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Abstract. We present an accelerated method for stochastically simulating the dynam-
ics of heterogeneous cell populations. The algorithm combines a Monte Carlo ap-
proach for simulating the biochemical kinetics in single cells with a constant-number
Monte Carlo method for simulating the reproductive fitness and the statistical char-
acteristics of growing cell populations. To benchmark accuracy and performance, we
compare simulation results with those generated from a previously validated popula-
tion dynamics algorithm. The comparison demonstrates that the accelerated method
accurately simulates population dynamics with significant reductions in runtime un-
der commonly invoked steady-state and symmetric cell division assumptions. Consid-
ering the increasing complexity of cell population models, the method is an important
addition to the arsenal of existing algorithms for simulating cellular and population
dynamics that enables efficient, coarse-grained exploration of parameter space.

PACS: 87.10.Mn, 87.10.Rt, 87.16.Yc, 87.17.Ee

Key words: Accelerated stochastic simulation algorithm, constant-number Monte Carlo, gene
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1 Introduction

Cell populations are heterogeneous entities. Part of this heterogeneity arises from the
stochasticity inherently present in the process of gene expression, which can result in
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significant variability even among cells with identical genotypes in identical environ-
ments [7, 15, 16, 20, 26, 29, 35]. This variability can in turn have significant impact on the
overall reproductive fitness of a cell population [1, 2, 5, 9, 41, 42].

In some cases it is possible to derive analytical solutions for the statistical charac-
teristics of gene expression for simple models (e.g., [25, 27, 30, 31, 36]). However, for
more biologically realistic models, these characteristics are available only through nu-
merical simulations. To permit investigations, we previously developed an algorithm for
the stochastic simulation of heterogeneous population dynamics at a single-cell resolu-
tion [4]. This Population Dynamics Algorithm (PDA) combines the Gillespie stochastic
simulation algorithm (SSA) [10, 11] to simulate gene expression in individual cells and a
constant-number Monte Carlo (MC) method [17, 21, 22, 28, 34] for simulating population
dynamics.

To benchmark the performance and accuracy of the method, we compared simula-
tion results from the PDA with steady-state and time-dependent analytical solutions for
several scenarios, including steady-state and time-dependent gene expression, and the
effects on population heterogeneity of cell growth, division, and DNA replication [4].
Additionally, we used the PDA to model gene expression dynamics within bet-hedging
cell populations during their adaption to environmental stress. Later, in [5] the PDA
and analytical solutions developed for determining the first-passage time dependent fit-
ness of a cell population exposed to a drug over a single generation were found to be in
agreement. We refer the reader to these papers for details on the analytical work. These
comparisons demonstrated that the PDA accurately captures how complex biological
features influence gene expression and population dynamics. However, simulation run-
times can be extensive when the biochemical reaction kinetics that take place within a
large number of individual cells are simulated using conventional MC approaches.

To address this problem, we have developed an accelerated method for simulating
population dynamics (AMSPD). We first demonstrate that the AMSPD algorithm is nu-
merically accurate and provides a significant speedup compared to the PDA. We then
use the AMSPD to perform a parameter scan of a simple model for the development of
non-genetic drug resistance to illustrate that it can be advantageous to use the AMSPD
and PDA in combination to find an optimal balance between efficiency and accuracy.

2 Algorithm

In this section we present the AMSPD algorithm. The stochastic simulation algorithm [10,
11] and the constant-number MC method [17, 21, 22, 28, 34] are also described for com-
pleteness.

2.1 Accelerated method for simulating population dynamics

The first step in the AMSPD algorithm is to generate a single stationary time series (such
that the moments of the corresponding distribution are not changing) for each biochem-
ical variable in the system using an appropriate simulation method (e.g. the SSA [10, 11]
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– see Section 2.2) and store the values of the time series in an array of length N. Each
row of the array corresponds to a separate biochemical variable. It is not uncommon in
simulation studies to assume that one or more biochemical species are in a steady-state
(e.g., [1, 19, 31, 37]). The AMSPD algorithm then employs this time series to simulate the
gene expression and fitness dynamics of a population of cells (Fig. 1a). Specifically, at
the start of the simulation each cell of the initial population is assigned a positive integer
(randomly generated from a uniform distribution on the interval [1,N]), which corre-
sponds to its column ‘position’ in the array. During a given sampling interval, each cell
progress through the pre-generated time series values stored in the rows of the array.
Each time a cell’s internal clock is incremented by a pre-specified value time increment
∆t, so is its column position in the array (note that the pre-generated time series values
were obtained from sampling the SSA simulation using the same ∆t). If a cell happens to

Figure 1: The accelerated method for simulating population dynamics (AMSPD) algorithm. (a) Schematic
showing how individual cells are simulated by the AMPSD algorithm. After the cells are randomly assigned
positions on the time series (dots), their positions are incremented until the end of the sampling interval tsample

is reached (squares). If a reproductive stress is not incorporated into the simulations, then mother cells simply
reproduce at a specified rate. However, if the fitness of the cells depends on the level of a particular biochemical
variable, then cells can only reproduce if this variable remains above a specified threshold. For instance, in
region I, the gene expression value x remains above a critical threshold xc during the sampling interval and
therefore the cell is able to reproduce during the entire interval. In region II, the gene expression value of the
cell falls below xc and is therefore flagged and unable to reproduce after this point. (b) Flow diagram of the
AMSPD algorithm presented in the main text (see Table 1 for AMSPD variable and parameter descriptions).
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reach the last column before the end of the sampling interval, then the cell is randomly
assigned a new position on the array within some error ǫ from the last value, for each
biochemical variable in the system. There is a tradeoff between accuracy and efficiency
as ǫ is varied (data not shown). For smaller values of ǫ, simulation runtimes are longer
but the results are more accurate, and vice versa for larger values of ǫ. In this study we
use an ǫ of 10 or lower. For simulations involving the presence of a stressor (e.g. a drug),
a biochemical variable of interest (e.g. protein concentration) can be used to determine
cellular fitness. For example, if the value of this variable falls below a critical threshold
then the cell can be flagged and its biochemical variables no longer simulated nor the
cell able to reproduce (Fig. 1a). More elaborate fitness functions than a simple step func-
tion can also be incorporated into the AMSPD algorithm. For example, a ‘softer’ fitness
threshold can be modeled using a Hill function with low values of the Hill coefficient n
(e.g., n=2−4).

Once the end of the sampling interval is reached for all the cells in the population, the
constant-number MC method [17, 21, 22, 28, 34] is used to keep the number of cells in the
population fixed (see Section 2.3). If a cell divides during the sampling interval the con-
centration of each variable is assumed to remain constant. This is equivalent to assuming
that the cellular contents are equally partitioned into equal volumes or that the transient
time to steady-state is negligible. This assumption has been used in several other studies
(e.g., [3, 5, 6, 18, 31]). The daughter cell is then randomly assigned a position on the time
series within some tolerance ǫ of each of the mother cell’s biochemical variables at the
moment of division.

The AMSPD algorithm can be expressed by the flow diagram (Fig. 1b) and the sub-

Table 1: AMSPD parameters and variables.

Parameter/Variable Description

div and divc Division variable and corresponding threshold at which division
occurs.

ǫ Error term for assignment or re-assignment of position on the
stationary time series.

lts Length of the stationary time series.

NCdaughter Number of daughter cells born in a given sampling interval.

NCpopulation Total number of cells in the population.

nts Position on the stationary time series.

t Global simulation time.

tend Simulation end time.

tk Local or cell specific simulation time.

tsample Sampling interval for statistics.

trestore Interval between population size restores.

x and xc Biochemical variable of interest and the corresponding threshold
below which cells are unable to reproduce.
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sequent pseudocode (Algorithm 2.1). In the pseudocode the AMSPD parameters and
variables are defined as follows: div is the division parameter (generally time or vol-
ume) and divc the corresponding threshold (if applicable) at which division occurs, lts

the length (number of points) of the time series, t the global simulation time, tend the
user specified simulation end time, tk the local or cell specific simulation time, tsample

the sampling interval for statistics, trestore the interval between population size restores,
NCdaughter the number of daughter cells, NCpopulation the total number of cells in the pop-
ulation, nts the position on the time series, x a biochemical variable of interest and xc the
corresponding threshold (if applicable) below which cells are unable to reproduce. The
AMSPD parameters and variables for pseudocode the are summarized in Table 1.

Algorithm 2.1: AMSPD

1: Generate a stationary time series for each variable using the SSA (see Algorithm 2.2)
2: Randomly obtain an initial nts for each cell
3: while t< tend do

4: begin parallel region

5: for all NCpopulation such that tk < tsample do

6: Update tk and div
7: if x≥xc then

8: Update nts and x
9: if nts≥ lts then

10: Randomly generate new nts (until x(nts) within ±ǫ of x(lts)) and update x
11: end if

12: if div≥divc then

13: Execute cell division
14: Increment NCdaughter

15: end if

16: end if

17: end for

18: end parallel region

19: Update t and tsample

20: Execute constant-number MC (see Algorithm 2.3)
21: Compute statistics
22: end while

2.2 SSA

In the Direct Method Gillespie SSA [10, 11], M chemical reactions with rate constants
c1,··· ,cM among N chemical species X1,··· ,XN , are simulated one reaction event at a
time. The next reaction to occur Ω and its timing Γ are determined by calculating M
reaction propensities a1,··· ,aM, given the current number of molecules of each of the N
chemical species, to obtain an appropriately weighted probability for each reaction. It
can be implemented via the following pseudocode:
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Algorithm 2.2: SSA

1: if t< tend and α0=∑
M
v=1 av 6=0 then

2: for v=1,M do

3: Calculate αv

4: end for

5: α0=∑
M
v=1 av

6: Generate uniformly distributed random numbers (r1,r2)
7: Determine when (Γ= ln(1/r1)/α0) and which (min{Ω | αΩ≥ r2α0}) reaction will occur
8: Set t= t+Γ

9: Update X1,··· ,XN

10: end if

2.3 Constant-number Monte Carlo method

The constant-number MC method [17,21,22,28,34] permits the statistically accurate sim-
ulation of a representative sample of an exponentially growing cell population. In this
implementation of the method, all the daughter cells born since the last update NCdaughter

are stored and simulated using a separate array from the mother cells. To avoid simulat-
ing the daughters of daughter cells, the interval between population size updates trestore

is chosen such that mother cells divide at most once, and daughter cells not at all, during
a particular trestore interval. The constant-number MC method can be represented by the
following pseudocode:

Algorithm 2.3: CNMC

1: if t> trestore and NCdaughter≥1 then

2: for all NCdaughter do

3: Randomly select mother cell
4: Replace mother cell with oldest available daughter cell
5: end for

6: end if

3 Numerical results and discussion

To evaluate the accuracy and the speedup of the accelerated method, we compare simula-
tion results obtained using the AMSPD algorithm to those obtained using the previously
validated PDA [4].

For benchmarking we first examine a univariate model of protein production and
decay (Section 3.1). Then we consider a multivariate model of gene expression where
mRNA and protein production and decay are both incorporated (Section 3.2). To further
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benchmark the algorithm when the reproductive fitness of the cell population in the pres-
ence of a drug is incorporated, we reproduce the results from [5]. In this work, we used
an Ornstein-Uhlenbeck (OU) model to simulate gene expression (Section 3.3). Finally,
in Section 3.4, we demonstrate that the accelerated method can enable efficient and nu-
merically accurate coarse-grained exploration of the parameter space corresponding to a
population model. Specifically, we use the AMSPD algorithm to perform a scan of the
parameter space of the OU model of gene expression, and compare the resulting fitness
landscape of the population with results obtained using the PDA.

Both algorithms were implemented in Fortran 90 and executed on an IBM with 2
quad-core processors (1.86GHz cores) and 2.0GB of RAM. All units unless indicated oth-
erwise are arbitrary. Statistics were estimated from 10 realisations of populations consist-
ing of 1000 cells unless otherwise indicated.

3.1 Univariate model

We consider gene expression as a birth-death process modeled by the following equations

⊘
kP−→P, (3.1)

P
δP−→⊘, (3.2)

where P is a protein produced in a single step at a rate kP (Eq. (3.1)), and decays at a rate
δP (Eq. (3.2)).

We first model cell division without incorporating cellular volume, that is each cell
divides once its cellular ‘clock’, or time since last division div, reaches or exceeds a pre-
defined cell division time divc . In this case, excellent agreement is found between the
AMSPD algorithm and PDA (Fig. 2a). The runtime of the AMSPD algorithm is shown
in Fig. 2b. When the time to generate the time series for the AMSPD algorithm is incor-
porated into the runtime of the AMSPD algorithm, then the AMPSD’s runtime increases
linearly with kP. However, if the time to generate the time series is not factored into AM-
SPD’s runtime, then the runtime of the AMSPD algorithm does not vary with kP since
a time series of the same length is used in each of the simulations. This applies for in-
stance if a time series that was previously generated can be used again, for example, if
the simulation is to be repeated, or if a variable assumed not to affect gene expression
(such as divc) is changed. The AMSPD algorithm is found to be significantly faster as the
rate of protein production is increased (Fig. 2c). For instance, when kP is 1 the AMSPD
algorithm is three times faster than the PDA. However, when kP is increased to 100, the
speedup is sixty times. If the time to generate the time series for the AMSPD algorithm is
not factored into the speedup calculation, then speedups of several hundred times are ob-
served. We attribute the speedup to the fact that the AMSPD algorithm does not simulate
every reaction occurring inside each cell of the population as the PDA does. Rather, the
AMSPD algorithm performs a random access lookup in an array containing the values of
the time series.
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Figure 2: Comparison of accuracy and performance of the AMSPD algorithm and PDA [4] for a birth-death
model of gene expression. Panels (a)-(c) correspond to simulation results for volume independent cell division
and (d)-(f) volume dependent cell division. (a) and (d) show the average steady-state protein numbers and
concentrations, respectively, as a function of the rate of protein production kP for the AMSPD algorithm
(gray) and the PDA (black). (b) and (e) show the runtime of the AMSPD simulation. (c) and (f) show the
speedup of the AMSPD algorithm, when compared to the runtime of the PDA, as a function of the rate of
protein production kP. Gray x’s in (b) and (e), and in (c) and (f), are the results obtained when the time to
produce the gene expression time series is incorporated into the AMSPD’s runtime and the speedup calculation,
respectively. Black dots in (b) and (e), and in (c) and (f), are the results obtained when the time to produce
the gene expression time series is not incorporated into the AMSPD’s runtime and the speedup calculation,
respectively. Simulations were started from steady-state (ps = kP/δP), the initial time since last division div
drawn from a uniform distribution [0,div], and the protein time series generated by the AMPSD algorithm

contained 104 values. The parameters were set to δP =0.01, ǫ=10, divc =100, and tend=1000.

The incorporation of changing cellular volume throughout the cell cycle into simu-
lations can be important when concentration dependent, rather than absolute number,
effects are to be considered (e.g., [36, 40]). In a more complex model, we describe cell
growth by an exponential growth law [4, 12, 13]

Vk(tdiv)=V0 2(tdiv/τ0), (3.3)

where V0 is the cell volume at the time of its birth, and τ0 is the interval between volume
doubling. Cell division occurs when the cell volume reaches 2V0.
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Again, there is excellent numerical agreement between the two simulation methods
(Fig. 2d), and a significant speedup when using the AMSPD algorithm (Fig. 2f). For
example, when kP is 1 the speedup is thirteen times. However, when kP is increased to
100, the AMSPD algorithm is about forty times faster than the PDA, and seventy five
times faster when the time to generate the time series for the AMSPD algorithm is not
included in the speedup calculation. As in the previous case (Fig. 2b), AMPSD’s runtime
either increases linearly with kP or does not vary with kP, depending on whether the
time to generate the time series for the AMSPD algorithm is or is not incorporated into
the runtime, respectively (Fig. 2e). The runtimes shown in Fig. 2e are longer than those
in Fig. 2b due to the incorporation of cellular volume dynamics.

The results presented in this section indicate that the AMSPD algorithm can accu-
rately simulate models that incorporate a univariate description of biochemical dynam-
ics occurring inside of growing and dividing cells with a significant reduction in runtime
when compared to the PDA.

3.2 Multivariate model

The previous section considered a univariate analysis. However, it is in the multiple
variate scenario that the AMSPD algorithm is likely to be employed since any model
incorporating a biologically realistic level of detail will require more than one variable.
Due to the nonlinearity and dimensionality of the corresponding system of equations,
a computational approach rather than an analytical one will generally be required to
obtain solutions. However, as the dimensionality of the system increases so does the
computation time along with the need for an accelerated simulation approach.

In order to benchmark the AMSPD algorithm in the multivariate case, we use a
slightly more complex model where gene expression is simulated as a two-step process
described by the following equations

D
kM−→D+M, (3.4)

M
kP−→M+P, (3.5)

M
δM−→⊘, (3.6)

P
δP−→⊘, (3.7)

where Eqs. (3.4)-(3.5) respectively describe the transcription and translation processes.
The degradation of mRNA M and protein P are accounted for by Eqs. (3.6)-(3.7), respec-
tively.

As in the univariate case, we consider volume independent (Fig. 3a-3d) and volume
dependent cell division (Fig. 3e-3h). Excellent agreement is found between the algo-
rithms for mRNA and protein steady-states (Fig. 3a and 3e, and Fig. 3b and 3f, respec-
tively). AMPSD’s runtime again either increases linearly with kP or does not vary with
kP, depending on whether the time to generate the time series for the AMSPD algorithm
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Figure 3: Comparison of accuracy and performance of the AMSPD algorithm and PDA [4] for a two-step model
of gene expression. Panels (a)-(d) correspond to simulation results for volume independent cell division and
(e)-(h) volume dependent cell division. (a) and (e) show the steady-state mRNA numbers and concentrations,
respectively, as a function of the rate of mRNA production kM for the AMSPD algorithm (gray) and the PDA
(black). (b) and (f) show the average steady-state protein numbers and concentrations, respectively, as a
function of the rate of protein production kP for the AMSPD algorithm (gray) and the PDA (black). (c) and
(g) show the runtime of the AMSPD simulation. (d) and (h) show the speedup of the AMSPD algorithm,
when compared to the runtime of the PDA, as a function of the rate of protein production kP. Gray x’s in
(c) and (g), and in (d) and (h), are the results obtained when the time to produce the gene expression time
series is incorporated into the AMSPD’s runtime and the speedup calculation, respectively. Black dots in (c)
and (g), and in (d) and (h), are the results obtained when the time to produce the gene expression time series
is not incorporated into the AMSPD’s runtime and the speedup calculation, respectively. Simulations were
started from steady-state (Ms = kM/δM and Ps = kMkP/δMδP), the initial time since last division div drawn
from a uniform distribution [0,div], and the protein time series generated by the AMPSD algorithm contained

104 values. The parameters were set to kM =1 (when kP was varied), kP =1 (when kM was varied), δM =0.1,
δP =0.01, ǫ=10, divc=100, and tend=1000.

is or is not incorporated into the runtime, respectively (Fig. 3c and 3g). The AMSPD algo-
rithm is significantly faster especially when the rate of protein production was high. For
instance, considering volume independent division when kP is 10, the AMSPD algorithm
is roughly forty times faster than the PDA, and one hundred and forty times faster when
the time to generate the time series for the AMSPD algorithm is not factored into the
speedup calculation (Fig. 3d). When volume dependent division is incorporated and kP

is 10, the AMSPD algorithm is twenty five times faster than the PDA, and fifty five times
faster when the time to generate the time series for the AMSPD algorithm is not included
in the speedup calculation (Fig. 3h).
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Together the results in this section demonstrate that the AMSPD algorithm can be
extended to accurately and efficiently simulate multivariate biochemical networks when
cell growth and division are incorporated into the model.

3.3 Environmental stress

In this section we use the AMSPD algorithm to reproduce the results obtained in [5] us-
ing the PDA to simulate the reproductive fitness of a cell population exposed to a drug.
In that study, gene expression in individual cells was simulated as an OU process to cap-
ture the effect of fluctuations in gene expression x on the development of drug-resistant
cell populations. It was found that if the fluctuation relaxation time scale in gene expres-
sion (non-genetic memory) was sufficiently long then drug resistant population could
emerge independently of genetic mutations (genetic memory) [5]. The range of values for
the non-genetic memory parameter for which drug resistance emerged independently of
mutations was in agreement with ‘mixing time’ (defined as the lag where the autocor-
relation function has decreased by 50%) results found experimentally in a human lung
cancer cells [33].

The OU process can be described by the following Langevin equation

dx(t)

dt
=

1

τ
(µ−x(t))+c1/2ξt, (3.8)

where c and τ are the diffusion constant and the relaxation time, respectively, and ξt is
Gaussian white noise (〈ξt〉= 0, 〈ξtξt′〉= δ(t−t′)) [38]. Without loss of generality, we set
the mean µ equal to zero and use the fluctuation time-scale τ to model the time-scale of
non-genetic memory.

As in [5], ‘microfitness’ w(x) describes the effect of a drug on the reproductive fitness
of individual cells with a given level of expression. For simplicity, in this model microfit-
ness is described using a Heaviside step function, such that a cell is unable to reproduce
if their expression level is below a critical value, w(x<xc)=0, and unaffected by the drug
otherwise, w(x≥xc)=1. For the OU process with a mean of zero, 50% of the cell popula-
tion is instantaneously unable to reproduce when the drug is applied at generation zero.
The ‘macrofitness’ W, or reproductive fitness of the cell population, is here calculated by
dividing the number of cells that reproduced during a specified sampling interval by the
total number of cells (held fixed by the constant-number MC method) in the population.
Since we have set the cell division time such that each cell can only divide once during a
given sampling interval, the maximum macrofitness that the cell population can attain is
one.

Fig. 4 illustrates that as the number of generations increase, the cell population will
reach a steady-state level of fitness. The level of drug resistance that the cell population
develops depends on the degree of non-genetic memory. When the non-genetic memory
is sufficiently low (i.e. τ <= 1) the population completely succumbs to the drug, and
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time since last division div was drawn from a uniform distribution [0,div], and the protein time series generated

by the AMPSD algorithm contained 106 values. The parameters were set to ǫ=1 and divc =1, and scaled by
divc. The threshold below which cells were unable to reproduce xc was set to µ.

when non-genetic memory is sufficiently high (τ>1) the macrofitness of the cell popula-
tion increases (Fig. 4). This phenomenon occurs because higher values of τ have a higher
probability of enabling individual cells to reside for sufficiently long times in advanta-
geous regions of the fitness landscape, such that they can reproduce before succumbing
to the effects of the drug. These results are in quantitative agreement with results previ-
ous obtained using the PDA algorithm [5] and demonstrate that the AMSPD algorithm
can be used to simulate more biologically complex scenarios such as the effect of stress
and noisy gene expression on the reproductive fitness of a cell population.

3.4 Parameter scans

In order to investigate the dynamics of a given population model, one can perform sim-
ulations across the corresponding parameter space. However, the use of a more accurate
method, such as the PDA, to perform these simulations can prohibit a comprehensive
parameter scan due to its computationally intensive nature. The use of an approximate
method such as the AMSPD algorithm can enable an efficient preliminary exploration of
the parameter space.

Using the OU model of gene expression and the framework presented in Section 3.3 to
capture fitness dynamics, we simulate the reproductive fitness of a cell population after
being exposed to a stress for 10 generations.

In Section 3.3 the variance of the OU distribution was fixed to 1 by varying the diffu-
sion constant c as the relaxation time τ was increased. Here, τ and c are varied indepen-
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Figure 5: Parameter scans of an OU model of gene expression for the development of drug resistance. (a)

Stochastic simulations carried out using the AMSPD algorithm. Here, 104 parameter combinations for the
relaxation time τ and the diffusion constant c were generated using a Latin hypercube sampling method [23,24],
in order to determine the reproductive fitness of the cell population (macrofitness) W after 10 generations. (b)
A systematic scan of a region of the parameter space shown in (a) using the more accurate PDA [4]. Simulations

were started from the steady-state OU distribution (with mean µ=0 and variance σ2 = cτ/2), the initial time
since last division div was drawn from a uniform distribution [0,div], and the protein time series generated by

the AMPSD algorithm contained 106 values. The parameters were set to ǫ=1 and divc=1, and scaled by divc.
The threshold below which cells were unable to reproduce xc was set to µ.

dently to further examine the role that these parameters have on fitness. Using a Latin
hypercube sampling method [23, 24], we generate 104 different parameter combinations
and simulate the population dynamics using AMSPD (Fig. 5a). Based on the results of
these simulations we then identify a region of parameter space of interest (reduced by
a factor of 5 compared to the original parameter space), namely where the macrofitness
of the cell population changes rapidly, and then perform the simulations using the PDA
(Fig. 5b). The parameter scans show that in this model the diffusion constant does not
affect population fitness independently of τ (Fig. 5a and 5b).

The fitness landscapes obtained using the two methods are qualitatively in agreement
(Fig. 5a and 5b). This suggests that the AMSPD algorithm can be used to efficiently
identify coarse parameter regimes, which can then be further refined by more accurate
simulation using the PDA.

4 Conclusion

We have presented an accelerated method for simulating cellular population dynam-
ics. The method generates and employs single representative time series to simulate the
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gene expression and reproductive fitness dynamics of all the cells in the population. A
constant-number MC method [17,21,22,28,34] is used by the AMPSD algorithm in order
to simulate a statistically representative sample of an exponentially growing cell popu-
lation. This approach allows for accurate simulations with a significant speedup com-
pared to simulations obtained using a previously developed population dynamics algo-
rithm [4]. The accelerated algorithm is a course-grained method designed for scenarios
when all the variables of an intracellular biochemical reaction network can be assumed to
be at steady-state and cells to divide symmetrically (e.g., [3, 8, 14, 39]). In order to reduce
the complexity of the model and simulation times, these assumptions are often invoked
when simulating gene expression and cellular dynamics (e.g., [1,3,5,6,18,19,31,37]). Al-
though these assumptions are not always biologically realistic, due to speed of the accel-
erated method, efficient scans over a large parameter space can be performed in order to
identify regions of interest. Once the parameter space region of interest is identified, sim-
ulations can then be performed using a more accurate population simulation algorithm.
Correspondingly, this method should prove useful for the simulation of gene expression
and population models of ever increasing complexity. Furthermore, it is anticipated that
the method will apply more generally to other scenarios, for example, to speedup sim-
ulations of biochemical reaction networks during periods when the rate parameters are
not varying due to noise external to the system [32].
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