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1 Introduction

Here we present a complete description of the example models that we tested and the results we
obtained using CellLine. We also provide all reactions files (see Availability section).

To demonstrate the use of CellLine, we first simulate a model of the P53-Mdm2 feedback loop,
where transcription and translation are modelled by multiple time delayed reactions [5]. This model is
a modified version of a model proposed by Stolovitzky et al, [3]. Using this model, we reproduce the
experimentally observed dynamics of single cells subject to ionizing radiation (IR), and the dynamics
of cell lineages to reproduce recent observations that show that the oscillations of P53 and Mdm2
present in mother cells during division propagate to daughter cells. Also, it is shown that the average
dynamics of multiple cells is in agreement with experimental observations.

Next, we use CellLine to simulate the dynamics of a commonly studied gene network, the repres-
silator [24]. The repressilator consists of a loop of three genes. The protein from the first gene inhibits
the second gene, whose protein product in turn inhibits the third gene, and finally the protein from
the third gene inhibits the first gene, completing the cycle.

To exemplify how CellLine can add substances (including gene promoter regions) in the simulation
at runtime, we simulate a cell lineage where the mother cell initially consists of a 3 gene repressilator.
One of the genes of the repressilator has then a probability of being duplicated at any given moment
in the simulation. Additionally, it is shown how these events are passed on to the daughter cells and
future generations of the cells where it occurs.

If an extra gene is added to the loop, becoming a 4 gene repressilator, the system behavior changes
dramatically, becoming bistable [25]. Here, we model a cell lineage’s dynamics where each cell consists
of a 4 gene repressilator and show how one can use CellLine to simulate a model of cells of a lineage
that can dynamically evolve in a such a way that some branches of the lineage will reach one “stable”
state, and the other branches, the opposite “stable” state. Also, we use a modified version of this
model to demonstrate how any given initial state can be imposed on the cells of lineages.

For our final example we chose to simulate the dynamics of a recently uncovered gene network
[26] that controls the choice between pale versus yellow ommatidia in Drosophila melanogaster. It
was reported that the Drosophila dioxin receptor Spineless is both necessary and sufficient for the
formation of the ommatidial mosaic. This study suggests that the retinal mosaic required for color
vision is defined by the stochastic expression of a single transcription factor, Spineless (SS) [26]. The
stochastic expression of SS acts as a binary switch in terms of determining the fate of the cells. Here,
we implement a model that accounts for all the features observed experimentally.

This model is an example of a gene regulatory system capable of probabilistic regulation that leads
to a differentiated state, out of two possible fates, which remains stable from there on.

All simulations were made on a Pentium 4 at 3GHZ with 1GB of RAM.
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2 The P53-Mdm2 negative feedback loop.

The tumor suppressor protein P53 has a fundamental role in cellular response to a variety of envi-
ronmental stresses that can affect DNA structure and replication. Under stress, P53 can induce cell
cycle arrest, DNA repair, and apoptosis. Depending on the causes of stress, P53 can activate several
genes responsible for regulating processes such as cell cycle arrest, DNA repair, and apoptosis [16].
Mutations in the gene that transcribes p53 RNA have been found in about 50% of human tumors [17].

Under normal conditions, P53 concentrations are kept low by an Mdm2 protein [19], a down
regulator of P53. These two proteins form a negative feedback loop responsible for the oscillatory
dynamics in their concentrations in cells exposed to radiation that induces DNA damage [18]. When
under stress, P53 concentration can rapidly increase up to 16 times the basal concentration [20].

Here we focus on mimicking experimental measurements of P53 and Mdm2 concentrations in the
nucleus of individual cells following ionizing irradiation.

These observations in populations of cells subject to irradiation, show that the number of DNA
double strand breaks (DSBs) in the cells can be assumed to follow a Poisson distribution whose average
is proportional to the radiation dose [15, 3]. In agreement, DSBs are treated as a “chemical species”
and are inserted in the system at user defined times of a simulation, in a quantity randomly generated
from a Poisson distribution. A file named “poisson.lua” provides these quantities when called from
the reactions files. Also, once the DSBs are repaired, the oscillations cease in a time interval that can
vary from 12 to 24 hours [2].

P53 and Mdm2 oscillations have an approximately constant frequency before stopping. The number
of oscillations vary from cell to cell and, although a damped oscillation of P53 and Mdm2 is observed
in the cell population average, in single cell measurements these oscillations are only slightly damped
and appear to cease abruptly [3]. The number of oscillations before stoping varies significantly from
cell to cell [3].

Finally, we point out that in the stochastic framework, the entire system of reactions can be slowed
down or sped up by varying the assumed volume or temperature. Therefore, e.g., given a substance
whose quantity oscillates periodically, a specific period can be imposed by varying one of these two
parameters [9, 10].

For example, given a temperature T and a volume V, if the rate constant of a bimolecular reaction
is equal to 1 s−1 (where s stands for second), that reaction is expected to occur at the rate of 1 per
second, times the quantities of the reactants. Doubling the volume will decrease its propensity to half
that value (as it was demonstrated by Gillespie in [9, 10], under the SSA assumptions). For this reason,
it is possible to match any simulation time to the time duration of any given experiment.

2.1 Single Cell model of the P53-Mdm2 negative feedback loop.

The model of the P53-Mdm2 feedback loop here simulated consists of a “reduced version” of the ODE
model proposed in [3].

The original model consists of 3 modules, connected by the sharing of a single chemical substance,
produced in one module and acting as reactant in the next. Since we focus on the P53-Mdm2 loop’s
dynamics, we do not include modules 1 and 2. However, we do include DSBs as the initiators of the
P53-Mdm2 oscillations.

First, DSBs are added at user defined moments of the simulation following a Poisson distribution.
A first order reaction of the DSBs decay (representing that they have been repaired) is added to the
model to mimic the dynamics of the DSBs’ quantity in time, reported in [3].

The oscillations of P53 and Mdm2 are activated only when DSBs appear in the system, that is,
they will not begin until that moment and will die out some time after DSBs are removed from the
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system.
Cells suffer complex and simple DSBs when irradiated by IR [3]. These two kinds of breaks have

different effects in modules 1 and 2 but similar effects in module 3. Thus we tested the dynamical
response of module 3 to a single quantity (“DSB”), which is the sum of both types of DSBs. The
amount of DSBs to be introduced is randomly generated from a Poisson distribution with a mean of
50 (35 for simples breaks and 15 for complex breaks) since the sum of two random variables following
a Poisson distribution also follows a Poisson distribution where the mean is the sum of the means of
the two initial distributions.

To do this, CellLine calls the function “poisson” from a Lua file (also provided by us) named
“poisson.lua”, that should be in the same directory as the reactions file and DynSim executable.

It has been shown that transcription and translation are more correctly modelled as multiple time-
delayed events [5], rather than instantaneous reactions. In agreement, the reactions responsible for
creating p53 RNA, P53, mdm2 RNA, and Mdm2, are here modelled as multiple time-delayed reactions.
The promoter regions of the genes from which p53 RNA and mdm2 RNA are transcribed from are
explicitly represented by ProP53 and ProMdm2, respectively.

For a transcription reaction to occur, an RNA polymerase (RNAp) must bind to a gene promoter
region. While the RNAp is bound to the promoter, no other molecule can bind to it. Therefore, each
time a transcription reaction occurs, the promoter is only released from the waitlist after a small time
delay, once again becoming available for transcription. RNAp’s are not explicitly represented since we
assume they are never depleted and exist in a sufficient quantity so that the fluctuations of the total
number of RNAps do not affect any reaction propensity [10]. To produce an RNA, the RNAp must
process the set of nucleotides of the gene. Thus, a time delay for the completion of the RNA production
is also introduced (much larger than the delay on the promoter and depending on the gene length)
[5]. In general, a transcription reaction of gene A, with a rate constant ktransc, where the promoter
region of A is released after τA seconds, and the RNA (RNAA) is complete after τrnaA

seconds, is here
represented by (eq. 1):

ProA
ktransc−−−−−→ ProA(τA) + RNAA(τrnaA) (1)

Here we assume that translation of the RNA can only begin as soon as the RNA has been completely
transcribed. In Prokaryotes, translation can begin as soon as the initial codons of the RNA have been
transcribed, since they constitute the ribosome binding site (RBS) region. For Eukaryotes, one needs
to account for the time it takes for the RNA to leave the nucleus so that it can be translated by
ribosomes. We make the same assumption that we did for RNAp’s, regarding the number of existing
ribosomes, and so in general, a translation reaction can be modelled as:

RNAA
ktransl−−−−→ RNAA(τRBS

rnaA
) + pA(τpA) (2)

In eq. 2, ktransl is the rate constant of translation, pA is the protein A that results from translating
the RNAA, τRBS

rnaA
is the time delay for releasing the ribosome binding site of RNAA, and τpA is the

time it takes for protein A to be translated and folded (becoming available for future reactions) after
the reaction begins.

In the P53-Mdm2 loop model there are two genes, one responsible for the transcription of p53 RNA
and the other of mdm2 RNA. Our model consists of the following reactions:

DSB
DSBdecay−−−−−−→ ∅ (3)

ProP53
Sp53/5−−−−→ ProP53(τProP53) + pr53(τpr53) (4)

ProP53 +∗ DSB
4.Sp53−−−−→ ProP53(τProP53) + pr53(τpr53) (5)
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pr53
Gp53−−−→ ∅ (6)

pr53
rp53−−−→ pr53(τRBS

p53 ) + P53(τP53) (7)

P53
up53−−−→ ∅ (8)

P53 +∗ MDM2
vp53−−−→ ∅ (9)

ProMdm2
Smdm2/10−−−−−−−→ ProMdm2(τ1

ProMdm2) + mdm2(τmdm2) (10)

ProMdm2 +∗ P53 Smdm2−−−−−→ ProMdm2(τ2
ProMdm2) + mdm2(τmdm2) (11)

ProMdm2 +∗ DSB
2.Smdm2−−−−−−→ ProMdm2(τ3

ProMdm2) + mdm2(τmdm2) (12)

mdm2 Gmdm2−−−−−→ ∅ (13)

mdm2 rmdm2−−−−−→ mdm2(τRBS
mdm2) + MDM2(τMDM2) (14)

MDM2 umdm2−−−−−→ ∅ (15)

∗P53 + MDM2
vp53−−−→ ∅ (16)

The rate constants are set at: DSBdecay = 0.003 s−1, Sp53 = 0.02 s−1, Gp53 = 0.02 s−1, Smdm2
= 0.045 s−1, Gmdm2 = 0.02 s−1, rp53 = 0.6 s−1, up53 = 0.02 s−1, vp53 = 9.2 s−1, rmdm2 = 0.04
s−1, and umdm2 = 0.14 s−1.

Here, we set the time delays as: τmdm2 = 100s, τMDM2 = 10s, τpr53 = 100s, τP53 = 10s, τProP53 =
1s, τ1

ProMdm2 = 1s, τ2
ProMdm2 = 0.01s, τ3

ProMdm2 = 0.05s, τRBS
mdm2 = 1s, and τRBS

p53 = 0.1s.
We also set the following initial quantities: P53 = 0, mdm2 = 0 (mdm2 RNA), MDM2 = 0, pr53

= 0 (p53 RNA), ProP53 = 1 (promoter region of the gene from which the p53 RNA is transcribed),
and ProMdm2 = 1 (promoter region of the gene from which the mdm2 RNA is transcribed).

Using CellLine the delays in transcription and translation can be drawn from distributions in-
stead of constant values (please refer to the Manual for details), for example, normal distributions as
suggested in [1]. If the standard deviations are small relative to the mean, the behavior of the system
will not change significantly [1]. For large standard deviations, the dynamics will become more “noisy”
and oscillations less robust (data not shown).

Take reaction 4 as an example of how multiple time-delayed reactions are dealt with by CellLine.
When this reaction is chosen to occur, ProP53 (p53 promoter) and the pr53 (p53 RNA) that will be
produced are placed on a waitlist of events. The waitlist stores what elements are to be released and
the time at which they should be released [5]. Once released, it is available for reactions.

In this case, ProP53 is released back into the system and is again able to express, τProP53 seconds
after reaction 4 occurs. After τpr53 seconds (larger than τProP53), a pr53 is released into the system.
This pr53 can then be translated into a P53 protein by ribosomes if reaction 7, representing translation,
is selected to occur by the SSA. Once the translation process is complete (τP53 seconds after it was
chosen to occur), a P53 protein is released into the system.

A similar set of reactions (10) and (14) exist for mdm2 RNA transcription from ProMdm2 and
Mdm2 translation from mdm2 RNA.

Additionally, we added transcription reactions to model the effect of the presence of some substances
known to be directly or indirectly responsible for activating or repressing the expression of one of the
two proteins (P53 and Mdm2). For example, reaction 12 models the activation of Mdm2 transcription
due to the presence of DSBs in the system, since it is known that when DSBs exist, signaling molecules
detect them and will then begin a cascade of events that will eventually lead to a higher expression of
P53 and Mdm2 [3, 2]. Also, this reaction rate constant is set at a higher value than the rate constant
of reaction 10, which models the basal level of transcription of mdm2 RNA (no activation required).
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In Fig. 1 we show the results of a single simulation of the system of reactions described. Within a
directory that contains NCellsGen, DynSim, Model7.g, and poisson.lua (to generate the DSBs from a
Poisson distribution), the model was simulated by executing the following instruction which specifies
the initial reactions filename, the number of cells one wants to model, total simulation time, and
sampling time of the system state (in this order): “NCellsGen Model7.g 1 5000 10”.

Figure 1: One time series of P53, Mdm2 and DSB’s. Sampling period is 10 s. A single introduction of
DSBs is made at t = 0 s.

Qualitatively, the results (Fig. 1) are in agreement to those previously reported [3], in the number
of oscillations as a response to a single addition of DSBs, in the P53 and Mdm2 relative peak intensity,
and in the time interval between the peaks of the two substances. When DSBs are introduced, P53
and Mdm2 can oscillate between 1 and 4 times. Also, the oscillations are damped and their ending is
rather abrupt. Once the oscillations stop, only the addition of more DSBs can “restart” the oscillations
of P53 and Mdm2.

Interestingly, the system responds quite diversely to each addition of DSBs, in amplitude and
number of oscillations. The similarity between different responses is the period of the oscillations, in
agreement with experimental observations [3]. The number and intensity of oscillations also depends,
on average, on the number of DSBs added. That is, adding more DSBs will originate a stronger
response on average. Also, if the DSBs have a weaker decay, resulting in them remaining in the system
for a longer time interval, the oscillations will also last longer.

However, we notice that the multiple delayed reactions made the system’s dynamics less susceptible
to small variations in other parameters, such as rate constants. The number of oscillations as a response
to the addition DSBs usually varies between 2 and 5 in agreement with experimental observations [2].

To attain a behavior such as the one reported in [2] (where the Mdm2 protein exists in the same
quantities as the P53), one can increase the rate constants that control the conversion of mdm2 RNA
into Mdm2 protein, so that the protein becomes the one existing in larger quantities. Here we opted
to maintain mdm2 RNA as the most abundant substance of the two [3].

The behavior of this model, namely the number of observed oscillations, is highly dependent on
the presence of DSBs. To increase the number of observed oscillations after a single addition of DSBs,
all that is necessary is to decrease the decay rate of the DSBs. As soon as no more DSBs are present
in the system, P53 and Mdm2 will only oscillate from 1 to 4 times.
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2.2 Adding substances at runtime.

To demonstrate the ability of CellLine to add substances into the system at runtime, in Fig. 2 we
show the time series of P53 and Mdm2 resulting from the introduction of DSBs in the system at
two separate moments (reactions file “Model7b.g”). The P53-Mdm2 system responded both times,
mimicking the P53-Mdm2 loop’s behavior in real cells subject to several doses of irradiation (Fig. 2).
The model was simulated by executing the following instruction: “NCellsGen Model7b.g 1 10000 10”.

Figure 2: One time series of the P53-Mdm2 model where DSBs are introduced at two moments in the
system: at t = 0 s and t = 5 000 s. Sampling period is 10 s.

Increasing the delay associated with transcription will cause a decrease in P53 and Mdm2 quantities
and in the number of oscillations. The simulations in Figs. 1 and 2 took ∼ 2 seconds each.

2.3 Simulating multiple identical cells.

As an example of using the “NCellsGen” module to generate a set of independent cells, we generated
10 cells where each contains an identical P53-Mdm2 oscillatory network (see supplementary material
reactions file Model8 Multiple.g).

For this and the following models we set the rate of DSB decay to 0.001 s−1, instead of 0.003
s−1 previously used. Additionally we changed the following delays to: τmdm2 = 200s, τMDM2 = 30s,
τpr53 = 200s, and τP53 = 30s. The consequences of these changes were an increase in the average
number of oscillations from 3 to 5 for each introduction of DSBs following the distribution described
above, and an increase in the period of the oscillations, caused by the overall “slowing down” of
the dynamics. The increase in the number of oscillations makes it easier to observe the wide range
of distinct behaviors (in the number of oscillations of P53-Mdm2 due to a single addition of DSBs)
that can arise from a population of identical cells. The overall slowing down allows the P53-Mdm2
oscillations to propagate to the third generation of cells using CellLineGen, which otherwise quickly
dampens out in the first or second generation.

We set the initial reactions file, “Model8 Multiple.g”, such that each cell will be subject to a
different irradiation dose, i.e., a distinct number of DSBs in each cell. This is achieved by generating
the number of DSBs from a Poisson distribution at run time. Additionally, since each cell’s reactions
file is provided a unique random seed, their dynamics will differ.

Thus, this case is an example of how to use CellLine to simulate multiple cells, all identical in
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terms of their reactions and initial quantities of substances, but where each cell is subject to a distinct
external perturbation. The initial cell can be, for example, a cell obtained in a given cell line generation
for which more data is desired by the user.

The model was simulated by executing the following instruction: “NCellsGen Model8 Multiple.g
10 10000 10”.

From the initial cell, NCellsGen made 10 copies and simulated their dynamics for 10000 s each,
with a sampling period of 100 s. Each cell is subject to a single perturbation (by the addition of DSBs
at t = 0 s). As a result, CellLine outputs 20 files, consisting of 10 reactions files named “cell [cell
index].g” and one time series for each reactions file, named “out [cell index].xls”.

Observing each cell independently it is visible that the P53-Mdm2 dynamics varies significantly
from cell to cell, in the amplitude of the peaks and the number of oscillations. Very rarely is there no
response of P53 or Mdm2 to the addition of DSBs.

In Fig. 3 we plot the average number of P53 proteins in all 10 cells. The result is a damped
oscillation, such that the amplitude decreases almost at the same rate, from one oscillation to next the
one, in agreement with measurements from multiple cells [1].

Figure 3: Average concentration of P53 over 10 cells. Sampling period is 10 s.

This simulation took less than 20 s (each cell’s dynamics took approximately 2 s).

2.4 Example of a Cell Lineage of a cell containing a P53-Mdm2 loop.

Here we demonstrate the use of CellLine to create a cell lineage from an initial mother cell which
contains the P53-Mdm2 network. Mother and daughter cells have the same chemical reactions. The
initial cell is identical to the cell of the previous subsection.

Within a directory that contains CellLineGen, DynSim, Model9 Line.g, and poisson.lua, the model
was simulated by executing the following instruction, which specifies the initial reactions filename, the
number of cell generations one wants to model, total simulation time of each cell, and sampling time
of the system state (in this order): “CellLineGen Model9 Line.g 3 1000 10”.

As a result, CellLineGen creates a cell lineage with 3 generations and simulates the dynamics of
each cell for 1000 s with a sampling period of 10 s. It outputs 3 files for each cell in the lineage: i) a
reactions file named “Gener [generation index] Cell [cell index].g”, with the set of reactions of the cell
from generation “generation index” and index within that generation “cell index”, ii) a “snapshot”
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of the cell state when its division occurred, and from which the daughter cells are created, called
“Gener [generation index] cell [cell index] snap.g”, and iii) one time series for each cell in files called
“Gen [generation index] cell [cell index] out.xls”.

Notice that CellLineGen will keep track of the “total experiment time”, that is, for example cell
(1,1) will exist between 0 and 1000 s, cells (2,1) and (2,2) between 1000 s and 2000 s, and so on. This
is very important, especially if one wants to set perturbations to the cells of a certain generation at
a given time. For example, to add DSBs in the cells of the 3rd generation, DSBs should be added to
the system between 2000 s and 3000 s (since each cell’s life time is 1000 s). That information must be
present in the mother cell’s reactions file, after the block “reactions”. In this case, for example, to add
10 DSBs in all cells at t = 2500 s, one would add the following instruction in the initial cell’s reactions
file, after the reactions block: “queue [10]DSB(2500);”.

In our simulation, only the mother cell is subject to an initial perturbation (by the addition of
DSBs following a Poisson distribution at t = 0 s). The time series of the P53 protein of cells of the
lineage are shown in Fig. 4.

Figure 4: Time series of P53 in each cell of the cell line (except cell (3,2) since its time series is very
similar to cell (3,1)). At each 1000 s, cells divide and two daughter cells are created from each existing
cell. Notice that cells (3,3) and (3,4) have similar dynamics (almost synchronized both in phase and
amplitude) since they are daughters from the same mother cell (cell (2,2)), but are almost uncorrelated
to cell (3,1) generated from a different mother cell (cell (2,1)). Sampling period is 10 s.

From Fig. 4, one observes that the oscillations in mother cells continue in the daughter cells as the
experiments report [2]. Additionally, and also matching experimental measurements, as the cells get
more farther apart in the cell line “tree”, their dynamics differ more. They become more unrelated
both in phase and in amplitude. In the extreme case, in some lines the oscillations might have ceased
while persisting in other lines. As seen in Fig. 4, another experimentally observed phenomenon, also
present here, is that the oscillations can end abruptly at the single cell level [3].

Also observable from Fig. 4 is something which is observed in real cells when they divide, with
respect to the concentration of P53 [2]. As the two daughter cells of the same mother cell evolve in
time, although their oscillations are perfectly correlated in the beginning, they lose correlation in both
frequency and amplitude of oscillations (this is more easily observed in the second generation).
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This simulation took approximately 14 s to be completed (approximately 2 s per cell).

3 The repressilator

Originally, a repressilator consists of a 3-element negative feedback transcriptional loop [24]. The
protein from the first gene inhibits the second gene, whose protein product in turn inhibits the third
gene, and finally the protein from the third gene inhibits the first gene, completing the cycle.

A mean-field model showed that this configuration can produce oscillating levels of each repressor
protein [24]. In the same work, it was reported that a repressilator, constructed in E. coli, showed
such predicted oscillations.

Here, we simulate a 3 gene repressilator and qualitatively study this genetic oscillator. The model
is described in detail in [4]. For simplicity, we consider only the symmetric case where all the three
genes are identical.

If an extra gene is added to the loop, becoming a 4 gene repressilator, the system behavior changes
dramatically. Namely, it becomes a bistable system (in a loose sense, since this is a stochastic system)
[25]. This gene network is here used to exemplify how one can use CellLine to simulate a model of
cells of a lineage that can dynamically evolve in a such a way that some branches of the lineage will
reach one “stable” state, and the other branches, the opposite “stable” state.

3.1 3 gene repressilator subject to gene duplication at runtime.

In this example, we set up a gene network of 3 genes, where each gene represses the next gene, forming
a repressilator. The system can be described by the following set of chemical reactions (implemented
in the file “Model12 3 ring.g”):

RNAp + Proi
0.01−→Proi(1) + RNAp(20) + pi(100) (17)

Proj+pi

1
À
0.08

Projpi (18)

pi
0.01−→ ∅ (19)

Proipj
0.01−→ Proi (20)

In these reactions (Eqs. 17 to 20), N = 3, i = 1, ..., N and j = i + 1, except for i = N , where
j = 1. In reaction 17, a time delay τ is associated to each product X of the reaction representing gene
expression, using the notation: X(τ). Reaction 18 represents two independent reactions: binding and
unbinding of the repressor to the promoter. The rate constants of these two reactions, represented in
the numbers associated to the arrows, are not equal. The unbinding reaction allows the repressor to
disassociate from the promoter. The repressor can also decay while on the promoter via reaction 20.
This reaction is needed to allow the protein to decay when bound to the promoter at the same rate as
if not bound. If this reaction was absent, binding to the promoter would act as a “protection” against
decay. Proteins also decay via reaction 19. The system is initialized with the 3 promoters, and 300
RNAp’s.

In this example, we model a case where each cell has, during its life time, a probability of duplicating
the gene responsible for expressing protein p1. The quantity of this promoter in a cell, propagates down
the cell lineage. The increase in the number of promoters Pro1 by gene duplication is expected to
boost the number of transcription reactions [9] that occur per time unit.

The gene copy event can be modelled, e.g., as a source reaction with a small rate constant. An-
other possible method to create more promoters during run-time would be to use the queue list (see
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manual for details). To do this we introduce a new rate constant in the lua block of the reactions
file: “chance duplicate = 1;”. We then add the reaction in the initial cell’s set of reactions (see
Model12 3 ring.g file):

chance duplicate/10000−→ Pro1 (21)

CellLine when simulating this cell’s dynamics according to the delayed SSA, will select this reaction
to occur, on average, every 10 000 s. Since a cell’s lifetime is set to 5000 s in this model, during this
time the cell has a 50% chance of duplicating its promoter once. Any new promoters created during a
cell lifetime are passed on to its daughter cells. The dynamics of the cell lineage were then simulated,
over 3 generations, by executing the following command: “CellLineGen Model12 3 ring.g 3 5000 10”.

Figure 5: Time series of the proteins in cells of the lineage, each cell containing a 3 gene repressilator
and (Pro 1) is subject to duplication. At each 5 000 s, cells divide and from each cell, two daughter
cells are generated. The effects of this event, which in this simulation only occurred in cell (2,2), is
propagated to its daughter cells, (3,3) (not shown) and (3,4), explaining the discrepancies in the time
series of p1 between cells (3,1) and (3,4).

In Fig. 5, the time series of protein p1 is shown for some cells of the lineage.
As said, there is a reaction by which Pro1 can be duplicated. In this particular run, such an event

occurred only once, in cell (2,2) (one of the daughter cells of the initial mother cell). For that reason,
the level of p1 is higher in this cell and in its daughter cells (cells (3,3) and (3,4)), than in any other
cells of the lineage.

The promoter duplication caused an increase in the time duration and amplitudes of the oscillations
of p1 in the cells with 2 promoters. Also, the proteins of the gene repressed by p1 consequently have
lower amplitudes (not shown).

In Fig. 6 we show such effect of gene duplication on the other proteins levels. Shown, is the
time series of all proteins, of cell (2,2), where the gene duplication occurred. At first, when p1 starts
increasing to higher levels than previously, p2 drops significantly. This decrease will allow p3 to reach
higher levels, which will in turn limit p1’s levels significantly.

To demonstrate CellLine’s ability to calculate the Fourier spectrum of a time series, we plot in Fig.
7 the Fourier spectrum of the time series of the mother cell of the system whose time series is shown
in Fig. 5. This is done by adding the instruction “fourier file FourierSpectrum.xls” in the reactions
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Figure 6: Time series of the three proteins (p1, p2 and p3) of cell (2,2) of the lineage. At each 5 000
s, cells divide and from each cell, two daughter cells are generated. The effects of the duplication of
Pro1 is visible, resulting in higher levels of protein p1, and lower levels of protein p2, than the others.

file (see reactions file “Model12 3 ring.g”, as an example). The Fourier spectrum can only be obtained
for the first cell of the lineage, or using NCellsGen, for any single cell run.

Figure 7: Fourier spectrum of the time series of a single cell containing a 3 gene repressilator where
one of the genes is subject to duplication.

From Fig. 7, it is visible that the three proteins oscillate with the same period. The main frequency
of oscillation is, approximately, 0.001 Hz.

3.2 4 gene repressilator

In this example, we set up a gene network of 4 genes, where each gene represses another gene, forming a
ring of repression (here referred to as a 4 gene repressilator). The 4 gene repressilator can be described
by the following reactions:
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RNAp + Proi
0.01−→Proi(1) + RNAp(20) + pi(100) (22)

Proj+pi

1
À
0.08

Projpi (23)

pi
0.01−→ ∅ (24)

Proipj
0.01−→ Proi (25)

In these reactions, N = 4, i = 1, ..., N and j = i + 1, except for i = N , where j = 1. The system is
initialized with the 4 promoters, and 400 RNAp.

What is interesting about this system is that there are two possible distinct “stable” states the
system can reach. Also, once reaching such states, there is still a very small probability of “flipping”
to the other state due to stochastic fluctuations in the proteins concentrations.

The rate constants of the reactions and the time delays were set so that the system can reach a
“stable state”, in the sense that either genes 1 and 3 are “on” (high number of proteins expressed
by these genes present in the system) and genes 2 and 4 are almost completely repressed, or the the
opposite (odd genes “off” and even genes “on”). Also, during a cell lifetime, no toggling between the
two “stable” states is observed.

The cell is initialized without any proteins, meaning that it is not in either of the two possible
“stable states”. Thus, there is always a transient time until the system reaches one of these two states.
Because cell lifetimes were set to be smaller than this transient, this choice usually occurs in the second
generation of the lineage. Since it is equally likely to choose either of the two states, sometimes two
daughter cells of the same progenitor cell will settle in opposite stable states.

Once the choice is made, its stability is maintained and propagated to the next generation. Thus,
this case intends to be a simplistic model of a cell differentiation line, i.e., starting with an undifferenti-
ated progenitor cell, it generates two cells with distinct gene expression patterns (which are therefore,
different cell types).

Since in all cases, by knowing one of the gene’s states we also know the states of the other genes,
for easier visualization in Fig. 8, we only plot the time series of p1. The model was simulated by
executing the following command: “CellLineGen Model12 4 ring.g 3 10000 10”.

The time series of protein p1 of some of the cells of the lineage is plotted in Fig. 8. It shows that
different lines of the lineage are able to choose different “stable states”. If the mother cell is initiated
in a state between these two stable ones and will equally likely chose either of them, then on average
50% of the cells will make one choice, and the other 50% the other choice.

Notice also that the choice for one of the two stable states propagates through the lineage. In this
particular experiment, half the cells made one choice, while the other half made the opposite choice.
Once that choice is made, the future generations will remain faithful to that decision. This is visible
in the figure in the separation between the levels of p1 in cells (3,1) and (3,4), which are daughters
of different cells from the previous generation, respectively, cells (2,1) and (2,2) (the ones that made
opposite choices, regarding what stable state to choose).

3.3 4 gene repressilator where a given initial state is imposed on each cell

of the lineage.

As an example of how one can impose on all cells of a given lineage, a desired initial system state, we
take the previous set of reactions, and add the following reactions (i = 1,...,4):

pi + X
1000−→ ∅ (26)
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Figure 8: Time series of protein p1 in some cells of the lineage. At each 10 000 s, cells divide and from
each cell, two daughter cells are generated. Around t = 18 000 s cell (2,1) stabilizes in a state where
p1 level is very low, while independently at around the same time, cell (2,2) makes the opposite choice,
i.e., stabilizes in a state where p1 level is high. These decisions (stochastically driven) are propagated
to their respective daughter cells, and therefore, the level of p1 in cell (3,1) is always low and in cell
(3,4) is always high. Sampling period is 10 s.

This substance “X” is introduced in the system (using the queue list) at the same moment the
cell is set to divide, that is, at t = 10 000 s. It’s function is to delete (via reaction 26) all existing
proteins in the cells. By doing so, it also “self destructs”, and after some time (once X is no longer
present in the system), the proteins levels can again increase (see Fig 9). Since the mother cell was
initialized with no proteins, this method allows imposing exactly the same initial state to its daughter
cells, rather than inheriting the mother cell state (number of proteins, etc, as in the example of the
P53-Mdm2 network) at the moment of division.

This example shows how to “reset” cells state at the beginning of their lifetimes. Using similar
intervention techniques to those used in this example, one could have a model of symmetric cell division.
Given the quantities of all elements in the mother cell, one can impose that these elements are, once
passed to the daughter cells, roughly divided in half.

This could be done, for example, by using a substance X which removes ∼ 50% of the proteins from
the daughter cells, in the beginning of their life time. To remove that quantity of, e.g., a protein A, X
is introduced in the system during the cells first second of life and the following reaction is defined:

∗X + A−−[math.log(2)]−− >;
Given this reaction, and X lifetime (1 s), on average, independently of how many A’s exist in the

cell, half of the A molecules will be destroyed during that first second of lifetime.

4 Modelling stochastic differentiation of cells determining the

color vision mosaic in Drosophila melanogaster

Color vision in Drosophila is achieved by a set of R7 and R8 photoreceptor cells present in every
ommatidium. The fly retina contains two types of ommatidia, “pale” and “yellow”, defined by different
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Figure 9: Time series of protein p1 in a mother cell and its two daughters. When t = 10000 s, the
mother cell divides into two daughter cells. The cells’ state is reset by imposing the deletion of all
existing proteins at the beginning of each cell’s lifetime. Thus, the two daughter cells start at the same
state that the mother cell did (with no proteins). Proteins start appearing in the cells approximately
after 4000 s. Sampling period is 10 s.

rhodopsin pairs expressed in R7 and R8 cells. These subtypes are randomly spatially distributed in
the retina. The choice between pale versus yellow ommatidia is made in R7 cells, which then impose
their fate onto R8 cells.

It was reported that the Drosophila dioxin receptor Spineless (SS) is both necessary and sufficient
for the formation of the ommatidial mosaic [26]. Namely, the creation of the retinal mosaic is driven
by a burst of expression of a particular gene (spineless) during a specific stage of development. This
example shows that in some cases, cells’ fate is determined by a single stochastic variable [27, 26].

The stochastic expression SS acts as a binary switch in terms of determining the cell’s fate. First,
R7 cells are stochastically divided into two subtypes depending on the concentration of SS. SS-positive
R7 cells express Rh4, whereas the remaining R7 choose the opposite fate and express Rh3 by default.
Second, only those R7 cells that did not express SS in sufficient amounts retain the ability to induce
the R8 cell fate, where gene Rh5 is expressed, whereas if SS is sufficiently expressed, R8 cells wont be
influenced by R7 cells and express gene Rh6 by default.

Here we implement the model proposed in [27] that accounts for all the features described in [26].
The stochasticity of the choice of the pathway of differentiation of each cell in our model is in the

random assignment of the quantity of SS at the beginning of the simulation.
This model is an example of a gene regulatory system capable of probabilistic regulation that leads

to a differentiated state, out of two possible fates, which remains stable from there on.
Following [27] we simulate the following set of reactions:
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RNAp + Pro Rh3 0.1−→Pro Rh3(1) + RNAp(20) + p Rh3(100) (27)

RNAp + Pro Rh40.00001−→ Pro Rh4(1) + RNAp(20) + p Rh4(100) (28)

RNAp + Pro Rh4 SS0.05−→Pro Rh4 SS(1) + RNAp(20) + p Rh4(100) (29)
∗p Rh3 +∗ p Rh3 + RNAp + Pro Rh50.001−→Pro Rh5(1) + RNAp(20) + p Rh5(100) (30)

RNAp + Pro Rh6 0.1−→Pro Rh6(1) + RNAp(20) + p Rh6(100) (31)

SS + Pro Rh4
1

À
0.1

Pro Rh4 SS (32)

p Rh3 + Pro Rh5
1

À
0.1

Pro Rh5 p Rh3 (33)

Pro Rh3 + p Rh4
1

À
0.1

Pro Rh3 p Rh4 (34)

Pro Rh6 + p Rh5
1
À
0.1

Pro Rh6 p Rh5 (35)

p Rh3 0.01−→ ∅ (36)

p Rh4 0.01−→ ∅ (37)

p Rh5 0.01−→ ∅ (38)

p Rh6 0.01−→ ∅ (39)

Pro Rh3 p Rh4 0.01−→ Pro Rh3 (40)

Pro Rh6 p Rh5 0.01−→ Pro Rh6 (41)

Pro Rh5 p Rh3 0.01−→ Pro Rh5 (42)

Notice that reaction 29 has two “virtual” substrates (∗p Rh3). These are virtual in the sense that
they are not consumed in the reaction although they do contribute to the calculation of that reaction’s
propensity (according to the standard SSA). For details refer to the Manual.

In this particular case, the use of these two virtual reactants causes the propensity of that reaction
to be proportional to the square of the concentration of p Rh3. As this substance quantity increases,
the more likely if for this gene (Pro Rh5) to express.

Figure 10: Gene regulatory network model [27] that controls the differentiation pathway of cell types
Rh7 and Rh8, which will give rise to either cells Rh3 and Rh5 or Rh4 and Rh6. Genes colored grey
are those active for each of the two cell types. The gene responsible for expressing protein SS, controls
which of the differentiation pathways the cells follow. When grey, its expression is above the necessary
threshold for the cell to commit to differentiate to cell type Rh4.

Additionally, in the reactions file, a random number between 1 and 100 is generated from a uniform
distribution. If this number is larger than 30 then SS is given an initial quantity of 1. Otherwise, it
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is 0. The model is simulated by the following command line: “NCellsGen Model FlyEye.g 100 10000
10”.

In Fig. 11, we present the time series from a case where SS = 1 at the beginning of the simulation,
while in Fig. 12, we present the time series from a case where SS = 0 at the beginning of the simulation.

Figure 11: Proteins time series of the gene regulatory network that controls the differentiation pathway.
In this case, due to the existence of SS in the cell, the proteins at high levels are p Rh4 and p Rh6
(resulting that this specific cell will be a “yellow” ommatidia).

Due to how the model was set up, namely, that the initial quantity of SS (present or absent)
is determined randomly, from a uniform distribution, when simulating many cells, one obtains the
measured ratios of “yellow” and “pale” cells (70% yellow and 30% pale). Since all cells differentiation
fate is determined solely by their internal gene and proteins network dynamics, the spatial distribution
of these two cell types is also random.

As said, this model aimed to mimic experimental studies [26] that suggest that the retinal mosaic
is defined by the stochastic expression of a transcription factor (SS).

However, we point out that CellLine can also easily model differentiation lineages where differ-
entiation is triggered by some external signal (e.g. addition of some chemical substance). A simple
modification of the present model, such as assuming that SS is a substance external to the cell (e.g.,
added at a given moment in a quantity following some distribution), rather than produced by the cell,
would be a good example of a model where cells’ differentiation pathways are externally controlled.

5 Discussion

CellLine captures the stochastic nature of the real processes occurring in the cells. Also, it allows
modelling complex multi-step reactions, such as transcription and translation, as single step multiple
time delayed reactions [5], simplifying significantly computational processes.

NCellsGen module can simulate, from a single file of reactions, as many cells as desired. It allows
the modelling of experimental measurements at the population level, simulating each individual cell’s
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Figure 12: Proteins time series of the gene regulatory network that controls the differentiation pathway.
In this case, due to the lack of SS in the cell, the proteins at high levels are p Rh3 and p Rh5 (resulting
that this specific cell will be a “pale” ommatidia).

dynamics independently and each having a time series as output. This can be used to, for example,
observe in detail the average behavior of a given cell obtained in a lineage growth.

Experiments are usually performed on many cells. In general, each cell of the population can
be made unique by CellLine. For example, cells can have distinct rate constants, time delays or
initial concentrations of any given substance. Even when identical in every feature, because CellLineś
dynamics is based on the delayed SSA and each cell is given a random seed, the stochastic nature of
the dynamics results in identical cells having distinct behaviors.

The main module of CellLine (CellLineGen) allows the simulation of cell lineages. Starting from a
single cell, the user defines its lifetime and how many generations to simulate. Each cell of the lineage
is provided a unique random seed. At the end of its lifetime, each cell divides into two daughter
cells. Daughter cells inherit any changes that occur during its mother cell’s lifetime. For example,
here we showed how P53 gene duplication events are propagated through the branches of the lineage.
Importantly, CellLineGen keeps track of the lineage’s total lifetime. Therefore one can, in the initial
reactions file, set up perturbations to occur at a given generation of the cell lineage. For example, one
can set up a substance X, to be introduced at time 3*T (where T is each cell’s lifetime). This event
can also have a random nature, i.e., a probability of being introduced at that given moment.

These features make CellLine capable of simulating a wide variety of virtual experiments. To our
knowledge, no previous simulator currently exists that can automatically simulate cells’ dynamics in
the context of a cell lineage.
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