’s algo-
rithm [131, 132], links simulation channels through
scheduling dependency graphs (introduced by Gib-
son et al. [135] to improve the performance of the
Gillespie algorithm) to handle the scheduling and
execution of state-updating events on individual cells
[136]. This approach is analogous to Gillespie’s algo-
rithm, where the propensities of different reaction
channels are used to determine when the next reac-
tion will occur (scheduling) and how the numbers
of molecules are changed when it occurs (execution)
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Fig. 3. Population dynamics algorithms. (A) Flow diagram for the asynchronous population algorithm, where all cells are simulated inde-
pendently of one another and synchronized only when the simulation time for each cell (ti) is equal to or exceeds the user specified sampling
time (tsample). The population size is restored using a constant-number Monte Carlo (CNMC) method to a prespecified fixed size each
time the simulation time (t) is greater or equal to the population restore time (trestore). Xi is the system of equations/reactions and Fi the
fitness that correspond to cell i, respectively. (B) Schematic illustrating the concept of a general population simulation framework. Which
reaction occurs next (Ri) and the time at which it will occur (ti) in each cell is determined stochastically. This approach allows for intra-
cellular communication (represented by purple triangles and arrows) and resource consumption (represented by blue squares and arrows)
in “real-time” [as opposed to only at each tsample in (A)]. Here, the next reaction will occur for cell 1 (i1 = R1) at t1 = 1.12, when it will
uptake a signaling molecule exported from cell 3 at an earlier time. Fortran code for (A) is available in the Appendix B of [176] and
at: https://github.com/dacharle/PDA Fortran, and an object-oriented C++ prototype at: https://github.com/alanyuchenhou/gene-expression.
(Color online)

(Fig. 3B). Simulations are performed using an asyn-
chronous method, which is ideal and parallelizable
for non-interacting cells, and a synchronous method,
enabling the incorporation of cell-to-cell communi-
cation (which is not practical in the PDAs due to the
parallel nature of the algorithms). For a discussion
of synchronous versus asynchronous models, see ref.
[20]. Once the population size limit is reached, the
CNMC method (Section 4.3) is introduced (as in the
asynchronous PDA) to keep a fixed sample popula-
tion size with the appropriate composition.

In summary, the dynamics of heterogeneous cell
populations can be highly complex and are dif-
ficult to investigate analytically. The frameworks
presented in this section address this by enabling effi-
cient individual-based population-level simulations
without the need to formulate or solve complex math-
ematical equations. They are designed specifically
to ease the incorporation of user-designed biologi-
cal features and to facilitate the transition towards
population-level modeling in quantitative biology.

4.5. In silico evolution

Many of the mathematical models and computer
algorithms discussed so far in this review article can
be modified to model evolution. This is important, for
example, because it allows us to perform long-term

in silico evolution experiments in scenarios that may
be difficult or costly to investigate in the laboratory.
In Section 4.5.2 we present a simple computational
model of evolution; more complex computational
frameworks to model the evolution of a cell popu-
lation are discussed in Section 4.5.3.

4.5.1. Fitness
Darwin’s theory of evolution by natural selection

is built on the idea that some genotypes have higher
fitness than others. However, what exactly mean by
the term “fitness” is not always clear and term has
been used to mean subtly different things [48]. In
fact, even the unit of selection, whether it be the
gene or individual [137, 138] or group (recently
rebranded as multilevel selection theory) [139, 140],
is still debated. A related concept is inclusive fit-
ness, which describes the total effect an individual
has on proliferating its genes by producing offspring
and by providing aid that enables relatives to repro-
duce [141]. An evolutionary strategy for increasing
inclusive fitness, even at a cost to the individual’s own
survival and reproduction, is known as kin selection.
According to Hamilton’s rule, kin selection causes
genes to increase in frequency when the genetic relat-
edness of a recipient to an actor multiplied by the
benefit to the recipient is greater than the reproduc-
tive cost to the actor. Fitness landscapes have long

https://github.com/dacharle/PDA_Fortran
https://github.com/alanyuchenhou/gene-expression.
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been used to illustrate the effect of genetic factors on
fitness [142], and more recently, nongenetic factors
as well [8, 13].

The exponential growth rate (Section 2.1) is one
common measure of fitness in microbiology and
experimental evolution studies. At the population
level, this is done by measuring the number of cells
or the optical density of the cell culture (e.g., using
a cell counter or a spectrophotometer, respectively)
and then obtaining the growth rate by fitting the data
to an exponential function [Equation (2)]. Population
fitness is also commonly measured by direct head-
to-head competition assays [143]. This is often done
experimentally by determining the relative fitness of
each competitor with respect to a reference strain. For
example, non-fluorescing evolved cells can be com-
peted (and distinguished) against an ancestral strain
that expresses the green fluorescent protein [144].
The fitness (W) is then calculated by

W = MAevolved

MAancestral

, (40)

where MAevolved and MAancestral are the Malthusian
parameters [r in the exponential growth model pre-
sented in Equations (1) and (2)]

MA = ln (N(t)/N0) /t (41)

and all relative fitness estimates are normalized to
account for non-neutral GFP markers as required.
Importantly, competitive fitness assays incorporate
fitness components including lag times and exponen-
tial growth rates [145], though competitions assays
are more challenging to model than independent mea-
surements of exponential growth.

Cell growth rates within a clonal population can
vary depending on the environmental context in
which it evolved. While a constant environment
selects for low variance in growth rate, a fluc-
tuating environment can select for high variance
if the growth rate correlates with survival under
stress [85]. Thus, the growth-rate distribution is an
important evolutionary parameter that can be cap-
tured using single-cell experimental measurement
techniques [146] and modeled using population sim-
ulation algorithms (Section 4.4).

Population fitness is distinct from the cellular fit-
ness of its constituent members, though the former
can be obtained from the latter. For instance, we can
define the population or “macroscopic” fitness W of
an isogenic population under stress as [120]

W(t) =
∫ ∞

xc

w(x)px(x, t)dx. (42)

where px (x, t) is the probability distribution function
describing the concentration (x) of a stress-resistance
protein across the population, xc is a critical resis-
tance protein threshold below which cells perish, and
w (x) is the cell or “microscopic” fitness account-
ing for the effect of a stressor on the fitness of cells
with a given expression level. Mathematically, the
cell fitness can be described as

w(x) =
∫ ∞

tD

ps(x, ts)dt
′
s (43)

where ts is the time interval in which a given cell
can reproduce, ps is the first-passage time distribu-
tion, and tD is the generation time or the time it takes
each cell in the population to reproduce once [120].
The first-passage time distribution in this context
describes the average time for a cell with a given con-
centration of a stress-resistance protein to fall below
xc and succumb to the effects of the stress. The over-
all fitness of the population at time t can therefore be
written from Equations (42) and (43) as

W(t) =
∫ ∞

xc

∫ ∞

tD

ps(x, ts)dt
′
spx(x, t)dx. (44)

4.5.2. Ordinary differential equation evolution
model

The model presented in this section describes how
the number of cells with wild-type and mutant geno-
types varies over time based on their fitness [14].
Specifically, this model describes population dynam-
ics by a system of ordinary differential equations and
assumes a constant population size and mutation rate.
Here, wild-type and mutant cells are characterized
by a single fitness parameter. This ODE evolution
model (a corresponding but more detailed evolution-
ary simulation framework is discussed in Section
4.5.3) has three free parameters: rate of beneficial
mutations μ, input probabilities P(G) and P(T) of a
given mutation being type G (genomic) or, K (knock-
out) or T (tweaking); P(K) is determined via P (K) =
1 − P (G) − P (T). Note that while the probability of
P(K) could be 1, its rate μP (K) is � 1 per genome
per generation.

The approach taken in this model is similar to that
presented in Section 4.1, where the “gain” and “loss”
rates of each genotype are used to develop a system
of ODEs that describes the population size of each
genotype i over time. Assuming that the number of
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beneficial mutations arising per unit time is propor-
tional to the number of cell divisions (i.e., mutations
arise strictly due to DNA replication errors), it can be
described by

�M0

�t
= f0M0 = r0 (45)

where M0 and f0 are the number and fitness (growth
rate) of ancestral genotype cells, respectively, and
their product is equivalent to the rate of genome
replications r0. The influx of potentially beneficial
mutations is

�0 = μf0M0 (46)

where �0 is an influx term, which only considers
the new potentially beneficial genotypes entering the
population. Once a mutation appears in the popula-
tion, it can still be lost through random genetic drift
[147]. The chance for a mutation of type i to survive
drift or “establish” is typically given as pi (Est) = 2si,
in terms of the selection coefficient [148]

si = fi − F

F
, (47)

where F is the average fitness over all genotypes

F =

∑
j

fjMj

∑
j

Mj

. (48)

If we consider only the influx of new genotypes
that survive drift (i.e., assuming all other mutations go
extinct rapidly), then the effective influx of genotypes
Mi that carry a potentially beneficial mutation of type
i equals

�0 × Pi × pi(Est) = 2μf0M0Pi

fi − F

F
(49)

where Pi, the probability of incoming mutations,
obeys

∑
i

Pi = 1. Finally, assuming a constant

population size and exponential growth for each sub-
population genotype, then the evolutionary dynamics
can be described by

dMi

dt
= 2μf0Pi

fi − F

F
+ fiMi − FMi (50)

dM0

dt
= 2μf0M0

F

∑
i>0

Pi(fi − F ) + f0M0 − FM0. (51)

This model can now be applied to specific cell
types by defining the ancestral/mutant types (M0/Mi)
and the associated fitnesses (f0/fi). This modeling

approach is more general than the more detailed com-
putational approach that is briefly discussed in the
following section and facilitates large-scale parame-
ter scans.

The ODE evolution model predicted how fast
experimental wild-type genotype disappears from the
population, as well as the mutation type (K, T, G)
that predominantly replaces the wild type in each
condition [14]. Interestingly, the ancestor genotype
disappeared fastest in conditions with steep mono-
tone cell fitness landscapes (see [149] for a review
of fitness landscapes) and remained in the popula-
tion longer in peaked cell fitness landscapes; each
experimental condition favored different fractions of
mutations types as long as they were available.

4.5.3. Evolutionary simulation frameworks
More detailed computational evolutionary simula-

tion frameworks to model molecular evolution have
been developed that explicitly account for experi-
mental details (such as phenotypic switching and
resuspensions). One such framework from the same
study [14] as the ODE evolution model described in
Section 4.5.2 enables the prediction of how experi-
mental evolution will affect evolutionary dynamics
(Python code is available in the supplemental mate-
rials of Gonzalez et al. [14]). A more detailed
computational framework was required because the
simpler ODE evolution model could not predict the
number of distinct mutant alleles in the evolving
population and lacked important experimental details
(e.g., periodic resuspensions and phenotype switch-
ing between ON and OFF states with experimentally
determined switching rates). The evolutionary sim-
ulation framework predicted the number of distinct
mutant alleles, in addition to the characteristics
predicted by the simpler mathematical model. Impor-
tantly, the modeling in Gonzalez et al. [14] was
crucial for understanding the evolutionary dynamics
of mutants arising, establishing, and competing, as
well as the number of alleles in the cell population.

Another computational framework that can be used
to model the evolution of cell populations is the
asynchronous PDA (Section 4.4), which was recently
modified to incorporate evolution [13]. This was done
by modeling genetic mutation as a change in the reac-
tion rate parameters of a mutant cell probabilistically
each time a cell divides. As cell fitness (cell cycle
time) is coupled to gene expression level and selec-
tion pressures, this allows for selection of the most
fit genotype. Importantly, this approach provides a
framework for studying how nongenetic variability
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in gene expression can affect evolution and predicted
that the level of evolved cell-to-cell variability in the
population depends on the associated fitness costs and
benefits of gene expression in a specific environment.
An exact algorithm for fast stochastic simulations
of evolutionary dynamics was developed by Mather
et al., [150], which provides a significant speedup
when the population size is large and mutation rates
are much smaller than the birth and death rates.

5. Discussion

We have covered some of the common mathe-
matical and computational methods for investigating
cell population dynamics. To balance comprehen-
siveness with length of the review, several modeling
approaches were omitted out of necessity, not due
to lack of importance. For instance, spatial models
can be critical for predicting the behavior and fate of
cell populations. Spatial models often involve com-
partmentalized ordinary differential equations [35],
stochastic differential equations of motion [38], par-
tial differential equations and various computational
approaches that have been derived from cellular
automata [45]. These models have been used to
describe a wide range of phenomena, from T cell
population dynamics [35], to tumor growth, can-
cer metastasis, and chemotherapy resistance [151].
For cases where only “population snapshot” data are
available, which provide single-cell measurements at
every time point (such as with flow cytometric anal-
ysis) but do not provide single-cell time series data
(because the cells are discarded after each measure-
ment), Bayesian approaches can be used to identify
models of heterogeneous cell populations [32]. In a
complementary fashion, there are also methods avail-
able to deconvolve cell population dynamics from
single-cell data (e.g., [152]).

Model parameterization is as important as the
structure of the model. Much effort has been devoted
to developing optimization techniques, which involve
scanning the parameter space to minimize a cost func-
tion (i.e., minimize the error between the output of the
model and the experimental data) [153]. Common
optimization techniques include linear and nonlinear
least-squares fitting [154], simulated annealing [155],
genetic algorithms [156], and evolutionary compu-
tation [157, 158]. The problems with optimization
methods are that they can be computationally expen-
sive and may not perform well on noisy data sets
[153]. Bayesian methods can infer whole probabil-

ity distributions of the parameters (rather than just
a point estimate) when the data includes measure-
ment noise and/or intrinsic noise. The challenge here
is that analytic approaches are generally intractable
and numerical solutions are challenging due to the
need to solve high-dimensional integration prob-
lems. Maximum likelihood estimation has also been
widely applied [153, 159, 160]. The appropriate
parameter inference method depends on the modeling
framework, and moving between frameworks (e.g.,
deterministic to stochastic) may involve recalculating
the parameters. For example, parameters for zero

order (e.g., ?
ko→ A) and first order reactions (e.g.,

A
k1→ B) are the same in deterministic and stochas-

tic frameworks, but second order reactions (e.g.,

A + B
k2→ C) require the reaction parameter to be

rescaled by the cell volume V for the stochastic
framework (k2′ = k2/NAV , where NA is Avogadro’s
number). Since biological parameters often change
with experimental conditions, a given parameter set
will often have to be rescaled or refit to the data.
Using parameters obtained in different studies can be
useful to approximate the lower and upper bounds of
the parameter values, though caution must be used
to ensure that the best-fit parameter set corresponds
to the biological system under investigation. A bio-
logically realistic parameter set allows a model to
be invalidated if it cannot fit or predict the exper-
imental data using these parameters, and in turn
model invalidation techniques can aid in finding suit-
able parameters or indicate if the model structure
should be refined [161]. This approach tells us if a
model is “good” (i.e., the model can produce behav-
ior that shares the characteristics of the experimental
data), not if it is the best model. To select the “best”
model, one can use likelihood based approaches or
Bayesian methods (see [24]). Likelihood methods
involve determining the maximum value of a like-
lihood function for the competing models, obtaining
the likelihood ratio, and calculating p-values under
an appropriate chi-squared distribution [162]. This
approach works well for a pair of nested models (one
model is a special case of the other) and informs
us if the improvement from using a more complex
model is significant or not. When non-nested or a
larger set of models are being considered, methods
from information theory are appropriate. Akaike’s
Information Criterion (AIC) is one such method
used to compare a set of models to the observed
data. The improved AIC differences and Akaike
weights tell us which model is correct, conditional
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on the data and the set of models being consid-
ered. Bayesian Information Criterion (BIC), which
unlike the AIC is unbiased for large sample sizes,
can be used to estimate the marginal probability of
the data given the models [162]. Bayesian methods
are becoming increasingly common in computational
systems biology [163] and synthetic biology [164].
The main objective here for parameter inference is
determining the posterior distribution, whereas for
model comparison the marginal likelihood is the key
objective [24].

The field of computational biology is presently
lacking comprehensive “user-friendly”, customiz-
able, multiscale, computationally efficient cell
population simulators, though many of these individ-
ual components are available in different software
packages. CellPD, a user-friendly open source soft-
ware, was developed for experimental biologists
(without specialized training in computational or
mathematical modeling) to automatically quantify
key parameters of cell phenotypes based on fits of
various mathematical cell population dynamics mod-
els to the experimental data [34]. One limitation
of CellPD is that it does not support user-defined
mathematical models without modifying the source
code (for Python source code and executable files
see ref. [165]). As mathematical modeling gained
traction in biology, simulators with graphical user
interfaces (GUIs) were developed to aid biologists
[38]. One example is CellSys, a modular software
tool developed for off-lattice simulation of growth
and organization processes in multi-cellular sys-
tems in 2D and 3D [38]. To try and offset the
major performance bottleneck (solving the stochastic
equations of motion for each cell), the core algo-
rithms in CellSys are parallelized using OpenMP
(openmp.org), as in the asynchronous PDA. The
Open Systems Pharmacology Suite is an excellent
example of a software platform for multiscale model-
ing and simulation of whole-body physiology, disease
biology, and molecular reactions networks, which
facilitates efficient model development, simulation
and model analysis across multiple physiologi-
cal scales [166]. This software platform combines
GUI-based tools (PK-Sim and MoBi [167]) with
interfaces to computing environments (R [168] and
Matlab [169]) for solving ordinary differential and
delay differential equations. Another example is the
Glazier-Graner-Hogeweg based CompuCell3D sim-
ulation environment, though Python scripting or C++
coding is required to develop modules for implement-
ing customized or more complex models [38].

Future directions in the field involve extending
existing software or creating new platforms that biol-
ogists can easily use to formulate and simulate spatial
and stochastic models of cell population dynamics.
The backend of such a simulator could take advantage
of distributed- or shared-memory architectures [52],
as well as high performance graphical processing
units [170]. Machine-learning approaches are another
promising direction to take advantage of increasingly
large experimental data sets to build multiscale bio-
logical models [171], and to bridge the gap between
detailed descriptions of intracellular molecular events
[124, 125] and population dynamics. Though much
progress has been made by studying single or iso-
lated pairs of populations, true multiscale population
models will one day have to account for ecologi-
cal dynamics that result from interactions between
a diverse set of populations [172–175], as well as
intra-population dynamics in fluctuating or spatially
structured environments.

The utility of quantitative models is to gain insight
into living systems and make experimentally verifi-
able predictions. Due to the multiscale nature and
combinatorial complexity of biological systems, it
is difficult to develop general models that always
apply. Until we gain a better understanding of the sys-
tems we are modeling, and computational resources
and processing times become more ideal, we will
be constrained to make approximate and somewhat
ad-hoc models. Nevertheless, by testing various mod-
els and their ability to predict the experimental data,
we can rigorously verify hypotheses about biologi-
cal phenomena by comparing model predictions to
experiments, and in an iterative cycle, improve our
models based on the data. These models will con-
tinue to serve as a “microscope”, allowing us to peer
deeper into nature than experimental methods at the
time allow.
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