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A bstract

Java has multiple inheritance of interfaces, but only single inheritance of code. 

This situation leads to code being duplicated in Java library classes and ap­

plications. We describe a generalization of a Java Virtual Machine  (JVM) to 

support multiple inheritance of code.

Our approach places code in interfaces, w ithout requiring language syntax 

changes or compiler modifications. In our extended JVM, we use interfaces to 

represent either new types of interfaces with code or traditional interfaces in 

Java. We define and implement a super call mechanism resembling the one in 

C + + , in which the programmer can specify an inheritance path  to  the desired 

superinterface implementation. We introduce a simple notation for super calls 

to interfaces. Furthermore, we develop scripts th a t allow a programmer to use 

multiple code inheritance with existing Java compilers.

We have modified a JVM to support multiple code inheritance. Our imple­

m entation does not affect the running time or the semantics of standard single 

inheritance Java programs and executes correctly programs th a t use multiple 

inheritance.
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C hapter 1 

Introduction

Object-oriented programming languages are tools intended to clearly express 

the powerful features th a t define the object-oriented programming paradigm, 

in an attem pt to better model real-world phenomena. Among features such 

as encapsulation, polymorphism, and inheritance, the la tte r distinguishes it­

self as one of the most im portant mechanisms for organizing, building and 

reusing types in a programming environment. In the absence of inheritance, 

types are independent and they are constructed w ithout taking advantage of 

possible commonalities; the programmer has to explicitly ensure eventual con­

sistency among similar types. Before introducing the concept of multiple code 

inheritance, we explain the notions of type and inheritance.

In general, the term  type is used to describe a set of possible values th a t 

obey certain imposed rules (i.e., contain common features, such as a set of 

operations). Therefore, a type consists of two notions: value (or state) th a t 

varies across instances of the type and a set of common operations for the 

type. When a variable of a given type is declared, the variable is expected to 

behave in a certain manner according to the type it belongs to. For example, 

the m athem atical notion of integer assumes a specific set of operations for all 

its values. The binary operation + sums two integers and returns an integer as 

the result of the com putation. The notion of string  (series of characters) differs 

from integer in both its set of operations and the nature of its stored data. The 

binary operation + has the same syntax as the addition operation for integers, 

but it has a different semantics (i.e., concatenation). Moreover, there are op-

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



erations for one type which do not make sense for another type: the operation 

which returns a character at a given position in a string, char At ( in d e x ) . has 

no analog in the integer type.

In order to understand inheritance [2], some of the underlying concepts of 

object-oriented languages have to be defined: objects, classes, interfaces, and 

messages. Their interactions help programmers to model various real-world 

situations in software applications.

An object is a conglomerate of behavior (set of operations) and data (state). 

The data  of an object, represented by variables, can be modified through 

behavior, represented by methods (each m ethod can be further split into a 

method signature and a method body). Objects interact with each other by 

passing messages which, depending on the type of their receiver object (and 

possibly on the type of arguments), can trigger specific method executions. A 

class can be seen as a prototype of all objects with the same type of variables 

and behavior. An interface is a contract containing only method signatures 

and constant declarations. Each class implementing an interface has to meet 

the requirements of the contract: it has to  eventually implement (i.e., provide 

method bodies for) all the methods declared in the interface it implements. 

Unlike classes and interfaces, primitive types are non-object types. Since we 

are interested in the mechanism of object inheritance, we will ignore the prim ­

itive types in our discussion below.

We use the term  p ro p e r ty  (or fe a tu re )  of an object to refer to any com­

bination of method signatures, method bodies, or data for th a t object. Method 

signatures (operations or prototypes) constitute all the messages tha t can be 

sent to an object of a type, method bodies (code) are the methods th a t provide 

an implementation for the signatures defined in th a t type, and data (instance 

variables, state, or attributes) represent the information stored, not computed, 

in the object. Java uses the interface and class language constructs to group 

objects with this variety of properties. Interfaces are groups of method signa­

tures. Classes consist of method bodies and data.

2
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ClassInterface

Interface-type Data-typeCode-type

Figure 1.1: Type distinction in Java.

1.0.1 A V iew  of O b ject T ypes

In order to better individualize, separate, and exploit these three kinds of 

properties, we introduce three new language constructs: interface-type de­

fines the operations for a group of objects, code-type associates code with each 

operation of the interface-type th a t it implements, and data-type describes 

the data representation (the data  layout of objects th a t implement code-types 

for an interface-type) and supports object creation.

It is desirable to  design and implement software tha t explicitly differenti­

ates among these concepts. The m otivation for and advantages of separate 

language mechanisms for these concepts are described by Leontiev, Ozsu, and 

Szafron [19] [20]. Unfortunately, most popular object-oriented programming 

languages do not entirely separate these three concepts. For example, Java 

has two language constructs, interface and class, th a t partially separate these 

three concepts (as shown in Figure 1.1), whereas Smalltalk and C + +  combine 

all three concepts into a single class construct. Brad Cox deliberately did not 

provide the Objective-C programming language with multiple inheritance be­

cause he believed tha t, while inheritance was an implementation tool, it alone 

was of little help in specifying classes, both statically (how they fit, into their 

environment) and dynamically (what tasks they can actually perform). As 

it was defined, inheritance did not alleviate “the lack of robust specification 

tools for software” [6].

Our long-term goal is to provide separate language mechanisms for each of

3
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these concepts (Figure 1.1). Our short-term  strategy is to explicitly model the 

three separate concepts in existing popular programming languages to evaluate 

the utility of concept separation and to increase the demand for separation in 

future languages. This dissertation describes a successful attem pt to explicitly 

model these three concepts as separate language constructs in Java, using 

existing language constructs.

1.0.2 A V iew  of In h e ritan ce

The term  sub-type describes any specialization of a type and is represented 

by an arrow in a class, interface, or primitive type (parent type or super-type) 

diagram. Sub-types can modify properties of super-types and can also add 

new ones. However, a sub-type cannot remove a property from a super-type.

W hen objects of different types (interface-type, code-type, or data-type) 

have common features, inheritance [-33] provides a mechanism to reuse some 

features from a type in another type. It also organizes and builds new types 

based on existing ones, reducing the number of declarations and the amount 

of executable code th a t must be written.

W ith respect to the number of possible direct super-types of a type in an 

inheritance diagram, two kinds of inheritance are distinguished: single inher­

itance and multiple inheritance. Single inheritance allows a type to have at 

most one direct super-type. Multiple inheritance allows a type to have more 

than  one direct super-type, so th a t the child type represents a combination 

of features from two or more parent types. In C + + , “the original and fun­

dam ental reason for considering multiple inheritance was simply to  allow two 

classes to be combined into one in such a way th a t objects of the resulting 

class would behave as objects of either base class” [31]. A classic example 

of multiple inheritance is illustrated in Figure 1.2 and can be found in the 

standard io s tre am  library in C + + . An object of class io s tre am  is both an 

is tre a m  and an ostream , because it provides functionality to perform in p u t 

and o u tp u t operations with a stream. Moreover, except for the constructor 

and destructor, io s tream  inherits all its operations from its parent classes 

is tre a m  and ostream .

4
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ostreamistream

iostream

Figure 1.2: Example of multiple inheritance in C + + .

There are three distinct useful ways to perceive inheritance in object- 

oriented programs: interface inheritance, code inheritance, and data 

inheritance.

First, we use the term  interface inheritance to denote the situation 

when a sub-type inherits the operations of its super-types. The principle of 

substitutability states tha t if a language expression contains a reference to an 

object whose static type is A, then an object whose type is A or any sub- 

type can be used instead. Interface inheritance relies only on substitutability 

and does not imply th a t code or d a ta  are inherited. Java uses an interface 

(Figure 1.1) to  implement the concept we have called an interface-type. W ith 

this terminology, Java currently supports multiple interface-type inheritance 

or multiple interface inheritance.

Second, we use the term  code inheritance when a code-type reuses the 

binding between an operation and the associated code in its paren t’s code-type. 

Code inheritance can be used independently of data representation since there 

are many operations th a t can be implemented by simply calling more basic 

operations. Each object-oriented language implements code-types in its own 

way. In Java, C + +  and Smalltalk, a class is used as a code-type. However, 

in all three languages, classes have two other responsibilities, namely data 

representation and object creation. In C + +  and Smalltalk, the class also 

has the interface-type responsibilities th a t are done in Java interfaces. Java 

and Smalltalk have only single code inheritance, but C + +  has multiple code 

inheritance through classes. In this dissertation, we show a novel way to 

implement multiple code inheritance in Java. This is the essential step to meet

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



our goal of modeling each of these three concepts separately in Java using 

existing language constructs.

Third, we use the term  d a ta  in h e r ita n c e  when a sub-type reuses data 

(not code) from the super-type. Data inheritance allows a data-type to reuse 

the object layout of a parent data-type. Of course, classes in Java, C + +  

and Smalltalk have both the data  layout and object creation responsibilities. 

Unfortunately, they also have other responsibilities th a t are better suited to 

the other two language mechanisms th a t we have called interface-types and 

code-types. Neither Java nor Smalltalk supports multiple data  inheritance, 

but C + +  does.

Since popular programming languages combine code and data, they either 

support both multiple code inheritance and multiple data  inheritance (C + + ), 

or single code inheritance and single data  inheritance (Java and Smalltalk). 

We use the term  im plem entation inheritance to refer to combined code and 

data inheritance. The term  im plem entation-type is used for a construct 

th a t combines a code-type and a data-type.

1.0.3 T ypes in  P ra c tic e

In Chapter 2, we describe how existing programming languages w ithout mul­

tiple code inheritance use different alternatives to share code from several 

types. They all suffer from one or more of these problems: repeated code 

tha t bloats the code-base, mistakes when copying similar code, an increased 

delegation overhead by sending too many messages, and a requirement tha t 

all source code must be available. The separation of inheritance concepts is 

also compromised. For example, in certain situations both interface-type and 

code-type access is necessary for the programmer to modify the code. Multiple 

code inheritance, on the other hand, simplifies the work of the programmer, 

supporting simple definitions of complicated models. Languages such as C + + , 

Clos, Cecil, and Dylan benefit from using this concept.

In the process of analyzing the separation of inheritance concepts as ap­

plied to Java, we explored several possibilities in order to achieve multiple 

code inheritance. One option is to represent code-types by abstract classes.

6
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However, the example from Figure 1.2 illustrates th a t it is often necessary 

to inherit code from multiple code-types. If code-types were represented as 

abstract classes, we would need to modify Java so th a t an abstract class can 

inherit from multiple superclasses.

On the other hand, if we use interfaces to represent code-types, we can take 

advantage of Java’s current rnultiple-inheritance of interfaces. The problem is 

simplified to modifying Java to support code in interfaces. We solved this 

problem by making straightforward and localized changes to the .Java Virtual 

Machine (JVM).

Our approach accesses code in superinterfaces and superclasses using the 

same inheritance mechanism. We do not support multiple da ta  inheritance, 

since data  cannot be declared in interfaces. However, as will be shown in 

the next Chapter, multiple da ta  inheritance is the cause of many complica­

tions in the implementation of multiple-inheritance in C + + . At first glance, 

it may appear th a t the opportunities for multiple code inheritance without 

multiple data inheritance are few. However, as the examples throughout this 

dissertation show, th a t is not a concern: all references to  data  are replaced by 

abstract accessor m ethod invocations, th a t are implemented down the hierar­

chy in data-types (concrete classes).

Our implementation has several advantages: it facilitates code re-use, it 

supports separation of inheritance concepts, and it improves expressiveness 

and clarity of implementation.

1.1 R esearch C ontributions

The research contributions of this dissertation include:

1. The first im plem entation of multiple code inheritance in Java is provided. 

It is based on the novel concept of adding code to a new type of interface 

called a code-type. Only straightforward and localized modifications are 

made to the JVM to support code within the interfaces. All existing 

programs continue to work as before and suffer no performance penal­

ties. No changes need to be made to the syntax of Java to use multiple

7
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code inheritance, so no compiler changes are necessary. However, syntax 

changes th a t would simplify coding are proposed for the future.

2. We show how multiple code inheritance reduces the amount of identical 

and similar code (such as in the standard libraries) to simplify program 

construction and maintenance.

3. We have also defined and implemented a super call mechanism that 

resembles the one in C + + , in which programmers can specify an inher­

itance path  to the desired super implementation. We have introduced 

a simple notation for these super calls th a t does not require compiler 

support and proposed a simple syntax for future compiler support.

1.2 D isserta tion  O rganization

In Chapter 2, we review the current s ta te  of multiple inheritance. In Chapter 

3, we describe the current implementation of those parts of the JVM th a t are 

involved in m ethod dispatch. In Chapter 4, we describe how we modified the 

JVM to support code in interfaces and how this code is dispatched. This idea 

is the key to our implementation of multiple code inheritance. In Chapter 5, 

we describe the changes necessary to  support a generalization of the super 

operation for multiple inheritance. In C hapter 6, we describe the experiments 

we conducted to validate our approach. In Chapter 7, we discuss the mecha­

nism th a t the programmer uses to apply multiple code inheritance and propose 

future syntax changes to simplify this mechanism. Finally, in Chapter 8 we 

present future work and provide a summary.

8
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C hapter 2

T he S ta te  o f M ultip le  
Inheritance

This Chapter describes the state of m ultiple inheritance from four different 

perspectives. First, it presents some of the problems associated w ith multiple 

implementation inheritance which have resulted in its absence from many pro­

gramming languages. Second, two modalities are described as substitutes for 

multiple inheritance. Third, the advantages of using multiple inheritance are 

listed. Finally, a summary of how various programming languages th a t provide 

multiple inheritance cope with the issues introduced by multiple inheritance 

is presented at the end of this Chapter.

2.1 P roblem s w ith  M u ltip le  Im p lem entation  
Inheritance

When migrating from single to multiple implementation inheritance, new is­

sues arise due to the existence of several potentially unrelated parents (super­

types) from which a child (sub-type) inherits. It may be difficult to determine 

which particular version of an intended common feature will be propagated 

from a super-type to a sub-type, if the sub-type does not provide a correspond­

ing feature of its own. Access to each feature from super-tvpes is checked for 

ambiguity - a situation in which an expression used to  access a property from 

the super-type may not properly differentiate the contributing parent. Five 

major problems in ambiguity due to multiple implementation (code and data)

9
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alpha()

aipha()alpha()
TypeBTypeA

TypeC

TypeBTypeATypeA TypeB

TypeDTypeD

TypeCTypeC

(a) Simple ambiguity. (b) Diamond anibigu- (c) Special case ambi-
ity. guity.

Figure 2.1: O peration ambiguities.

inheritance are analyzed separately, followed by our solution to each of them. 

The problems are illustrated using examples from C + +  [12], a language tha t 

supports multiple implementation inheritance.

2.1.1 P ro b lem  1: O p era tio n  C ode A m biguity

Figure 2.1(a) illustrates the case in which different code for the m ethod a lp h a () 

is provided in both super-types TypeA and TypeB.

If more than  one super-type contains operations with identical names, there 

has to be a way to determine whether such situations lead to code selection am­

biguities and, if so, eliminate them. An ambiguity occurs when re-definitions of 

a code implementation for operations from a super-type occur on several paths 

through the inheritance hierarchy. Different programming languages th a t sup­

port multiple code inheritance use different approaches to solve this problem. 

Some languages choose a particular super-type and qualify the ambiguous 

name with th a t super-tvpe name. O ther languages use renaming techniques.

Figure 2.1(a) illustrates the case in which different code for the method 

a lp h aO  is provided in both super-tvpes TypeA and TypeB.

Since TypeC does not have an a lp h aO  of its own (denoted by “- ” ), when 

a lp h aO  is called on an object of dynamic type TypeC, a dilemma is encoun­

tered as to which implementation of a lp h aO  should be inherited. In C + + , 

the use of an ambiguous function generates a compiler error. To eliminate the

10
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error, a programmer must provide code for the ambiguous method a lp h aO  in 

TypeC. If the code in one of the super-types is wanted, the implementation of 

a lp h aO  in TypeC can make a call to the appropriate super-type using a scope 

resolution operator (such as the : : in the C + +  approach), but a m ethod that 

contains this call must be provided by the programmer.

Figure 2.1(b) shows a more complicated situation. An invocation of a lphaO  

on an object whose dynamic type is TypeC may also be considered ambiguous 

since it could be argued th a t TypeC inherits code for a lp h aO  indirectly from 

TypeD through two different paths, via TypeA and via TypeB. However, since 

the code is the same, there is no real ambiguity. C + +  uses a modified multiple 

sub-objects approach for inheritance; multiple copies of a parent object can oc­

cur in the child object if, for example, the child inherits the parent indirectly 

on two different paths, as shown in Figure 2.1(b). Multiple sub-objects is the 

default, but in certain cases the program m er can specify th a t only one copy 

should be used. In C + + , for the default inheritance case, this situation is 

considered an ambiguity.

Figure 2.1(c) shows an even more complicated situation. An invocation of 

a lp h aO  on an object whose dynamic type is TypeC may also be considered 

ambiguous since it can be argued th a t TypeC inherits code for a lp h aO  directly 

from TypeA and different code for a lp h aO  indirectly from TypeD through 

TypeB. In C + + , the compiler reports this as an ambiguity (for the default 

inheritance) and the programmer must define code for a lp h a O  in TypeC. 

In Pang et al. [24] it is argued th a t, since the code for a lp h aO  in TypeD 

is masked along at least one path by the code for a lp h aO  in TypeA, there 

is not an ambiguity and the code from TypeA is inherited in TypeC. This 

less conservative definition of ambiguity is especially im portant if a language 

supports multi-clispatch [8] [9].

O u r so lu tio n : For the situation in Figure 2.1(a), we mimic the C + +  so­

lution. For the situations in Figure 2.1(b) and 2.1(c), we can implement either 

the C + +  solution or the less conservative version. Currently, we are using the 

less conservative definition of ambiguity, since we are also interested in Java 

m ulti-dispatch [4]. Because we do not yet have adequate compiler support for

11
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char aint aint aint a
TypeA

TypeC

TypeB TypeA

TypeC

TypeB

(a) Data with the same type. (b) D ata with different types.

Figure 2.2: D ata naming ambiguities: Case 1.

multiple code inheritance in Java, instead of signaling ambiguities a t compile­

time, we detect them at load-time (when the data structures associated with 

the sub-type are built) and, at th a t point, we throw an exception. If no am­

biguities are detected, we proceed by executing the unambiguous method; the 

mechanism of choosing the m ethod to invoke will be detailed in subsequent 

Chapters.

2.1 .2  P rob lem  2: D a ta  N a m in g  A m b ig u ity

In languages with multiple inheritance, in addition to potential operation name 

clashes, data  name clashes can also occur. Some languages m aintain separate 

copies of data inherited from different super-types, while other languages merge 

like-named data together in the sub-type. If super-types contain common data, 

it has to be decided which copy of a da ta  item coming from more than one 

path to use in a sub-type. For example, in Figure 2.2(a), if TypeC should 

only inherit one copy of the variable a, it does not m atter if the copy “comes 

from TypeA” or “comes from TypeB”, since they are both declared as in ts . 

However, in Figure 2.2(b) it m atters, since the variable a is an i n t  in TypeA 

and it is a char in TypeB.

In C + + , two uses of multiple da ta  inheritance are distinguished with re­

spect to the dependence relationship among super-types. F irst, if there are 

no dependencies among the super-types, then the object of the final sub-type 

must contain sub-objects fo r  each super-type. Consider how inherited data 

item a is accessed in TypeC of Figure 2.2. Since there are sub-objects for each

12
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int dint dint d

alpha () {
, d = 0; // no ambiguity

alphaQ {
d = 0 ;// ambiguity: which d?

TypeA

TypeC

TypeD

TypeB

TypeD

TypeA

TypeC

TypeB

TypeD

(a) Several copies in the sub-type from the (b) One copy in the sub-type from the 
common super-type. common super-type.

Figure 2.3: D ata naming ambiguities: Case 2.

super-type, two copies of variable a  are required in TypeC. Since there are two 

copies of a, when a  is accessed in TypeC, an ambiguity occurs. As illustrated in 

Figure 2.2(b), data  items may have identical names regardless of their types. 

C + +  resolves both cases by using the scope resolution operator : : (TypeA:: a 

represents the i n t  a in the TypeA part of the TypeC object and TypeB: : a 

represents the c h a r a  in the TypeB p art of the TypeC object).

Second, if there  are dependencies am ong the  super-types (two or more 

inherited  types share a  com mon type), the program m er has a choice. This 

kind of inheritance is also called repeated inheritance. By default, even if 

there is a common super-type (TypeD in Figure 2.3(a)) in the hierarchy, the 

sub-type (TypeC) will also contain several (two, in th is exam ple) sub-objects 

of th a t common super-type. Consider the case in which TypeD contains a 

d a ta  i n t  d. TypeA, TypeB, and TypeD are norm al C + +  classes w ith the 

usual inheritance relationship , and consequently there are two copies of i n t  

d in TypeC, one inherited  from TypeD via TypeA and the  o ther inherited from 

TypeD via TypeB. If a m ethod a lp h a  0  in TypeC accesses TypeD’s d a ta  item  d, 

(for example, a lp h a 0  { d = 0 ;}), then an am biguity arises: it is no t clear which 

of the  two copies of i n t  d in TypeC to  use, the one inherited  via TypeA or the 

one inherited via TypeB. C + +  uses the scope resolution operato r : : to pick

13
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beta()TypeA

TypeC

TypeB

Figure '2.4: Code layout ambiguity.

one.

Alternately, the C + +  programmer can specify that, only one object of the 

common super-type resides in the final sub-type, the same object being shared 

in all sub-types. The C + +  solution to resolving ambiguities is the following: 

if the derived class, TypeC in Figure 2.3(b), has to inherit only one copy of the 

data from the common class, TypeD, then the interm ediate classes, TypeA and 

TypeB, need to declare the inheritance as virtual. Hence, there is just one copy 

of in t  d in TypeC, so accessing variable d does not generate an ambiguity.

O u r so lu tio n : This problem does not exist in our implementation because 

we do not support multiple data  inheritance.

The next two problems relate to multiple implementation (code and data) 

inheritance interaction. They are purely compiler issues regarding the layout 

of code and data, so they are not visible to  the user. However, these problems 

must be resolved.

2.1.3 P rob lem  3: C ode L ayout A m b igu ity

In the example from Figure 2.4, a problem arises from the different layout 

of the code in the sub-type (TypeC), with respect to  the layout of the same 

code in the super-types (TypeA and TypeB). In the single inheritance situation, 

the same offset (i.e., 0) can be used to access the code for an operation in a 

sub-type and in its (direct or indirect) super-type. This is not the case with 

multiple code inheritance. When a sub-type inherits operations from several 

super-types, there is a problem in trying to  set an order on the operations in 

the sub-type. In the example from Figure 2.4, should a lp h a 0  be placed before

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



b e ta O  in TypeC’s da ta  structures or after b e ta O ?  Regardless of our choice, 

we still have different offsets for one of the operations (b e ta O  in Figure 2.4) 

in the super-tvpe (offset 0 in TypeB) as compared to the sub-type (offset 1 in 

TypeC). This makes the single inheritance constant-index approach impossible 

for multiple inheritance.

Whenever we access methods of either TypeA, TypeB, or TypeC, the com­

piler must compute the offset of each m ethod in the type’s m ethod table (vir­

tual function table in C + + ). At run-tim e, this offset is used to access the 

appropriate m ethod in the method table of the dynamic type of the receiver, 

even though the dynamic type of the receiver is not known at compile-time. 

For example, assume the method table in TypeC has the methods from TypeA, 

followed by the methods from TypeB, followed by any methods declared in 

TypeC as shown in Figure 2.4. The compiler can insert an offset of 0 into the 

code at a call-site for a lp h a (). At run-tim e, this offset can be used to access 

the code for a lp h a  () in TypeA or TypeC depending on the dynamic type of the 

receiver. However, at a call-site for b e t a O ,  the compiler must select an offset 

of 0 to match the m ethod table in TypeB or an offset of 1 to match the m ethod 

table in TypeC. The solution in C + +  is to  use the offset of the super-type, but 

add a constant d e l t a  to the method table origin before adding the offset. The 

d e l ta  must be computed at run-time ( d e l t a  =  0 for TypeB and d e l t a  =  1 for 

TypeC), since its value depends on the layout of the super-tvpe and sub-type.

O u r so lu tio n : Our approach is based on interface method tables tha t 

already exist in .Java. In subsequent Chapters, we provide details about the 

interaction of da ta  structures used to resolve multiple code inheritance in Java.

2.1.4 P ro b lem  4: D ata  L ayout A m b igu ity

In the single inheritance case, data  declared in a sub-type are concatenated 

with the duplicated da ta  from the super-type in the sub-object image; there­

fore, a data  item is located at the same offset in all objects of the super-tvpe 

or sub-types. Since in the multiple inheritance case there is more than  one 

super-type, a potential problem arises in establishing the layout of da ta  in 

sub-type objects.

15
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(a) D ata layout ambiguity. (b) The layout of a TypeC object.

Figure 2.5: D ata layout issues.

The previous problem (Problem 3, Section 2.1.3) showed th a t method code 

could not be located at a fixed offset (table-index). A similar situation can 

occur for data. The offset of the da ta  in the object image can change due 

to the same data  being inherited from several possibly unrelated common 

parents. More importantly, in the case of multiple inheritance, the copies 

of the inherited data  in the sub-object now have different offsets than  the 

offsets th a t were known when the code which used them  was compiled in 

the super-type. The situation in Figure 2.5(a) illustrates the case in which 

the super-types are not related. In C-l—F, an object of TypeA contains an 

entry for each instance variable (data item ). In our example, the only entry 

would be for the i n t  a. Objects of sub-types (such as TypeC) are formed 

by concatenating the data of the super-type with their own data. In this 

case, a TypeC object would have two slots, one for a and one for b. It can 

be assumed th a t variable b follows variable a in TypeC’s object layout. For 

example, if we have a method a lp h a () {b=0;} in TypeB, when we compile it, 

we obtain the offset 0 for aTypeB.b (the offset of b in TypeB). W hen we invoke 

aTypeC. a lp h a () , the offset of aTypeC.b is 1 (the offset of b in TypeC), so it 

would be wrong to just use the compiled code for a lp h a  () th a t uses the offset 

0 even though TypeC is a sub-type of TypeB. This problem is more serious than 

the code layout ambiguity since each m ethod compiled in a type (TypeB) tha t 

references instance variables can have the wrong data  offsets, if it is applied 

to a sub-type (TypeC) object th a t inherits this code. The solution provided
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Figure 2.6: Super call ambiguity.

by C + +  is the following: the tMs pointer (Figure 2.5(b)) which points to the 

start of the object layout is moved before the code is executed. For example, if 

the receiver object has TypeC as its dynamic type, the this pointer is moved to 

point to the start of the TypeB object when the m ethod is called. An offset of 

0 to access b now accesses the same b in a TypeC object, since the this pointer 

has been incremented by one word.

Our solution: Our approach to multiple code inheritance in Java does 

not support multiple da ta  inheritance, so this problem is not applicable in 

our implementation of multiple code inheritance. Multiple d a ta  inheritance 

is a large source of problems and is not as useful as the code inheritance 

counterpart. Inheritance is beneficial when re-using code (more than  it is for 

data), because the effort of programmers is mainly focused on implementing 

m ethod bodies.

2.1.5  P rob lem  5: S uper C all A m b igu ity

The m ethod code in a sub-type often refines the code of its super-types by 

adding some statements. In many object-oriented programming languages, 

this is accomplished by sending a message to the super object. Whenever 

a message is sent to super, the m ethod lookup for th a t message starts  in the 

super-type of the type th a t the m ethod currently executing belongs to, instead 

of in the type of the receiver object. There are other approaches used to refine 

methods from the super-types, and some of them are shown in Table 2.1 of 

Chapter 2. However, super is the most popular refinement technique. When 

multiple inheritance is used, ambiguity problems with super calls may appear
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due to the presence of multiple super-tvpes. Figure 2.6 shows a refinement 

of a lp h a () in TypeC th a t contains an ambiguous super call. It is not clear 

whether the a lp h a () m ethod in TypeA or TypeB should be called. Note tha t an 

ambiguous super call can exist even when no ambiguity occurs for the method 

tha t contains the super.

In C + + , the super method call is qualified with the : : scope resolution 

operator. The lookup starts from the qualifying class.

Our solution: We extend the capability of the Java super  keyword by 

specifying the superinterface from which the lookup for the given method 

starts. If code is found in the specified interface, then th a t code is executed. 

Otherwise, the superinterfaces are searched recursively. In the presence of 

ambiguities we throw an exception at load-time. If the lookup fails, we also 

throw an exception. We propose the syntax super (In te rfa c e A ) . a lp h a () for 

the future, which specifies the interface from which the lookup for method 

a lp h a  () begins. Since our current implementation makes no language syntax 

changes, for now, we use a special marker in the source code ju s t before the 

super call as described in Chapter 5.

2.2 A ltern atives to  M ultip le Inheritance

Since Java does not provide multiple code inheritance , two idioms are com­

monly used to model complex applications th a t normally require this mecha­

nism. Java libraries constitute a good source of examples in which these idioms 

are used in order to compensate for the lack of multiple code inheritance in 

Java. Figure 2.7 illustrates the hierarchical relationships among a few classes 

and interfaces from the ja v a . io  library.

2.2.1 C ode R ep e titio n

The simplest way to substitu te for multiple inheritance is to repeat the code 

from the desired types into a sub-tvpe, instead of simply inheriting it. The 

obvious drawback of this approach is an increase in code size. The hidden 

drawback is code deviation in which changes to a m ethod are only made in
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OutputStreamInputStream DataOutputDatalnput

DatalnputStream RandomAccessFile DataOutputStream

Figure 2.7: Some classes from the  j a v a . i o  library.

/ /  ja v a . io .D a ta ln p u tS t re a m  and java.io .R andom A ccessF ile  
p u b l ic  f i n a l  f l o a t  r e a d F lo a tO  throws IOException { 

r e t u r n  F l o a t . i n t B i t s T o F l o a t ( t h i s .r e a d l n t ( ) ) ;
______________________________________________________________________

Figure 2.8: Duplicate code in j a v a . i o  library.

one copy, so th a t subtle bugs are introduced. Another disadvantage is th a t the 

source code must be available to the user for copying. Finally, the separation of 

inheritance concepts th a t we aim for is deteriorated, since both the interface- 

type and code-type levels are necessary for the user to  be able to perform the 

required modifications.

The j  a v a . io  library classes contain several examples of repeated code. One 

of them is the following: the classes D atalnpu tS tream  and D ataO utputStream  

implement the interfaces D a ta ln p u t and D ataO utput respectively. The class 

RandomAccessFile implements both D a ta ln p u t and D ataO utput, as illus­

trated  in Figure 2.7. Much of the code th a t is in RandomAccessFile is identi­

cal or similar to the code in D atalnpu tS tream  and D ataO utputStream . As a 

specific example of identical code, consider the m ethod re a d F lo a tO  shown in 

Figure 2.8, which appears both in D atalnpu tS tream  and RandomAccessFile. 

The methods re a d F u lly (b y te  b [ ] )  and readD oubleO  are also identical.

There are also many other similar methods, such as read B y teO , shown 

in Figure 2.9, which differ only in the type of the receiver of some common 

methods such as re a d Q . O ther similar methods are the following: 

readU nsignedB yte( ) ,  re a d F u lly (b y te  b [ ] , i n t  o f f ,  i n t  l e n ) , 

re a d S h o r tO , readU nsignedShort () , readC harO  , and r e a d ln t  (). A num-
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/ /  j a v a . i o . D atalnputStream  and java.io .R andom A ccessF ile  
p u b l ic  f i n a l  by te  readB yteO  throws IOException {

i n t  ch = t h i s . i n . r e a d O  ; 11 i n t  ch = t h i s . r e a d O ;  
i f  (ch < 0)

throw new EOFExceptionQ ; 
r e tu r n  ( b y t e ) ( c h ) ;

}__________________________________________________________________

Figure 2.9: Similar code in j a v a . io  library.

beta() alpha() beta()alpha() alpha() beta()

beta() beta() (TypeB)

TypeATypeA

TypeCTypeC TypeC

TypeATypeB TypeBTypeB

(a) (b) (c)

Figure 2.10: Delegation example.

ber of analogous identical methods can also be identified in the output stream 

classes DataOutputStream and RandomAccessFile, along with some similar 

methods th a t differ in the type of the receiver of some common methods such 

as w r i te  ( i n t ) .

2.2.2 D eleg a tio n

Delegation [35] allows an object to pass a received message to another object 

tha t is able to perform the task. This technique can be used in place of multiple 

code inheritance.

For example, the multiple-code inheritance in Figure 2.10(a) can be re­

placed by the single-code inheritance in Figure 2.10(b). In this case, each 

object of TypeC in Figure 2.10(b) has an instance variable th a t is bound to 

an object from TypeB. The method b e ta O  is not inherited in TypeC. Instead, 

it has a one-statement implementation th a t invokes the b e ta O  method in its 

sub-object of TypeB. We say that TypeC delegates b e ta O  to TypeB. In general, 

the object th a t  is delegated to may be stored as an instance variable or it may 

be passed as an extra m ethod argument, as shown in Figure 2.10(c).
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/ /  c l a s s  ja v a . io .D a ta ln p u tS t re a m

p u b l ic  f i n a l  i n t  r e a d l n t () throws IOException {
InputS tream  in  = t h i s . i n ;
i n t  ch i = i n . r e a d ( ) ;
i n t  ch2 = i n . r e a d O ;
i n t  ch3 = i n . r e a d O ;
i n t  ch4 = in . r e a d O  ;
i f  ( ( c h i  | ch2 | ch3 1 ch4) < 0)

throw new EOFExceptionO ;
r e t u r n  ( ( c h i  «  24) + (ch2 << 16) + (ch3 «  8) +

(ch4 << 0)) ;
}

Figure 2.11: Example of delegation in ja v a . io  .D a ta lnpu tS tream  class.

Unfortunately, this approach has the drawback of writing extra delegating 

methods and the overhead of sending more messages. In C + + , it has been 

discovered th a t users found difficulties when designing based on delegation [31]. 

Overall, the burden is placed on the program m er to write extra code, preserve 

the return type and param eters list of the forwarding methods, and throw s 

clauses whenever necessary. This supplem entary work (writing m ethods th a t 

only delegate responsibility) is essentially done autom atically when multiple 

inheritance is used.

The ja v a . io  library contains many examples of delegation. Figure 2.11 

shows how class DatalnputStream uses a reference (the instance variable in) 

to an InputStream to read characters th a t are assembled into an in t .  This 

is a simple example of delegation th a t is not used to replace multiple code 

inheritance.

A second example illustrates the way the j a v a . io  library copes w ith the 

absence of multiple code inheritance by using delegation. The class F i le  

(Figure 2.12) cannot simultaneously inherit from classes Object InputStream 

and ObjectOutputStream, since there is no multiple code inheritance in Java. 

However, in the implementation of readObjectO and w riteO bject() , it 

needs the code of some methods from both classes ObjectlnputStream and
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// class java.io.File

private  synchronized void
w r ite O b je c t ( ja v a . io .ObjectOutputStream s) 

throws IOException
{

s .defaultW riteO bject() ;
/ /  Add th e  s e p a ra to r  c h a r a c te r  
s .w r i t e C h a r ( t h i s . s e p a r a to r C h a r ) ;

}

p rivate  synchronized void
readO bject(java. i o . ObjectInputStream s)

throws IOException, ClassNotFoundException
{

s .defaultR eadO bject();
/ /  read  th e  p rev io u s  s e p a r a to r  char 
char sep = s .readC harO  ; 
i f  (sep != sep a ra to rC h ar)

t h i s . p a t h  = t h i s . p a t h . r e p l a c e ( s e p ,  s ep a ra to rC h a r ) ;  
t h i s . p a t h  = f s . n o r m a l i z e ( t h i s . p a t h ) ; 
th i s .p r e f ix L e n g th  = f s . p r e f i x L e n g t h ( t h i s . p a t h ) ;

}

Figure 2.12: Example of delegation in j a v a . i o .F i l e  class.

O bjectO utputStream . For this reason, an instance of one of these classes is 

passed as an argument to the m ethod th a t uses their code and the read and 

write tasks are delegated to this argument.

An alternate approach to multiple inheritance, which ultim ately results 

in delegation, is the use of inner classes inside interfaces [23]. However, this 

approach differentiates between using code from superclasses and superinter­

faces, by using inheritance along the superclass chain and a form of delegation 

along the interface chains. For a class ClassA to use code from an interface 

In te rfaceA , the programmer must explicitly declare a sub-object in ClassA 

and bind it to an instance of an inner class ClassB th a t extends an inner class 

ClassC declared in In te rfaceA .
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2.3 A dvantages o f M ultip le C ode Inheritance

Our implementation of multiple code inheritance has the following ad v an ­

tages: facilitates code re-use, supports separation of inheritance concepts, 

and improves expressiveness and clarity of implementation.

2.3.1 Facilita tes C ode R e-use

Code re-use is manifested through code decrease due to increased code shar­

ing. Multiple code inheritance can re-establish a certain degree of normality 

in the implementation of several Java applications. Commonality" in the de­

scription of classes (method signatures) exists in Java and we can promote 

those features to common parent interfaces. Since Java has multiple inheri­

tance of interfaces, it does not suffer from modeling problems. For example, 

the Java class RandomAccessFile implements the interfaces D a ta lnpu t and 

DataOutput, a,s shown in Figure 2.7. Every instance of RandomAccessFile 

can be considered as both a D a ta ln p u t  and a DataOutput. This provides 

substitutability  [14] so th a t any reference th a t is declared as a D a ta lnpu t or 

DataOutput can be bound to a RandomAccessFile.

However, Java’s lack of multiple code inheritance causes problems with im­

plem entation and maintenance. For example, even though RandomAccessFile 

implements D ata lnput and DataOutput, it cannot inherit code from these in­

terfaces. Therefore, identical code appears in more than  one class. For ex­

ample, exact copies of the implementation of re a d F lo a t  (Figure 2.8) appear 

in both RandomAccessFile and D atalnputStream . This makes the program 

larger and harder to understand.

In addition, sometimes the code is incorrectly copied and  often when 

changes are made to one copy, they are not made to all copies. In th is example, 

because multiple code inheritance was not available, the Java library design­

ers tried to simulate it by repeating and modifying the code where necessary 

in D a ta ln p u tS tre a m ,  Random AccessFile, and D ataO utpu tS tream , increas­

ing the overall code, instead of simply moving it up into the corresponding 

common super-types and  subclassing accordingly. Thus, multiple code inher-
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itance would result in a higher degree of code re-use; the programmer of a 

subclass no longer needs to be familiar with the specific implementation of the 

common operations.

Moreover, the re-use of code increases reliability, since it is common to find 

errors in repeated code when similar code is not consistent. An immediate 

consequence of code re-use is a decrease of maintenance costs.

Consider again Figure 2.9. To replace these methods by a common method, 

the line that differentiates them can be replaced by the common code: i n t  ch 

= t h i s  . source 0  . r e a d O  ,

where so u rce  () is a new accessor method th a t for D a ta ln p u tS tre a m  returns 

t h i s  . in  and for Random AccessFile returns t h i s .  The same abstraction can 

be used to share other similar methods, as shown in Section 2.2.1.

Although it would be possible to re-factor this hierarchy to make the class 

RandomAccessFile a subclass of either D a ta ln p u tS tre a m  or D ataO utpu tS tream , 

it is not possible to make it a subclass of both, since Java does not support 

multiple-inheritance for classes. A re-factoring must accompany this abstrac­

tion, since the return type of the s o u rc e  () m ethod must be specified as a single 

type th a t implements the operation, r e a d O .  The receiver of the s o u r c e () 

method call in D a ta ln p u tS tre a m  is referenced by the instance variable i n  tha t 

has static type In p u tS tre a m  (indirect superclass of D a ta ln p u tS tre a m ) .  The 

receiver of the s o u r c e () m ethod call in Random AccessFile is referenced by 

the pseudo-variable t h i s ,  which has static type RandomAccessFile.

Unfortunately, in the  current class/interface hierarchy, there is no common 

superinterface or superclass of Random AccessFile and  In p u tS tre a m  to use as 

the return  type for the s o u r c e () method. An interface m ust be added to the 

hierarchy tha t is a superinterface of In p u tS tre a m  and Random AccessFile and 

declares the r e a d O  method.

However, after all of these common m ethods have been found, code inheri­

tance has to be used to  share them. Therefore, we need a  common ancestor of 

D a ta ln p u tS tre a m  and Random AccessFile to  store the  similar r e a d  m ethods 

and a common ancestor class of D ataO utpu tS tream  and Random AccessFile 

to store the similar w r i t e  methods. Since we are sharing code, this ancestor
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should be a code-type.

The common code is ultim ately factored into two code-types. A code-tvpe 

implements the code for an interface and now a class implements the data for 

a code-type. Since there is no concept of code-type in .Java, we must use either 

an interface or a class to represent our code-types.

2.3.2 S u p p o rts  S epara tion  of In h e ritan ce  C oncepts

In addition to the increased degree of abstraction imposed by the clear separa­

tion among the three inheritance types, multiple code inheritance constitutes 

a necessary feature from a software engineering perspective “on the grounds 

th a t specification tools and implementation tools belong in a true software en­

gineers toolkit.” [30]. Programs can always benefit from having multiple views 

(designer, programmer, system adm inistrator, user) of their design. Multiple 

code inheritance exploits code sharing to develop elegant and useful software 

components.

The separation of concepts emphasizes the role of interface-types, providing 

them with enhanced capabilities and control. Our multiple code inheritance 

approach does not allow code inheritance without interface inheritance. In this 

context, an aspect of m ajor significance is the consistency of interface-types. 

In conjunction wdth polymorphism  -  a mechanism th a t supports inheritance, 

triggering several behaviors using the same interface -  inheritance perm its a 

super-type to define an interface-type for which several implementations are 

provided in the sub-types by means of code-types. W hen we lack information 

about sub-types, but we know the interface-type of the super-type, we can 

pass a reference to an object of the sub-type wherever a super-tvpe is used. 

This way we can ensure th a t only behavior specified in the interface-tvpe is 

called, the implementing types being hidden from the user.

2.3.3 Im proves E xpressiveness and  C larity  of Im plem en­
ta tio n

Multiple inheritance supports a better organization of types, for the simple 

reason that it is congruent with real-world applications which make extensive
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use of multiple features from unrelated concepts.

Since “class hierarchies can be used to organize and reason about soft­

ware entities” [6] and since it is primarily an inheritance mechanism, multiple 

inheritance also extracts knowledge from the multiple type declarations and 

enriches types by providing them with more features.

Multiple code inheritance has the capability of enhancing expressiveness 

when implementing new systems, by thinking of a type as a sub-type of sev­

eral other types. Since in our im plem entation we would like the code to  be 

inherited from the interface methods, we would also like to have a subclass­

ing relationship (code-type) which alone does not guarantee sub-typing. The 

blending of these two aspects leads to multiple specialization ( “is-a” relation­

ship [17] th a t we can find in the j a v a . i o  library: RandomAccessFile is a 

specialization of both D a ta lnpu t and DataOutput).

As multiple inheritance makes applications easier to  design (via m ultiple in­

terface inheritance) and implement (via multiple code inheritance), and equally 

easier to understand, it supports rapid prototyping and exploratory program­

ming. Multiple inheritance reduces the tim e necessary to build and m aintain 

applications. Applications are more comprehensible because the amount of 

new information is reduced. New types can be built taking advantage of ex­

isting ones, allowing for quick software development. The goal is to design 

software th a t is easy to use and modify -  reusable software. We need to have 

the tools th a t help us build reusable software, and multiple code inheritance 

is a powerful tool.

2.4 E xistin g  M ultip le C ode Inheritance Lan­
guages

We have investigated the mechanisms of multiple code inheritance in several 

programming languages in order to find out how common problems th a t oc­

curred due to multiple code inheritance were solved. One of the issues of 

interest is ambiguous nam e resolution. W hen a class inherits the same oper­

a tions/data  (i.e., m ethod signatures/instance variables) from multiple super-
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types, we have a potential naming conflict. Another issue is the use of super 

calls when multiple code inheritance is present, because there are many super- 

types to choose from. The procedure for the resolution of such ambiguous 

situations varies in each of the presented languages.

2.4.1 A m biguous N am e R eso lu tion

There are several modalities to cope with inheritance conflicts and they can 

be grouped into explicit (disallowing conflicts, requiring the user to  select a 

feature, or disambiguating with a resolution operator, such as : : in C++) 

and implicit (choosing one feature by algorithmically resolving the conflict) 

resolution.

One category of programming languages demands the user to explicitly  

disambiguate name conflicts in the code. Eiffel [11] takes this approach. It 

has a rename clause tha t is used to solve name clashes. For implementation 

inheritance clashes, Eiffel combines its rename and s e le c t  clauses to resolve 

ambiguities. CH—b delays this process until the ambiguous feature is first 

used.

In Sat her [29] (originally based on Eiffel) the compiler enforces renaming 

of name conflicts. This is done explicitly by the user. The multiple inheritance 

is called “multiple inclusion” .

In Cecil [3] all access to instance variables are through accessor methods. 

An object m aintains space for each inherited copy-down variable, regardless of 

the names (distinct variables with the same name are not merged autom ati­

cally). The problem reduces to resolving ambiguities among like-named acces­

sor methods. Moreover, ambiguous variables could be accessed by a m ethod 

in the child with the same name as an accessor m ethod by means of directed 

re-send messages. Also, Cecil does not support repeated inheritance.

Another category of programming languages uses an im plicit approach of 

resolving ambiguities.

Python  [28] and Perl [25] follow a rule of pre-order traversal of the in­

heritance tree for both operation and da ta  inheritance. The resolution rule 

employed is depth-first, left-to-right. Thus, if a feature is not found in a class,
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its superclass tree is searched recursively upward depth-first. This approach, 

instead of the more intuitive breadth-first (searching all the immediate super­

classes first and then their superclasses), helps decide if potential ambiguities 

occur. It accepts direct and inherited features of the first superclass before es­

tablishing if there are conflicts with the same features of a second superclass.

CLOS [5] performs a left-to-right linearization of its inheritance graph to 

a flat list. It further extends this approach to accommodate multi-dispatch by 

totally ordering m ulti-methods using argument positions, also ordering them 

from left to right.

D ylan [10] uses an implicitly performed linearization of the inheritance 

graph but it differs from CLO S  because it does not take advantage of the 

argument positions when determining the method to execute.

O ther programming languages th a t support multiple code inheritance sim­

ply discard any kind of naming conflicts. There have even been some cases 

where researchers have tried to add multiple inheritance to  existing languages. 

For example, [1] attem pts to add multiple inheritance to Modula-3 using mix- 

ins.

In our im plem entation, whenever a naming conflict is detected, a run­

time exception is thrown when the class is loaded. W ith the proper future 

compiler modification, we can recognize these conflicts at compile-time instead 

of waiting until load-time.

2 .4 .2  A m b igu ou s Super C all R eso lu tio n

Sometimes, when using inheritance, we would like to be able to use in a type 

a corresponding m ethod in one of its super-types, in order to enhance the 

functionality of the current method.

In C + +  (and E  [18], designed as an extension to version 1.2 of C++) the 

user has to explicitly qualify  names (class name followed by the scope resolution 

operator : : and then the name of the method) to access methods from parent 

classes in the corresponding methods from the child classes. This technique 

starts the lookup in the specified class, rather than in the superclass of the 

current executing method.
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In P e r l  the super mechanism performs a search through the object's inher­

itance tree, proceeding left-most, depth-first. This is triggered by the qualifi­

cation of a method with the SUPER pseudo-class (a package is used as a class in 

Perl). However, the access SUPER: : is only possible from inside the overridden 

m ethod call.

Eiffel: Although it does not support the super call mechanism, it can 

create two versions of the routine (i.e., method in Eiffel) by inheriting the 

superclass twice, in one inheritance clause it uses rename, in the other it 

redefines the routine using rename and s e le c t .

Python: It combines the “call-next-method” pattern  with the method reso­

lution order (MRO given by the —mro— class attribute). A super call in Python 

has the following form: super(classN am e, s e l f ) .  a lp h a (). The first argu­

ment to super is always the class in which the super occurs; the second argu­

ment is always s e l f .  The super expression searches s e l f  . —C la ss  mro__

(the MRO of the class th a t was used to  create the instance in self) for the 

occurrence of className, and then starts  looking for an implementation of 

m ethod a lp h a  () from th a t point on.

CLOS -  Implicit linearization of the inheritance graph determines class 

precedence, which triggers m ethod precedence. The inherited methods are 

linearized and the m ethod to  be executed is chosen using c a ll-n e x t-m e th o d  

from, the current method in order to retrieve the next m ethod in the chain. 

Furthermore, method qualifiers b e fo re , a f t e r ,  and around are used to com­

municate between the overriding m ethod and the m ethod in the  superclass 

(the in n e r  keyword plays an im portant role in this mechanism).

In Sather [32], the use of super calls is confusing in certain cases. The 

ambiguity arises when code th a t makes a super call is itself inherited. It is 

not clear if the inherited super call refers to the superclass of the original 

defining class A (A defines a b e ta O  which contains s u p e r . a lp h a ()) or of the 

inheriting class B (B extends A, so inherits b e ta O , but does not override it). 

Therefore, Sather replaces the super mechanism by implicitly renaming in the 

in c lu d e  clauses which define code inheritance. The in c lu d e  clause can be 

used to in c lu d e  and rename a single feature from another class or an entire
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class. Renaming affects only the definition, not the calls of a specified feature.

Cecil: Explicit qualification. In Cecil, which has multiple dispatch, the 

qualification is based on multiple arguments.

D y lan : Implicit linearization of the inheritance graph determines class 

precedence, which triggers m ethod precedence. The overriding m ethod con­

tains c a ll-n ex t-m e th o d  in order to choose the right m ethod from the list of 

method precedence im plicitly built.

In o u r im p le m e n ta tio n  for super calls, we have devised a qualification 

manner of lookup-start combined with a self-directed algorithm: the user has 

to provide the name of the type where the lookup will commence. From 

there up, if no code is found, the lookup is further controlled by an algorithm 

th a t unambiguously determines a super-tvpe with code (if any) for the given 

method. We propose a syntax for the future, super ( S ta r t )  .a lp h a O , where 

the lookup starts in the interface type Start.

2.5 C oncluding R em arks

In this Chapter, we continued to motivate the need for multiple inheritance 

started  in Chapter 1. Therefore, we analyzed the state  of m ultiple inheritance, 

beginning with the m ajor problems associated with it, and we described our 

solution to each of them.

Then, we saw th a t the alternatives to multiple code inheritance had several 

drawbacks, including increasing the code size, introducing errors in programs 

when copying or modifying code, deteriorating the separation of inheritance 

concepts, writing extra delegating methods, and introducing the overhead of 

extra message sends.

Fortunately, we can avoid these problems by using multiple code inheri­

tance, which has the advantage of facilitating code re-use, supporting separa­

tion of inheritance concepts, and improving the expressiveness and clarity of 

implementation.

We investigated the mechanisms of multiple code inheritance in several pro­

gramming languages in order to find out how common problems th a t occurred
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due to multiple code inheritance were solved.

Since Java has multiple inheritance of interfaces, but only single inheri­

tance of code, our solution to the problems generated by this situation is to 

generalize a JVM to support multiple inheritance of code, by inserting code 

into interfaces. We support multiple code inheritance, not multiple data in­

heritance, because the la tte r is not as useful as code inheritance. Re-using 

code is more im portant, since the effort, of programmers is mainly focused on 

implementing m ethod bodies.

In later Chapters, we describe our JVM modifications to support multiple 

code inheritance in -Java and propose future syntax for super calls to interfaces.
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L anguage O p e ra tio n s D a ta  N a m in g C o d e  L ayout D a ta  L ayou t S u p e r  C alls
C + + , E E x p l i c i t  sig­

nals ambigu­
ities at firs t 
use.

E x p l i c i t ;  signals 
ambiguities at 
firs t use.

Multiple v t b l s  

offsets adjust 
t h i s  pointer.

Also moving 
t h i s  pointer.

E x p l i c i t ;  

qualification 
with starting 
lookup class.

Eiffel E x p l i c i t ,  r e ­

n a m e  clause.
E x p l i c i t ;  r e ­

n a m e  and s e l e c t  

clauses.

E x p l i c i t ;  r e ­

n a m e  clause.
E x p l i c i t ;  r e ­

n a m e  and 
s e l e c t  clauses.

No explicit su­
per call mecha­
nism.

P y th o n I m p l i c i t ;

pre-order
traversal
inheritance
tree.

I m p l i c i t ;  pre­
order traversal 
inheritance 
tree.

I m p l i c i t ;  pre­
order traversal 
inheritance 
tree.

I m p l i c i t ;  pre­
order traversal 
inheritance 
tree.

M e t h o d  r e s o ­

l u t i o n  o r d e r  

combined 
with c a l l - n e x t -  

m , e t h o d .

P erl I m p l i c i t ;

pre-order
traversal
inheritance
tree.

No data  inheri­
tance.

No data inher­
itance.

I m p l i c i t ;  pre­
order traversal 
inheritance 
tree.

Depth-first,
left-to-right
resolution.
Methods
qualified
with SUPER
pseudo-class.

CLOS I m p l i c i t ;  

inheritance 
graph lin­
earization.

I m p l i c i t ;  inher­
itance graph 
linearization. 
Merges mem­
bers with the 
same name into 
a single slot.

I m p l i c i t ;  inher­
itance graph 
lineariza­
tion, taking 
into account 
argum ents’ 
positions.

I m p l i c i t ;  inher­
itance graph 
linearization.

I m p l i c i t ;  inher­
itance graph 
linearization. 
Methods com­
municate by 
keywords: 
b e f o r e ,  a f t e r ,  

a r o u n d ,  i n n e r .

S a th e r E x p l i c i t ;

compiler
enforced
conflict
renaming.

E x p l i c i t ;  com­
piler enforced 
conflict renam­
ing.

E x p l i c i t ; com­
piler enforced 
conflict renam­
ing.

E x p l i c i t ;  com­
piler enforced 
conflict renam ­
ing.

I m p l i c i t ;  re­
names features 
in i n c l u d e  

clauses.

C ecil E x p l i c i t ;  

qualification 
based on 
multiple ar­
guments due 
to multiple 
dispatch.

Problem re­
duced to 
resolving like- 
named field 
accessor ambi­
guities.

E x p l i c i t ;  quali­
fication based 
on multiple 
arguments due 
to multiple 
dispatch.

Problem re­
duced to 
resolving 
like-named 
field accessor 
ambiguities.

E x p l i c i t  quali­
fication based 
on multiple ar- 
guments.

D ylan I m p l i c i t ;  

inheritance 
graph lin­
earization.

I m p l i c i t ;  inheri­
tance graph lin­
earization.

I m p l i c i t ;  inher­
itance graph 
linearization.

I m p l i c i t ;  inher­
itance graph 
linearization.

I m p l i c i t ;  graph 
lineariza­
tion. Methods 
chosen with 
c a l l - n e x t -  

m e t h o d .

Table 2.1: Programming languages th a t support multiple code inheritance.
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Chapt er 3 

M ethod  D ispatch  in th e  JV M

Before describing the changes made to the Sun’s JVM for JDK 1.2.2 imple­

mentation, we look at some key data  structures for storing information and 

performing m ethod dispatch in the original JVM [22], Later on, we will discuss 

how the m ethod dispatch in the JVM is modified.

3.1 O verview

The term Java is broadly used to indicate four technologies: the Java pro­

gramming language [13], the -Java .c la s s  file format, the Java Application 

Programming Interface (API), and the Java V irtual Machine (JVM). The Java 

API and the JVM form the Ja,va Platform  on which every Java program can 

run, regardless of the underlying hardware or operating system of the p la t­

form. The philosophy of Java programs is “write once, run everywhere” . The 

JVM implementation described in this dissertation is Sun JVM for JDK 1.2.2 

[26] for Linux.

A Java program is compiled into a sequence of bytecodes and the JVM, 

an abstract computer able to run Java programs, interprets the bytecodes. 

Each class or interface is compiled (with ja v ac  or another compiler producing 

bytecodes) into a binary format . c la s s  file. W hen the JVM loads a . c la s s  

file, it parses the information about the class or interface from the binary data  

and places it into run-time data structures within the method area. Then, it 

executes the bytecodes from the . c la s s  file. Along with the program ’s . c la s s  

file, the class loader also loads the necessary classes from .Java API. The JVM

•33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



.class files 

1
Class Loader

Runtime 

Data Areas
Execution engine

Figure 3.1: Simplified JVM internal architecture.

Method Area

MT IMTVMT

RCP

Figure 3.2: Method Area within the Runtime D ata Areas: M ethod Table 
(MT), V irtual Method Table (VMT), Interface Method Table (IMT), and 
Runtime Constant Pool (RCP).

accomplishes these two tasks through the class loader [34] and the execution 

engine (Figure 3.1).

A .c la s s  file stores all of its symbolic references to other types needed by 

the current class in its constant pool (CP), which is a sequence of constant 

items with a unique index. These items can be literals (strings, integers, float­

ing point constants) or symbolic references to types (classes and interfaces), 

fields, and methods th a t have to be determined at run-time. In addition to the 

constant pool, which represents the information referenced from the current 

class, a .c la s s  file also contains information about the fields and methods 

declared in th a t type: a field information structure (for each field’s name and 

type) and a method information structure (for each m ethod’s name and de­

scriptor, bytecodes and other inform ation). Conceptually, the CP is similar to 

the symbol table of other programming languages and systems.

Once loaded by the JVM, a type has an internal version of its constant 

pool in the form of a runtim e constant pool (RCP) th a t is stored in the 

m ethod area as shown in Figure 3.2. All of its symbolic references now reside 

in the type’s runtime constant pool. Instructions refer to CP indexes where
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F ile ln p u tS tream  a F i le  = new F i l e l n p u t S t r e a m C 'a F i l e . t x t " ) ;
FilterlnputStream  stream;
stream  = new D a ta ln p u tS t r e a m (a F i le ) ;
s t r e a m .c lo s e () ;

Figure -3.3: Java sample source file.

the symbolic references reside. During the running of a program, if a symbolic 

reference has to be used, it must be resolved (i.e., replaced with a direct refer­

ence). Dynamic Unking is the process of locating types (classes and interfaces), 

fields, and methods referred to by symbolic references stored in the constant 

pool and replacing them with direct references to data. The constant pool 

has a central role in the dynamic linking of Java programs. Direct references 

to types (class/interfaces), class variables, class methods are represented by 

pointers to da ta  in the m ethod area. Direct references to instance variables 

and instance methods are represented by offsets. Instance variables are offsets 

from the start of the object’s image to  the location of the instance variable, and 

instance methods are offsets into the virtual method table (array of pointers 

to  methods da ta  in the m ethod area).

Consider the call-site s tream , c lo se  0  from Figure 3.3. In the method 

information section in the .c la s s  file for this call-site, the bytecodes which 

use the constant pool indexes are illustrated in Figure 3.4. In the first part of 

this Figure there are the raw bytecodes (in hexadecimal format) followed by 

a comment with their “translation” into JVM instructions mnemonics. The 

second part of the same Figure contains only the instructions autom atically 

generated w ith the javap  .c la s s  file disassembler tool. We will trace this 

example in the next Section, which presents the way the JVM uses the . c la s s  

file information. The information from the constant pool used by this call-site 

is represented in Figure .3.5. Recall th a t the CP is an array.

Entries in the constant pool begin with a tag which indicates the kind of 

constant stored. For example, if the entry is a class (entry 5, for example), 

then its tag is CONSTANT_Class; if the entry is a method (entry 11), its tag is 

CONSTANT_Methodref (respectively CONSTANT_InterfaceMethodref for inter-
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/ /  Snippet from th e  . c l a s s  f i l e  (ou tpu t in  hexadecimal form at) 
/ /  f o r  th e  s t r e a m .c lo s e 0  c a l l - s i t e .
2c //a load_2  
b6 / / i n v o k e v i r t u a l
000b / /  #11 j a v a . i o .F i le ln p u tS t re a m /c lo s e

/ /  Snippet from javap  ou tpu t f o r  th e  same c a l l  s i t e .
19 aload-2
20 in v o k e v i r tu a l  #11 <Method vo id  c l o s e ()>

Figure 3.4: Snippet of the . c l a s s  file.

5 C lass  #31

11 Methodref #5 #15

15 NameAndType #28 #16
16 U tf8 "OV"

28 U tf8 "c lo se"

31 U tf8 " j a v a . i o . F ile ln p u tS tream "

Figure 3.5: Snippet of the constant pool.

face methods). For brevity, we do not use CONSTANT in front of CP tags in our 

examples.

In order to actively use a type, the following steps are taken:

1. Loading: responsible for im porting a binary form for a type into the 

•JVM (generating a stream  of binary data representing the type out of 

the fully qualified type name, parsing this stream  into internal data  struc­

tures in the m ethod area, and creating the type as an instance of class 

ja v a .la n g .C la s s  on the heap). All of the type’s super-types (classes 

and interfaces) have to be loaded before loading the actual type.

2. Linking: responsible for the integration of the binary da ta  into the run­

time structures of the JVM
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(a.) Verification: validates the loaded type.

(b) Preparation: allocates memory for the class variables and sets them

to default initial values determined by their types. It also allocates 

memory for da ta  structures such as the m e th o d  ta b le s  (MT), 

the v i r tu a l  m e th o d  ta b le s  (VMT), and the in te rfa c e  m e th o d  

ta b le s  (IMT).

(c) Resolution (optional step): replaces symbolic references into the 

constant pool with direct references to data, This step is delayed 

until each symbolic reference is first, used by the program.

3. Initialization: responsible for providing the class variables with their 

proper initial values. For classes, the class’s direct superclasses have to 

be initialized first if they have not already been initialized. If there is 

a class initialization method (< c lin it> ) , it will be executed. This is a 

special m ethod created by the Java compiler and contains all the class 

variable initializers and static initializers of a type; it can be invoked 

only by the JVM. Final static variables are not stored as class variables 

in the m ethod area bu t as constants into the constant pool.

3.2 M ethod  Invocation  M echanism

In Java, there are two categories of methods th a t can be invoked: in s ta n c e  

m e th o d s  -  the JVM selects the method to invoke based on the actual class of 

the receiver object (run-time, dynamic binding) and c lass ( s ta tic )  m e th o d s  

-  there is no receiver object so the method is actually a function defined in a 

class (compile-time, static binding).

There are four invoke instructions in the .Java . c la s s  files: in v o k e v ir tu a l, 

in v o k e in te rfa c e . in v o k e sp e c ia l , and in v o k e s ta t ic .

The instruction executed at a call-site (for example s tre a m .c lo s e O )  de­

pends on the static type of the receiver (stream ). This call-site is translated 

into, a JVM instruction whose opcode is in v o k e v ir tu a l  if the static type of 

stream  is a class and in v o k e in te r f  ace if the static type of stream  is an inter-
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face. In both situations, the opcode is followed by a method reference (an index 

into the constant pool) as an operand of the instruction. The method reference 

stores the static type of s tream  (class or interface) and the method signature 

of c lo se  () (name and descriptor -  the return  type and arguments). In Figure 

3.4 and Figure 3.5, the index is 11 and it indicates a Methodref tag into the 

CP. The entry Methodref has two fields which point to other structures in the 

constant pool: class and descriptor. In our example, the Methodref tag points 

to entries 5 (Class tag) and 15 (NameAndType tag) in the CP. The C lass  tag 

indicates th a t at entry 31 the string with the fully qualified class name (where 

the method is defined) can be found. The NameAndType tag indicates the CP 

entries where the name of the m ethod (28) and the signature (16) are found. 

Therefore, given an invoke instruction and an index into the CP, the name and 

type of the method, as well as its static class are retrieved. In this particular 

example, given the call-site, the index following the invoke instruction pro­

vides all the information necessary for the method signature to be statically 

determined. The receiver object, though, is necessary to uniquely determine 

the method to be executed.

References to methods are initially symbolic: they refer to constant pool 

entries tha t contain symbolic references. W hen the .JVM encounters an invoke 

instruction, it resolves it (if not yet resolved) as part of its execution. To re ­

solve a  sy m b o lic  r e fe re n ce  to a method, the JVM lo c a te s  the m ethod being 

referred to symbolically (method lookup) and re p la ce s  the symbolic reference 
with a direct reference (pointer or offset). The class and name (including the 

signature) of the m ethod are resolved before the method is actually invoked 

and an index into the virtual method table of the static  type of the object is 

generated. Therefore, in future invocations, the JVM will be able to execute 

methods more quickly, as we will see in the next Chapters.

When invoking a -Java non-native method, the JVM creates a new stack 

frame for each Java m ethod it invokes and pushes the stack frame onto the 

Java stack. The new stack frame contains local variables of the method, the 

operand stack, as well as other implementation-dependent information. For 

every instance method invocation, the JVM expects a reference to the object
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 Handle___
ptr to obj data

ptr to VMT

obj class info

MX

object data

m l’s methodblock

Objectref

ptr to obj class

ptr to m l code 

ptr to mN code

Figure 3.6: High-level object representation in Sun’s JVM.

(we will refer to it as objectref' i.e., the implicit this pointer tha t is passed to  any 

instance method, representing the receiver object), as well as the arguments (if 

any) required by the method to be on the operand stack of the calling m ethod’s 

stack frame (class methods require only the argum ents). They must be pushed 

onto the calling m ethod’s operand stack by the instructions th a t precede the 

invoke instruction. The JVM places them  as locals on the new stack frame. 

The JVM makes the new stack frame current and sets the program counter to 

point to the first instruction in the new method.

3.3 O bject R ep resen tation

In Sun’s JVM, each object reference (objectref) is a pointer to a structure 

which contains a pointer to m ethod tab le  (VMT) and a pointer to the object’s 

instance data (Figure 3.6). The VMT has a pointer to the full class da ta  and 

an array of pointers to method data  containing the actual information for each 

instance method th a t can be invoked on objects of th a t class. The m ethod 

data (structure named m ethodblock in SUN’s JVM) pointed to  from a slot 

(entry) of the virtual m ethod table (or of the interface method table via the 

VMT) contains the compiled code for th a t method, i.e., complete information 

about the method. A m ethodblock includes the size of the operand stack 

and local variable sections of the m ethod’s stack, a pointer to the m ethod’s
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Class FilterlnputStream

VMT
0 -

1 cloneQ

11 waitQ
12 read(byteO)
13 closeQ

 ̂ Declared Methods:
FilterlnputStream (inputStream );

read(byte[]);
closeQ

C lass DatalnputJ Stream

VMT
0 -

1 cloneQ

11 waitQ
12 read(byte[])

13 closeQ

14 readFloatQ

15 readlntQ

MT
init (inputStream )
read(byteQ)
close()

/  Declared Methods:
D atalnputS tream (inputS tream ):

read(byteQ);
readFloat();
readlnt();

IMT

D atalnput 14 15

Interface Datalnput
Declared Methods:

readFloatQ; 

readlntQ;____________

MT
readFloatQ
readlntQ

Interface DataOutput
Declared Methods:

writelnt(int);

MT

writelnt(int); 0

MT
init (inputStream ) 0
read(byteQ) 12
readFloatQ 14
readlntQ 15

C lass RandomAccessFile

VMT
0 -

1 cloneQ

11 waitQ
12 readFloatQ
13 readlnt()
14 writelnt(int)

/  Declared Methods:
R andom A ccessFile(String, String);

readFloatQ ;
readlnt();
writelnt(int); ________________

IMT
D atalnput
D atalnput

12
14
~X~

13

MT
init (inputStream ) 0
readFloatQ 12
readlntQ 13
writelnt(int) 14

f --- f  ....................
method ------------- implementation
declarations

[ ] interface class
----------------► pointer y

Figure 3.7; D atalnpu tO utpu t example; The MT, VMT, and IM T for some 
classes and interfaces from the j a v a . i o  package.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



bytecodes, the method signature, and an exception table. The methodblocks 

are organized into an array in the m ethod table (MT). The virtual method 

table (VMT) includes pointers to data  for methods declared explicitly in the 

object’s class or inherited from superclasses. For interfaces, the code pointer 

is currently null, but we change this as described in Chapter 4. Having only 

a reference to an object (objectref), we will see in subsequent Chapters how 

we can retrieve information about th a t object’s class. The methodblock to 

be executed depends on the runtim e type of the receiver object, therefore first 

the objectref is located by popping all the arguments from the stack. Then 

the object handle is retrieved. The handle is used to  locate the VMT of the 

actual class of the object and, given the index (Figure 3.6) into VMT th a t was 

generated (as the index is identical in all the VMT of classes wrhich implement 

th a t m ethod), the desired methodblock is fetched.

We exploit the existing structure of the original JVM. There are three 

da ta  structures th a t contain m ethod information: the m e th o d  ta b le  (MT), 

the v i r t u a l  m e th o d  ta b le  (VMT), and the in te rface  m e th o d  ta b le  (IMT). 

Every class and interface has an MT. Every class has a VMT, bu t interfaces 

do not have VMTs, because interfaces are never instantiated. Every interface 

and every class th a t implements an interface (directly or indirectly) has an 

IMT.

3.4 T he M eth od  Table

An MT is an array of methodblocks, one for every m ethod th a t is declared 

(no t inherited) in a class or interface. Therefore, the m e th o d  t a b le  con­

tains methodblocks for all overriding methods. In Sun’s JVM, an MT is a 

data  structure called methods. Each methodblock contains all of the infor­

m ation about the method, including its signature and a pointer to its byte­

codes. In the case of interfaces, the methods are abstract, so the code pointer 

is not used (but we will modify the JVM to use it, as described in Chap­

ter 4). Figure 3.7 shows the classes F i l t e r ln p u tS t r e a m ,  D atalnputS tream , 

RandomAccessFile, and the interfaces D ata lnput and DataOutput from the
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Class RandomAccessFile
Declared Methods:

RandomAccessFilefString, String);
readFloat();
readlnt();
writelntQ;

MT
init (String, String) 0
readFloatQ 12
readlntQ 13
writelntQ 14

Interface Datalnput
Declared Methods:

readFloatQ;
readlntQ;

MT
readFloatQ 0
readlntQ 1

(a) MT for Classes. (b) MT for Interfaces.

Figure 3.8: M ethod tables.

ja v a . io  package. Many methods have been excluded for the sake of simplicity.

Each of the classes has one m ethodblock in its MT for each declared 

method in the class. For example, D atalnpu tS tream  has a m ethodblock for 

read  (byte  []) since it overrides this method th a t it inherits from the class 

F i l t e r  InputS tream , but has no m ethodblock for c lo se  () since this method 

is not overriden. The interface D a ta ln p u t has m ethodblocks for its methods 

re a d F lo a tO  and r e a d ln tO ,  even though they contain no code.

Method dispatch finds a m ethodblock for a call-site and invokes the code 

for the methodblock. The operand of the call-site bytecodes is an index into a 

run-time constant pool th a t stores the signature of the m ethod being invoked. 

M ethod dispatch is a two-step process. The first part of m ethod dispatch, 

called resolution, finds a m ethodblock tha t contains the code. The resolution 

mechanism depends on whether the static type of the receiver object is a class 

or an interface. The compiler records the required resolution mechanism in the 

. c la s s  file by generating an in v o k e v ir tu a l  bytecode if the static type of the 

receiver object is a class and an in v o k e in te r f  ace bytecode if the static type 

is an interface. Resolution of in v o k e in te r f  ace is complex and is discussed 

later in this Chapter. Resolution for in v o k e v ir tu a l  is simple.

To resolve an in v o k e v ir tu a l  instruction, the JVM uses the method ref­

erence to obtain the static class and a method signature. It then searches the 

MT of this class for a m ethodblock with a matching signature. If no match is 

found, it searches the MTs along the superclass chain. The compiler guaran­

tees th a t a match is found. Consider Figure 3.9: the call-site stream , c lo s e () 

has bytecodes th a t contain an index into the run-time constant pool th a t stores
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the method signature, c lo se  (). The dynamic class of the receiver object may 

be D atalnputS tream  or F il te r ln p u tS tre a m . If it is the former, the MT table 

of D atalnputS tream  is searched for a m ethodblock with signature c lo se  (), 

but no match is found. The MT of the superclass, F i l t e r e d ln p u t S t r e a m ,  is 

searched, and a m ethodblock with a m atching signature is found.

However, it is possible th a t the resolution  methodblock is not the cor­

rect execution methodblock. For example, consider the classes in Figure

3.7, a variable declaration, F i l t e r l n p u t S t r e a m  in p u t, and the following call- 

site: in p u t . r e ad (aB y teA rray ) , where in p u t is bound to an instance of the 

class DatalnputStream. Resolution produces the resolution  methodblock for 

read  (byte [])  in class F i l t e r ln p u tS t r e a m .  The execution  methodblock, 

however, should be r e a d ( b y t e G )  in DatalnputStream. If the index of a 

methodblock in its MT were invariant along the superclass chain, the resolved 

methodblock read  (byte  [] ) in F i l t e r l n p u t S t r e a m  could store this invariant 

index, and it could be used as an index into the MT of the dynamic class of 

the receiver object (Data lnputS tream in this example). Unfortunately, MT 

indexes are not invariant. Fortunately, this problem is solved using virtual 

method tables as described later in this Chapter. In essence, each method 

block contains a unique VMT index th a t is invariant along the superclass 

chain.

Resolution is quite slow, so Sun’s JVM records the resolution result at 

each call-site for use in future dispatch at th a t same call-site. Bytecode quicking 

(described in more detail later in this Chapter), modifies the bytecodes at each 

in v o k e v ir tu a l call-site to  contain information th a t can be used to quickly 

compute an index into a VMT th a t contains a pointer to the appropriate 

methodblock. More specifically, the bytecodes will contain a reference to  the 

resolved m ethodblock instead of the original symbolic m ethod reference.

3.5 The V irtual M eth od  Table

The V M T  enables the JVM to quickly locate an instance method invoked on 

an object. In Sun’s JVM, this data structure is called m ethod tab le  (not to
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F i l t e r l n p u t S t r e a m  s tream;
D a ta lnpu t  i n p u t ;
RandomAccessFile f i l e ;

i f  ( cond i t ion )
s tream = new F i l t e r l n p u t S t r e a m ( i n S t r e a m ) ;

e l s e
s tream = new D a ta ln p u tS t re a m ( in S t rea m ) ;

s t r e a m . r e a d ( a n A r r a y ) ;
va lue  = i n p u t . r e a d i n t ( ) ;

s t r e a m . c l o s e ( ) ;
f i l e . w r i t e l n t (43);

Figure -3.9: Code example.

be confused w ith the MT). The virtual m ethod table is a data structure 

used to store invariant indexes for all m ethods along a subclass chain. Each 

VMT entry (slot) holds a reference to an instance m ethod (i.e., a m ethod th a t 

may be invoked on a class instance) im plem entation th a t has been declared, 

or inherited  by the current class. Each reference is actually a pointer to a 

m ethodblock in either the local MT or an MT of a superclass. The first entry 

in VMT (at index 0) is not used in this JVM implementation.

The MT and VMT for a class are constructed when the class is loaded, and 

each m ethodblock in the MT stores its VMT index as it is built a t load-time. 

A VMT is similar to a virtual function table used in C + +  implementations, 

except th a t in C + +  the compiler inserts a virtual function table index at the 

call-site of each virtual function call. In Java, the compiler inserts a symbolic 

reference to the m ethod at each call-site, and the first execution of the call-site 

resolves this symbolic reference and modifies the bytecodes at the call-site so 

th a t future executions use an index into the VMT. The VMTs contain only 

non-private instance methods. Private methods and instance initialization 

methods do not appear in VMTs because they are statically (i.e., compile­

time) bound. The same is true of static methods.

Consider the classes F il te r ln p u tS tr e a m  and D atalnpu tS tream  in Figure
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Class Object
Declared Methods:
cloneQ

waitQ

MT VMT
clone() 1 J - L 0 -

1 cloneQ

waitQ 11
11 waitQ

i
Class RandomAccessFile
Declared Methods:
RandomAccessFile(String, String);

readFloatQ;
readlntQ;
writelntQ;

MT

—
L_j

VMT
init (String, String) 0 0 -

readFloatQ 12 1 cloneQ

readlntQ 13
writelntQ 14 «4i 11 waitQ

12 readFloatQ
13 readlntQ
14 writelntQ

Figure 3.10: V irtual M ethod Tables.

3.7. The VMT of a class has indexes for all the methods it inherits from 

class j a v a . l a n g . O b j e c t  (indexes 1-11 in all VMTs in Figure 3.7) and then 

indexes for all of its other ancestor classes, ending with its im m ediate su­

perclass (indexes 12 and 13 in the Data lnpu tS tream VMT). If a child class 

overrides an inherited method, it actually overwrites the VMT entry of the 

inherited m ethod to refer to an entry in the local MT table rather than  the 

MT table of an ancestor class. For example, the VMT entry for the overrid­

ing read  (byte  [] ) m ethod in Data lnputS tream points to the local MT table. 

Finally, the VMT has indexes for all new methods th a t it declares (indexes 

14 and 15 in Data lnputStream VMT), even if these new methods implement 

methods from an interface.

Even though a child class overwrites a VMT entry to  point to a m ethodblock 

in a different MT, a m ethodblock’s VMT index does not vary along a super­

class chain. This is because when a VMT is constructed, it first copies its su­

perclasses' VMT and then extends it. For example, the indexes of all methods 

inherited from j a v a . la n g . Ob j e c t  are the same in all VMTs and the indexes of
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e x e c u t e M B  = r e c e i v e r . dynamicClass .VMTfresolvedMB. vmtIndex] 

Figure 3.11: Computing the execution methodblock for i n v o k e v i r tu a l .

the c l o s e Q  and r e a d ( b y t e [ ] ) m ethods are the same in F i l t e r l n p u t S t r e a m  

and DatalnputStream. This property is essential to support substitutability 

[14] for fast method dispatch, after bytecode quicking. For example, consider 

the code in Figure 3.9. At the call-site, s t r e a m . r e a d (a n A r ra y ) , the bytecodes 

initially contain a reference to a constant pool entry for r e a d  (by tes  [ ] ) .  If 

the dynamic type of stream  is F i l t e r l n p u t S t r e a m  when the call-site is en­

countered the first time, m ethod resolution will generate the VMT index 12 

and bytecodes will be quicked to use this index the next tim e the call-site is 

executed. If the stream  variable is bound to a DatalnputStream, the second 

tim e the call-site for s tream . r e a d (b y te  [] ) is executed, the same index, 12, 

will be used to access the same methodblock, but this tim e via the VMT 

for class DatalnputStream. After resolution, the execution  methodblock is 

computed from the resolution  methodblock, resolvedMb, using the formula 

in Figure 3.11.

Unfortunately, this dispatch mechanism does not work for interfaces due 

to  multiple inheritance. Figure 3.7 illustrates the problem, showing th a t a 

method r e a d l n t O  declared in an interface Data lnpu t  th a t is implemented 

by two classes, DatalnputStream and RandomAccessFile, can have different 

indexes (15 and 13) in the VMTs of the two classes. This can occur be­

cause each of the classes may inherit m ethods from different superclasses or 

implement different interfaces. Therefore, we need another d a ta  structure, 

in te r face  m e t h o d  t a b l e  (IMT), which facilitates interface m ethod dispatch 

(i.e., i n v o k e i n t e r f  ace).

3.6 T he Interface M eth od  Table

An IMT is used for interface method dispatch ( in v o k e in te rfa c e ) . The cor­

responding da ta  structure in Sun's .JVM is im ethod tab le . If a variable has a 

static type th a t is an interface and if it appears as the receiver of a method
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Datalnput
IMT

null

Declared Methods:
readF!oat(); 

readlntQ;_________

Interface Datalnput Interface D ataO utput
Declared Methods: IMT
writelnt(); DataOutput null

*

Class RandomAccessFile
Declared Methods:
RandomAccessFile(String, String);

readFloatQ;
readlnt();
writelntQ; _____

IMT
Datalnput 12 13

DataOutput 14

MT VMT
init (String, String) 0 0 -

readFloat() 12 — 1 cloneQ

readlntQ 13
writelntQ 14 -* i 11 wait()

12 readFloatQ
13 readlntQ
14 writelntQ

Figure 3.12: Interface Method Tables.

invocation, the call-site will contain an i n v o k e i n t e r f  ace bytecode instead 

of an i n v o k e v i r tu a l  bytecode. We shall see how the IM T provides an extra 

level of indirection tha t solves the problem of inconsistent indexing of interface 

methods among classes.

Each slot in an IMT stores all of the information for an interface. Every 

class has an IMT th a t references all of the interfaces it implements or inherits. 

For example, in Figure 3.12, the class RandomAccessFile has two entries in its 

IMT, one for the interface D a ta lnpu t  and one for the interface DataOutput.  

Each interface also has an IM T with slots for all the interfaces it extends, 

including itself.

During m ethod dispatch, the MTs of all of the interfaces th a t are imple­

mented by the receiver object’s class can be accessed through the IM T for 

th a t class. The IMT is an array of entries which contain two types of infor­

mation. Each entry is a pointer to the interface th a t the class implements 

(directly or indirectly). Each entry also contains an array of indexes into the 

class’s VMT; the number of elements in each array is the same as the num­

ber of methods th a t are in the interface referenced by the interface pointer of 

th a t entry. Each index is an offset into the VMT entry for the corresponding
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method. For example, consider the IMT for the class RandomAccessFile in 

Figure 3.12. The first entry contains a pointer to D a ta lnpu t  and an array 

containing indexes (12 and 13) into the VMT for the two methods declared in 

Datalnput,  called r e a d F l o a t O  and r e a d l n t Q .  The second entry contains a 

pointer to DataOutput and an array containing an index (.14) into the VMT 

for the method declared in DataOutput,  called w r i t e l n t ( i n t ) .

Resolution of an in v o k e in te r f  ace bytecode is similar to resolution for 

an in v o k e v ir tu a l bytecode, except tha t the m ethod reference includes an 

interface instead of a class. Resolution starts at the interface m ethod table 

(IMT) of this interface. Recall th a t an IMT has one entry for each interface 

tha t is extended or implemented (directly or indirectly) by its class or interface. 

During resolution, the JVM starts  with the entry zero of the interface’s IMT, 

which is the interface itself. The MT of this interface is searched for a matching 

method. If one is not found, the MTs of subsequent interfaces in the IMT are 

searched. The compiler guarantees th a t a signature m atch will be found.

Also, recall th a t the resolution m ethodblock may not be the execution 

methodblock. In the in v o k e v ir tu a l  case, the resolved m ethodblock contains 

an invariant index into the VMT of the receiver object’s dynamic class. In the 

in v o k e in te r f  ace case, the resolution m ethodblock contains a local MT off­

set. To complete the dispatch, an index must also be computed. The index is 

for the IMT of the dynamic receiver’s class, where the interface of the resolved 

m ethodblock is located. The JVM first searches the IM T of the receiver’s dy­

namic class for a match to the interface of the resolved m ethodblock. The loca­

tion of the match is an index, called a guess (for reasons th a t will be explained 

later). The IMT entry indexed by the guess contains an array of VMT indexes. 

The offset in the resolved m ethodblock is used as an offset into this array to 

obtain the correct VMT index. Figure 3.13 gives the formula for computing 

the execution m ethodblock from the resolved m ethodblock and the guess. 

To see why the offset and the index are sufficient, consider a variable in p u t 

that, is declared to be a D a ta ln p u t and a call-site in p u t . r e a d ln t  O . The re­

solved m ethodblock is r e a d ln tQ  in D ata lnpu t. The resolved m ethodblock 

has an interface D a ta ln p u t and a method tab le  offset 1. First, assume th a t
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i t a b l e  = r e c e i v e r .dynamicClass . IMT[guess] ; 
vmtlndex = i t a b l e . vmtIndexA rray[reso lvedM B.m tof fse t ] ; 
e x e c u t e M B  = r e c e i v e r . dynamicClass . VMT [vmtlndex] ;

Figure -3.13: Computing the execution m ethodblock for in v o k e in te r f  ace.

Interface Datalnput
Declared Methods: IMT
readFloatQ; Datalnput null
readlntQ;

Class DatalnputStream
Declared Methods:
DatalnputStream(inputStream);

read(byteQ);
readFloat();
readlntQ; ___________

IMT
Datalnput 14 15

MT
init (inputStream) 0
read(byteQ) 12
readFloatQ 14
readlntQ 15

VMT
0 -

1 cloneQ

11 waitQ
12 read(byte[])

13 closeQ
14 readFloatQ

15 readlntQ

Figure 3.14: D ata  structures for j a v a . io . DatalnputStream.

the receiver object’s dynamic class is RandomAccessFile. From Figure 3.12 

we can see th a t a search through the IM T of RandomAccessFile for the in­

terface Data lnpu t  produces a guess of 0. The 1st offset of the entry 0 of this 

IMT is 13 and the VMT entry at index 13 is the right code for r e a d l n t O .  

Alternately, if the receiver object is an instance of DatalnputStream, then a 

search through the IM T of DatalnputStream for the interface Data lnpu t  also 

produces a guess of 0, as shown in Figure 3.14. In this case, the T’4 offset of the 

entry 0 of its IMT is 15 and the VMT entry at index 15 is the right code for 

r e a d l n t O .  Although the VMT index is not constant across classes (e.g. 13 

then 15), the IMT index, together with the array offset, can be used to find the 

correct code. The IM T provides an extra level of indirection that  solves the 

problem of inconsistent indexing of interface methods between classes. This 

extra level of indirection is analogous to the way C + +  implements multiple-
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inheritance using multiple virtual fu nc tion  tables. Bytecode quicking modifies 

the bytecodes at each in v o k e in te r f  ace call-site.

The guess is stored in the quicked bytecodes in addition to a reference to 

the resolved methodblock, so the search does not normally need to be re-done. 

However, it is possible tha t the guess at a call-site could be incorrect. To see 

how the guess can be wrong, consider Figure 3.12, except assume th a t the 

IMT in class RandomAccessFile has the D a ta lnput  and DataOutput entries 

in the reverse order. This can happen since classes can implement multiple 

interfaces, so th a t the order of interfaces across different, IMTs can be different. 

Re-consider the two successive executions of the call-site i n p u t . r e a d l n t  () 

described previously. In this case, the first call-site execution (with dynamic 

class RandomAccessFile) will generate a guess  of 1 and an o f f s e t  of 1. 

However, when the second execution of this call-site uses the guess of 1, 

it would be out of bounds in the IM T of D atalnputStream . To solve this 

problem, the interface at the IMT entry w ith index guess is always compared 

to the interface of the resolved methodblock th a t is stored in the quicked 

bytecodes and, if they are different, a new search of the IMT is conducted 

and the new guess is cached in the quicked bytecodes. This approach is 

analogous to the inline-caching m ethod-dispatch technique [7] and can suffer 

from the same thrashing problems if the class of the receiver object of the 

polymorphic call-site alternates between two classes whose interfaces are stored 

in different orders. Nevertheless, it is still faster than  doing a full resolution 

from a symbolic m ethod signature for each execution of the call-site.

The details of our modifications are provided later, but in order to sup­

port code in interfaces, we change the JVM  code tha t constructs the IMT 

table in the class loader. To understand our modifications, it is necessary to 

understand how the class loader currently constructs the IMT table. Figure 

3.16 contains the original algorithm for constructing the IMT. We will use the 

class RandomAccessFile from Figure 3.12 to illustrate the algorithm. The 

class loader creates a new IMT table (line 1) and then copies the IM T en­

tries of the superclass of the class being loaded to the new IMT table being 

constructed (line 2). In this example, the superclass of RandomAccessFile is
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Handle
Objectref

argN

argl

VMT
ptr to obj class

opcode
0 -

resolution^------- ,
1 ptr to m l code

ptr to m codeindex ®”1 index ]

into I into i ...

CP 1 VMT ; N ptr to mN code

-  ptr to obj data object data

ptr to VMT

obj class info

M i
m l methodblock

m methodblock,

opcode = invokevirtual

Figure 3.15: Invokevirtual.

j a v a . l a n g .O b je c t ,  which has no IMT since it does not implement any inter­

faces, so no entries are copied. The class loader then loops over each interface 

th a t is explicitly implemented by the class (line 3). The first interface imple­

mented by RandomAccessFile is D a ta ln p u t. The loader fetches the IM T for 

this interface, which contains entries for D a ta ln p u t and all of the interfaces 

it inherits (no others in this example). All of the IMT entries th a t are not 

already in the  new IMT are copied to the new IMT for RandomAccessFile, 

producing a single entry containing (a pointer to) D a ta lnpu t. An associated 

array th a t has two slots for indexes (for r e a d F l o a t Q  and r e a d l n t Q )  (line 

4) is created. The indexes in this array are not copied since the array does 

not exist in interfaces. Since RandomAccessFile implements a second inter­

face D ataO utput, the entries in its IM T are also copied down (line 4). Again 

this is a single entry, but its associated index array has only one entry (for 

w r i t e l n t  ( i n t ) ). It is im portant th a t each interface is only copied once. For 

example, if the interfaces D atalnpu t and DataO utput had a common super­

interface Data, then, when the IMT entries from D ata lnpu t were copied, an 

entry for the inherited Data interface would have been included. When the 

IMT entries for DataO utput were copied, the non-unique D ata interface from 

D ataO utput’s IMT would not be copied to the newr IMT.
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Algorithm Construc tIMT(c lass)
1. c l a s s . i m t  = new IMT();
2. copy e n t r i e s  from c l a s s . s u p e r c l a s s . imt to  c l a s s . i m t ;
3. f o r  each d i r e c t  i n t e r f a c e  in  c l a s s
4. copy unique e n t r i e s  of i n t e r f a c e . imt t o  c l a s s . i m t ;
5. end f o r
6. f o r  each imtlndex in  c l a s s . imt
7. i n t e r f a c e  = c l a s s . im t [ i m t l n d e x ] . i n t e r f a c e ;
8. f o r  each mtIndex i n  in te rface .M T
9. imb = in te r face .M T [m tIn d ex ] ;
10. s ig n a t u r e  = imb. s i g n a t u r e ( ) ;
11. vmtlndex = c l a s s .vmt. f i n d S i g n a t u r e ( s i g n a t u r e ) ;
12. c l a s s . i m t [ i m t l n d e x ] . a r ray [m t lndex]  = vmtlndex;
13. / /  l i n e  r e s e r v e d  f o r  JVM m o d i f i c a t io n s  l a t e r
14. end f o r
15. end f o r
end algor i thm ;

Figure 3.16: The existing IM T construction algorithm.

Interface Datalnput 
Declared Methods:
readFloat();

readlntQ;___________

IMT
Datalnput null

MT
readFloatQ 0
readlntQ 1

Interface DataOutput
Declared Methods:
writelntQ;

IMT
DataOutput null

MT
writelntQ 0

Class RandomAccessFile
Declared Methods:
RandomAccessFile(String, String);

readFloatQ;
readlntQ;
writelntQ;

IMT
Datalnput 12 13

DataOutput 14

MT VMT
init (String, String) 0 0 -

readFloatQ 12 1 cloneQ

readlntQ 13
writelntQ 14 11 waitQ

L 12 readFloatQ
13 readlntQ
14 writelntQ

Figure 3.17: Example emphasizing the tables involved in the loading mecha­
nism.
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After the class loader is done looping through all implemented interfaces 

and the IMT has all of its entries, the class loader loops through each slot in the 

IM T (line 6), to fill in the index arrays. For each slot, the interface pointer is 

de-referenced to obtain the interface (line 7) and the MT table in that, interface 

is iterated (line 8). For example, the MT table of D a ta ln p u t is iterated first, 

as shown in Figure 3.17. The entry 0 in the MT is the methodblock for 

r e a d F l o a t O  (line 9) and its signature (line 10) is looked up (line 11) in the 

VMT of the class RandomAccessFile. Since a match is found at index 1‘2, this 

index is copied into the entry 0 of the array in the IMT table for the Data lnput 

slot (line 12). The entry 1 in the MT is r e a d l n t O  and when it is looked up in 

the VMT (line 11), the index found is 13. The index 13 is copied into the IMT 

array at the Data lnput  slo t’s array index 1 (line 12). The process continues 

until all arrays at all IMT slots are full.

The Sun JVM makes a simple optim ization to the code shown in Figure 

•3.16. The loop in step 6 of the optimized code does not iterate over all IMT 

indexes. Instead, it s tarts at the first index after the entries th a t were copied 

from the superclass’s IMT. This is possible since the array indexes in the 

entries of the superclass will not change in the class being loaded, so these 

entries are simply copied instead of being calculated. However, we iterate  over 

all indexes of the IMT to support the changes described in Chapter 4. Since 

this code is run only at class load time, the performance loss is insignificant.

3.7  Quick B y teco d es

An analysis of the dispatch process for both bytecodes, in v o k e v ir tu a l  and 

in v o k e in te r f  ace, shows th a t the interpretation of the bytecodes used to in­

voke methods can be improved. Opcodes th a t refer to CP entries can be 

replaced by -quick opcodes after the CP references are resolved. Replacing 

the normal opcodes with _quick counterparts in the bytecode stream  can sub­

stantially speed up their interpretation. When the JVM encounters a -quick 

instruction, it knows th a t the entry has already been resolved, so it can exe­

cute the instruction faster. In some cases, the operands are overwritten with
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data representing a direct reference. The details of quicking in v o k e v ir tu a l 

and in v o k e in te r f  ace are different.

In v o k e v ir tu a l has a single operand., which is a two-bvte integer index into 

the run-time constant pool, where the method signature is stored. In v o k e v ir tu a l 

has three quick opcodes: in v o k e v ir tu a l.q u ic k , in v o k e v ir tu a lo b je c t_ q u ic k , 

and invokevirtual_quick_w .

1. For in v o k ev irtu a l_ q u ick , the original two-byte operand is replaced by 

a one-byte o f f s e t  into the VMT and one byte th a t stores the number 

of arguments, na rg s , as illustrated in Figure 3.18. This second byte is 

needed to find the receiver object on the stack. The number of arguments 

was previously com puted after obtaining the m ethod signature from the 

constant pool. The JVM uses the number of arguments to reach the re­

ceiver and follow its pointer to the VMT. To use in v o k e v irtu a l_ q u ic k , 

the index into VMT must be 25-5 or less and the dynamic class of the 

receiver object cannot be an instance of class ja v a . la n g .O b jec t.

2. In v o k e v ir tu a lo b je c t .q u ic k  has the same operands as the previous 

bytecode, in v o k ev irtu a l_ q u ic k . It is used for invoking instance m eth­

ods of class ja v a . la n g .O b je c t and it is introduced specifically for ar­

rays. The objectref on the operand stack is a reference to an object or 

to an array. The o f f s e t  retrieved from the operand stack is an index 

into the VMT of ja v a .la n g .O b je c t  and ultim ately indicates the right 

methodblock.

3. Invokevirtual_quick_w  is followed by the same two-bvte index into the 

constant pool as the unquicked in v o k e v ir tu a l  bytecode. W ith the _w 

variation, the constant pool entry is changed, instead of the bytecode 

operands. This .q u ic k  opcode is used when the index in VMT is greater 

than 255. Method resolution simply replaces the m ethod signature in the 

run-time constant pool with an entry containing a two-byte index into 

the VMT and one byte th a t represents the number of method arguments, 

nargs.
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Handle.
object dataObjectref ptr to obj data

ptr to VMTargN

argl

VMT

MT

m l methodblock

methodblockm

obj class info

opcode

index

nargs

ptr to m l code 

ptr to m code

ptr to obj class

ptr to mN code

opcode = invokevirtual_quick

Figure -3.18: InvokevirtuaLquick.

Invokeinterface has only one ..quick counterpart used for the invocation 

of interface methods: in v o k e in te rfa c e x ju ic k . This bytecode is similar to 

invokevirtual_quick_w  in th a t the original operand index into the run-time 

constant pool is retained. However, the run-time constant pool entry tha t it 

points to is changed to point to  the m ethodblock th a t was resolved when the 

call-site was first executed. In addition, two other operands are added to the 

bytecodes, a guess and the number of m ethod arguments, na rg s . The guess is 

an index into the IMT th a t specifies one of the implemented interfaces. There 

is an array at th a t IM T slot for indexes into the VMT of all methods declared 

in an interface, as described earlier in this Chapter. To obtain the appropriate 

index into th a t array, the first operand is used to obtain the m ethodblock 

from the run-tim e constant pool and the m ethodblock contains the required 

index into the array. However, the guess operand is called a guess for an 

im portant reason. It is possible tha t it indexes the wrong interface in the 

IMT. Before the index is retrieved from the m ethodblock, the interface of the 

methodblock (stored as a pointer field in the m ethodblock) is compared to 

the interface pointer contained at the guess index of the IMT. If they are the 

same, the index from the m ethodblock is used. If they are different, then the 

guess is wrong and the correct interface must be found. In this case, the IMT
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is searched for the interface pointer th a t matches the interface pointer stored 

in the m ethodblock. Once one is found, the guess operand is changed to the 

new index in the IMT and the dispatch continues.

3.8 C oncluding R em arks

In this Chapter, we described the current implementation of the original JVM ’s 

data  structures involved in method dispatch.

The two steps of method dispatch, resolution and execution, were detailed 

for the in v o k e v ir tu a l and in v o k e in te r f  ace bytecodes. Since resolution is 

quite slow, we described bytecode quicking which modifies the bytecodes at 

each resolved call-site to run faster on subsequent execution times of the call- 

site.

In the next Chapters, we will discuss how the m ethod dispatch in the JVM 

is modified.
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D ata  s tru c tu re  
nam e

D ata  s tru c tu re  title D escrip tion  Sum m ary

methodblock Method block (mb or imb) Stores the complete in­
formation (including code) 
about a method. It in­
cludes the size of the 
operand stack and local 
variable sections of the 
method’s stack, a pointer 
to the method’s bytecodes, 
the method signature, and 
an exception table.

methods Method Table (MT) Array of methodblocks. 
Both classes and interfaces 
have MTs. It has an entry 
for every method declared 
(not inherited) in the class 
or interface. Therefore, it 
contains methodblocks for 
all overriding methods.

methodtable Virtual Method Table 
(VMT)

Array of pointers to 
methodblocks. Only 
classes have VMTs. Each 
slot (entry) holds a refer­
ence to an instance method 
implementation that has 
been declared or inherited 
by the current class.

im ethodtable Interface Method Table 
(IMT)

Array of structures which 
contain information about 
interfaces. Both classes and 
interfaces have IMTs. Ev­
ery class has an IMT that 
references all of the inter­
faces it implements or in­
herits; every interface also 
has an IMT with slots for 
all the interfaces it extends, 
including itself. The IMT 
provides an extra level of 
indirection that solves the 
problem of inconsistent in­
dexing of interface methods 
among classes.

Table 3.1: Major data structures involved in m ethod dispatch.
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C hapter 4 

Im p lem en tation

This Chapter presents the details of the JVM modifications to accommodate 

code within interfaces and describes the simple test cases th a t are used to 

verify the implementation of multiple code inheritance. Neither the syntax 

of the Java programming language nor the jav ac  compiler are changed. A 

scripting process was developed instead of using syntax changes. The details 

of the scripting process are presented in Chapter 7.

4.1 Our A pproach

Our implementation of multiple code inheritance in Java is based on the novel 

concept of adding code to selected interfaces. We show th a t only straightfor­

ward and localized modifications are made to the JVM to support code within 

the interfaces.

If code is put into interfaces and an existing Java compiler is used, compila­

tion errors can occur. For example, if the code for r e a d l n t  () in Figure 3.14 is 

moved from the class Data lnputS tream to  the interface Da ta lnpu t ,  an unmod­

ified compiler would not compile the code in Data lnput  and would complain 

th a t there is no method declaration for r e a d l n t O  in the DatalnputStream 

class, therefore the class must be declared as abstract. Since it requires con­

siderable engineering effort, we have not modified a Java compiler to recognize 

code in interfaces. Instead, we have created a scripting process th a t allows a 

programmer to insert method code into interfaces and work around a standard 

compiler. Details about the process and the tools th a t support our approach
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13A i f  ( imb.code <> n u l l )  / /  code in  i n t e r f a c e
13B currentmb = c la s s .v m t [ v m t l n d e x ] ;
13C i f  (cu rren tm b . code == n u l l )  / / n o  code in  MT
13D class .vm t[vm tlndex]  = imb; / /  p o i n t  VMT to imb
13E e l s e  / /  p o t e n t i a l  code ambiguity
13F i f  (( !  cu r ren tm b .c l a s s . i m t . c o n t a i n s ( i m b ) ) a&
13G ( ! i m b . c l a s s . i m t . c o n t a i n s ( c u r r e n tm b ) ))
13H throw ambiguous method excep t io n
131 end i f
13 J end i f
13K end i f

Figure 4.1: Code added to Figure 3.16 to support interface code.

can be found in Chapter 7. In this C hapter we assume th a t this process is used 

to  put code into interfaces and the compiler does not generate any compila­

tion errors due to missing m ethod declarations. We have taken this approach 

because we want to quickly test the utility of code in interfaces to  support mul­

tiple code inheritance, without the full-fledged engineering effort of modifying 

a compiler.

4.2 JV M  M odifications

To support code in interfaces, we modified the JVM code th a t constructs 

the IM T table in the class loader [21] (Figure 3.16), as shown in Figure 4.1. 

After a VMT index is inserted into the array of an entry in the IMT table, 

the corresponding VMT table entry is checked. If the VM T table points to 

a m ethodblock in an MT th a t has no code, then the VMT table entry is 

changed to point to a m ethodblock in the MT of the interface th a t contains 

the code as shown in Figure 4.1. However, it is possible th a t the m ethod code 

is ambiguous, as we will discuss further in this Chapter, Section 4.4.

We use the class RandomAccessFile as an illustrative example. Assume 

we are loading this class. Also assume th a t the code for r e a d l n t O  is moved 

to the Data lnput  interface instead of being in the RandomAccessFile class, as 

shown in Figure 4.2. Assume the array element at index 1 of the Data lnput  

entry is set to 13 (line 12 in Figure 3.16). Therefore, the imb is bound to
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Interface Datalnput
'

Interface DataOutput
Declared Methods: Declared Methods:
readFloatQ; writelntQ;
readlntQ;

MT
readFloatQ 0

readlntQ 1
MT

writelntQ 0

Class RandomAccessFile
Declared Methods:
RandomAccessFile(String, String); 
no declaration for readFloatQ 
no declaration for readlntO 
no declaration for writelntQ

MT IMT
init (String, String) 0 Datalnput 12 13

DataOutput 14

VMT
0 -

1 cloneQ

11 waitQ
12 readFloatQ
13 readlntQ
14 writelntQ

Figure 4.2: The code from ja v a . i o .RandomAccessFile is moved up in two of 
its direct superinterfaces.
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the r e a d ln tO  m ethodblock in D ata lnpu t and this m ethodblock has code 

(step 13A in Figure 4.1). Our modified class loader accesses the VMT en­

try of RandomAccessFile at index 13 to obtain the current m ethodblock for 

r e a d ln tO  from the MT of RandomAccessFile (step 13B), Since there is no 

code in the current methodblock. the code pointer is null (step 13C). There­

fore. we change the VMT entry at index 13 to point to  the m ethodblock 

in D atalnpu t instead. Note th a t the IMT offset into VMT stays the same, 

it is only the slot in VMT th a t is modified. The resolution and dispatch 

of in v o k e v ir tu a l proceeds in exactly the same way as with the unmodified 

JVM, but the change in the class loader code allows the code in the interface 

to be found and executed.

We also needed to modify the dispatch in the situation where a call-site 

such as t h i s ,  a lp h a  0  appears inside an interface method. In this case, the 

call-site is turned from an in v o k e v ir tu a l  to an in v o k e in te r f  ace, because 

the static type of t h i s  is an interface. W ith the design choices we made, no 

other changes were required to support code in interfaces (and hence multiple- 

inheritance) and this is due to the M iranda Methods concept incorporated in 

SUN JVM.

4.3 E xp loiting  M iranda M eth od s

If there is a declaration for r e a d ln tO  in D a ta ln p u t, this m ethod must be 

understood by any of the classes which implement D a ta ln p u t. Therefore, the 

VMT of each of these classes must have a slot for r e a d l n t O . The slots can 

be obtained by either of the following two methods.

The jav ac  compiler generates methods in each abstract class for all in­

terface methods th a t are contained in all interfaces th a t are implemented by 

the class, but which do not have an implementation in the class. Such gener­

ated methods are called M iranda methods, because if the class does not have 

a corresponding interface method, one is provided by default. For example, 

the entry in the VMT of RandomAccessFile for method r e a d ln tO  of Figure 

4.2 is a M iranda m ethod since there is no code (no explicit declaration) for
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r e a d ln t  () in RandomAccessFile. These methods are added because early 

VMs did not look for methods along the interface path, performing the lookup 

only along the superclass chain.

However, if a compiler does not generate M iranda methods, one additional 

action is required at class load time in our implementation. For each interface 

from a class’s IM T, loop through their methods and look for corresponding 

methods in th a t class’s VMT. If one is not found, then extend that class’s 

VMT with this m ethod and make it point to the code in the current interface 

method. In both  cases, the newly created slot in the VMT is present in all 

the sub-classes of th a t class, therefore if code is found in one superinterface, 

it will be propagated to all the classes implementing th a t interface.

4.4 Inheritance Scenarios - P oten tia l A m bigu­
ities

We have analyzed situations th a t use code in interfaces to ensure th a t the 

algorithm in Figure 4.1 works as necessary. The four scenarios in Figure 4.3 

represent the common situations. They test all paths of the algorithm  we 

devised. The first scenario shows a non-ambiguous case. The second scenario 

illustrates a simple method overriding case with no ambiguities. The third 

scenario generates an ambiguity, since a type inherits implementations for a 

method from two direct unrelated parents; note tha t the type itself does not 

provide an implementation for th a t method. Finally, the fourth scenario is 

a case of complex m ethod overriding which does not generate an ambiguity 

under a weaker definition of inheritance conflicts.

S cen ario  1. The simplest scenario occurs when C lass A has no code for 

method a lp h aO  and no superclass has code for method a lp h a  (). In addition, 

a direct superinterface, In te rfaceA , has code for m ethod a lp h a O . This is 

also the scenario described previously, where the class RandomAccessFile im­

plements the interface D a ta ln p u t which contained code for r e a d ln t  () . When 

a message a lp h aO  is sent to an instance of C lass  A, the code from In te rfac eA  

is executed.
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S cenario  3Scenario 1
I n terfaceBInterfaceAInterfaceA

alpha()alpha()alpha()

w
C lassBC lassA

S cenario  2 S cenario  4

In terfaceAInterfaceA
alpha()alpha()

C lassAInterfaceBIn te r fa c e s
alphaQ

▼
C lassBC lassB

y\
 ^  im plem entation

 Y  su b c la ss

ex ten d ed  by

interface

class

Figure 4.3: Inheritance scenarios - Potential ambiguities.

S cenar io  2. A more complex case occurs when ClassB has no code for 

a lp h a O ,  but both In te r faceA  and I n te r f a c e B  on the same superinterface 

chain have code for a lp h aO .  In this case, step 13C of Figure 4.1 is first 

executed with currentmb bound to  a methodblock in ClassB (with no code) 

and imb bound to a methodblock in In te r f a c e B  with code. This means 

th a t step 13D is executed to  re-bind the VMT entry to  the methodblock 

in In te r faceB .  The second time tha t step 13C is executed, currentmb is 

bound to a methodblock in In te r f ac eB  (with code) and imb is bound to a 

methodblock in In te r faceA  (with code). Step 13F is entered since there is 

chance for m ethod ambiguity. However, since In te r f aceA  is a superinterface 

of In te r faceB ,  the condition in step 13F evaluates to false and an ambiguous 

method exception is not thrown. Therefore, when a message a lp h a O  is sent 

to an instance of ClassB. the code for a lp h a O  provided by In te r f ac eB  is 

executed. This constitutes a simple m ethod overriding situation, similar to 

the case where we have classes instead of interfaces.
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S cen ario  3. This scenario illustrates a situation where an ambiguous

m ethod exception should be thrown. Since either the code in In te r faceA  

and In te r f ac eB  could be inherited, the programmer is required to declare 

a m ethod in ClassB to resolve the inheritance conflict [14], A trace of the 

code in Figure 4.1 shows tha t an ambiguous method exception does occur 

since the IMT for In te r faceA does not contain In te r f ac eB  and the IMT for 

In te r f ac eB  does not contain In te r faceA .

S c en a r io  4. This scenario illustrates an interesting situation where one 

might conclude th a t an ambiguous m ethod exception should be thrown for an 

a lp h a O  in ClassB. However, since the code for a lp h aO  in In te r faceA  is 

reachable from ClassB by going through In te r faceB ,  a weaker definition of 

inheritance conflict would dispatch the version of a lp h aO  from In te r faceB  

[24], A trace of the code in Figure 4.1 shows th a t an ambiguous method 

exception does not occur since the condition in step 13G is false. In this 

case, currentmb is bound to a methodblock in In te r faceA  and imb is bound 

to a methodblock in In te r faceB ,  since interfaces of superclasses are added 

to  the IMT of ClassB before other interfaces are added, as described in the 

code in Figure 3.16. Therefore, in this situation, the code from In te r faceB  

is executed when a message a lp h a O  is sent to an instance of ClassB. Each 

scenario illustrates one of the unique paths through the code in Figure 4.1, 

including the need for both conditions (step 13F and 13G).

4.5 D ispatch  of C od e from  Interface M eth od s

When the user provides interfaces with code, a call-site th a t often appears in 

an interface method is t h i s  . a lp h aO  . In a m ethod implemented in a class, the 

t h i s  keyword represents a reference to the object on which the method was 

invoked and an in v o k e v ir tu a l bytecode is generated. W hen this call-site is 

found in an interface, an in v o k e in te r f  ace should be generated instead since 

the static type of t h i s  is now an interface. To account for such situations, 

we modify the bytecode generated for each th i s .a lp h a O  call-site found in 

an interface from in v o k e v ir tu a l  to an in v o k e in te r f  ace. Thus, the lookup
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/ /  j a v a . i o .Data lnputStream and Java i o .RandomAccessFile

p u b l ic  f i n a l  by te  readBy teO  throws IOException {
i n t  ch = t h i s . i n . r e a d () ;  / /  i n t ch = t h i s . r e a d ! ) ;
i f  (ch < 0)

throw new EOFExceptionO ;
r e t u r n  ( b y t e ) ( c h ) ;

}

Figure 4.4: Similar code in ja v a . io  library.

for the method starts in the current interface (the interface th a t contains the 

call-site) and continues up its superinterface chain searching the method table 

of each interface for a method signature match.

We present an example of such a method dispatch th a t we have encountered 

in the validation process of our JVM modifications. Figure 4.4 is a reproduc­

tion of Figure 2.9 th a t illustrated similar code in the readByteQ methods of the 

j a v a . i o  library from the classes Data lnputStream and RandomAccessFile.

If this code can be made identical, it can be moved to the common super- 

interface of Data lnputS tream and RandomAccessFile, called D ata lnput  tha t 

is shown in Figure 2.7. The code can be made identical by replacing the second 

line of the readByteO m ethod by: 

i n t  ch = t h i s . s o u r c e ( ) ;  

where the source () m ethod in class Data lnputStream returns t h i s ,  i n  and 

the source! )  method in class RandomAccessFile returns t h i s .  This change 

is described in more detail in C hapter 6. W hat is im portant to notice now is 

th a t this kind of abstraction results in a method such as readBy teO  in the 

interface Data lnput  which contains a message with t h i s  as the receiver. In 

this case, the scripting process replaces the i n v o k e v i r t u a l  bytecode w ith an 

i n v o k e in t e r f  ace bytecode.

The operands required by in v o k e v ir tu a l  and in v o k e in te r f  ace are dif­

ferent. The in v o k e v ir tu a l  bytecode takes only two operands which form an 

index into the constant pool, whereas in v o k e in te r f  ace takes four operands: 

the first two operands form an index into the constant pool, the third operand
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indicates the number of arguments th a t the m ethod takes and the fourth is 

set aside for execution speed (the guess) after quicking. Therefore, when re­

placing these bytecodes in the .c la s s  file, the number of arguments should 

be added (if the last operand is not provided, it is autom atically set to 0). A 

new .c la s s  file containing these changes is generated as described in Chapter 

7. The number of arguments provided in the script is not im portant, because 

as we will see later we do not use it. Instead, the correct number of argu­

ments for the m ethod is taken from the resolved m ethodblock when the JVM 

encounters an in v o k e in te r f  ace. The right number of arguments is essential, 

because when the m ethod th a t we would like to execute is in an interface, the 

receiver object has to be retrieved by going up the operand stack a number 

of arguments found in the resolution m ethodblock, and not in the bytecodes 

(which do not reflect the actual situation in the resolved methodblock).

4.6 C oncluding R em arks

Our implementation of multiple code inheritance in Java is based on the novel 

concept of adding code to selected interfaces represented by code-types. In this 

Chapter, we described our modifications to the JVM class loader tha t support 

code within interfaces and we showed how the new code was dispatched. We 

showed that our approach detects ambiguous situations due to code in multiple 

super-types. We illustrated scenarios tha t tested the modified class loader in 

the presence of code in interfaces, as well as in ambiguous situations.

We solved the special dispatch problem for t h i s  .a lp h a O  call-sites within 

interface code, by replacing the in v o k e sp e c ia l bytecode, normally generated, 

with in v o k e in te rfa c e .

We provided a comment notation for including code in interfaces. In Chap­

ter 7 we detail the process which inserts code within interfaces in the absence 

of compiler support for multiple code inheritance.
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C hapter 5 

Super Call Im p lem en tation

The implementation of an overridden method often invokes the same method as 

implemented in the super-type, in order to refine existing code. Java achieves 

this enhancement of functionality for the overridden method through its pow­

erful super call mechanism. However, when a type inherits code from multiple 

super-types, the choice of which type to  use for a super call becomes an issue. 

In this Chapter we present a solution to  the problem of super calls in the case 

of multiple code inheritance. We also propose syntax changes for super calls 

to interfaces th a t would simplify coding.

5.1 Super Call M echanism

In Java, a m ethod invokes the same m ethod from its superclass using the 

syntax s u p e r . a lp h a O . W ith multiple-inheritance, such a call could be am­

biguous. C + +  solves this ambiguity problem by specifying a method in a 

particular superclass at compile time. For example, if C is a direct subclass of 

classes A and B th a t both declare m ethod a lp h a O , then a super reference to 

a lp h aO  in a m ethod in class C can specify either A: : a lp h aO  or B: : a lp h a O . 

In fact, if no declaration of a lp h aO  occurs in class A, but does occur in a 

superclass of A, such as D, then the call A: : a lp h aO  would s ta rt a dynamic 

lookup in A and then proceed to find the appropriate m ethod in D.

This is the approach 'we use in multiple-inheritance Java. Chapter 7 de­

scribes the syntax used to implement this idea w ithout changing the .Java lan­

guage, In this Chapter we use the simple notation su p e r .(S ta r t)  .a lp h a O ,
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pllll
InterfaceB

1

alpha()

ClassDInterfaceCInterfaceA
alpha()

... alpha()

C lassE
super(?).alpha();alpha()

Figure 5.1: Classes and interfaces for super calls.

where S ta r t  refers to any superinterface. Since the argument interface does 

not need to declare the method, this argum ent indicates the place where the 

lookup starts. The modified JVM looks for code in the specified interface and 

then continues searching along the superinterface chain. If a stricter form of 

multi-super is required, the s ta rt interface could be restricted to be an imme­

diate superinterface of the class or interface th a t includes the super call. Some 

would argue th a t this C+-F model provides too much freedom in super calls.

5.2 E xam ples o f M u lti-Inh eritance Super

Consider the classes and interfaces in Figure 5.1. The following m ethod call 

super (In te rfac e A ) .a lp h aO  in a m ethod of C lassE  invokes the a lp h aO  in 

In te rfaceA . The call super (In te r fa c e C ) .a lp h a O  invokes the a lp h aO  in 

In te rfaceB . The call s u p e r .a lp h a O  invokes the a lp h aO  in ClassD, because 

we do not change the meaning of the single-inheritance super call.

Now consider the interfaces and classes of Figure 5.2. The m ethod call 

su p e r(In te rfa c e G ) .a lp h aO  in a m ethod of ClassM invokes the a lp h aO  in 

In te rfa c e F . The call s u p e r . a lp h aO  would behave identically with the usual 

super call. The traditional call su p e r . a lp h aO  would not find the a lp h aO  in 

In te r f a c e J  and in fact would result in a compile-time error since there is no 

a lp h aO  declared in the superclass chain of ClassM (i.e., there is no declaration 

of a lp h aO  in C lassL  nor ClassK). If there was also an a lp h aO  in ClassK,
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ClassLInterfaceH
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... alpha()

ClassM
super(?).alpha();alpha()

Figure 5.2: More classes and interfaces for super calls.

then an inheritance conflict exception would have been thrown when C lassL 

was loaded.

5.3 Im plem entation  o f Super

Our implementation of the multiple-inheritance super call, with the proposed 

syntax super ( S ta r t )  .a lp h a O , generates an in v o k e in te r f  ace bytecode in­

stead of an in v o k e sp e c ia l bytecode generated to  implement a single-inheritance 

super call, su p er. a lp h aO .

The instruction stores the argument interface  (in this case, S ta r t )  in the 

constant pool and marks the m ethod call-site by storing a special value in 

an operand of in v o k e in te r f  ace bytecode. W ith compiler support, we would 

prefer to create a different bytecode (in v o k em u lti-su p e r) .

We will refer to this operation as an in v o k em u lti-su p e r, even when it is 

represented by a marked in v o k e in te r f  ace. It appears th a t two JVM changes 

are required to support in v o k em u lti-su p e r, one in resolution  and one in 

computing the execution m ethodblock. In fact, resolution does not require 

changes. Regular in v o k e in te r f  ace resolution finds an appropriate resolu­

tion  m ethodblock. However, execution  m ethodblock com putation is different
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for in v o k em u lti-su p e r and in v o k e in te r fa c e . An in v o k e in te r fa c e  uses 

a guess and the resolved m ethodblock stored in the quicked bytecodes to 

find the execution  m ethodblock using the formula given in Figure 3.13. For 

in v o k em u lti-su p e r, we can just use the resolved m ethodblock directly as the 

execution m ethodblock, as we show later in this Chapter.

We preserve the semantics of the traditional super calls w ithout altering 

their performance. If we use the normal super syntax (without any argument 

for super), the classic super would be executed, therefore the code from the 

superclass would be retrieved. The compiler emits an in v o k e sp e c ia l bytecode 

followed by one operand, which is an index into the constant pool of the current 

class. The entry at this index is the m ethod signature (in this case, a lp h aO ) 

of the m ethod being invoked, along with the first superclass th a t contains a 

declaration of a lp h a O , when the super call was compiled.

If an existing program contains a super call, we expect the new JVM to 

generate the same results. This is consistent with Figure 5.2 where a regular 

su p e r . a lp h aO  call in ClassM generates a compiler error instead of executing 

the code in In te r f a c e J .  If on the other hand we use the m ulti-super syntax 

with an interface argument, then we expect the code from an interface to be 

executed.

If the user wants the code from a specified superinterface to  be executed, 

then the name of the superinterface has to be supplied as an argument to the 

m ulti-super. In this case, the scripting process applied to  the interfaces and 

classes involved recognizes the special marker (from the number-of-arguments 

operand of in v o k e in te r f  ace) and replaces the static receiver of the method 

with the specified interface name.

We have slightly modified the .JVM code th a t executes the in v o k e in te r f  ace 

bytecode in order to differentiate between the two cases when this bytecode 

is generated: the traditional case (real in v o k e in te r f  aces) and this special 

case (the multi-inheritance super call). In fact, we have modified the .qu ick  

counterpart of the in v o k e in te rfa c e , i.e., in v o k e in te r f  ace .q u ick . In the 

case the flag set in the operand is on, when an in v o k e in te r f  a ce .q u ick  byte­

code is executed, our execution m ethodblock is retrieved, instead of the usual
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case op cM n v o k e in te r face^q u ick :
imb = constant_pool[GET_INDEX(pc + l ) ] .m b ;  
i n t e r f a c e  = im b .c l a s s ;  
o f f s e t  = i m b . o f f s e t ;

/ /  We change th e  code so t h a t  nargs  i s  r e t r i e v e d  from 
/ /  the  r e s o lv e d  i n t e r f a c e  methodblock imb i n s t e a d  of 
/ /  from the  na rgs  bytecode (p c [3 ] ) .
/ /  a rg s_ s ize  = p c [3 ] ;  / /  REMOVED 
args_size =  im b.args_size ; / /  ADDED 
optop -= a rgS-S ize;

/ /  We use t h e  t h i r d  operand (nargs) as a marker f o r  the  
/ /  m u l t i - s u p e r  case ,  
if  (pc[3] = =  255) / /  ADDED

m b  =  in te r face .M T [o f f se t ] ; / /  ADDED 
g o to  c a l l m e th o d ;  / /  ADDED 

end  if / /  ADDED

end case

Figure 5.3: The modifications made at the in v o k e in te rfa ce _ q u ic k  bytecode 
execution.

methodblock. Details of our im plem entation are illustrated in Figure 5.3. This 

does not affect the non-marked in v o k e in te r f  ace executions, because if the 

flag is not set, then the next tim e an in v o k e in te r f  ace is encountered, the 

usual (non-modified) execution process occurs and the proper m ethodblock is 

executed. The execution of the traditional in v o k e in te r f  ace^quick  is more 

complicated, since the resolution m ethodblock may be different from the ex­

ecution m ethodblock as described in Chapter 3, Section 3.7.

In our case, it turns out th a t the resolution methodblock is the actual exe­

cution methodblock. The reason for this convenient situation is th a t once we 

specify the starting point of the lookup (the interface argument) the interface 

method table (IMT) of the specified interface is searched, beginning with its 

first entry, which is the interface itself, and continuing w ith all the direct and 

indirect superinterfaces until a matching signature for the m ethod is found in 

the method table (MT) of some interface. The resolved m ethod is the m ethod
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th a t should be executed since in a super call the dynamic type of the receiver

is irrelevant.

If no code is found on the superinterface chain, the compiler would have 

generated an error. Note th a t it is currently possible to use our scripts to put 

code in a method a lp h aO  in an interface IA and to declare a lp h aO  to be 

abstract in a sub-type interface IB. This should be a compile-time error since

it violates substitutability  [14]. Because we currently do not have compiler 

support for code in interfaces, we catch this error at load-time.

5.4 C oncluding R em arks

In this Chapter, we presented the JVM changes necessary to support our 

generalization of the super operation for multiple inheritance. We defined and 

implemented a super call mechanism that resembles the one in C + + . We 

achieved this by making a change to the execution of the in v o k e in te r f  ace 

bytecode.

We provided a simple notation for super calls to interfaces, which does not 

require compiler support. In Chapter 7, we detail the scripting process used 

to work around the standard Java compilers in the presence of multiple code 

inheritance. We proposed syntax changes for super calls to interfaces th a t 

would simplify coding.
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C hapter 6 

E xperim ental R esu lts

This Chapter provides an overview of experiments and tests conducted during 

the process of verifying the implementation of our SUN JVM for JDK 1.2.2 

modifications. The goal of our JVM validation is to show th a t our multiple 

code inheritance implementation preserves semantics and performance of ex­

isting single inheritance code, w ithout altering Java language syntax or Java 

compilers. In addition, we show th a t both our basic multiple code inheritance 

and the super call mechanism we implemented execute correctly in multiple 

inheritance programs. We also provide some measurements of the software 

engineering advantages of using multiple code inheritance.

6.1 E xperim ental P latform

The experiments were executed on an Intel PC, single Pentium  III processor 

700MHz, with 256 KB L2 cache size and 512 MB RAM. We compiled the Sun 

Microsystems .JDK 1.2.2 for the Linux v. 2.2.16-3 operating system with the 

GCC compiler v. egcs-2.91.66 with optim ization flags -0 2  (default) in JVM 

internal debug mode based on conditional compilation. This JVM version does 

not have a j i t  compiler. We developed a scripting process using Perl v5.6.0 

for Linux.
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6.2 C om patib ility  and Perform ance

We ran two large single-inheritance Java programs on the unmodified JVM 

and on our modified JVM. We wanted to test th a t our modified JVM did not 

introduce errors into single-inheritance programs.

The single inheritance test programs were ja v ac  and ja s p e r .  The ja s p e r  

application takes a .c la s s  file and turns it into a . j file containing a human 

readable version for the binary code of a .c la s s  file. In the first experiment 

we compiled all of the files in the ja v a . io  package. In the second experiment 

we applied ja s p e r  to all of the .c l a s s  files in the j a v a . io  package. Both 

jav ac  and ja s p e r  are written in Java, so they require a JVM to run.

In order to check if the results were consistent, we compared w ith the Unix 

command d i f f  the binary files produced by the javac  compiler ran on the 

classic JVM against the jav ac  compiler ran on our modified JVM. and we 

verified they are identical. We also verified th a t the outputs of ja s p e r  are 

identical when ran on the two .JVMs.

We repeated this experiment for jav ap  (Chapter -3, Section 3.1 illustrates 

an example of using this tool), a single inheritance application within the 

JDK, which generates a description of any .c la s s  file th a t is provided as 

an argument. We tested the .c la s s  file disassembler jav ap  on the .c la s s  

files generated by jav ac  in the j a v a . i o  library. Again, the output using our 

modified JVM is identical to the output using the classic -JVM.

We also wanted to measure the performance overhead of using our modified 

JVM on single inheritance programs.

In all three of these tests, there is no measurable change in the execution 

times, the performance is the same within measurement errors. Table 6.1 

shows the average times (seconds) obtained with the Unix command tim e, 

after 20 runs of ja v ac  and ja sp e r . The table shows also the corresponding 

standard deviation with both JVM implementations. No times are included 

for javap  since it only runs on a single .c la s s  file and the time is too short 

for meaningful comparisons.
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JV M javac ja s p e r
S un  JV M
avg

10.25s 11.85s

O u r JV M  
avg

10.08s 11.56s

Sun JV M  
s td e v

0.02 0.54

O u r JV M  
s td e v

0.15 0.05

Table 6.1: Time measurements for jav ac  and ja s p e r  on ja v a . io  library files.

6.3 C orrectness

We then ran programs whose inheritance structures are represented in Figure 

4.3, to  test the basic implementation of multiple-inheritance. This includes 

code in interfaces and inheritance of this code. These situations test all paths 

through our modified class loader code shown in Figure 4.1.

We also included tests for the special call-sites th i s .a lp h a O  in an inter­

face method code. Also, we included tests for in p u t .a lp h aO  call-sites within 

an interface with code, where in p u t is declared to be th a t interface. These 

call sites would normally be compiled into in v o k e v ir tu a l  bytecodes as a re­

sult of applying our scripting process. We tu rn  them into in v o k e in te r f  ace 

bytecodes. In all cases, we obtained the expected results described in more 

detail in Chapter 4.

To test our implementation of super calls, we ran programs with all of the 

inheritance structures of Figure 5.1 and Figure 5.2. We tested the execution 

of the traditional super calls when code is provided in superinterfaces and 

the execution of multiple inheritance super calls. The results demonstrate 

th a t the semantics of traditional super calls are preserved and th a t multiple 

inheritance super calls are correctly dispatched, as compared to the expected 

results discussed in Chapter 5.
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Source Sink
•p »

InputStream DataOutput OutputStreamDatalnput

DatalnputStream RandomAccessFile DataOutputStream

Figure 6.1: Re-factored hierarchy in ja v a . io  library.

/ /  j a v a . i o .D a ta ln p u tS t r e a m  and java . io .RandomAccessFi le  
p u b l i c  f i n a l  f l o a t  r e a d F l o a t O  throws lOException { 

r e t u r n  F l o a t . i n t B i t s T o F l o a t ( r e a d l n t ( ) ) ;
______________________________________________________________________

Figure 6/2: Identical code in the input stream files.

6.4 R e-factoring th e  java. io  Library

One of the common examples which motivates the use of multiple code inher­

itance is the j a v a . i o  library. Identical code appears in several classes within 

this library. Figure 6.1 shows the existing hierarchy of classes and interfaces, 

along with two new interfaces, Source and Sink, tha t are used to  help promote 

code to superinterf'aces.

6.4 .1  In p u t S tream  C lasses

Classes RandomAccessFile and Data lnputS tream have either identical code 

or code th a t requires a simple abstraction in order to be m ade identical. The 

goal is to promote the common code into the Data lnpu t  interface where it 

would be available for instances of both classes. For example, the method 

r e a d F l o a t O  from Figure 6.2 has the same code in both classes. The method 

readByteO  from Figure 6.3 needs one abstraction. We accomplish th a t by 

replacing references to data by abstract accessor m ethod invocations (e.g. 

source() and sink() as discussed below) placed in the interfaces and imple-
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/ /  ja v a .io .D a ta ln p u tS tre a m  and java.io .R andom A ccessF ile  
p u b lic  f i n a l  b y te  read B y teO  throw s IO Exception {

in t  ch = t h i s . in  .re a d  () ; / /  i n t  ch = t h i s .  r e a d O ; 
i f  (ch < 0)

throw  new EOFExceptionO ; 
r e tu r n  ( b y te ) ( c h ) ;

______________________________________________________________________

Figure 6.3: Similar code in the input stream  files.

/ /  j a v a . i o .D ata lnpu t
p u b lic  f i n a l  b y te  read B y teO  throw s IO Exception { 

i n t  ch = t h i s . s o u r c e ( ) .r e a d 0 ;  
i f  (ch < 0)

throw  new EOFExceptionO ; 
r e tu r n  ( b y te ) ( c h ) ;

______________________________________________________________

Figure 6.4: Abstraction of similar code in D a ta ln p u t interface.

mented in the classes down the hierarchy. Figure 6.4 shows how we abstract 

the code and promote it to the common superinterface D a ta ln p u t.

Let us consider the code in the readB y teO  method from D atalnputS team  

and RandomAccessFile shown in Figure 6.3. Both m ethods call the method 

r e a d O . The only difference between the code in the classes D atalnpu tS tream  

and RandomAccessFile (which implement D ata lnpu t) is the receiver of the 

re a d O  method. To generalize the code for this m ethod so th a t it can be 

promoted to the interface D a ta ln p u t, we have to declare a m ethod s o u rc e 0  

in the interface D a ta ln p u t which returns the right receiver for the re a d O  

m ethod in each case. The implementations of the s o u rc e () m ethod for 

classes D atalnpu tS tream  and RandomAccessFile are shown in Figure 6.5. 

Since the source  () m ethod in D atalnpu tS tream  returns an instance of class 

Inpu tS tream  and the s o u rc e () m ethod in RandomAccessFile returns an in­

stance of class RandomAccessFile, we need a smallest common super-type of 

InputS tream  and RandomAccessFile. Therefore we introduce a new inter­

face Source, as shown in Figure 6.1. In the same manner, we need a s in k Q  

m ethod declared in D ataO utput and a Sink interface, as we will see in the
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// class java.io.DatalnputStream

p u b l i c  Source s o u r c e () { 
r e t u r n  t h i s . i n ;

}

/ /  c l a s s  j a v a . i o . RandomAccessFile

p u b l i c  Source s o u r c e () { 
r e t u r n  t h i s ;

}

Figure 6.5: Implementation of the sou rce  0  method.

/ /  package mi
p u b lic  in te r f a c e  Source {

p u b lic  i n t  re a d O  throw s IO Exception;
}
p u b lic  in te r f a c e  Sink {

p u b lic  v o id  w r i t e ( in t  b) throw s IO Exception;
}_____________________________________________________________

Figure 6.6: The mi package.

next Section.

We have re-factored the ja v a . io  library by moving common code up into 

interfaces. To support this process, we have built a package named mi (Figure 

6.6) th a t is imported in every class or interface th a t implements or extends our 

two new interfaces: Source and Sink. The Source interface has one abstract 

method, re ad O  and S ink  interface has one abstract method, w r ite  ( in t )  as 

illustrated in Figure 6.6. These two interfaces represent the least common 

superinterfa.ee of the types returned by the s o u rc e () and s in k ( )  methods.

InputS tream  and RandomAccessFile both implement the new interface 

Source, and at the same time O utputStream  and RandomAccessFile both 

implement the new interface Sink.
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/ /  j a v a . i o . DataOutputStream and java . io .RandomAccessFi le  
p u b l ic  f i n a l  void  w r i t e F l o a t ( f l o a t  v) throws IOException { 

w r i t e I n t ( F l o a t . f l o a t T o I n t B i t s ( v ) ) ;
} ______________________________________________________________________

Figure 6.7: Identical code in output stream  classes.

/ /  j av a . io .D a taO u tp u tS t r eam
p u b l i c  f i n a l  void w r i t e l n t ( i n t  v) throws IOException { 

OutputStream out = t h i s . o u t ;  
ou t .  w r i t e  ( (v » >  24) & OxFF) ; 
o u t . w r i t e ( ( v  >>> 16) & OxFF); 
o u t . w r i t e ( ( v  >>> 8) & OxFF); 
o u t . w r i t e ( ( v  > »  0) & OxFF); 
incCount( 4 ) ;

___}____________________________________________________________________

Figure 6.8: M ethod w r i t e l n t  () in DataOutputStream.

6.4 .2  O u tp u t S tream  C lasses

Classes RandomAccessFile and DataOutputStream have some identical m eth­

ods (for example, m ethod w r i t e F l o a t 0  in Figure 6.7).

In addition, there are several situations where the code in DataOutputStream 

can be made identical to the code in RandomAccessFile (using an abstrac­

tion), except for some extra lines of code following the identical part. We can 

promote all such code to the common superinterface and make a super call to 

it from the type which contains the extra lines of code.

For example, Figure 6.8 and Figure 6.9 show the method w r ite ln t  () from 

classes DataOutputStream and RandomAccessFile respectively. Figure 6.10 

shows the common abstracted m ethod th a t has been promoted to interface 

DataOutput. There is no method for w r ite ln t  () in RandomAccessFile. How­

ever, Figure 6.11 shows the m ethod th a t remains in DataOutputStream to 

make the super call and perform the extra action. The super (DataOutput) is 

not standard .Java. It is the super call to a superinterface, discussed through­

out this dissertation. In fact, only the m ethods from DataOutputStream 

have to provide both an abstraction and a super call. The methods from 

RandomAccessFile only need to be abstracted. Therefore, they are completely
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/ /  java.io .RandomAccessFi le
p u b l ic  f i n a l  void  w r i t e l n t ( i n t  v) throws IOException { 

t h i s . w r i t e ( (v >>> 24) & OxFF); 
t h i s  . w r i t e  ( (v » >  16) & OxFF); 
t h i s  . w r i t e  ( (v > »  8) & OxFF); 
t h i s  . w r i t e  ( (v » >  0) & OxFF);

}

Figure 6.9: Method w r i t e l n t O  in RandomAccessFile.

/ /  j a v a . io .D a ta O u tp u t
p u b l ic  f i n a l  void  w r i t e l n t ( i n t  v) throws IOException { 

Sink out = t h i s . s i n k O ;  
o u t . w r i t e ( ( v  » >  24) & OxFF); 
o u t . w r i t e ( ( v  » >  16) & OxFF); 
o u t . w r i t e ( ( v  » >  8) & OxFF); 
o u t . w r i t e ( ( v  » >  0) & OxFF);

}

Figure 6.10: Code abstracted in DataOutput interface.

promoted to  DataOutput.

We ran test programs th a t used the re-designed ja v a . io  library partially 

shown in Figure 6.1. In Table 6.2 and Table 6.3 we show how multiple code 

inheritance reduces the amount of identical and similar code to simplify pro­

gram construction and maintenance. Table 6.2 shows the num ber of methods 

tha t could be promoted in these stream  classes of the ja v a . io  library, if Java 

supported multiple code inheritance. Table 6.3 shows the number of lines of 

executable code moved to the superinterfaces using the same multiple code 

inheritance assumption. We counted only executable lines and declarations, 

not comments or m ethod signatures.

/ /  j ava . io .D a taO u tp u tS t ream
p u b l ic  f i n a l  void  w r i t e l n t ( i n t  v) throws IOException { 

s u p e r ( D a t a O u t p u t ) . w r i t e l n t ( v ) ; / /  Proposed syn tax .  
in cCoun t(4) ;

Figure 6.11: Re-factored code in D ataO utputS tream  with both abstraction 
and super.
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Class Identical
methods

Abstract Abstract 
and Super

Total
pro­
moted

Method
De­
crease

DatalnputStream 4/19 8/19 0/19 12/19 63%
DataOutputStream 2/17 0/17 6*/IT 2+6717 12%
RandomAccessFile 6/45 "8/45 6/45 20/45 44%

Table 6,2: Method promotion in the Java stream  classes using multiple code 
inheritance.

Class Initial
Lines

Added Lines 
Abstract 
and Super

Net Lines 
Abstract 
and Super

Line
De­
crease

DatalnputStream 127 1 84 34%
DataOutputStream 83 r~7 66 20%
RandomAccessFile 154 2 97 37%

Table 6.3: Lines of code promotion in the Java stream  using multiple code 
inheritance.

More im portant than  the size of the reductions is the reduced cost of un­

derstanding and m aintaining the abstracted code. Even though most of the 

m ethod bodies of six methods move up from DataOutputStream to DataOutput,  

small m ethods remain th a t make super calls to these promoted methods. This 

is the reason th a t the method decrease is smaller for DataOutputStream than 

its code decrease. Reducing the number of lines of code reduces the main- 

tainance cost for this code and enhances readability for users of this code.

These re-factored library classes exercise all of the multiple code inheritance 

implementation changes th a t we made. The test programs ran without error 

and with negligible tim e penalties for multiple-cocle inheritance.

Our test program (which uses the re-factored types) creates an instance of 

D ataO utputS tream  which is sent w r ite  messages (w riteD ouble () , w r i te ln t  0 .  

w riteC h arO  , and w rite C h a rs ()) in order to create an output text file and 

write some values in it. Then a D atalnpu tS tream  object is created which uses 

the same file to read information for it (readD oubleO  , r e a d ln tO ,  readC harO , 

and read L in eQ ). Although D atalnpu tS tream  does not override any of the 

m ethods sent to a D atalnpu tS tream  object (because these m ethods have been
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promoted to D a ta lnpu t), the program generates the same results as the un­

modified ja v a . io  library.

6.5 C oncluding R em arks

In this Chapter, we described several experiments we conducted to validate 

our JVM changes, targeting both single and multiple inheritance programs. 

The results of the tests and experiments show th a t our multiple code inheri­

tance implementation preserves semantics and performance of existing single 

inheritance code, w ithout altering Java language syntax or .Java compilers. 

The dispatch scenarios illustrated in Chapter 4 were implemented and ran 

correctly.

In addition, we showed th a t both  our basic multiple code inheritance and 

the super call mechanism th a t we implemented execute correctly in multiple 

inheritance programs. We also described how all the dispatch scenarios il­

lustrated in Chapter 5 were implemented and ran w ithout error, generating 

correct results.

Finally, we provided some measurements of the software engineering advan­

tages of using multiple code inheritance. In order to test multiple inheritance 

programs, we used the re-factored ja v a . io  library, with code in interfaces 

and super calls to  interface code. By using multiple code inheritance, a con­

siderable amount of executable code was promoted to common super-types by 

being removed from the base type or replaced with only a super call.
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C hapter 7 

Syntax Support for C om pilation

The ability to support multiple-inheritance of code introduces two specific 

challenges to the compilation process. First, as discussed earlier, current Java 

compilers do not support executable code inside interfaces. Second, a mecha­

nism is needed to handle generalized super calls. Future work will be to modify 

the compiler to support both code in interfaces and the super call mechanism.

7.1 T he Scrip ting P rocess

We have developed a translation process tha t uses an unmodified -Java com­

piler and does not affect the existent language syntax. Our technique is based 

on source-to-source and class-file-to-class-file transform ations using custom 

scripts, publicly available Java tools, and syntactic conventions in the user’s 

Java code. All of our scripts have the prefix ”MI_” (multiple-inheritance) in 

their names. Although there are several steps in the compilation process, the 

process is autom ated and it is summarized in a flow chart in Figure 7.3.

At the programmer level, the process is the following:

1. The programmer includes code in the interface, but the code is within 

comments with a special label MI_C0DE.

2. Our scripts transform  the .Jav a  file for the interface into a .c la s s  file 

that contains the code. We make use of the following tools: ja s p e r  [16] 

and jasm in [15].
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interface Datalnput {
p u b l i c  f l o a t  r e a d F l o a t ( )

t h r o w s  I O E x c e p t i o n ;  
/ * M I _ C O D E

r e t u r n
Float.intBitsToFloat(readlnt())

M I _ C O D E  * /

abstract class DataInput__MI {
p u b l i c  f l o a t  r e a d F l o a t O  

t h r o w s  I O E x c e p t i o n

r e t u r n
Float.intBitsToFloat(readlnt());

Figure 7.1: Syntax of interface code in ja v a . io  .D a ta ln p u t interface and the 
result of applying the script MI J iy b r id ln te r f a c e .

3. M ulti-inheritance super calls are written as two standard Java instruc­

tions and our scripts translate them into the in v o k e in te r f  ace bytecodes 

described in C hapter -5.

7.2 C ode in Interfaces

Current -Java compilers do not allow code to be included in interfaces so the 

programmer delimits the code using special comment delimiters /*  MI-CODE 

and MI-CODE * /. For example, consider the interface D a ta ln p u t and the class 

D atalnpu tS tream  from Figure 3.14. The code for re a d F lo a t () in the interface 

D atalnpu t is shown in Figure 7.1.

The goal of our compilation process is to create a file D a ta ln p u t. c la s s  

with Java bytecodes for the body of the method re a d F lo a t 0 ,  i.e., an interface 

with code. This is accomplished by creating both an interface D a ta ln p u t and 

a class with the same name followed by _MI (i.e., multiple inheritance), then 

combining the . c la s s  files of both the interface and class into a single . c la s s  

file th a t is like an interface, except tha t it contains code from the specially 

commented methods. Therefore step 2 of our process is divided into sub-steps 

th a t use several translation tools and scripts.

• 2.1 The interface source file (D a ta ln p u t. ja v a  of Figure 7.1) is compiled 

using a standard ja v ac  compiler to create a binary file (D a ta ln p u t. c la s s )  

for the interface th a t contains no code.
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• 2.2 The interface binary file (D a ta ln p u t. c la s s )  is disassembled, using 

the ja s p e r  [7] tool into an interface jasper file (D a ta ln p u t. j) . The 

jasper file is a human-readable form of the binary file th a t begins with 

a description indicating tha t the file was originally compiled from an 

interface.

• 2.3 Script M U ry b rid ln te rfa c e  performs a source-to-source translation 

from an interface source file (D a ta ln p u t. jav a) into an abstract class 

source file (D ata lnpu t 311 .ja v a )  in which the special comment delimiters 

are removed from the interface’s m ethods ( re a d F lo a tO ), making the 

code visible to a compiler. The class DataInput_MI is made abstract to 

avoid irrelevant compiler error messages since some interface methods 

may not contain code and a class th a t contains at least one m ethod 

without code (abstract method) should be declared abstract.

•  2.4 The abstract class source file (D atalnput_M I. java) is compiled by 

jav ac  into an abstract class binary file (Datalnput_MI .c la s s )  tha t con­

tains code for all of the m ethods in the original interface th a t had m eth­

ods ( re a d F lo a tO ).

•  2.5 The abstract class binary file (D atalnput_M I. c la s s )  is disassembled 

into an abstract class jasper file (D ata lnpu t _MI . j )  using the ja s p e r  

tool.

® 2.6 Script MI-CopyHeader In te r f a c e  first replaces all the in v o k ev ir tu a l  

bytecodes whose static types have a suffix _MI with in v o k e in te rf  ace 

bytecodes. Due to the difference in the number of operands required 

by in v o k ev ir tu a l  (only two operands) and in v o k e in te rf  ace (four 

operands), another bytecode which represents the number of arguments 

taken by the m ethod has to be added at the new in v o k e in te rf  ace lo­

cation. This number is actually ignored a t run-time, since the actual 

number of arguments is taken from the resolved methodblock. However, 

some number must be placed in the operands in order to allow the gener­

ation of the modified . c la s s  file with jasmin. The fourth operand is set
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to zero by default, so we do not have to explicitly provide it. Recall tha t 

this step is necessary, because of the situation when we have a call-site 

th i s .a lp h a O  within an interface method.

In this case, the script removes the _MI suffixes of all references in 

the abstract class jasper file (D atalnput_M I. j). Note th a t although 

the static type of the receiver a t an in v o k e v ir tu a l call-site is a class 

(D a ta ln p u tJ ll) , after removing the _MI suffix and replacing the opcode 

with invoke i n t  e r f  ace , the static  type of the receiver a t the same call- 

site becomes an interface (D ata lnpu t) as expected for an in v o k e in te r f  ace 

bytecode. The script combines this modified abstract class jasper file 

(D a ta ln p u tJ f l . j )  with the interface jasper file (D a ta ln p u t. j )  to obtain 

a hybrid jasper file th a t has the header (description of the type of the 

. c la s s  file) of an interface (D a ta ln p u t. j)  and the code for the methods 

(D ataInput_M I. j ) ,  except for the constructors. The hybrid jasper file 

overwrites the interface jasper file (D a ta ln p u t. j) .

• 2.7 The hybrid jasper file (D a ta ln p u t. j )  is assembled into a hybrid 

binary file (D a ta ln p u t. c la s s )  using the jasm in  [8] tool. Since jasm in  

is not a full-fledged compiler, it does not explicitly check wffiether or not 

interfaces have code so no errors are reported.

Although there are seven steps in this process, they are hidden from the pro­

grammer who uses the simple syntax of Figure 7.1. For now, all the steps of 

the process are autom ated in a m ak efile , therefore the user only types the 

make command. In the future, we would like the user to run a script instead of 

a m ak efile  in order to trigger the execution of this process. Currently, when 

a program th a t has code in interfaces is executed by jav a , the verifier m ust be 

turned off ( -n o v e r ify  flag). We plan to modify our JVM to remove only the 

verification code for interfaces so the rest of verification can be m aintained.
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/ /  M u l t i - supe r :  t h e  lookup s t a r t s  from th e  a rgument’s IMT,
/ /  con t inu ing  a long i t s  s u p e r i n t e r f a c e  h ie r a r c h y .

MI. s u p e r c a l l ( " I n t e r f a c e H " ) ; 
s u p e r . a l p h a ( ) ;

/ /  Normal super :  th e  lookup s t a r t s  in  th e  s u p e r c l a s s  MI,
/ /  con t inu ing  along i t s  s u p e r c l a s s  chain ,  

s u p e r . a l p h a ( ) ;

Figure 7.2: Syntax of s u p e r c a l l  for call-sites in ClassM.

7.3 Super Calls

In Chapter 5. we described multi-inheritance super calls and introduced the 

syntax super ( S t a r t )  . a lp h a  () , indicating the interface S t a r t  as the place 

the lookup begins from. Our approach currently uses two standard Java state­

ments to represent this language extension. This allows us to  still use the 

standard Java compiler, javac ,  albeit as part of a multi-step, scripted compi­

lation process. To make a multi-inheritance super call, the program m er inserts 

a special static m ethod call th a t contains the start interface as an argument, 

followed by a standard local m ethod call. For example, Figure 7.2 shows the 

current syntax for the super calls shown in Figure 5.2 th a t s ta rt searching in 

In te r faceH  (multi-inheritance super) and ClassL (normal super), respectiv- 

elly. MI is a new library class specifically designed to provide syntax support 

for multiple-inheritance. It can be discarded once compiler support is de­

veloped for multiple-inheritance using super ( S t a r t )  . a lp h a ( ) .  The MI class 

contains a static method super  c a l l  th a t takes as an argument the interface 

from which the lookup starts. This is a marker which indicates th a t the super 

call immediately following it is a special super, i.e., a multi-inheritance super 

call.

Since we do not alter the semantics of the existing super calls, we do not 

provide an M l.su p e rc a ll  statem ent before a normal super to a class. Thus 

we do not impose any overhead on existing super calls.

If the j avac  compiler;tries to compile the code in Figure 7.2, based on
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the inheritance hierarchy of Figure 5.2. it will produce a compilation error for 

both s u p e r . a l p h a () call-sites. In each case, it will search the superclass chain 

of ClassM, starting with ClassL and will not find a declaration for a lp h aQ . 

To avoid spurious compilation errors, we can replace the super  keyword with 

t h i s  for all the call-sites immediately preceded by an MI. s u p e r c a l l  before 

compilation. This works since if the call-site s u p e r . alphaC) is turned into 

t h i s . a l p h a 0 , the compiler finds the method in the virtual m ethod table 

(VMT) of the current class, therefore it does not report an error. However, 

an in v o k e v i r t u a l  bytecode is generated instead of an invokespec ia l .  We 

further need to replace this i n v o k e v i r t u a l  with an i n v o k e i n t e r f  ace, so tha t 

the lookup starts in the IM T of the specified interface, and not in the method 

table (MT) of the superclass of the class which contains the super call-site.

Here is our multi-step compilation process th a t translates the syntax of 

Figure 7.2, to  the bytecodes described in Chapter 5. These steps are the sub­

steps of step 3 of the high-level compilation process presented at the beginning 

of Chapter 5. In each step, the term  current class refers to the class tha t 

contains the super call. The example used is the code in Figure 7.2 with the 

inheritance hierarchy of Figure 5.2.

•  3.1 Script MI_preprocessClass  transforms the current class source file 

(ClassM. java) into an abstract class source file (ClassM_MI. java) by 

adding the abstract modifier to  the class. At the same time, the super  

keyword is replaced by the t h i s  keyword at all the call-sites immediately 

preceded by MI. s u p e r c a l l .  The abstract modifier is needed since the 

current class may not actually declare the m ethod invoked by the super 

call. For example, consider the situation where the code in Figure 7.2, is 

in a method called b e t a ( )  and there is no code for a l p h a () in ClassM. 

By making the current class (ClassM) abstract, no compiler error will 

be generated by the t h i s . a l p h a O  call, because a slot for a l p h a () is 

autom atically created in the virtual method table (VMT) of ClassM, 

representing a M iranda Method (detailed in C hapter 4).

•  3.2 The abstract class source file (ClassMJf l . java) is compiled into an
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abstract class binary file (ClassMLMI. c la s s )  using javac.

•  3.3 The abstract class binary file (ClassM_MI. c la s s )  is disassembled into 

an abstract class jasper file (ClassM_MI. j)  using ja sp e r .

•  3.4 The script MI_abstractToConcrete translates the abstract class 

jasper file (C lassM JII. j)  into a concrete class jasper file (ClassM. j) . 

The abstract class modifier is removed and the in v o k e v ir tu a l  instruc­

tion after the MI. s u p e r c a l l  ( S ta r t )  m ethod invocation is changed to 

an in v o k e in te r f  ace instruction. The argument of the MI. s u p e r c a l l  is 

copied over the static type of the receiver in the in v o k e in te r f  ace imme­

diately following this statem ent. As in all cases where the in v o k e v ir tu a l 

bytecode was replaced with an in v o k e in te r f  ace requiring two more 

operands, the num ber of arguments is also supplied. Since the number 

of arguments is ignored at run-tim e, being retrieved from the resolved 

methodblock, we can use it as a marker for the multi-super case, set­

ting it to 255. Now the modified . j  file can be correctly generated with 

jasm in resulting in a valid . c la s s  file, since the in v o k e in te r f  ace has 

been provided w ith the number of operands it requires.

• 3.5 The concrete class jasper file (ClassM . j)  is assembled into a concrete 

class binary file (C lassM .class) using jasm in.

The same process works on an interface source file th a t contains a super call. 

Although there are five steps in this process, they are hidden from the pro­

grammer who uses the simple syntax of Figure 7.2.

7.4 C oncluding R em arks

In this Chapter, we presented our scripting process th a t was developed to cope 

with the absence of compiler support for multiple code inheritance.

We solved two specific challenges to the compilation process. First, as 

discussed earlier, current Java compilers do not support executable code inside 

interfaces. Second, a mechanism is needed to handle generalized super calls.
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The proper wav to solve these problems is to modify a compiler- to support 

our changes and we plan to complete this task in the future. In the meantime, 

we prototyped the compiler, through the scripting process described in this 

Chapter. Our scripting process works with any existing java compiler.

Although there are several steps in this scripting process, they are auto­

mated and the user only executes a m ak efile  to trigger their execution. In 

the future, we would like to have a script with the same functionality as the 

current m akefile .
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Datalnput.java

/ 7
lalalnput.classJ DataInput_Ml.java

javac

DatalnputStream.java

MLpreprc cessClass

DatalnputStream_Ml.java

l
javac

'

ia sPer /Datalnput Ml.ciass / / DatalnputStream.MI.class.

jasperjasper

Datalnput.. Ml. j atalnputStream. Ml.jDatalnput.i

Ml abstractloConcreteMl cbovHeaderlmerface

DatalnputStream.jDatalnput.j

jasm injasmin

DatalnputStream.classDatalnput.class Test, java

javac

/Test.class

our java
’

Datalnput code is executed

Figure 7.3: The scripting process.
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C hapter 8 

C onclusions and Future W ork

In this dissertation we presented the design and implementation of an extended 

JVM th a t supports multiple code inheritance. We conclude with a summary 

of Chapters, future directions and research contributions.

8.1 Sum m ary o f C hapters

We started  by motivating the need for multiple code inheritance in .Java, em­

phasizing its advantages: facilitates code re-use, supports separation of inher­

itance concepts, and improves expressiveness and clarity of implementation. 

Moreover, multiple code inheritance avoids duplicated code and supports re­

factoring.

We continued with a short review of the current state of multiple inher­

itance, investigating the mechanisms of multiple code inheritance in several 

programming languages. We support multiple code inheritance, and not mul­

tiple data inheritance, since the la tte r is not as im portant as code inheritance. 

Multiple data  inheritance is not a popular feature among programming lan­

guages which support multiple inheritance, being the source of many compli­

cations. Re-using code is a powerful object-oriented feature which decreases 

the effort of programmers, who are mainly focused on implementing m ethod 

bodies.

We described the current im plem entation of those parts of the JVM in­

volved in m ethod dispatch. The steps of m ethod dispatch, resolution and exe­

cution, are detailed for the in v o k e v ir tu a l  and in v o k e in te r f  ace bytecodes.
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Since resolution is slow, bytecode quicking is introduced.

We proposed a mechanism to support multiple code inheritance in Java 

through code in special interfaces th a t represent code-types. Then we de­

scribed how we modified the JVM loader to support these special types and 

showed how the code was dispatched. We also described our solution to the 

dispatch of th i s .a lp h a O  call-sites within interface methods.

We presented the changes necessary to support a generalization of the 

super operation for multiple inheritance. We defined and implemented a super 

call mechanism that resembles the one in C-f-fi. We implemented this by 

making a dispatch time change to the virtual machine. We provided a comment 

notation for including code in interfaces and a simple notation for super calls 

to interfaces th a t does not require compiler support. We proposed syntax 

changes for super calls to interfaces th a t would simplify coding and would 

require future compiler modification.

We conducted several experiments to validate our approach, targeting both 

single and multiple inheritance programs. The dispatch scenarios illustrated 

in Chapter 4 and Chapter 5 were implemented and ran correctly for both the 

basic multiple code inheritance and our generalized super call implementations.

The multiple inheritance test programs used the re-factored ja v a . i o  li­

brary hierarchy, in which interface code and our generalized super calls to 

interfaces are correctly dispatched. The measurements of the software engi­

neering advantages of using multiple code inheritance show th a t a considerable 

amount of executable code is promoted to common super-types, being either 

removed from the base types or replaced with a super call.

Finally, we discussed the scripting process we used in order to insert code 

into interfaces and to support super calls to interfaces, since the compiler is 

not modified. We proposed syntax changes to simplify this mechanism in the 

perspective of a modified compiler which accepts code within interfaces.
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8.2 Future Work

In this Section, we mention several ideas which, if expanded, can contribute 

to the improvement of our JVM.

1. Even though the changes we have completed in order to support super 

calls are small and localized, it is more appropriate to provide a new byte­

code for the multiple-inheritance super calls, namely in v o k em u lti-su p e r. 

We would like to add this bytecode to our JVM and further evaluate its 

performance. Alternately, we could mark the in v o k e in te r f  ace byte­

code using code attributes. O ther researchers have successfully used 

code attributes to mark bytecodes [27].

2. Currently, in order to compile code in interfaces, we execute a set of 

scripts. We plan to change this in the future by modifying a compiler to 

support the super (In te rfac e A ) syntax in .Java, which would make our 

scripting process unnecessary.

3. We also plan to modify our .JVM to support the verification of code 

in interfaces, at the same time m aintaining the rest of the verification 

stages.

4. We would like to validate the portability of our modifications to a dif­

ferent JVM which supports a JIT  compiler.

5. In addition, we look for other opportunities to re-factor type hierarchies 

by using our modified JVM, evaluate the decrease in code th a t we could 

achieve and measure the performance differences.

8.3 R esearch C ontributions

The research contributions of this dissertation include:

1. The first implementation of multiple code inheritance in Java is provided. 

It is based on the novel concept of adding code to a new type of interface, 

called a code-type. No changes need to be made to the syntax of Java
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to use multiple code inheritance, so no compiler changes are necessary. 

However, syntax changes th a t would simplify coding are proposed for 

the future.

2. We show how multiple code inheritance reduces the amount of identical

and similar code (such as in the standard  libraries) to simplify program 

construction and maintenance. We re-factor the ja v a . io  library and 

show th a t programs using the classes in this library run correctly.

3. We define and implement a super call mechanism th a t resembles the 

one in C + + , in which programmers can specify an inheritance path to 

the desired superinterface (code-type) implementation. We introduce 

a simple notation for these super calls th a t does not require compiler 

support and propose a simple syntax for future compiler support.

Our modifications are small and localized. The changes consist of:

1. The changes to algorithm C o n stru c t IMT executed by the class loader as 

shown in Chapter 4.

2. The changes to execution of the in v o k e in te rfa ce _ q u ic k  bytecode to 

recognize a marked in v o k em u lti-su p e r th a t are shown in Chapter 5.

Our approach facilitates code re-use, reducing the amount of code th a t 

the programmer has to write, supports separation of inheritance concepts, 

and improves expressiveness and clarity of implementation. Existing Java 

compilers, libraries and programs are not affected by our JVM modifications 

and single-inheritance programs can achieve performance comparable to  the 

original JVM. Moreover, execution of multiple inheritance programs is correct, 

for both our basic multiple code inheritance implementation and the super call 

mechanism.
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A ppendix  A  

D issertation  H ighlights

This Appendix Section illustrates the most im portant parts of our implemen­

tation of multiple code inheritance in Java.
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