
NOTE TO USERS

This reproduction is the best copy available.

®

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U niversity o f A lb e r ta

M u l t i p l e C o d e I n h e r it a n c e in J ava

by

M aria Cutum isu

A thesis subm itted to the Faculty of G raduate Studies and Research in partial
fulfillment of the requirements for the degree of M a s te r o f Science.

Departm ent of Computing Science

Edmonton, A lberta
Spring 2003

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

National Library Bsbliotheque nationals
of Canada du Canada

Acquisitions and Acquisitions et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A0N4 Ottawa ON K1A0N4
Canada Canada

VourtSe Volm rM m nca

Our Be NarmiiHtanet

The author has granted a non­
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

V auteur a accorde une licence non
exclusive pennettant a la
Bibliotheque narionale du Canada de
reprodihre, prdter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L’auteur conserve la propriete du
droit d’auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-cine doivent etre imprimes
ou autrement reproduits sans son
autorisation.

0-612-82266-4

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U niversity of A lb e r ta

L ib ra ry R e lease F o rm

N am e o f A u th o r: Maria Cutumisu

T itle o f T hesis: Multiple Code Inheritance in Java

D egree: Master of Science

Y ear th is D eg ree G ra n te d : 2003

Permission is hereby granted to the University of A lberta Library to reproduce
single copies of this thesis and to lend or sell such copies for private, scholarly
or scientific research purposes only.

The author reserves all other publication and other rights in association with
the copyright in the thesis, and except as herein before provided, neither the
thesis nor any substantial portion thereof may be printed or otherwise re­
produced in any m aterial form whatever w ithout the au thor’s prior written
permission.

Maria Cutum isu
221 Athabasca Hall
University of A lberta
Edmonton, A lberta
Canada T6G 2E8

D ate: W m / Z -,2.00b

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U n iv e rs ity o f A lb e r ta

F a c u lty o f G ra d u a te S tu d ie s a n d R ese a rch

The undersigned certify th a t they have read, and recommend to the Faculty
of G raduate Studies and Research for acceptance, a thesis entitled M u lt i­
ple C o d e In h e r i ta n c e in Ja v a subm itted by Maria Cutum isu in partial
fulfillment of the requirements for the degree of M a s te r o f Science.

D a te : A ^C O D J

/ 1
/

Duane Szafron
Co-Supervisor

Paul Lu
Co-Supervisor

JoseJNelson Amaral

Dennis Ward

V

i f

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A bstract

Java has multiple inheritance of interfaces, but only single inheritance of code.

This situation leads to code being duplicated in Java library classes and ap­

plications. We describe a generalization of a Java Virtual Machine (JVM) to

support multiple inheritance of code.

Our approach places code in interfaces, w ithout requiring language syntax

changes or compiler modifications. In our extended JVM, we use interfaces to

represent either new types of interfaces with code or traditional interfaces in

Java. We define and implement a super call mechanism resembling the one in

C + + , in which the programmer can specify an inheritance path to the desired

superinterface implementation. We introduce a simple notation for super calls

to interfaces. Furthermore, we develop scripts th a t allow a programmer to use

multiple code inheritance with existing Java compilers.

We have modified a JVM to support multiple code inheritance. Our imple­

m entation does not affect the running time or the semantics of standard single

inheritance Java programs and executes correctly programs th a t use multiple

inheritance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A cknow ledgem ents

During my studies at the University of Alberta, I benefited from the help of
my supervisors, colleagues, and friends.

I would like to express my gratitude to my supervisors, Duane Szafron and
Paul Lu, for the privilege of working with them and for the effort they invested
in this research. Their support, enthusiasm, and constant encouragement re­
sulted in an excellent environment for my research, motivating me to strive
towards meeting their standards and expectations.

I would like to thank Nelson Amaral and Dennis Ward, also members of
my examining committee, for their valuable suggestions th a t improved my
dissertation.

I am grateful for having the opportunity to study at the University of Al­
berta, which enabled me to meet my first friends in Canada in the Computing
Science departm ent.

I would especially like to thank Steve MacDonald, M att McNaughton, and
Chris Dutchyn for being very helpful every tim e I needed advice during my
research.

I would like to acknowledge A nita Petrinjak, Adi Botea, and Akihiro Kishi-
moto (Kishi), my friends from the Computing Science departm ent, always with
a great sense of humor and with whom I shared the experience of studying in
a completely different environment than in our native countries.

In the same departm ent, I had the chance to meet Luiza Antonie and Alex
Coman, my best friends, always helpful, cheerful, and optimistic. I would like
to thank them for their care, understanding, and patience, especially during
my thesis writing.

I would also like to thank Leo Mocofan, Ernie Novillo, Adrian Driga, .John
Anvik, Cam Macdonell, Kai Tan, Peng Zhao, James Redford, Calvin Chan,
and Dominique Parker for creating a pleasant environment in the software
systems laboratory. There are many other people who had a positive influence
011 this dissertation. I did not forget them and I would like to thank them all
as well.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To m y fam ily , always supportive.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C ontents

1 Introduction 1
1.0.1 A View of Object T y p e s ... 3
1.0.2 A View of Inheritance .. 4
1.0.3 Types in P r a c t ic e ... 6

1.1 Research C o n trib u tio n s ... 7
1.2 Dissertation Organization ... 8

2 The State of M ultiple Inheritance 9
2.1 Problems with Multiple Implementation In h e ritan ce 9

2.1.1 Problem 1: O peration Code A m b ig u ity 10
2.1.2 Problem 2: D ata Naming A m b ig u i ty 12
2.1.3 Problem 3: Code Layout A m bigu ity 14
2.1.4 Problem 4: D ata Layout A m b ig u ity 15
2.1.5 Problem 5: Super Call A m b ig u ity .. 17

2.2 Alternatives to Multiple In h e ritan ce .. 18
2.2.1 Code R ep e titio n .. 18
2.2.2 D e leg a tio n .. 20

2.3 Advantages of Multiple Code In h e rita n c e 23
2.3.1 Facilitates Code R e-u se ... 23
2.3.2 Supports Separation of Inheritance C o n cep ts 25
2.3.3 Improves Expressiveness and Clarity of Implementation 25

2.4 Existing M ultiple Code Inheritance L an g u ag es 26
2.4.1 Ambiguous Name Resolution ... 27
2.4.2 Ambiguous Super Call R e so lu tio n 28

2.5 Concluding R e m a r k s ... 30

3 M ethod D ispatch in the JV M 33
■3.1 Overview ... 33
3.2 Method Invocation M echanism .. 37
3.3 Object R e p re se n ta tio n .. 39
3.4 The Method Table .. 41
3.5 The V irtual Method T a b le .. 43
3.6 The Interface Method T a b l e .. 46
3.7 Quick Bytecodes .. 53
3.8. Concluding R e m a r k s ... 56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 Im plem entation 58
4.1 Our A p p ro ach .. 58
4.2 JVM M o d ifica tio n s ... 59
4.3 Exploiting M iranda M eth o d s .. 61
4.4 Inheritance Scenarios - Potential A m biguities............................. 62
4.5 Dispatch of Code from Interface M eth o d s 64
4.6 Concluding R e m a r k s ... 66

5 Super Call Im plem entation 67
5.1 Super Call M e c h a n ism .. 67
5.2 Examples of M ulti-Inheritance S u p e r ... 68
5.3 Implementation of S u p e r ... 69
5.4 Concluding R e m a r k s ... 72

6 Experim ental R esults 73
6.1 Experim ental P la tf o rm .. 73
6.2 Com patibility and P e rfo rm a n c e ... 74
6.3 C o r re c tn e s s .. 75
6.4 Re-factoring the ja v a . io L ib r a r y .. 76

6.4.1 Input Stream C la sse s ... 76
6.4.2 O utput Stream C la sse s ... 79

6.5 Concluding R e m a r k s .. 82

7 Syntax Support for C om pilation 83
7.1 The Scripting Process .. 83
7.2 Code in In te rfaces.. 84
7.3 Super C a l l s .. 87
7.4 Concluding R e m a r k s .. 89

8 Conclusions and Future Work 92
8.1 Summary of Chapters .. 92
8.2 Future W o rk ... 94
8.3 Research C o n trib u tio n s... 94

Bibliography 96

A D issertation H ighlights 99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Tables

2.1 Programming languages th a t support multiple code inheritance. 32

3.1 Major data structures involved in m ethod dispatch..................... 57

6.1 Time measurements for ja v ac and ja s p e r on ja v a . io library
files... 75

6.2 Method promotion in the Java stream classes using multiple
code inheritance.. 81

6.3 Lines of code promotion in the Java stream using multiple code
inheritance.. 81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f F igures

1.1 Type distinction in Java...
1.2 Example of multiple inheritance in C + + ..

2.1 Operation ambiguities...
2.2 D ata naming ambiguities: Case 1..
2.3 D ata naming ambiguities: Case 2..
2.4 Code layout ambiguity..
2.5 D ata layout issues..
2.6 Super call ambiguity..
2.7 Some classes from the ja v a . io library..
2.8 Duplicate code in ja v a . io library...
2.9 Similar code in j a v a . i o library...
2.10 Delegation example..
2.11 Example of delegation in ja v a . io .D atalnpu tS tream class. . .
2.12 Example of delegation in j a v a . i o .F i l e class...............................

3.1 Simplified JVM internal architecture..
3.2 Method Area within the Runtim e D ata Areas: M ethod Table

(MT), V irtual M ethod Table (VMT), Interface Method Table
(IMT), and Runtime C onstant Pool (R C P)....................................

3.3 Java sample source file..
3.4 Snippet of the . c la s s file..
3.5 Snippet of the constant pool...
3.6 High-level object representation in Sun’s JVM
3.7 D atalnpu tO utput example: The MT, VMT, and IMT for some

classes and interfaces from the ja v a . io package..........................
3.8 M ethod tables..
3.9 Code example..
3.10 V irtual Method Tables..
3.11 Computing the execution m ethodblock for in v o k e v ir tu a l.
3.12 Interface Method Tables...
3.13 Computing the execution m ethodblock for in v o k e in te r f ace.
3.14 D ata structures for ja v a . io .D a ta ln p u tS tream
3.15 Invokevirtual................. ..
3.16 The existing IMT construction algorithm

3
5

10
12
13
14
16
17
19
19
20
20
21
22

34

34
35
36
36
39

40
42
44
45
46
47
49
49
51
52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.17 Exam ple em phasizing the tables involved in the loading mech­
an ism ... 52

■3.18 InvokevirtuaLquick.. 55

471 Code added to Figure 3.16 to support interface code................... 59
4.2 The code from j a v a . io . RandomAccessFile is moved up in two

of its direct super interfaces.. 60
4.3 Inheritance scenarios - Potential ambiguities.................................. 63
4.4 Similar code in ja v a . io library.. 65

5.1 Classes and interfaces for super calls... 68
5.2 More classes and interfaces for super calls....................................... 69
5.3 The modifications made at the in v o k e in te r f ace_quick byte­

code execution... 71

6.1 Re-factored hierarchy in ja v a . io library. 76
6.2 Identical code in the input stream files... 76
6.3 Similar code in the input stream files.. 77
6.4 Abstraction of similar code in D a ta ln p u t interface....................... 77
6.5 Implementation of the so u rce () m ethod... 78
6.6 The mi package.. 78
6.7 Identical code in output stream classes... 79
6.8 Method w r ite ln tO in DataOutputStream..................................... 79
6.9 M ethod w r ite ln tO in RandomAccessFile..................................... 80
6.10 Code abstracted in DataOutput interface.. 80
6.11 Re-factored code in DataOutputStream with both abstraction

and super.. 80

7.1 Syntax of interface code in java . io .Datalnput interface and
the result of applying the script MI J iy b r id ln ter f ace 84

7.2 Syntax of s u p e r c a l l for call-sites in ClassM................................... 87
7.3 The scripting process.. 91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 1

Introduction

Object-oriented programming languages are tools intended to clearly express

the powerful features th a t define the object-oriented programming paradigm,

in an attem pt to better model real-world phenomena. Among features such

as encapsulation, polymorphism, and inheritance, the la tte r distinguishes it­

self as one of the most im portant mechanisms for organizing, building and

reusing types in a programming environment. In the absence of inheritance,

types are independent and they are constructed w ithout taking advantage of

possible commonalities; the programmer has to explicitly ensure eventual con­

sistency among similar types. Before introducing the concept of multiple code

inheritance, we explain the notions of type and inheritance.

In general, the term type is used to describe a set of possible values th a t

obey certain imposed rules (i.e., contain common features, such as a set of

operations). Therefore, a type consists of two notions: value (or state) th a t

varies across instances of the type and a set of common operations for the

type. When a variable of a given type is declared, the variable is expected to

behave in a certain manner according to the type it belongs to. For example,

the m athem atical notion of integer assumes a specific set of operations for all

its values. The binary operation + sums two integers and returns an integer as

the result of the com putation. The notion of string (series of characters) differs

from integer in both its set of operations and the nature of its stored data. The

binary operation + has the same syntax as the addition operation for integers,

but it has a different semantics (i.e., concatenation). Moreover, there are op-

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

erations for one type which do not make sense for another type: the operation

which returns a character at a given position in a string, char At (in d e x) . has

no analog in the integer type.

In order to understand inheritance [2], some of the underlying concepts of

object-oriented languages have to be defined: objects, classes, interfaces, and

messages. Their interactions help programmers to model various real-world

situations in software applications.

An object is a conglomerate of behavior (set of operations) and data (state).

The data of an object, represented by variables, can be modified through

behavior, represented by methods (each m ethod can be further split into a

method signature and a method body). Objects interact with each other by

passing messages which, depending on the type of their receiver object (and

possibly on the type of arguments), can trigger specific method executions. A

class can be seen as a prototype of all objects with the same type of variables

and behavior. An interface is a contract containing only method signatures

and constant declarations. Each class implementing an interface has to meet

the requirements of the contract: it has to eventually implement (i.e., provide

method bodies for) all the methods declared in the interface it implements.

Unlike classes and interfaces, primitive types are non-object types. Since we

are interested in the mechanism of object inheritance, we will ignore the prim ­

itive types in our discussion below.

We use the term p ro p e r ty (or fe a tu re) of an object to refer to any com­

bination of method signatures, method bodies, or data for th a t object. Method

signatures (operations or prototypes) constitute all the messages tha t can be

sent to an object of a type, method bodies (code) are the methods th a t provide

an implementation for the signatures defined in th a t type, and data (instance

variables, state, or attributes) represent the information stored, not computed,

in the object. Java uses the interface and class language constructs to group

objects with this variety of properties. Interfaces are groups of method signa­

tures. Classes consist of method bodies and data.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ClassInterface

Interface-type Data-typeCode-type

Figure 1.1: Type distinction in Java.

1.0.1 A V iew of O b ject T ypes

In order to better individualize, separate, and exploit these three kinds of

properties, we introduce three new language constructs: interface-type de­

fines the operations for a group of objects, code-type associates code with each

operation of the interface-type th a t it implements, and data-type describes

the data representation (the data layout of objects th a t implement code-types

for an interface-type) and supports object creation.

It is desirable to design and implement software tha t explicitly differenti­

ates among these concepts. The m otivation for and advantages of separate

language mechanisms for these concepts are described by Leontiev, Ozsu, and

Szafron [19] [20]. Unfortunately, most popular object-oriented programming

languages do not entirely separate these three concepts. For example, Java

has two language constructs, interface and class, th a t partially separate these

three concepts (as shown in Figure 1.1), whereas Smalltalk and C + + combine

all three concepts into a single class construct. Brad Cox deliberately did not

provide the Objective-C programming language with multiple inheritance be­

cause he believed tha t, while inheritance was an implementation tool, it alone

was of little help in specifying classes, both statically (how they fit, into their

environment) and dynamically (what tasks they can actually perform). As

it was defined, inheritance did not alleviate “the lack of robust specification

tools for software” [6].

Our long-term goal is to provide separate language mechanisms for each of

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

these concepts (Figure 1.1). Our short-term strategy is to explicitly model the

three separate concepts in existing popular programming languages to evaluate

the utility of concept separation and to increase the demand for separation in

future languages. This dissertation describes a successful attem pt to explicitly

model these three concepts as separate language constructs in Java, using

existing language constructs.

1.0.2 A V iew of In h e ritan ce

The term sub-type describes any specialization of a type and is represented

by an arrow in a class, interface, or primitive type (parent type or super-type)

diagram. Sub-types can modify properties of super-types and can also add

new ones. However, a sub-type cannot remove a property from a super-type.

W hen objects of different types (interface-type, code-type, or data-type)

have common features, inheritance [-33] provides a mechanism to reuse some

features from a type in another type. It also organizes and builds new types

based on existing ones, reducing the number of declarations and the amount

of executable code th a t must be written.

W ith respect to the number of possible direct super-types of a type in an

inheritance diagram, two kinds of inheritance are distinguished: single inher­

itance and multiple inheritance. Single inheritance allows a type to have at

most one direct super-type. Multiple inheritance allows a type to have more

than one direct super-type, so th a t the child type represents a combination

of features from two or more parent types. In C + + , “the original and fun­

dam ental reason for considering multiple inheritance was simply to allow two

classes to be combined into one in such a way th a t objects of the resulting

class would behave as objects of either base class” [31]. A classic example

of multiple inheritance is illustrated in Figure 1.2 and can be found in the

standard io s tre am library in C + + . An object of class io s tre am is both an

is tre a m and an ostream , because it provides functionality to perform in p u t

and o u tp u t operations with a stream. Moreover, except for the constructor

and destructor, io s tream inherits all its operations from its parent classes

is tre a m and ostream .

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ostreamistream

iostream

Figure 1.2: Example of multiple inheritance in C + + .

There are three distinct useful ways to perceive inheritance in object-

oriented programs: interface inheritance, code inheritance, and data

inheritance.

First, we use the term interface inheritance to denote the situation

when a sub-type inherits the operations of its super-types. The principle of

substitutability states tha t if a language expression contains a reference to an

object whose static type is A, then an object whose type is A or any sub-

type can be used instead. Interface inheritance relies only on substitutability

and does not imply th a t code or d a ta are inherited. Java uses an interface

(Figure 1.1) to implement the concept we have called an interface-type. W ith

this terminology, Java currently supports multiple interface-type inheritance

or multiple interface inheritance.

Second, we use the term code inheritance when a code-type reuses the

binding between an operation and the associated code in its paren t’s code-type.

Code inheritance can be used independently of data representation since there

are many operations th a t can be implemented by simply calling more basic

operations. Each object-oriented language implements code-types in its own

way. In Java, C + + and Smalltalk, a class is used as a code-type. However,

in all three languages, classes have two other responsibilities, namely data

representation and object creation. In C + + and Smalltalk, the class also

has the interface-type responsibilities th a t are done in Java interfaces. Java

and Smalltalk have only single code inheritance, but C + + has multiple code

inheritance through classes. In this dissertation, we show a novel way to

implement multiple code inheritance in Java. This is the essential step to meet

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

our goal of modeling each of these three concepts separately in Java using

existing language constructs.

Third, we use the term d a ta in h e r ita n c e when a sub-type reuses data

(not code) from the super-type. Data inheritance allows a data-type to reuse

the object layout of a parent data-type. Of course, classes in Java, C + +

and Smalltalk have both the data layout and object creation responsibilities.

Unfortunately, they also have other responsibilities th a t are better suited to

the other two language mechanisms th a t we have called interface-types and

code-types. Neither Java nor Smalltalk supports multiple data inheritance,

but C + + does.

Since popular programming languages combine code and data, they either

support both multiple code inheritance and multiple data inheritance (C + +),

or single code inheritance and single data inheritance (Java and Smalltalk).

We use the term im plem entation inheritance to refer to combined code and

data inheritance. The term im plem entation-type is used for a construct

th a t combines a code-type and a data-type.

1.0.3 T ypes in P ra c tic e

In Chapter 2, we describe how existing programming languages w ithout mul­

tiple code inheritance use different alternatives to share code from several

types. They all suffer from one or more of these problems: repeated code

tha t bloats the code-base, mistakes when copying similar code, an increased

delegation overhead by sending too many messages, and a requirement tha t

all source code must be available. The separation of inheritance concepts is

also compromised. For example, in certain situations both interface-type and

code-type access is necessary for the programmer to modify the code. Multiple

code inheritance, on the other hand, simplifies the work of the programmer,

supporting simple definitions of complicated models. Languages such as C + + ,

Clos, Cecil, and Dylan benefit from using this concept.

In the process of analyzing the separation of inheritance concepts as ap­

plied to Java, we explored several possibilities in order to achieve multiple

code inheritance. One option is to represent code-types by abstract classes.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

However, the example from Figure 1.2 illustrates th a t it is often necessary

to inherit code from multiple code-types. If code-types were represented as

abstract classes, we would need to modify Java so th a t an abstract class can

inherit from multiple superclasses.

On the other hand, if we use interfaces to represent code-types, we can take

advantage of Java’s current rnultiple-inheritance of interfaces. The problem is

simplified to modifying Java to support code in interfaces. We solved this

problem by making straightforward and localized changes to the .Java Virtual

Machine (JVM).

Our approach accesses code in superinterfaces and superclasses using the

same inheritance mechanism. We do not support multiple da ta inheritance,

since data cannot be declared in interfaces. However, as will be shown in

the next Chapter, multiple da ta inheritance is the cause of many complica­

tions in the implementation of multiple-inheritance in C + + . At first glance,

it may appear th a t the opportunities for multiple code inheritance without

multiple data inheritance are few. However, as the examples throughout this

dissertation show, th a t is not a concern: all references to data are replaced by

abstract accessor m ethod invocations, th a t are implemented down the hierar­

chy in data-types (concrete classes).

Our implementation has several advantages: it facilitates code re-use, it

supports separation of inheritance concepts, and it improves expressiveness

and clarity of implementation.

1.1 R esearch C ontributions

The research contributions of this dissertation include:

1. The first im plem entation of multiple code inheritance in Java is provided.

It is based on the novel concept of adding code to a new type of interface

called a code-type. Only straightforward and localized modifications are

made to the JVM to support code within the interfaces. All existing

programs continue to work as before and suffer no performance penal­

ties. No changes need to be made to the syntax of Java to use multiple

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

code inheritance, so no compiler changes are necessary. However, syntax

changes th a t would simplify coding are proposed for the future.

2. We show how multiple code inheritance reduces the amount of identical

and similar code (such as in the standard libraries) to simplify program

construction and maintenance.

3. We have also defined and implemented a super call mechanism that

resembles the one in C + + , in which programmers can specify an inher­

itance path to the desired super implementation. We have introduced

a simple notation for these super calls th a t does not require compiler

support and proposed a simple syntax for future compiler support.

1.2 D isserta tion O rganization

In Chapter 2, we review the current s ta te of multiple inheritance. In Chapter

3, we describe the current implementation of those parts of the JVM th a t are

involved in m ethod dispatch. In Chapter 4, we describe how we modified the

JVM to support code in interfaces and how this code is dispatched. This idea

is the key to our implementation of multiple code inheritance. In Chapter 5,

we describe the changes necessary to support a generalization of the super

operation for multiple inheritance. In C hapter 6, we describe the experiments

we conducted to validate our approach. In Chapter 7, we discuss the mecha­

nism th a t the programmer uses to apply multiple code inheritance and propose

future syntax changes to simplify this mechanism. Finally, in Chapter 8 we

present future work and provide a summary.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 2

T he S ta te o f M ultip le
Inheritance

This Chapter describes the state of m ultiple inheritance from four different

perspectives. First, it presents some of the problems associated w ith multiple

implementation inheritance which have resulted in its absence from many pro­

gramming languages. Second, two modalities are described as substitutes for

multiple inheritance. Third, the advantages of using multiple inheritance are

listed. Finally, a summary of how various programming languages th a t provide

multiple inheritance cope with the issues introduced by multiple inheritance

is presented at the end of this Chapter.

2.1 P roblem s w ith M u ltip le Im p lem entation
Inheritance

When migrating from single to multiple implementation inheritance, new is­

sues arise due to the existence of several potentially unrelated parents (super­

types) from which a child (sub-type) inherits. It may be difficult to determine

which particular version of an intended common feature will be propagated

from a super-type to a sub-type, if the sub-type does not provide a correspond­

ing feature of its own. Access to each feature from super-tvpes is checked for

ambiguity - a situation in which an expression used to access a property from

the super-type may not properly differentiate the contributing parent. Five

major problems in ambiguity due to multiple implementation (code and data)

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

alpha()

aipha()alpha()
TypeBTypeA

TypeC

TypeBTypeATypeA TypeB

TypeDTypeD

TypeCTypeC

(a) Simple ambiguity. (b) Diamond anibigu- (c) Special case ambi-
ity. guity.

Figure 2.1: O peration ambiguities.

inheritance are analyzed separately, followed by our solution to each of them.

The problems are illustrated using examples from C + + [12], a language tha t

supports multiple implementation inheritance.

2.1.1 P ro b lem 1: O p era tio n C ode A m biguity

Figure 2.1(a) illustrates the case in which different code for the m ethod a lp h a ()

is provided in both super-types TypeA and TypeB.

If more than one super-type contains operations with identical names, there

has to be a way to determine whether such situations lead to code selection am­

biguities and, if so, eliminate them. An ambiguity occurs when re-definitions of

a code implementation for operations from a super-type occur on several paths

through the inheritance hierarchy. Different programming languages th a t sup­

port multiple code inheritance use different approaches to solve this problem.

Some languages choose a particular super-type and qualify the ambiguous

name with th a t super-tvpe name. O ther languages use renaming techniques.

Figure 2.1(a) illustrates the case in which different code for the method

a lp h aO is provided in both super-tvpes TypeA and TypeB.

Since TypeC does not have an a lp h aO of its own (denoted by “- ”), when

a lp h aO is called on an object of dynamic type TypeC, a dilemma is encoun­

tered as to which implementation of a lp h aO should be inherited. In C + + ,

the use of an ambiguous function generates a compiler error. To eliminate the

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

error, a programmer must provide code for the ambiguous method a lp h aO in

TypeC. If the code in one of the super-types is wanted, the implementation of

a lp h aO in TypeC can make a call to the appropriate super-type using a scope

resolution operator (such as the : : in the C + + approach), but a m ethod that

contains this call must be provided by the programmer.

Figure 2.1(b) shows a more complicated situation. An invocation of a lphaO

on an object whose dynamic type is TypeC may also be considered ambiguous

since it could be argued th a t TypeC inherits code for a lp h aO indirectly from

TypeD through two different paths, via TypeA and via TypeB. However, since

the code is the same, there is no real ambiguity. C + + uses a modified multiple

sub-objects approach for inheritance; multiple copies of a parent object can oc­

cur in the child object if, for example, the child inherits the parent indirectly

on two different paths, as shown in Figure 2.1(b). Multiple sub-objects is the

default, but in certain cases the program m er can specify th a t only one copy

should be used. In C + + , for the default inheritance case, this situation is

considered an ambiguity.

Figure 2.1(c) shows an even more complicated situation. An invocation of

a lp h aO on an object whose dynamic type is TypeC may also be considered

ambiguous since it can be argued th a t TypeC inherits code for a lp h aO directly

from TypeA and different code for a lp h aO indirectly from TypeD through

TypeB. In C + + , the compiler reports this as an ambiguity (for the default

inheritance) and the programmer must define code for a lp h a O in TypeC.

In Pang et al. [24] it is argued th a t, since the code for a lp h aO in TypeD

is masked along at least one path by the code for a lp h aO in TypeA, there

is not an ambiguity and the code from TypeA is inherited in TypeC. This

less conservative definition of ambiguity is especially im portant if a language

supports multi-clispatch [8] [9].

O u r so lu tio n : For the situation in Figure 2.1(a), we mimic the C + + so­

lution. For the situations in Figure 2.1(b) and 2.1(c), we can implement either

the C + + solution or the less conservative version. Currently, we are using the

less conservative definition of ambiguity, since we are also interested in Java

m ulti-dispatch [4]. Because we do not yet have adequate compiler support for

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

char aint aint aint a
TypeA

TypeC

TypeB TypeA

TypeC

TypeB

(a) Data with the same type. (b) D ata with different types.

Figure 2.2: D ata naming ambiguities: Case 1.

multiple code inheritance in Java, instead of signaling ambiguities a t compile­

time, we detect them at load-time (when the data structures associated with

the sub-type are built) and, at th a t point, we throw an exception. If no am­

biguities are detected, we proceed by executing the unambiguous method; the

mechanism of choosing the m ethod to invoke will be detailed in subsequent

Chapters.

2.1 .2 P rob lem 2: D a ta N a m in g A m b ig u ity

In languages with multiple inheritance, in addition to potential operation name

clashes, data name clashes can also occur. Some languages m aintain separate

copies of data inherited from different super-types, while other languages merge

like-named data together in the sub-type. If super-types contain common data,

it has to be decided which copy of a da ta item coming from more than one

path to use in a sub-type. For example, in Figure 2.2(a), if TypeC should

only inherit one copy of the variable a, it does not m atter if the copy “comes

from TypeA” or “comes from TypeB”, since they are both declared as in ts .

However, in Figure 2.2(b) it m atters, since the variable a is an i n t in TypeA

and it is a char in TypeB.

In C + + , two uses of multiple da ta inheritance are distinguished with re­

spect to the dependence relationship among super-types. F irst, if there are

no dependencies among the super-types, then the object of the final sub-type

must contain sub-objects fo r each super-type. Consider how inherited data

item a is accessed in TypeC of Figure 2.2. Since there are sub-objects for each

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

int dint dint d

alpha () {
, d = 0; // no ambiguity

alphaQ {
d = 0 ;// ambiguity: which d?

TypeA

TypeC

TypeD

TypeB

TypeD

TypeA

TypeC

TypeB

TypeD

(a) Several copies in the sub-type from the (b) One copy in the sub-type from the
common super-type. common super-type.

Figure 2.3: D ata naming ambiguities: Case 2.

super-type, two copies of variable a are required in TypeC. Since there are two

copies of a, when a is accessed in TypeC, an ambiguity occurs. As illustrated in

Figure 2.2(b), data items may have identical names regardless of their types.

C + + resolves both cases by using the scope resolution operator : : (TypeA:: a

represents the i n t a in the TypeA part of the TypeC object and TypeB: : a

represents the c h a r a in the TypeB p art of the TypeC object).

Second, if there are dependencies am ong the super-types (two or more

inherited types share a com mon type), the program m er has a choice. This

kind of inheritance is also called repeated inheritance. By default, even if

there is a common super-type (TypeD in Figure 2.3(a)) in the hierarchy, the

sub-type (TypeC) will also contain several (two, in th is exam ple) sub-objects

of th a t common super-type. Consider the case in which TypeD contains a

d a ta i n t d. TypeA, TypeB, and TypeD are norm al C + + classes w ith the

usual inheritance relationship , and consequently there are two copies of i n t

d in TypeC, one inherited from TypeD via TypeA and the o ther inherited from

TypeD via TypeB. If a m ethod a lp h a 0 in TypeC accesses TypeD’s d a ta item d,

(for example, a lp h a 0 { d = 0 ;}), then an am biguity arises: it is no t clear which

of the two copies of i n t d in TypeC to use, the one inherited via TypeA or the

one inherited via TypeB. C + + uses the scope resolution operato r : : to pick

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

beta()TypeA

TypeC

TypeB

Figure '2.4: Code layout ambiguity.

one.

Alternately, the C + + programmer can specify that, only one object of the

common super-type resides in the final sub-type, the same object being shared

in all sub-types. The C + + solution to resolving ambiguities is the following:

if the derived class, TypeC in Figure 2.3(b), has to inherit only one copy of the

data from the common class, TypeD, then the interm ediate classes, TypeA and

TypeB, need to declare the inheritance as virtual. Hence, there is just one copy

of in t d in TypeC, so accessing variable d does not generate an ambiguity.

O u r so lu tio n : This problem does not exist in our implementation because

we do not support multiple data inheritance.

The next two problems relate to multiple implementation (code and data)

inheritance interaction. They are purely compiler issues regarding the layout

of code and data, so they are not visible to the user. However, these problems

must be resolved.

2.1.3 P rob lem 3: C ode L ayout A m b igu ity

In the example from Figure 2.4, a problem arises from the different layout

of the code in the sub-type (TypeC), with respect to the layout of the same

code in the super-types (TypeA and TypeB). In the single inheritance situation,

the same offset (i.e., 0) can be used to access the code for an operation in a

sub-type and in its (direct or indirect) super-type. This is not the case with

multiple code inheritance. When a sub-type inherits operations from several

super-types, there is a problem in trying to set an order on the operations in

the sub-type. In the example from Figure 2.4, should a lp h a 0 be placed before

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

b e ta O in TypeC’s da ta structures or after b e ta O ? Regardless of our choice,

we still have different offsets for one of the operations (b e ta O in Figure 2.4)

in the super-tvpe (offset 0 in TypeB) as compared to the sub-type (offset 1 in

TypeC). This makes the single inheritance constant-index approach impossible

for multiple inheritance.

Whenever we access methods of either TypeA, TypeB, or TypeC, the com­

piler must compute the offset of each m ethod in the type’s m ethod table (vir­

tual function table in C + +). At run-tim e, this offset is used to access the

appropriate m ethod in the method table of the dynamic type of the receiver,

even though the dynamic type of the receiver is not known at compile-time.

For example, assume the method table in TypeC has the methods from TypeA,

followed by the methods from TypeB, followed by any methods declared in

TypeC as shown in Figure 2.4. The compiler can insert an offset of 0 into the

code at a call-site for a lp h a (). At run-tim e, this offset can be used to access

the code for a lp h a () in TypeA or TypeC depending on the dynamic type of the

receiver. However, at a call-site for b e t a O , the compiler must select an offset

of 0 to match the m ethod table in TypeB or an offset of 1 to match the m ethod

table in TypeC. The solution in C + + is to use the offset of the super-type, but

add a constant d e l t a to the method table origin before adding the offset. The

d e l ta must be computed at run-time (d e l t a = 0 for TypeB and d e l t a = 1 for

TypeC), since its value depends on the layout of the super-tvpe and sub-type.

O u r so lu tio n : Our approach is based on interface method tables tha t

already exist in .Java. In subsequent Chapters, we provide details about the

interaction of da ta structures used to resolve multiple code inheritance in Java.

2.1.4 P ro b lem 4: D ata L ayout A m b igu ity

In the single inheritance case, data declared in a sub-type are concatenated

with the duplicated da ta from the super-type in the sub-object image; there­

fore, a data item is located at the same offset in all objects of the super-tvpe

or sub-types. Since in the multiple inheritance case there is more than one

super-type, a potential problem arises in establishing the layout of da ta in

sub-type objects.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

int bint a

int a
int b

TypeA

TypeC

TypeB this -

aTypeB-
TypeA part

TypeB part

TypeC part

f delta(TypeB)

(a) D ata layout ambiguity. (b) The layout of a TypeC object.

Figure 2.5: D ata layout issues.

The previous problem (Problem 3, Section 2.1.3) showed th a t method code

could not be located at a fixed offset (table-index). A similar situation can

occur for data. The offset of the da ta in the object image can change due

to the same data being inherited from several possibly unrelated common

parents. More importantly, in the case of multiple inheritance, the copies

of the inherited data in the sub-object now have different offsets than the

offsets th a t were known when the code which used them was compiled in

the super-type. The situation in Figure 2.5(a) illustrates the case in which

the super-types are not related. In C-l—F, an object of TypeA contains an

entry for each instance variable (data item). In our example, the only entry

would be for the i n t a. Objects of sub-types (such as TypeC) are formed

by concatenating the data of the super-type with their own data. In this

case, a TypeC object would have two slots, one for a and one for b. It can

be assumed th a t variable b follows variable a in TypeC’s object layout. For

example, if we have a method a lp h a () {b=0;} in TypeB, when we compile it,

we obtain the offset 0 for aTypeB.b (the offset of b in TypeB). W hen we invoke

aTypeC. a lp h a () , the offset of aTypeC.b is 1 (the offset of b in TypeC), so it

would be wrong to just use the compiled code for a lp h a () th a t uses the offset

0 even though TypeC is a sub-type of TypeB. This problem is more serious than

the code layout ambiguity since each m ethod compiled in a type (TypeB) tha t

references instance variables can have the wrong data offsets, if it is applied

to a sub-type (TypeC) object th a t inherits this code. The solution provided

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

alpha()

alpha () {
return super.alpha ();

TypeA

TypeC

TypeB

Figure 2.6: Super call ambiguity.

by C + + is the following: the tMs pointer (Figure 2.5(b)) which points to the

start of the object layout is moved before the code is executed. For example, if

the receiver object has TypeC as its dynamic type, the this pointer is moved to

point to the start of the TypeB object when the m ethod is called. An offset of

0 to access b now accesses the same b in a TypeC object, since the this pointer

has been incremented by one word.

Our solution: Our approach to multiple code inheritance in Java does

not support multiple da ta inheritance, so this problem is not applicable in

our implementation of multiple code inheritance. Multiple d a ta inheritance

is a large source of problems and is not as useful as the code inheritance

counterpart. Inheritance is beneficial when re-using code (more than it is for

data), because the effort of programmers is mainly focused on implementing

m ethod bodies.

2.1.5 P rob lem 5: S uper C all A m b igu ity

The m ethod code in a sub-type often refines the code of its super-types by

adding some statements. In many object-oriented programming languages,

this is accomplished by sending a message to the super object. Whenever

a message is sent to super, the m ethod lookup for th a t message starts in the

super-type of the type th a t the m ethod currently executing belongs to, instead

of in the type of the receiver object. There are other approaches used to refine

methods from the super-types, and some of them are shown in Table 2.1 of

Chapter 2. However, super is the most popular refinement technique. When

multiple inheritance is used, ambiguity problems with super calls may appear

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

due to the presence of multiple super-tvpes. Figure 2.6 shows a refinement

of a lp h a () in TypeC th a t contains an ambiguous super call. It is not clear

whether the a lp h a () m ethod in TypeA or TypeB should be called. Note tha t an

ambiguous super call can exist even when no ambiguity occurs for the method

tha t contains the super.

In C + + , the super method call is qualified with the : : scope resolution

operator. The lookup starts from the qualifying class.

Our solution: We extend the capability of the Java super keyword by

specifying the superinterface from which the lookup for the given method

starts. If code is found in the specified interface, then th a t code is executed.

Otherwise, the superinterfaces are searched recursively. In the presence of

ambiguities we throw an exception at load-time. If the lookup fails, we also

throw an exception. We propose the syntax super (In te rfa c e A) . a lp h a () for

the future, which specifies the interface from which the lookup for method

a lp h a () begins. Since our current implementation makes no language syntax

changes, for now, we use a special marker in the source code ju s t before the

super call as described in Chapter 5.

2.2 A ltern atives to M ultip le Inheritance

Since Java does not provide multiple code inheritance , two idioms are com­

monly used to model complex applications th a t normally require this mecha­

nism. Java libraries constitute a good source of examples in which these idioms

are used in order to compensate for the lack of multiple code inheritance in

Java. Figure 2.7 illustrates the hierarchical relationships among a few classes

and interfaces from the ja v a . io library.

2.2.1 C ode R ep e titio n

The simplest way to substitu te for multiple inheritance is to repeat the code

from the desired types into a sub-tvpe, instead of simply inheriting it. The

obvious drawback of this approach is an increase in code size. The hidden

drawback is code deviation in which changes to a m ethod are only made in

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

OutputStreamInputStream DataOutputDatalnput

DatalnputStream RandomAccessFile DataOutputStream

Figure 2.7: Some classes from the j a v a . i o library.

/ / ja v a . io .D a ta ln p u tS t re a m and java.io .R andom A ccessF ile
p u b l ic f i n a l f l o a t r e a d F lo a tO throws IOException {

r e t u r n F l o a t . i n t B i t s T o F l o a t (t h i s .r e a d l n t ()) ;
__

Figure 2.8: Duplicate code in j a v a . i o library.

one copy, so th a t subtle bugs are introduced. Another disadvantage is th a t the

source code must be available to the user for copying. Finally, the separation of

inheritance concepts th a t we aim for is deteriorated, since both the interface-

type and code-type levels are necessary for the user to be able to perform the

required modifications.

The j a v a . io library classes contain several examples of repeated code. One

of them is the following: the classes D atalnpu tS tream and D ataO utputStream

implement the interfaces D a ta ln p u t and D ataO utput respectively. The class

RandomAccessFile implements both D a ta ln p u t and D ataO utput, as illus­

trated in Figure 2.7. Much of the code th a t is in RandomAccessFile is identi­

cal or similar to the code in D atalnpu tS tream and D ataO utputStream . As a

specific example of identical code, consider the m ethod re a d F lo a tO shown in

Figure 2.8, which appears both in D atalnpu tS tream and RandomAccessFile.

The methods re a d F u lly (b y te b []) and readD oubleO are also identical.

There are also many other similar methods, such as read B y teO , shown

in Figure 2.9, which differ only in the type of the receiver of some common

methods such as re a d Q . O ther similar methods are the following:

readU nsignedB yte() , re a d F u lly (b y te b [] , i n t o f f , i n t l e n) ,

re a d S h o r tO , readU nsignedShort () , readC harO , and r e a d ln t (). A num-

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ / j a v a . i o . D atalnputStream and java.io .R andom A ccessF ile
p u b l ic f i n a l by te readB yteO throws IOException {

i n t ch = t h i s . i n . r e a d O ; 11 i n t ch = t h i s . r e a d O ;
i f (ch < 0)

throw new EOFExceptionQ ;
r e tu r n (b y t e) (c h) ;

}__

Figure 2.9: Similar code in j a v a . io library.

beta() alpha() beta()alpha() alpha() beta()

beta() beta() (TypeB)

TypeATypeA

TypeCTypeC TypeC

TypeATypeB TypeBTypeB

(a) (b) (c)

Figure 2.10: Delegation example.

ber of analogous identical methods can also be identified in the output stream

classes DataOutputStream and RandomAccessFile, along with some similar

methods th a t differ in the type of the receiver of some common methods such

as w r i te (i n t) .

2.2.2 D eleg a tio n

Delegation [35] allows an object to pass a received message to another object

tha t is able to perform the task. This technique can be used in place of multiple

code inheritance.

For example, the multiple-code inheritance in Figure 2.10(a) can be re­

placed by the single-code inheritance in Figure 2.10(b). In this case, each

object of TypeC in Figure 2.10(b) has an instance variable th a t is bound to

an object from TypeB. The method b e ta O is not inherited in TypeC. Instead,

it has a one-statement implementation th a t invokes the b e ta O method in its

sub-object of TypeB. We say that TypeC delegates b e ta O to TypeB. In general,

the object th a t is delegated to may be stored as an instance variable or it may

be passed as an extra m ethod argument, as shown in Figure 2.10(c).

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ / c l a s s ja v a . io .D a ta ln p u tS t re a m

p u b l ic f i n a l i n t r e a d l n t () throws IOException {
InputS tream in = t h i s . i n ;
i n t ch i = i n . r e a d () ;
i n t ch2 = i n . r e a d O ;
i n t ch3 = i n . r e a d O ;
i n t ch4 = in . r e a d O ;
i f ((c h i | ch2 | ch3 1 ch4) < 0)

throw new EOFExceptionO ;
r e t u r n ((c h i « 24) + (ch2 << 16) + (ch3 « 8) +

(ch4 << 0)) ;
}

Figure 2.11: Example of delegation in ja v a . io .D a ta lnpu tS tream class.

Unfortunately, this approach has the drawback of writing extra delegating

methods and the overhead of sending more messages. In C + + , it has been

discovered th a t users found difficulties when designing based on delegation [31].

Overall, the burden is placed on the program m er to write extra code, preserve

the return type and param eters list of the forwarding methods, and throw s

clauses whenever necessary. This supplem entary work (writing m ethods th a t

only delegate responsibility) is essentially done autom atically when multiple

inheritance is used.

The ja v a . io library contains many examples of delegation. Figure 2.11

shows how class DatalnputStream uses a reference (the instance variable in)

to an InputStream to read characters th a t are assembled into an in t . This

is a simple example of delegation th a t is not used to replace multiple code

inheritance.

A second example illustrates the way the j a v a . io library copes w ith the

absence of multiple code inheritance by using delegation. The class F i le

(Figure 2.12) cannot simultaneously inherit from classes Object InputStream

and ObjectOutputStream, since there is no multiple code inheritance in Java.

However, in the implementation of readObjectO and w riteO bject() , it

needs the code of some methods from both classes ObjectlnputStream and

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// class java.io.File

private synchronized void
w r ite O b je c t (ja v a . io .ObjectOutputStream s)

throws IOException
{

s .defaultW riteO bject() ;
/ / Add th e s e p a ra to r c h a r a c te r
s .w r i t e C h a r (t h i s . s e p a r a to r C h a r) ;

}

p rivate synchronized void
readO bject(java. i o . ObjectInputStream s)

throws IOException, ClassNotFoundException
{

s .defaultR eadO bject();
/ / read th e p rev io u s s e p a r a to r char
char sep = s .readC harO ;
i f (sep != sep a ra to rC h ar)

t h i s . p a t h = t h i s . p a t h . r e p l a c e (s e p , s ep a ra to rC h a r) ;
t h i s . p a t h = f s . n o r m a l i z e (t h i s . p a t h) ;
th i s .p r e f ix L e n g th = f s . p r e f i x L e n g t h (t h i s . p a t h) ;

}

Figure 2.12: Example of delegation in j a v a . i o .F i l e class.

O bjectO utputStream . For this reason, an instance of one of these classes is

passed as an argument to the m ethod th a t uses their code and the read and

write tasks are delegated to this argument.

An alternate approach to multiple inheritance, which ultim ately results

in delegation, is the use of inner classes inside interfaces [23]. However, this

approach differentiates between using code from superclasses and superinter­

faces, by using inheritance along the superclass chain and a form of delegation

along the interface chains. For a class ClassA to use code from an interface

In te rfaceA , the programmer must explicitly declare a sub-object in ClassA

and bind it to an instance of an inner class ClassB th a t extends an inner class

ClassC declared in In te rfaceA .

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 A dvantages o f M ultip le C ode Inheritance

Our implementation of multiple code inheritance has the following ad v an ­

tages: facilitates code re-use, supports separation of inheritance concepts,

and improves expressiveness and clarity of implementation.

2.3.1 Facilita tes C ode R e-use

Code re-use is manifested through code decrease due to increased code shar­

ing. Multiple code inheritance can re-establish a certain degree of normality

in the implementation of several Java applications. Commonality" in the de­

scription of classes (method signatures) exists in Java and we can promote

those features to common parent interfaces. Since Java has multiple inheri­

tance of interfaces, it does not suffer from modeling problems. For example,

the Java class RandomAccessFile implements the interfaces D a ta lnpu t and

DataOutput, a,s shown in Figure 2.7. Every instance of RandomAccessFile

can be considered as both a D a ta ln p u t and a DataOutput. This provides

substitutability [14] so th a t any reference th a t is declared as a D a ta lnpu t or

DataOutput can be bound to a RandomAccessFile.

However, Java’s lack of multiple code inheritance causes problems with im­

plem entation and maintenance. For example, even though RandomAccessFile

implements D ata lnput and DataOutput, it cannot inherit code from these in­

terfaces. Therefore, identical code appears in more than one class. For ex­

ample, exact copies of the implementation of re a d F lo a t (Figure 2.8) appear

in both RandomAccessFile and D atalnputStream . This makes the program

larger and harder to understand.

In addition, sometimes the code is incorrectly copied and often when

changes are made to one copy, they are not made to all copies. In th is example,

because multiple code inheritance was not available, the Java library design­

ers tried to simulate it by repeating and modifying the code where necessary

in D a ta ln p u tS tre a m , Random AccessFile, and D ataO utpu tS tream , increas­

ing the overall code, instead of simply moving it up into the corresponding

common super-types and subclassing accordingly. Thus, multiple code inher-

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

itance would result in a higher degree of code re-use; the programmer of a

subclass no longer needs to be familiar with the specific implementation of the

common operations.

Moreover, the re-use of code increases reliability, since it is common to find

errors in repeated code when similar code is not consistent. An immediate

consequence of code re-use is a decrease of maintenance costs.

Consider again Figure 2.9. To replace these methods by a common method,

the line that differentiates them can be replaced by the common code: i n t ch

= t h i s . source 0 . r e a d O ,

where so u rce () is a new accessor method th a t for D a ta ln p u tS tre a m returns

t h i s . in and for Random AccessFile returns t h i s . The same abstraction can

be used to share other similar methods, as shown in Section 2.2.1.

Although it would be possible to re-factor this hierarchy to make the class

RandomAccessFile a subclass of either D a ta ln p u tS tre a m or D ataO utpu tS tream ,

it is not possible to make it a subclass of both, since Java does not support

multiple-inheritance for classes. A re-factoring must accompany this abstrac­

tion, since the return type of the s o u rc e () m ethod must be specified as a single

type th a t implements the operation, r e a d O . The receiver of the s o u r c e ()

method call in D a ta ln p u tS tre a m is referenced by the instance variable i n tha t

has static type In p u tS tre a m (indirect superclass of D a ta ln p u tS tre a m) . The

receiver of the s o u r c e () m ethod call in Random AccessFile is referenced by

the pseudo-variable t h i s , which has static type RandomAccessFile.

Unfortunately, in the current class/interface hierarchy, there is no common

superinterface or superclass of Random AccessFile and In p u tS tre a m to use as

the return type for the s o u r c e () method. An interface m ust be added to the

hierarchy tha t is a superinterface of In p u tS tre a m and Random AccessFile and

declares the r e a d O method.

However, after all of these common m ethods have been found, code inheri­

tance has to be used to share them. Therefore, we need a common ancestor of

D a ta ln p u tS tre a m and Random AccessFile to store the similar r e a d m ethods

and a common ancestor class of D ataO utpu tS tream and Random AccessFile

to store the similar w r i t e methods. Since we are sharing code, this ancestor

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

should be a code-type.

The common code is ultim ately factored into two code-types. A code-tvpe

implements the code for an interface and now a class implements the data for

a code-type. Since there is no concept of code-type in .Java, we must use either

an interface or a class to represent our code-types.

2.3.2 S u p p o rts S epara tion of In h e ritan ce C oncepts

In addition to the increased degree of abstraction imposed by the clear separa­

tion among the three inheritance types, multiple code inheritance constitutes

a necessary feature from a software engineering perspective “on the grounds

th a t specification tools and implementation tools belong in a true software en­

gineers toolkit.” [30]. Programs can always benefit from having multiple views

(designer, programmer, system adm inistrator, user) of their design. Multiple

code inheritance exploits code sharing to develop elegant and useful software

components.

The separation of concepts emphasizes the role of interface-types, providing

them with enhanced capabilities and control. Our multiple code inheritance

approach does not allow code inheritance without interface inheritance. In this

context, an aspect of m ajor significance is the consistency of interface-types.

In conjunction wdth polymorphism - a mechanism th a t supports inheritance,

triggering several behaviors using the same interface - inheritance perm its a

super-type to define an interface-type for which several implementations are

provided in the sub-types by means of code-types. W hen we lack information

about sub-types, but we know the interface-type of the super-type, we can

pass a reference to an object of the sub-type wherever a super-tvpe is used.

This way we can ensure th a t only behavior specified in the interface-tvpe is

called, the implementing types being hidden from the user.

2.3.3 Im proves E xpressiveness and C larity of Im plem en­
ta tio n

Multiple inheritance supports a better organization of types, for the simple

reason that it is congruent with real-world applications which make extensive

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

use of multiple features from unrelated concepts.

Since “class hierarchies can be used to organize and reason about soft­

ware entities” [6] and since it is primarily an inheritance mechanism, multiple

inheritance also extracts knowledge from the multiple type declarations and

enriches types by providing them with more features.

Multiple code inheritance has the capability of enhancing expressiveness

when implementing new systems, by thinking of a type as a sub-type of sev­

eral other types. Since in our im plem entation we would like the code to be

inherited from the interface methods, we would also like to have a subclass­

ing relationship (code-type) which alone does not guarantee sub-typing. The

blending of these two aspects leads to multiple specialization (“is-a” relation­

ship [17] th a t we can find in the j a v a . i o library: RandomAccessFile is a

specialization of both D a ta lnpu t and DataOutput).

As multiple inheritance makes applications easier to design (via m ultiple in­

terface inheritance) and implement (via multiple code inheritance), and equally

easier to understand, it supports rapid prototyping and exploratory program­

ming. Multiple inheritance reduces the tim e necessary to build and m aintain

applications. Applications are more comprehensible because the amount of

new information is reduced. New types can be built taking advantage of ex­

isting ones, allowing for quick software development. The goal is to design

software th a t is easy to use and modify - reusable software. We need to have

the tools th a t help us build reusable software, and multiple code inheritance

is a powerful tool.

2.4 E xistin g M ultip le C ode Inheritance Lan­
guages

We have investigated the mechanisms of multiple code inheritance in several

programming languages in order to find out how common problems th a t oc­

curred due to multiple code inheritance were solved. One of the issues of

interest is ambiguous nam e resolution. W hen a class inherits the same oper­

a tions/data (i.e., m ethod signatures/instance variables) from multiple super-

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

types, we have a potential naming conflict. Another issue is the use of super

calls when multiple code inheritance is present, because there are many super-

types to choose from. The procedure for the resolution of such ambiguous

situations varies in each of the presented languages.

2.4.1 A m biguous N am e R eso lu tion

There are several modalities to cope with inheritance conflicts and they can

be grouped into explicit (disallowing conflicts, requiring the user to select a

feature, or disambiguating with a resolution operator, such as : : in C++)

and implicit (choosing one feature by algorithmically resolving the conflict)

resolution.

One category of programming languages demands the user to explicitly

disambiguate name conflicts in the code. Eiffel [11] takes this approach. It

has a rename clause tha t is used to solve name clashes. For implementation

inheritance clashes, Eiffel combines its rename and s e le c t clauses to resolve

ambiguities. CH—b delays this process until the ambiguous feature is first

used.

In Sat her [29] (originally based on Eiffel) the compiler enforces renaming

of name conflicts. This is done explicitly by the user. The multiple inheritance

is called “multiple inclusion” .

In Cecil [3] all access to instance variables are through accessor methods.

An object m aintains space for each inherited copy-down variable, regardless of

the names (distinct variables with the same name are not merged autom ati­

cally). The problem reduces to resolving ambiguities among like-named acces­

sor methods. Moreover, ambiguous variables could be accessed by a m ethod

in the child with the same name as an accessor m ethod by means of directed

re-send messages. Also, Cecil does not support repeated inheritance.

Another category of programming languages uses an im plicit approach of

resolving ambiguities.

Python [28] and Perl [25] follow a rule of pre-order traversal of the in­

heritance tree for both operation and da ta inheritance. The resolution rule

employed is depth-first, left-to-right. Thus, if a feature is not found in a class,

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

its superclass tree is searched recursively upward depth-first. This approach,

instead of the more intuitive breadth-first (searching all the immediate super­

classes first and then their superclasses), helps decide if potential ambiguities

occur. It accepts direct and inherited features of the first superclass before es­

tablishing if there are conflicts with the same features of a second superclass.

CLOS [5] performs a left-to-right linearization of its inheritance graph to

a flat list. It further extends this approach to accommodate multi-dispatch by

totally ordering m ulti-methods using argument positions, also ordering them

from left to right.

D ylan [10] uses an implicitly performed linearization of the inheritance

graph but it differs from CLO S because it does not take advantage of the

argument positions when determining the method to execute.

O ther programming languages th a t support multiple code inheritance sim­

ply discard any kind of naming conflicts. There have even been some cases

where researchers have tried to add multiple inheritance to existing languages.

For example, [1] attem pts to add multiple inheritance to Modula-3 using mix-

ins.

In our im plem entation, whenever a naming conflict is detected, a run­

time exception is thrown when the class is loaded. W ith the proper future

compiler modification, we can recognize these conflicts at compile-time instead

of waiting until load-time.

2 .4 .2 A m b igu ou s Super C all R eso lu tio n

Sometimes, when using inheritance, we would like to be able to use in a type

a corresponding m ethod in one of its super-types, in order to enhance the

functionality of the current method.

In C + + (and E [18], designed as an extension to version 1.2 of C++) the

user has to explicitly qualify names (class name followed by the scope resolution

operator : : and then the name of the method) to access methods from parent

classes in the corresponding methods from the child classes. This technique

starts the lookup in the specified class, rather than in the superclass of the

current executing method.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In P e r l the super mechanism performs a search through the object's inher­

itance tree, proceeding left-most, depth-first. This is triggered by the qualifi­

cation of a method with the SUPER pseudo-class (a package is used as a class in

Perl). However, the access SUPER: : is only possible from inside the overridden

m ethod call.

Eiffel: Although it does not support the super call mechanism, it can

create two versions of the routine (i.e., method in Eiffel) by inheriting the

superclass twice, in one inheritance clause it uses rename, in the other it

redefines the routine using rename and s e le c t .

Python: It combines the “call-next-method” pattern with the method reso­

lution order (MRO given by the —mro— class attribute). A super call in Python

has the following form: super(classN am e, s e l f) . a lp h a (). The first argu­

ment to super is always the class in which the super occurs; the second argu­

ment is always s e l f . The super expression searches s e l f . —C la ss mro__

(the MRO of the class th a t was used to create the instance in self) for the

occurrence of className, and then starts looking for an implementation of

m ethod a lp h a () from th a t point on.

CLOS - Implicit linearization of the inheritance graph determines class

precedence, which triggers m ethod precedence. The inherited methods are

linearized and the m ethod to be executed is chosen using c a ll-n e x t-m e th o d

from, the current method in order to retrieve the next m ethod in the chain.

Furthermore, method qualifiers b e fo re , a f t e r , and around are used to com­

municate between the overriding m ethod and the m ethod in the superclass

(the in n e r keyword plays an im portant role in this mechanism).

In Sather [32], the use of super calls is confusing in certain cases. The

ambiguity arises when code th a t makes a super call is itself inherited. It is

not clear if the inherited super call refers to the superclass of the original

defining class A (A defines a b e ta O which contains s u p e r . a lp h a ()) or of the

inheriting class B (B extends A, so inherits b e ta O , but does not override it).

Therefore, Sather replaces the super mechanism by implicitly renaming in the

in c lu d e clauses which define code inheritance. The in c lu d e clause can be

used to in c lu d e and rename a single feature from another class or an entire

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

class. Renaming affects only the definition, not the calls of a specified feature.

Cecil: Explicit qualification. In Cecil, which has multiple dispatch, the

qualification is based on multiple arguments.

D y lan : Implicit linearization of the inheritance graph determines class

precedence, which triggers m ethod precedence. The overriding m ethod con­

tains c a ll-n ex t-m e th o d in order to choose the right m ethod from the list of

method precedence im plicitly built.

In o u r im p le m e n ta tio n for super calls, we have devised a qualification

manner of lookup-start combined with a self-directed algorithm: the user has

to provide the name of the type where the lookup will commence. From

there up, if no code is found, the lookup is further controlled by an algorithm

th a t unambiguously determines a super-tvpe with code (if any) for the given

method. We propose a syntax for the future, super (S ta r t) .a lp h a O , where

the lookup starts in the interface type Start.

2.5 C oncluding R em arks

In this Chapter, we continued to motivate the need for multiple inheritance

started in Chapter 1. Therefore, we analyzed the state of m ultiple inheritance,

beginning with the m ajor problems associated with it, and we described our

solution to each of them.

Then, we saw th a t the alternatives to multiple code inheritance had several

drawbacks, including increasing the code size, introducing errors in programs

when copying or modifying code, deteriorating the separation of inheritance

concepts, writing extra delegating methods, and introducing the overhead of

extra message sends.

Fortunately, we can avoid these problems by using multiple code inheri­

tance, which has the advantage of facilitating code re-use, supporting separa­

tion of inheritance concepts, and improving the expressiveness and clarity of

implementation.

We investigated the mechanisms of multiple code inheritance in several pro­

gramming languages in order to find out how common problems th a t occurred

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

due to multiple code inheritance were solved.

Since Java has multiple inheritance of interfaces, but only single inheri­

tance of code, our solution to the problems generated by this situation is to

generalize a JVM to support multiple inheritance of code, by inserting code

into interfaces. We support multiple code inheritance, not multiple data in­

heritance, because the la tte r is not as useful as code inheritance. Re-using

code is more im portant, since the effort, of programmers is mainly focused on

implementing m ethod bodies.

In later Chapters, we describe our JVM modifications to support multiple

code inheritance in -Java and propose future syntax for super calls to interfaces.

•31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L anguage O p e ra tio n s D a ta N a m in g C o d e L ayout D a ta L ayou t S u p e r C alls
C + + , E E x p l i c i t sig­

nals ambigu­
ities at firs t
use.

E x p l i c i t ; signals
ambiguities at
firs t use.

Multiple v t b l s

offsets adjust
t h i s pointer.

Also moving
t h i s pointer.

E x p l i c i t ;

qualification
with starting
lookup class.

Eiffel E x p l i c i t , r e ­

n a m e clause.
E x p l i c i t ; r e ­

n a m e and s e l e c t

clauses.

E x p l i c i t ; r e ­

n a m e clause.
E x p l i c i t ; r e ­

n a m e and
s e l e c t clauses.

No explicit su­
per call mecha­
nism.

P y th o n I m p l i c i t ;

pre-order
traversal
inheritance
tree.

I m p l i c i t ; pre­
order traversal
inheritance
tree.

I m p l i c i t ; pre­
order traversal
inheritance
tree.

I m p l i c i t ; pre­
order traversal
inheritance
tree.

M e t h o d r e s o ­

l u t i o n o r d e r

combined
with c a l l - n e x t -

m , e t h o d .

P erl I m p l i c i t ;

pre-order
traversal
inheritance
tree.

No data inheri­
tance.

No data inher­
itance.

I m p l i c i t ; pre­
order traversal
inheritance
tree.

Depth-first,
left-to-right
resolution.
Methods
qualified
with SUPER
pseudo-class.

CLOS I m p l i c i t ;

inheritance
graph lin­
earization.

I m p l i c i t ; inher­
itance graph
linearization.
Merges mem­
bers with the
same name into
a single slot.

I m p l i c i t ; inher­
itance graph
lineariza­
tion, taking
into account
argum ents’
positions.

I m p l i c i t ; inher­
itance graph
linearization.

I m p l i c i t ; inher­
itance graph
linearization.
Methods com­
municate by
keywords:
b e f o r e , a f t e r ,

a r o u n d , i n n e r .

S a th e r E x p l i c i t ;

compiler
enforced
conflict
renaming.

E x p l i c i t ; com­
piler enforced
conflict renam­
ing.

E x p l i c i t ; com­
piler enforced
conflict renam­
ing.

E x p l i c i t ; com­
piler enforced
conflict renam ­
ing.

I m p l i c i t ; re­
names features
in i n c l u d e

clauses.

C ecil E x p l i c i t ;

qualification
based on
multiple ar­
guments due
to multiple
dispatch.

Problem re­
duced to
resolving like-
named field
accessor ambi­
guities.

E x p l i c i t ; quali­
fication based
on multiple
arguments due
to multiple
dispatch.

Problem re­
duced to
resolving
like-named
field accessor
ambiguities.

E x p l i c i t quali­
fication based
on multiple ar-
guments.

D ylan I m p l i c i t ;

inheritance
graph lin­
earization.

I m p l i c i t ; inheri­
tance graph lin­
earization.

I m p l i c i t ; inher­
itance graph
linearization.

I m p l i c i t ; inher­
itance graph
linearization.

I m p l i c i t ; graph
lineariza­
tion. Methods
chosen with
c a l l - n e x t -

m e t h o d .

Table 2.1: Programming languages th a t support multiple code inheritance.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapt er 3

M ethod D ispatch in th e JV M

Before describing the changes made to the Sun’s JVM for JDK 1.2.2 imple­

mentation, we look at some key data structures for storing information and

performing m ethod dispatch in the original JVM [22], Later on, we will discuss

how the m ethod dispatch in the JVM is modified.

3.1 O verview

The term Java is broadly used to indicate four technologies: the Java pro­

gramming language [13], the -Java .c la s s file format, the Java Application

Programming Interface (API), and the Java V irtual Machine (JVM). The Java

API and the JVM form the Ja,va Platform on which every Java program can

run, regardless of the underlying hardware or operating system of the p la t­

form. The philosophy of Java programs is “write once, run everywhere” . The

JVM implementation described in this dissertation is Sun JVM for JDK 1.2.2

[26] for Linux.

A Java program is compiled into a sequence of bytecodes and the JVM,

an abstract computer able to run Java programs, interprets the bytecodes.

Each class or interface is compiled (with ja v ac or another compiler producing

bytecodes) into a binary format . c la s s file. W hen the JVM loads a . c la s s

file, it parses the information about the class or interface from the binary data

and places it into run-time data structures within the method area. Then, it

executes the bytecodes from the . c la s s file. Along with the program ’s . c la s s

file, the class loader also loads the necessary classes from .Java API. The JVM

•33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.class files

1
Class Loader

Runtime

Data Areas
Execution engine

Figure 3.1: Simplified JVM internal architecture.

Method Area

MT IMTVMT

RCP

Figure 3.2: Method Area within the Runtime D ata Areas: M ethod Table
(MT), V irtual Method Table (VMT), Interface Method Table (IMT), and
Runtime Constant Pool (RCP).

accomplishes these two tasks through the class loader [34] and the execution

engine (Figure 3.1).

A .c la s s file stores all of its symbolic references to other types needed by

the current class in its constant pool (CP), which is a sequence of constant

items with a unique index. These items can be literals (strings, integers, float­

ing point constants) or symbolic references to types (classes and interfaces),

fields, and methods th a t have to be determined at run-time. In addition to the

constant pool, which represents the information referenced from the current

class, a .c la s s file also contains information about the fields and methods

declared in th a t type: a field information structure (for each field’s name and

type) and a method information structure (for each m ethod’s name and de­

scriptor, bytecodes and other inform ation). Conceptually, the CP is similar to

the symbol table of other programming languages and systems.

Once loaded by the JVM, a type has an internal version of its constant

pool in the form of a runtim e constant pool (RCP) th a t is stored in the

m ethod area as shown in Figure 3.2. All of its symbolic references now reside

in the type’s runtime constant pool. Instructions refer to CP indexes where

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F ile ln p u tS tream a F i le = new F i l e l n p u t S t r e a m C 'a F i l e . t x t ") ;
FilterlnputStream stream;
stream = new D a ta ln p u tS t r e a m (a F i le) ;
s t r e a m .c lo s e () ;

Figure -3.3: Java sample source file.

the symbolic references reside. During the running of a program, if a symbolic

reference has to be used, it must be resolved (i.e., replaced with a direct refer­

ence). Dynamic Unking is the process of locating types (classes and interfaces),

fields, and methods referred to by symbolic references stored in the constant

pool and replacing them with direct references to data. The constant pool

has a central role in the dynamic linking of Java programs. Direct references

to types (class/interfaces), class variables, class methods are represented by

pointers to da ta in the m ethod area. Direct references to instance variables

and instance methods are represented by offsets. Instance variables are offsets

from the start of the object’s image to the location of the instance variable, and

instance methods are offsets into the virtual method table (array of pointers

to methods da ta in the m ethod area).

Consider the call-site s tream , c lo se 0 from Figure 3.3. In the method

information section in the .c la s s file for this call-site, the bytecodes which

use the constant pool indexes are illustrated in Figure 3.4. In the first part of

this Figure there are the raw bytecodes (in hexadecimal format) followed by

a comment with their “translation” into JVM instructions mnemonics. The

second part of the same Figure contains only the instructions autom atically

generated w ith the javap .c la s s file disassembler tool. We will trace this

example in the next Section, which presents the way the JVM uses the . c la s s

file information. The information from the constant pool used by this call-site

is represented in Figure .3.5. Recall th a t the CP is an array.

Entries in the constant pool begin with a tag which indicates the kind of

constant stored. For example, if the entry is a class (entry 5, for example),

then its tag is CONSTANT_Class; if the entry is a method (entry 11), its tag is

CONSTANT_Methodref (respectively CONSTANT_InterfaceMethodref for inter-

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ / Snippet from th e . c l a s s f i l e (ou tpu t in hexadecimal form at)
/ / f o r th e s t r e a m .c lo s e 0 c a l l - s i t e .
2c //a load_2
b6 / / i n v o k e v i r t u a l
000b / / #11 j a v a . i o .F i le ln p u tS t re a m /c lo s e

/ / Snippet from javap ou tpu t f o r th e same c a l l s i t e .
19 aload-2
20 in v o k e v i r tu a l #11 <Method vo id c l o s e ()>

Figure 3.4: Snippet of the . c l a s s file.

5 C lass #31

11 Methodref #5 #15

15 NameAndType #28 #16
16 U tf8 "OV"

28 U tf8 "c lo se"

31 U tf8 " j a v a . i o . F ile ln p u tS tream "

Figure 3.5: Snippet of the constant pool.

face methods). For brevity, we do not use CONSTANT in front of CP tags in our

examples.

In order to actively use a type, the following steps are taken:

1. Loading: responsible for im porting a binary form for a type into the

•JVM (generating a stream of binary data representing the type out of

the fully qualified type name, parsing this stream into internal data struc­

tures in the m ethod area, and creating the type as an instance of class

ja v a .la n g .C la s s on the heap). All of the type’s super-types (classes

and interfaces) have to be loaded before loading the actual type.

2. Linking: responsible for the integration of the binary da ta into the run­

time structures of the JVM

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a.) Verification: validates the loaded type.

(b) Preparation: allocates memory for the class variables and sets them

to default initial values determined by their types. It also allocates

memory for da ta structures such as the m e th o d ta b le s (MT),

the v i r tu a l m e th o d ta b le s (VMT), and the in te rfa c e m e th o d

ta b le s (IMT).

(c) Resolution (optional step): replaces symbolic references into the

constant pool with direct references to data, This step is delayed

until each symbolic reference is first, used by the program.

3. Initialization: responsible for providing the class variables with their

proper initial values. For classes, the class’s direct superclasses have to

be initialized first if they have not already been initialized. If there is

a class initialization method (< c lin it>) , it will be executed. This is a

special m ethod created by the Java compiler and contains all the class

variable initializers and static initializers of a type; it can be invoked

only by the JVM. Final static variables are not stored as class variables

in the m ethod area bu t as constants into the constant pool.

3.2 M ethod Invocation M echanism

In Java, there are two categories of methods th a t can be invoked: in s ta n c e

m e th o d s - the JVM selects the method to invoke based on the actual class of

the receiver object (run-time, dynamic binding) and c lass (s ta tic) m e th o d s

- there is no receiver object so the method is actually a function defined in a

class (compile-time, static binding).

There are four invoke instructions in the .Java . c la s s files: in v o k e v ir tu a l,

in v o k e in te rfa c e . in v o k e sp e c ia l , and in v o k e s ta t ic .

The instruction executed at a call-site (for example s tre a m .c lo s e O) de­

pends on the static type of the receiver (stream). This call-site is translated

into, a JVM instruction whose opcode is in v o k e v ir tu a l if the static type of

stream is a class and in v o k e in te r f ace if the static type of stream is an inter-

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

face. In both situations, the opcode is followed by a method reference (an index

into the constant pool) as an operand of the instruction. The method reference

stores the static type of s tream (class or interface) and the method signature

of c lo se () (name and descriptor - the return type and arguments). In Figure

3.4 and Figure 3.5, the index is 11 and it indicates a Methodref tag into the

CP. The entry Methodref has two fields which point to other structures in the

constant pool: class and descriptor. In our example, the Methodref tag points

to entries 5 (Class tag) and 15 (NameAndType tag) in the CP. The C lass tag

indicates th a t at entry 31 the string with the fully qualified class name (where

the method is defined) can be found. The NameAndType tag indicates the CP

entries where the name of the m ethod (28) and the signature (16) are found.

Therefore, given an invoke instruction and an index into the CP, the name and

type of the method, as well as its static class are retrieved. In this particular

example, given the call-site, the index following the invoke instruction pro­

vides all the information necessary for the method signature to be statically

determined. The receiver object, though, is necessary to uniquely determine

the method to be executed.

References to methods are initially symbolic: they refer to constant pool

entries tha t contain symbolic references. W hen the .JVM encounters an invoke

instruction, it resolves it (if not yet resolved) as part of its execution. To re ­

solve a sy m b o lic r e fe re n ce to a method, the JVM lo c a te s the m ethod being

referred to symbolically (method lookup) and re p la ce s the symbolic reference
with a direct reference (pointer or offset). The class and name (including the

signature) of the m ethod are resolved before the method is actually invoked

and an index into the virtual method table of the static type of the object is

generated. Therefore, in future invocations, the JVM will be able to execute

methods more quickly, as we will see in the next Chapters.

When invoking a -Java non-native method, the JVM creates a new stack

frame for each Java m ethod it invokes and pushes the stack frame onto the

Java stack. The new stack frame contains local variables of the method, the

operand stack, as well as other implementation-dependent information. For

every instance method invocation, the JVM expects a reference to the object

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

 Handle___
ptr to obj data

ptr to VMT

obj class info

MX

object data

m l’s methodblock

Objectref

ptr to obj class

ptr to m l code

ptr to mN code

Figure 3.6: High-level object representation in Sun’s JVM.

(we will refer to it as objectref' i.e., the implicit this pointer tha t is passed to any

instance method, representing the receiver object), as well as the arguments (if

any) required by the method to be on the operand stack of the calling m ethod’s

stack frame (class methods require only the argum ents). They must be pushed

onto the calling m ethod’s operand stack by the instructions th a t precede the

invoke instruction. The JVM places them as locals on the new stack frame.

The JVM makes the new stack frame current and sets the program counter to

point to the first instruction in the new method.

3.3 O bject R ep resen tation

In Sun’s JVM, each object reference (objectref) is a pointer to a structure

which contains a pointer to m ethod tab le (VMT) and a pointer to the object’s

instance data (Figure 3.6). The VMT has a pointer to the full class da ta and

an array of pointers to method data containing the actual information for each

instance method th a t can be invoked on objects of th a t class. The m ethod

data (structure named m ethodblock in SUN’s JVM) pointed to from a slot

(entry) of the virtual m ethod table (or of the interface method table via the

VMT) contains the compiled code for th a t method, i.e., complete information

about the method. A m ethodblock includes the size of the operand stack

and local variable sections of the m ethod’s stack, a pointer to the m ethod’s

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Class FilterlnputStream

VMT
0 -

1 cloneQ

11 waitQ
12 read(byteO)
13 closeQ

 ̂ Declared Methods:
FilterlnputStream (inputStream);

read(byte[]);
closeQ

C lass DatalnputJ Stream

VMT
0 -

1 cloneQ

11 waitQ
12 read(byte[])

13 closeQ

14 readFloatQ

15 readlntQ

MT
init (inputStream)
read(byteQ)
close()

/ Declared Methods:
D atalnputS tream (inputS tream):

read(byteQ);
readFloat();
readlnt();

IMT

D atalnput 14 15

Interface Datalnput
Declared Methods:

readFloatQ;

readlntQ;____________

MT
readFloatQ
readlntQ

Interface DataOutput
Declared Methods:

writelnt(int);

MT

writelnt(int); 0

MT
init (inputStream) 0
read(byteQ) 12
readFloatQ 14
readlntQ 15

C lass RandomAccessFile

VMT
0 -

1 cloneQ

11 waitQ
12 readFloatQ
13 readlnt()
14 writelnt(int)

/ Declared Methods:
R andom A ccessFile(String, String);

readFloatQ ;
readlnt();
writelnt(int); ________________

IMT
D atalnput
D atalnput

12
14
~X~

13

MT
init (inputStream) 0
readFloatQ 12
readlntQ 13
writelnt(int) 14

f --- f
method ------------- implementation
declarations

[] interface class
----------------► pointer y

Figure 3.7; D atalnpu tO utpu t example; The MT, VMT, and IM T for some
classes and interfaces from the j a v a . i o package.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bytecodes, the method signature, and an exception table. The methodblocks

are organized into an array in the m ethod table (MT). The virtual method

table (VMT) includes pointers to data for methods declared explicitly in the

object’s class or inherited from superclasses. For interfaces, the code pointer

is currently null, but we change this as described in Chapter 4. Having only

a reference to an object (objectref), we will see in subsequent Chapters how

we can retrieve information about th a t object’s class. The methodblock to

be executed depends on the runtim e type of the receiver object, therefore first

the objectref is located by popping all the arguments from the stack. Then

the object handle is retrieved. The handle is used to locate the VMT of the

actual class of the object and, given the index (Figure 3.6) into VMT th a t was

generated (as the index is identical in all the VMT of classes wrhich implement

th a t m ethod), the desired methodblock is fetched.

We exploit the existing structure of the original JVM. There are three

da ta structures th a t contain m ethod information: the m e th o d ta b le (MT),

the v i r t u a l m e th o d ta b le (VMT), and the in te rface m e th o d ta b le (IMT).

Every class and interface has an MT. Every class has a VMT, bu t interfaces

do not have VMTs, because interfaces are never instantiated. Every interface

and every class th a t implements an interface (directly or indirectly) has an

IMT.

3.4 T he M eth od Table

An MT is an array of methodblocks, one for every m ethod th a t is declared

(no t inherited) in a class or interface. Therefore, the m e th o d t a b le con­

tains methodblocks for all overriding methods. In Sun’s JVM, an MT is a

data structure called methods. Each methodblock contains all of the infor­

m ation about the method, including its signature and a pointer to its byte­

codes. In the case of interfaces, the methods are abstract, so the code pointer

is not used (but we will modify the JVM to use it, as described in Chap­

ter 4). Figure 3.7 shows the classes F i l t e r ln p u tS t r e a m , D atalnputS tream ,

RandomAccessFile, and the interfaces D ata lnput and DataOutput from the

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Class RandomAccessFile
Declared Methods:

RandomAccessFilefString, String);
readFloat();
readlnt();
writelntQ;

MT
init (String, String) 0
readFloatQ 12
readlntQ 13
writelntQ 14

Interface Datalnput
Declared Methods:

readFloatQ;
readlntQ;

MT
readFloatQ 0
readlntQ 1

(a) MT for Classes. (b) MT for Interfaces.

Figure 3.8: M ethod tables.

ja v a . io package. Many methods have been excluded for the sake of simplicity.

Each of the classes has one m ethodblock in its MT for each declared

method in the class. For example, D atalnpu tS tream has a m ethodblock for

read (byte []) since it overrides this method th a t it inherits from the class

F i l t e r InputS tream , but has no m ethodblock for c lo se () since this method

is not overriden. The interface D a ta ln p u t has m ethodblocks for its methods

re a d F lo a tO and r e a d ln tO , even though they contain no code.

Method dispatch finds a m ethodblock for a call-site and invokes the code

for the methodblock. The operand of the call-site bytecodes is an index into a

run-time constant pool th a t stores the signature of the m ethod being invoked.

M ethod dispatch is a two-step process. The first part of m ethod dispatch,

called resolution, finds a m ethodblock tha t contains the code. The resolution

mechanism depends on whether the static type of the receiver object is a class

or an interface. The compiler records the required resolution mechanism in the

. c la s s file by generating an in v o k e v ir tu a l bytecode if the static type of the

receiver object is a class and an in v o k e in te r f ace bytecode if the static type

is an interface. Resolution of in v o k e in te r f ace is complex and is discussed

later in this Chapter. Resolution for in v o k e v ir tu a l is simple.

To resolve an in v o k e v ir tu a l instruction, the JVM uses the method ref­

erence to obtain the static class and a method signature. It then searches the

MT of this class for a m ethodblock with a matching signature. If no match is

found, it searches the MTs along the superclass chain. The compiler guaran­

tees th a t a match is found. Consider Figure 3.9: the call-site stream , c lo s e ()

has bytecodes th a t contain an index into the run-time constant pool th a t stores

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the method signature, c lo se (). The dynamic class of the receiver object may

be D atalnputS tream or F il te r ln p u tS tre a m . If it is the former, the MT table

of D atalnputS tream is searched for a m ethodblock with signature c lo se (),

but no match is found. The MT of the superclass, F i l t e r e d ln p u t S t r e a m , is

searched, and a m ethodblock with a m atching signature is found.

However, it is possible th a t the resolution methodblock is not the cor­

rect execution methodblock. For example, consider the classes in Figure

3.7, a variable declaration, F i l t e r l n p u t S t r e a m in p u t, and the following call-

site: in p u t . r e ad (aB y teA rray) , where in p u t is bound to an instance of the

class DatalnputStream. Resolution produces the resolution methodblock for

read (byte []) in class F i l t e r ln p u tS t r e a m . The execution methodblock,

however, should be r e a d (b y t e G) in DatalnputStream. If the index of a

methodblock in its MT were invariant along the superclass chain, the resolved

methodblock read (byte []) in F i l t e r l n p u t S t r e a m could store this invariant

index, and it could be used as an index into the MT of the dynamic class of

the receiver object (Data lnputS tream in this example). Unfortunately, MT

indexes are not invariant. Fortunately, this problem is solved using virtual

method tables as described later in this Chapter. In essence, each method

block contains a unique VMT index th a t is invariant along the superclass

chain.

Resolution is quite slow, so Sun’s JVM records the resolution result at

each call-site for use in future dispatch at th a t same call-site. Bytecode quicking

(described in more detail later in this Chapter), modifies the bytecodes at each

in v o k e v ir tu a l call-site to contain information th a t can be used to quickly

compute an index into a VMT th a t contains a pointer to the appropriate

methodblock. More specifically, the bytecodes will contain a reference to the

resolved m ethodblock instead of the original symbolic m ethod reference.

3.5 The V irtual M eth od Table

The V M T enables the JVM to quickly locate an instance method invoked on

an object. In Sun’s JVM, this data structure is called m ethod tab le (not to

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F i l t e r l n p u t S t r e a m s tream;
D a ta lnpu t i n p u t ;
RandomAccessFile f i l e ;

i f (cond i t ion)
s tream = new F i l t e r l n p u t S t r e a m (i n S t r e a m) ;

e l s e
s tream = new D a ta ln p u tS t re a m (in S t rea m) ;

s t r e a m . r e a d (a n A r r a y) ;
va lue = i n p u t . r e a d i n t () ;

s t r e a m . c l o s e () ;
f i l e . w r i t e l n t (43);

Figure -3.9: Code example.

be confused w ith the MT). The virtual m ethod table is a data structure

used to store invariant indexes for all m ethods along a subclass chain. Each

VMT entry (slot) holds a reference to an instance m ethod (i.e., a m ethod th a t

may be invoked on a class instance) im plem entation th a t has been declared,

or inherited by the current class. Each reference is actually a pointer to a

m ethodblock in either the local MT or an MT of a superclass. The first entry

in VMT (at index 0) is not used in this JVM implementation.

The MT and VMT for a class are constructed when the class is loaded, and

each m ethodblock in the MT stores its VMT index as it is built a t load-time.

A VMT is similar to a virtual function table used in C + + implementations,

except th a t in C + + the compiler inserts a virtual function table index at the

call-site of each virtual function call. In Java, the compiler inserts a symbolic

reference to the m ethod at each call-site, and the first execution of the call-site

resolves this symbolic reference and modifies the bytecodes at the call-site so

th a t future executions use an index into the VMT. The VMTs contain only

non-private instance methods. Private methods and instance initialization

methods do not appear in VMTs because they are statically (i.e., compile­

time) bound. The same is true of static methods.

Consider the classes F il te r ln p u tS tr e a m and D atalnpu tS tream in Figure

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Class Object
Declared Methods:
cloneQ

waitQ

MT VMT
clone() 1 J - L 0 -

1 cloneQ

waitQ 11
11 waitQ

i
Class RandomAccessFile
Declared Methods:
RandomAccessFile(String, String);

readFloatQ;
readlntQ;
writelntQ;

MT

—
L_j

VMT
init (String, String) 0 0 -

readFloatQ 12 1 cloneQ

readlntQ 13
writelntQ 14 «4i 11 waitQ

12 readFloatQ
13 readlntQ
14 writelntQ

Figure 3.10: V irtual M ethod Tables.

3.7. The VMT of a class has indexes for all the methods it inherits from

class j a v a . l a n g . O b j e c t (indexes 1-11 in all VMTs in Figure 3.7) and then

indexes for all of its other ancestor classes, ending with its im m ediate su­

perclass (indexes 12 and 13 in the Data lnpu tS tream VMT). If a child class

overrides an inherited method, it actually overwrites the VMT entry of the

inherited m ethod to refer to an entry in the local MT table rather than the

MT table of an ancestor class. For example, the VMT entry for the overrid­

ing read (byte []) m ethod in Data lnputS tream points to the local MT table.

Finally, the VMT has indexes for all new methods th a t it declares (indexes

14 and 15 in Data lnputStream VMT), even if these new methods implement

methods from an interface.

Even though a child class overwrites a VMT entry to point to a m ethodblock

in a different MT, a m ethodblock’s VMT index does not vary along a super­

class chain. This is because when a VMT is constructed, it first copies its su­

perclasses' VMT and then extends it. For example, the indexes of all methods

inherited from j a v a . la n g . Ob j e c t are the same in all VMTs and the indexes of

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e x e c u t e M B = r e c e i v e r . dynamicClass .VMTfresolvedMB. vmtIndex]

Figure 3.11: Computing the execution methodblock for i n v o k e v i r tu a l .

the c l o s e Q and r e a d (b y t e []) m ethods are the same in F i l t e r l n p u t S t r e a m

and DatalnputStream. This property is essential to support substitutability

[14] for fast method dispatch, after bytecode quicking. For example, consider

the code in Figure 3.9. At the call-site, s t r e a m . r e a d (a n A r ra y) , the bytecodes

initially contain a reference to a constant pool entry for r e a d (by tes []) . If

the dynamic type of stream is F i l t e r l n p u t S t r e a m when the call-site is en­

countered the first time, m ethod resolution will generate the VMT index 12

and bytecodes will be quicked to use this index the next tim e the call-site is

executed. If the stream variable is bound to a DatalnputStream, the second

tim e the call-site for s tream . r e a d (b y te []) is executed, the same index, 12,

will be used to access the same methodblock, but this tim e via the VMT

for class DatalnputStream. After resolution, the execution methodblock is

computed from the resolution methodblock, resolvedMb, using the formula

in Figure 3.11.

Unfortunately, this dispatch mechanism does not work for interfaces due

to multiple inheritance. Figure 3.7 illustrates the problem, showing th a t a

method r e a d l n t O declared in an interface Data lnpu t th a t is implemented

by two classes, DatalnputStream and RandomAccessFile, can have different

indexes (15 and 13) in the VMTs of the two classes. This can occur be­

cause each of the classes may inherit m ethods from different superclasses or

implement different interfaces. Therefore, we need another d a ta structure,

in te r face m e t h o d t a b l e (IMT), which facilitates interface m ethod dispatch

(i.e., i n v o k e i n t e r f ace).

3.6 T he Interface M eth od Table

An IMT is used for interface method dispatch (in v o k e in te rfa c e) . The cor­

responding da ta structure in Sun's .JVM is im ethod tab le . If a variable has a

static type th a t is an interface and if it appears as the receiver of a method

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Datalnput
IMT

null

Declared Methods:
readF!oat();

readlntQ;_________

Interface Datalnput Interface D ataO utput
Declared Methods: IMT
writelnt(); DataOutput null

*

Class RandomAccessFile
Declared Methods:
RandomAccessFile(String, String);

readFloatQ;
readlnt();
writelntQ; _____

IMT
Datalnput 12 13

DataOutput 14

MT VMT
init (String, String) 0 0 -

readFloat() 12 — 1 cloneQ

readlntQ 13
writelntQ 14 -* i 11 wait()

12 readFloatQ
13 readlntQ
14 writelntQ

Figure 3.12: Interface Method Tables.

invocation, the call-site will contain an i n v o k e i n t e r f ace bytecode instead

of an i n v o k e v i r tu a l bytecode. We shall see how the IM T provides an extra

level of indirection tha t solves the problem of inconsistent indexing of interface

methods among classes.

Each slot in an IMT stores all of the information for an interface. Every

class has an IMT th a t references all of the interfaces it implements or inherits.

For example, in Figure 3.12, the class RandomAccessFile has two entries in its

IMT, one for the interface D a ta lnpu t and one for the interface DataOutput.

Each interface also has an IM T with slots for all the interfaces it extends,

including itself.

During m ethod dispatch, the MTs of all of the interfaces th a t are imple­

mented by the receiver object’s class can be accessed through the IM T for

th a t class. The IMT is an array of entries which contain two types of infor­

mation. Each entry is a pointer to the interface th a t the class implements

(directly or indirectly). Each entry also contains an array of indexes into the

class’s VMT; the number of elements in each array is the same as the num­

ber of methods th a t are in the interface referenced by the interface pointer of

th a t entry. Each index is an offset into the VMT entry for the corresponding

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

method. For example, consider the IMT for the class RandomAccessFile in

Figure 3.12. The first entry contains a pointer to D a ta lnpu t and an array

containing indexes (12 and 13) into the VMT for the two methods declared in

Datalnput, called r e a d F l o a t O and r e a d l n t Q . The second entry contains a

pointer to DataOutput and an array containing an index (.14) into the VMT

for the method declared in DataOutput, called w r i t e l n t (i n t) .

Resolution of an in v o k e in te r f ace bytecode is similar to resolution for

an in v o k e v ir tu a l bytecode, except tha t the m ethod reference includes an

interface instead of a class. Resolution starts at the interface m ethod table

(IMT) of this interface. Recall th a t an IMT has one entry for each interface

tha t is extended or implemented (directly or indirectly) by its class or interface.

During resolution, the JVM starts with the entry zero of the interface’s IMT,

which is the interface itself. The MT of this interface is searched for a matching

method. If one is not found, the MTs of subsequent interfaces in the IMT are

searched. The compiler guarantees th a t a signature m atch will be found.

Also, recall th a t the resolution m ethodblock may not be the execution

methodblock. In the in v o k e v ir tu a l case, the resolved m ethodblock contains

an invariant index into the VMT of the receiver object’s dynamic class. In the

in v o k e in te r f ace case, the resolution m ethodblock contains a local MT off­

set. To complete the dispatch, an index must also be computed. The index is

for the IMT of the dynamic receiver’s class, where the interface of the resolved

m ethodblock is located. The JVM first searches the IM T of the receiver’s dy­

namic class for a match to the interface of the resolved m ethodblock. The loca­

tion of the match is an index, called a guess (for reasons th a t will be explained

later). The IMT entry indexed by the guess contains an array of VMT indexes.

The offset in the resolved m ethodblock is used as an offset into this array to

obtain the correct VMT index. Figure 3.13 gives the formula for computing

the execution m ethodblock from the resolved m ethodblock and the guess.

To see why the offset and the index are sufficient, consider a variable in p u t

that, is declared to be a D a ta ln p u t and a call-site in p u t . r e a d ln t O . The re­

solved m ethodblock is r e a d ln tQ in D ata lnpu t. The resolved m ethodblock

has an interface D a ta ln p u t and a method tab le offset 1. First, assume th a t

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i t a b l e = r e c e i v e r .dynamicClass . IMT[guess] ;
vmtlndex = i t a b l e . vmtIndexA rray[reso lvedM B.m tof fse t] ;
e x e c u t e M B = r e c e i v e r . dynamicClass . VMT [vmtlndex] ;

Figure -3.13: Computing the execution m ethodblock for in v o k e in te r f ace.

Interface Datalnput
Declared Methods: IMT
readFloatQ; Datalnput null
readlntQ;

Class DatalnputStream
Declared Methods:
DatalnputStream(inputStream);

read(byteQ);
readFloat();
readlntQ; ___________

IMT
Datalnput 14 15

MT
init (inputStream) 0
read(byteQ) 12
readFloatQ 14
readlntQ 15

VMT
0 -

1 cloneQ

11 waitQ
12 read(byte[])

13 closeQ
14 readFloatQ

15 readlntQ

Figure 3.14: D ata structures for j a v a . io . DatalnputStream.

the receiver object’s dynamic class is RandomAccessFile. From Figure 3.12

we can see th a t a search through the IM T of RandomAccessFile for the in­

terface Data lnpu t produces a guess of 0. The 1st offset of the entry 0 of this

IMT is 13 and the VMT entry at index 13 is the right code for r e a d l n t O .

Alternately, if the receiver object is an instance of DatalnputStream, then a

search through the IM T of DatalnputStream for the interface Data lnpu t also

produces a guess of 0, as shown in Figure 3.14. In this case, the T’4 offset of the

entry 0 of its IMT is 15 and the VMT entry at index 15 is the right code for

r e a d l n t O . Although the VMT index is not constant across classes (e.g. 13

then 15), the IMT index, together with the array offset, can be used to find the

correct code. The IM T provides an extra level of indirection that solves the

problem of inconsistent indexing of interface methods between classes. This

extra level of indirection is analogous to the way C + + implements multiple-

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

inheritance using multiple virtual fu nc tion tables. Bytecode quicking modifies

the bytecodes at each in v o k e in te r f ace call-site.

The guess is stored in the quicked bytecodes in addition to a reference to

the resolved methodblock, so the search does not normally need to be re-done.

However, it is possible tha t the guess at a call-site could be incorrect. To see

how the guess can be wrong, consider Figure 3.12, except assume th a t the

IMT in class RandomAccessFile has the D a ta lnput and DataOutput entries

in the reverse order. This can happen since classes can implement multiple

interfaces, so th a t the order of interfaces across different, IMTs can be different.

Re-consider the two successive executions of the call-site i n p u t . r e a d l n t ()

described previously. In this case, the first call-site execution (with dynamic

class RandomAccessFile) will generate a guess of 1 and an o f f s e t of 1.

However, when the second execution of this call-site uses the guess of 1,

it would be out of bounds in the IM T of D atalnputStream . To solve this

problem, the interface at the IMT entry w ith index guess is always compared

to the interface of the resolved methodblock th a t is stored in the quicked

bytecodes and, if they are different, a new search of the IMT is conducted

and the new guess is cached in the quicked bytecodes. This approach is

analogous to the inline-caching m ethod-dispatch technique [7] and can suffer

from the same thrashing problems if the class of the receiver object of the

polymorphic call-site alternates between two classes whose interfaces are stored

in different orders. Nevertheless, it is still faster than doing a full resolution

from a symbolic m ethod signature for each execution of the call-site.

The details of our modifications are provided later, but in order to sup­

port code in interfaces, we change the JVM code tha t constructs the IMT

table in the class loader. To understand our modifications, it is necessary to

understand how the class loader currently constructs the IMT table. Figure

3.16 contains the original algorithm for constructing the IMT. We will use the

class RandomAccessFile from Figure 3.12 to illustrate the algorithm. The

class loader creates a new IMT table (line 1) and then copies the IM T en­

tries of the superclass of the class being loaded to the new IMT table being

constructed (line 2). In this example, the superclass of RandomAccessFile is

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Handle
Objectref

argN

argl

VMT
ptr to obj class

opcode
0 -

resolution^------- ,
1 ptr to m l code

ptr to m codeindex ®”1 index]

into I into i ...

CP 1 VMT ; N ptr to mN code

- ptr to obj data object data

ptr to VMT

obj class info

M i
m l methodblock

m methodblock,

opcode = invokevirtual

Figure 3.15: Invokevirtual.

j a v a . l a n g .O b je c t , which has no IMT since it does not implement any inter­

faces, so no entries are copied. The class loader then loops over each interface

th a t is explicitly implemented by the class (line 3). The first interface imple­

mented by RandomAccessFile is D a ta ln p u t. The loader fetches the IM T for

this interface, which contains entries for D a ta ln p u t and all of the interfaces

it inherits (no others in this example). All of the IMT entries th a t are not

already in the new IMT are copied to the new IMT for RandomAccessFile,

producing a single entry containing (a pointer to) D a ta lnpu t. An associated

array th a t has two slots for indexes (for r e a d F l o a t Q and r e a d l n t Q) (line

4) is created. The indexes in this array are not copied since the array does

not exist in interfaces. Since RandomAccessFile implements a second inter­

face D ataO utput, the entries in its IM T are also copied down (line 4). Again

this is a single entry, but its associated index array has only one entry (for

w r i t e l n t (i n t)). It is im portant th a t each interface is only copied once. For

example, if the interfaces D atalnpu t and DataO utput had a common super­

interface Data, then, when the IMT entries from D ata lnpu t were copied, an

entry for the inherited Data interface would have been included. When the

IMT entries for DataO utput were copied, the non-unique D ata interface from

D ataO utput’s IMT would not be copied to the newr IMT.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm Construc tIMT(c lass)
1. c l a s s . i m t = new IMT();
2. copy e n t r i e s from c l a s s . s u p e r c l a s s . imt to c l a s s . i m t ;
3. f o r each d i r e c t i n t e r f a c e in c l a s s
4. copy unique e n t r i e s of i n t e r f a c e . imt t o c l a s s . i m t ;
5. end f o r
6. f o r each imtlndex in c l a s s . imt
7. i n t e r f a c e = c l a s s . im t [i m t l n d e x] . i n t e r f a c e ;
8. f o r each mtIndex i n in te rface .M T
9. imb = in te r face .M T [m tIn d ex] ;
10. s ig n a t u r e = imb. s i g n a t u r e () ;
11. vmtlndex = c l a s s .vmt. f i n d S i g n a t u r e (s i g n a t u r e) ;
12. c l a s s . i m t [i m t l n d e x] . a r ray [m t lndex] = vmtlndex;
13. / / l i n e r e s e r v e d f o r JVM m o d i f i c a t io n s l a t e r
14. end f o r
15. end f o r
end algor i thm ;

Figure 3.16: The existing IM T construction algorithm.

Interface Datalnput
Declared Methods:
readFloat();

readlntQ;___________

IMT
Datalnput null

MT
readFloatQ 0
readlntQ 1

Interface DataOutput
Declared Methods:
writelntQ;

IMT
DataOutput null

MT
writelntQ 0

Class RandomAccessFile
Declared Methods:
RandomAccessFile(String, String);

readFloatQ;
readlntQ;
writelntQ;

IMT
Datalnput 12 13

DataOutput 14

MT VMT
init (String, String) 0 0 -

readFloatQ 12 1 cloneQ

readlntQ 13
writelntQ 14 11 waitQ

L 12 readFloatQ
13 readlntQ
14 writelntQ

Figure 3.17: Example emphasizing the tables involved in the loading mecha­
nism.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

After the class loader is done looping through all implemented interfaces

and the IMT has all of its entries, the class loader loops through each slot in the

IM T (line 6), to fill in the index arrays. For each slot, the interface pointer is

de-referenced to obtain the interface (line 7) and the MT table in that, interface

is iterated (line 8). For example, the MT table of D a ta ln p u t is iterated first,

as shown in Figure 3.17. The entry 0 in the MT is the methodblock for

r e a d F l o a t O (line 9) and its signature (line 10) is looked up (line 11) in the

VMT of the class RandomAccessFile. Since a match is found at index 1‘2, this

index is copied into the entry 0 of the array in the IMT table for the Data lnput

slot (line 12). The entry 1 in the MT is r e a d l n t O and when it is looked up in

the VMT (line 11), the index found is 13. The index 13 is copied into the IMT

array at the Data lnput slo t’s array index 1 (line 12). The process continues

until all arrays at all IMT slots are full.

The Sun JVM makes a simple optim ization to the code shown in Figure

•3.16. The loop in step 6 of the optimized code does not iterate over all IMT

indexes. Instead, it s tarts at the first index after the entries th a t were copied

from the superclass’s IMT. This is possible since the array indexes in the

entries of the superclass will not change in the class being loaded, so these

entries are simply copied instead of being calculated. However, we iterate over

all indexes of the IMT to support the changes described in Chapter 4. Since

this code is run only at class load time, the performance loss is insignificant.

3.7 Quick B y teco d es

An analysis of the dispatch process for both bytecodes, in v o k e v ir tu a l and

in v o k e in te r f ace, shows th a t the interpretation of the bytecodes used to in­

voke methods can be improved. Opcodes th a t refer to CP entries can be

replaced by -quick opcodes after the CP references are resolved. Replacing

the normal opcodes with _quick counterparts in the bytecode stream can sub­

stantially speed up their interpretation. When the JVM encounters a -quick

instruction, it knows th a t the entry has already been resolved, so it can exe­

cute the instruction faster. In some cases, the operands are overwritten with

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

data representing a direct reference. The details of quicking in v o k e v ir tu a l

and in v o k e in te r f ace are different.

In v o k e v ir tu a l has a single operand., which is a two-bvte integer index into

the run-time constant pool, where the method signature is stored. In v o k e v ir tu a l

has three quick opcodes: in v o k e v ir tu a l.q u ic k , in v o k e v ir tu a lo b je c t_ q u ic k ,

and invokevirtual_quick_w .

1. For in v o k ev irtu a l_ q u ick , the original two-byte operand is replaced by

a one-byte o f f s e t into the VMT and one byte th a t stores the number

of arguments, na rg s , as illustrated in Figure 3.18. This second byte is

needed to find the receiver object on the stack. The number of arguments

was previously com puted after obtaining the m ethod signature from the

constant pool. The JVM uses the number of arguments to reach the re­

ceiver and follow its pointer to the VMT. To use in v o k e v irtu a l_ q u ic k ,

the index into VMT must be 25-5 or less and the dynamic class of the

receiver object cannot be an instance of class ja v a . la n g .O b jec t.

2. In v o k e v ir tu a lo b je c t .q u ic k has the same operands as the previous

bytecode, in v o k ev irtu a l_ q u ic k . It is used for invoking instance m eth­

ods of class ja v a . la n g .O b je c t and it is introduced specifically for ar­

rays. The objectref on the operand stack is a reference to an object or

to an array. The o f f s e t retrieved from the operand stack is an index

into the VMT of ja v a .la n g .O b je c t and ultim ately indicates the right

methodblock.

3. Invokevirtual_quick_w is followed by the same two-bvte index into the

constant pool as the unquicked in v o k e v ir tu a l bytecode. W ith the _w

variation, the constant pool entry is changed, instead of the bytecode

operands. This .q u ic k opcode is used when the index in VMT is greater

than 255. Method resolution simply replaces the m ethod signature in the

run-time constant pool with an entry containing a two-byte index into

the VMT and one byte th a t represents the number of method arguments,

nargs.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Handle.
object dataObjectref ptr to obj data

ptr to VMTargN

argl

VMT

MT

m l methodblock

methodblockm

obj class info

opcode

index

nargs

ptr to m l code

ptr to m code

ptr to obj class

ptr to mN code

opcode = invokevirtual_quick

Figure -3.18: InvokevirtuaLquick.

Invokeinterface has only one ..quick counterpart used for the invocation

of interface methods: in v o k e in te rfa c e x ju ic k . This bytecode is similar to

invokevirtual_quick_w in th a t the original operand index into the run-time

constant pool is retained. However, the run-time constant pool entry tha t it

points to is changed to point to the m ethodblock th a t was resolved when the

call-site was first executed. In addition, two other operands are added to the

bytecodes, a guess and the number of m ethod arguments, na rg s . The guess is

an index into the IMT th a t specifies one of the implemented interfaces. There

is an array at th a t IM T slot for indexes into the VMT of all methods declared

in an interface, as described earlier in this Chapter. To obtain the appropriate

index into th a t array, the first operand is used to obtain the m ethodblock

from the run-tim e constant pool and the m ethodblock contains the required

index into the array. However, the guess operand is called a guess for an

im portant reason. It is possible tha t it indexes the wrong interface in the

IMT. Before the index is retrieved from the m ethodblock, the interface of the

methodblock (stored as a pointer field in the m ethodblock) is compared to

the interface pointer contained at the guess index of the IMT. If they are the

same, the index from the m ethodblock is used. If they are different, then the

guess is wrong and the correct interface must be found. In this case, the IMT

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is searched for the interface pointer th a t matches the interface pointer stored

in the m ethodblock. Once one is found, the guess operand is changed to the

new index in the IMT and the dispatch continues.

3.8 C oncluding R em arks

In this Chapter, we described the current implementation of the original JVM ’s

data structures involved in method dispatch.

The two steps of method dispatch, resolution and execution, were detailed

for the in v o k e v ir tu a l and in v o k e in te r f ace bytecodes. Since resolution is

quite slow, we described bytecode quicking which modifies the bytecodes at

each resolved call-site to run faster on subsequent execution times of the call-

site.

In the next Chapters, we will discuss how the m ethod dispatch in the JVM

is modified.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D ata s tru c tu re
nam e

D ata s tru c tu re title D escrip tion Sum m ary

methodblock Method block (mb or imb) Stores the complete in­
formation (including code)
about a method. It in­
cludes the size of the
operand stack and local
variable sections of the
method’s stack, a pointer
to the method’s bytecodes,
the method signature, and
an exception table.

methods Method Table (MT) Array of methodblocks.
Both classes and interfaces
have MTs. It has an entry
for every method declared
(not inherited) in the class
or interface. Therefore, it
contains methodblocks for
all overriding methods.

methodtable Virtual Method Table
(VMT)

Array of pointers to
methodblocks. Only
classes have VMTs. Each
slot (entry) holds a refer­
ence to an instance method
implementation that has
been declared or inherited
by the current class.

im ethodtable Interface Method Table
(IMT)

Array of structures which
contain information about
interfaces. Both classes and
interfaces have IMTs. Ev­
ery class has an IMT that
references all of the inter­
faces it implements or in­
herits; every interface also
has an IMT with slots for
all the interfaces it extends,
including itself. The IMT
provides an extra level of
indirection that solves the
problem of inconsistent in­
dexing of interface methods
among classes.

Table 3.1: Major data structures involved in m ethod dispatch.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 4

Im p lem en tation

This Chapter presents the details of the JVM modifications to accommodate

code within interfaces and describes the simple test cases th a t are used to

verify the implementation of multiple code inheritance. Neither the syntax

of the Java programming language nor the jav ac compiler are changed. A

scripting process was developed instead of using syntax changes. The details

of the scripting process are presented in Chapter 7.

4.1 Our A pproach

Our implementation of multiple code inheritance in Java is based on the novel

concept of adding code to selected interfaces. We show th a t only straightfor­

ward and localized modifications are made to the JVM to support code within

the interfaces.

If code is put into interfaces and an existing Java compiler is used, compila­

tion errors can occur. For example, if the code for r e a d l n t () in Figure 3.14 is

moved from the class Data lnputS tream to the interface Da ta lnpu t , an unmod­

ified compiler would not compile the code in Data lnput and would complain

th a t there is no method declaration for r e a d l n t O in the DatalnputStream

class, therefore the class must be declared as abstract. Since it requires con­

siderable engineering effort, we have not modified a Java compiler to recognize

code in interfaces. Instead, we have created a scripting process th a t allows a

programmer to insert method code into interfaces and work around a standard

compiler. Details about the process and the tools th a t support our approach

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13A i f (imb.code <> n u l l) / / code in i n t e r f a c e
13B currentmb = c la s s .v m t [v m t l n d e x] ;
13C i f (cu rren tm b . code == n u l l) / / n o code in MT
13D class .vm t[vm tlndex] = imb; / / p o i n t VMT to imb
13E e l s e / / p o t e n t i a l code ambiguity
13F i f ((! cu r ren tm b .c l a s s . i m t . c o n t a i n s (i m b)) a&
13G (! i m b . c l a s s . i m t . c o n t a i n s (c u r r e n tm b)))
13H throw ambiguous method excep t io n
131 end i f
13 J end i f
13K end i f

Figure 4.1: Code added to Figure 3.16 to support interface code.

can be found in Chapter 7. In this C hapter we assume th a t this process is used

to put code into interfaces and the compiler does not generate any compila­

tion errors due to missing m ethod declarations. We have taken this approach

because we want to quickly test the utility of code in interfaces to support mul­

tiple code inheritance, without the full-fledged engineering effort of modifying

a compiler.

4.2 JV M M odifications

To support code in interfaces, we modified the JVM code th a t constructs

the IM T table in the class loader [21] (Figure 3.16), as shown in Figure 4.1.

After a VMT index is inserted into the array of an entry in the IMT table,

the corresponding VMT table entry is checked. If the VM T table points to

a m ethodblock in an MT th a t has no code, then the VMT table entry is

changed to point to a m ethodblock in the MT of the interface th a t contains

the code as shown in Figure 4.1. However, it is possible th a t the m ethod code

is ambiguous, as we will discuss further in this Chapter, Section 4.4.

We use the class RandomAccessFile as an illustrative example. Assume

we are loading this class. Also assume th a t the code for r e a d l n t O is moved

to the Data lnput interface instead of being in the RandomAccessFile class, as

shown in Figure 4.2. Assume the array element at index 1 of the Data lnput

entry is set to 13 (line 12 in Figure 3.16). Therefore, the imb is bound to

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Interface Datalnput
'

Interface DataOutput
Declared Methods: Declared Methods:
readFloatQ; writelntQ;
readlntQ;

MT
readFloatQ 0

readlntQ 1
MT

writelntQ 0

Class RandomAccessFile
Declared Methods:
RandomAccessFile(String, String);
no declaration for readFloatQ
no declaration for readlntO
no declaration for writelntQ

MT IMT
init (String, String) 0 Datalnput 12 13

DataOutput 14

VMT
0 -

1 cloneQ

11 waitQ
12 readFloatQ
13 readlntQ
14 writelntQ

Figure 4.2: The code from ja v a . i o .RandomAccessFile is moved up in two of
its direct superinterfaces.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the r e a d ln tO m ethodblock in D ata lnpu t and this m ethodblock has code

(step 13A in Figure 4.1). Our modified class loader accesses the VMT en­

try of RandomAccessFile at index 13 to obtain the current m ethodblock for

r e a d ln tO from the MT of RandomAccessFile (step 13B), Since there is no

code in the current methodblock. the code pointer is null (step 13C). There­

fore. we change the VMT entry at index 13 to point to the m ethodblock

in D atalnpu t instead. Note th a t the IMT offset into VMT stays the same,

it is only the slot in VMT th a t is modified. The resolution and dispatch

of in v o k e v ir tu a l proceeds in exactly the same way as with the unmodified

JVM, but the change in the class loader code allows the code in the interface

to be found and executed.

We also needed to modify the dispatch in the situation where a call-site

such as t h i s , a lp h a 0 appears inside an interface method. In this case, the

call-site is turned from an in v o k e v ir tu a l to an in v o k e in te r f ace, because

the static type of t h i s is an interface. W ith the design choices we made, no

other changes were required to support code in interfaces (and hence multiple-

inheritance) and this is due to the M iranda Methods concept incorporated in

SUN JVM.

4.3 E xp loiting M iranda M eth od s

If there is a declaration for r e a d ln tO in D a ta ln p u t, this m ethod must be

understood by any of the classes which implement D a ta ln p u t. Therefore, the

VMT of each of these classes must have a slot for r e a d l n t O . The slots can

be obtained by either of the following two methods.

The jav ac compiler generates methods in each abstract class for all in­

terface methods th a t are contained in all interfaces th a t are implemented by

the class, but which do not have an implementation in the class. Such gener­

ated methods are called M iranda methods, because if the class does not have

a corresponding interface method, one is provided by default. For example,

the entry in the VMT of RandomAccessFile for method r e a d ln tO of Figure

4.2 is a M iranda m ethod since there is no code (no explicit declaration) for

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

r e a d ln t () in RandomAccessFile. These methods are added because early

VMs did not look for methods along the interface path, performing the lookup

only along the superclass chain.

However, if a compiler does not generate M iranda methods, one additional

action is required at class load time in our implementation. For each interface

from a class’s IM T, loop through their methods and look for corresponding

methods in th a t class’s VMT. If one is not found, then extend that class’s

VMT with this m ethod and make it point to the code in the current interface

method. In both cases, the newly created slot in the VMT is present in all

the sub-classes of th a t class, therefore if code is found in one superinterface,

it will be propagated to all the classes implementing th a t interface.

4.4 Inheritance Scenarios - P oten tia l A m bigu­
ities

We have analyzed situations th a t use code in interfaces to ensure th a t the

algorithm in Figure 4.1 works as necessary. The four scenarios in Figure 4.3

represent the common situations. They test all paths of the algorithm we

devised. The first scenario shows a non-ambiguous case. The second scenario

illustrates a simple method overriding case with no ambiguities. The third

scenario generates an ambiguity, since a type inherits implementations for a

method from two direct unrelated parents; note tha t the type itself does not

provide an implementation for th a t method. Finally, the fourth scenario is

a case of complex m ethod overriding which does not generate an ambiguity

under a weaker definition of inheritance conflicts.

S cen ario 1. The simplest scenario occurs when C lass A has no code for

method a lp h aO and no superclass has code for method a lp h a (). In addition,

a direct superinterface, In te rfaceA , has code for m ethod a lp h a O . This is

also the scenario described previously, where the class RandomAccessFile im­

plements the interface D a ta ln p u t which contained code for r e a d ln t () . When

a message a lp h aO is sent to an instance of C lass A, the code from In te rfac eA

is executed.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S cenario 3Scenario 1
I n terfaceBInterfaceAInterfaceA

alpha()alpha()alpha()

w
C lassBC lassA

S cenario 2 S cenario 4

In terfaceAInterfaceA
alpha()alpha()

C lassAInterfaceBIn te r fa c e s
alphaQ

▼
C lassBC lassB

y\
 ^ im plem entation

 Y su b c la ss

ex ten d ed by

interface

class

Figure 4.3: Inheritance scenarios - Potential ambiguities.

S cenar io 2. A more complex case occurs when ClassB has no code for

a lp h a O , but both In te r faceA and I n te r f a c e B on the same superinterface

chain have code for a lp h aO . In this case, step 13C of Figure 4.1 is first

executed with currentmb bound to a methodblock in ClassB (with no code)

and imb bound to a methodblock in In te r f a c e B with code. This means

th a t step 13D is executed to re-bind the VMT entry to the methodblock

in In te r faceB . The second time tha t step 13C is executed, currentmb is

bound to a methodblock in In te r f ac eB (with code) and imb is bound to a

methodblock in In te r faceA (with code). Step 13F is entered since there is

chance for m ethod ambiguity. However, since In te r f aceA is a superinterface

of In te r faceB , the condition in step 13F evaluates to false and an ambiguous

method exception is not thrown. Therefore, when a message a lp h a O is sent

to an instance of ClassB. the code for a lp h a O provided by In te r f ac eB is

executed. This constitutes a simple m ethod overriding situation, similar to

the case where we have classes instead of interfaces.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S cen ario 3. This scenario illustrates a situation where an ambiguous

m ethod exception should be thrown. Since either the code in In te r faceA

and In te r f ac eB could be inherited, the programmer is required to declare

a m ethod in ClassB to resolve the inheritance conflict [14], A trace of the

code in Figure 4.1 shows tha t an ambiguous method exception does occur

since the IMT for In te r faceA does not contain In te r f ac eB and the IMT for

In te r f ac eB does not contain In te r faceA .

S c en a r io 4. This scenario illustrates an interesting situation where one

might conclude th a t an ambiguous m ethod exception should be thrown for an

a lp h a O in ClassB. However, since the code for a lp h aO in In te r faceA is

reachable from ClassB by going through In te r faceB , a weaker definition of

inheritance conflict would dispatch the version of a lp h aO from In te r faceB

[24], A trace of the code in Figure 4.1 shows th a t an ambiguous method

exception does not occur since the condition in step 13G is false. In this

case, currentmb is bound to a methodblock in In te r faceA and imb is bound

to a methodblock in In te r faceB , since interfaces of superclasses are added

to the IMT of ClassB before other interfaces are added, as described in the

code in Figure 3.16. Therefore, in this situation, the code from In te r faceB

is executed when a message a lp h a O is sent to an instance of ClassB. Each

scenario illustrates one of the unique paths through the code in Figure 4.1,

including the need for both conditions (step 13F and 13G).

4.5 D ispatch of C od e from Interface M eth od s

When the user provides interfaces with code, a call-site th a t often appears in

an interface method is t h i s . a lp h aO . In a m ethod implemented in a class, the

t h i s keyword represents a reference to the object on which the method was

invoked and an in v o k e v ir tu a l bytecode is generated. W hen this call-site is

found in an interface, an in v o k e in te r f ace should be generated instead since

the static type of t h i s is now an interface. To account for such situations,

we modify the bytecode generated for each th i s .a lp h a O call-site found in

an interface from in v o k e v ir tu a l to an in v o k e in te r f ace. Thus, the lookup

64

with permission of the copyright owner. Further reproduction prohibited without permission.

/ / j a v a . i o .Data lnputStream and Java i o .RandomAccessFile

p u b l ic f i n a l by te readBy teO throws IOException {
i n t ch = t h i s . i n . r e a d () ; / / i n t ch = t h i s . r e a d !) ;
i f (ch < 0)

throw new EOFExceptionO ;
r e t u r n (b y t e) (c h) ;

}

Figure 4.4: Similar code in ja v a . io library.

for the method starts in the current interface (the interface th a t contains the

call-site) and continues up its superinterface chain searching the method table

of each interface for a method signature match.

We present an example of such a method dispatch th a t we have encountered

in the validation process of our JVM modifications. Figure 4.4 is a reproduc­

tion of Figure 2.9 th a t illustrated similar code in the readByteQ methods of the

j a v a . i o library from the classes Data lnputStream and RandomAccessFile.

If this code can be made identical, it can be moved to the common super-

interface of Data lnputS tream and RandomAccessFile, called D ata lnput tha t

is shown in Figure 2.7. The code can be made identical by replacing the second

line of the readByteO m ethod by:

i n t ch = t h i s . s o u r c e () ;

where the source () m ethod in class Data lnputStream returns t h i s , i n and

the source!) method in class RandomAccessFile returns t h i s . This change

is described in more detail in C hapter 6. W hat is im portant to notice now is

th a t this kind of abstraction results in a method such as readBy teO in the

interface Data lnput which contains a message with t h i s as the receiver. In

this case, the scripting process replaces the i n v o k e v i r t u a l bytecode w ith an

i n v o k e in t e r f ace bytecode.

The operands required by in v o k e v ir tu a l and in v o k e in te r f ace are dif­

ferent. The in v o k e v ir tu a l bytecode takes only two operands which form an

index into the constant pool, whereas in v o k e in te r f ace takes four operands:

the first two operands form an index into the constant pool, the third operand

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

indicates the number of arguments th a t the m ethod takes and the fourth is

set aside for execution speed (the guess) after quicking. Therefore, when re­

placing these bytecodes in the .c la s s file, the number of arguments should

be added (if the last operand is not provided, it is autom atically set to 0). A

new .c la s s file containing these changes is generated as described in Chapter

7. The number of arguments provided in the script is not im portant, because

as we will see later we do not use it. Instead, the correct number of argu­

ments for the m ethod is taken from the resolved m ethodblock when the JVM

encounters an in v o k e in te r f ace. The right number of arguments is essential,

because when the m ethod th a t we would like to execute is in an interface, the

receiver object has to be retrieved by going up the operand stack a number

of arguments found in the resolution m ethodblock, and not in the bytecodes

(which do not reflect the actual situation in the resolved methodblock).

4.6 C oncluding R em arks

Our implementation of multiple code inheritance in Java is based on the novel

concept of adding code to selected interfaces represented by code-types. In this

Chapter, we described our modifications to the JVM class loader tha t support

code within interfaces and we showed how the new code was dispatched. We

showed that our approach detects ambiguous situations due to code in multiple

super-types. We illustrated scenarios tha t tested the modified class loader in

the presence of code in interfaces, as well as in ambiguous situations.

We solved the special dispatch problem for t h i s .a lp h a O call-sites within

interface code, by replacing the in v o k e sp e c ia l bytecode, normally generated,

with in v o k e in te rfa c e .

We provided a comment notation for including code in interfaces. In Chap­

ter 7 we detail the process which inserts code within interfaces in the absence

of compiler support for multiple code inheritance.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 5

Super Call Im p lem en tation

The implementation of an overridden method often invokes the same method as

implemented in the super-type, in order to refine existing code. Java achieves

this enhancement of functionality for the overridden method through its pow­

erful super call mechanism. However, when a type inherits code from multiple

super-types, the choice of which type to use for a super call becomes an issue.

In this Chapter we present a solution to the problem of super calls in the case

of multiple code inheritance. We also propose syntax changes for super calls

to interfaces th a t would simplify coding.

5.1 Super Call M echanism

In Java, a m ethod invokes the same m ethod from its superclass using the

syntax s u p e r . a lp h a O . W ith multiple-inheritance, such a call could be am­

biguous. C + + solves this ambiguity problem by specifying a method in a

particular superclass at compile time. For example, if C is a direct subclass of

classes A and B th a t both declare m ethod a lp h a O , then a super reference to

a lp h aO in a m ethod in class C can specify either A: : a lp h aO or B: : a lp h a O .

In fact, if no declaration of a lp h aO occurs in class A, but does occur in a

superclass of A, such as D, then the call A: : a lp h aO would s ta rt a dynamic

lookup in A and then proceed to find the appropriate m ethod in D.

This is the approach 'we use in multiple-inheritance Java. Chapter 7 de­

scribes the syntax used to implement this idea w ithout changing the .Java lan­

guage, In this Chapter we use the simple notation su p e r .(S ta r t) .a lp h a O ,

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pllll
InterfaceB

1

alpha()

ClassDInterfaceCInterfaceA
alpha()

... alpha()

C lassE
super(?).alpha();alpha()

Figure 5.1: Classes and interfaces for super calls.

where S ta r t refers to any superinterface. Since the argument interface does

not need to declare the method, this argum ent indicates the place where the

lookup starts. The modified JVM looks for code in the specified interface and

then continues searching along the superinterface chain. If a stricter form of

multi-super is required, the s ta rt interface could be restricted to be an imme­

diate superinterface of the class or interface th a t includes the super call. Some

would argue th a t this C+-F model provides too much freedom in super calls.

5.2 E xam ples o f M u lti-Inh eritance Super

Consider the classes and interfaces in Figure 5.1. The following m ethod call

super (In te rfac e A) .a lp h aO in a m ethod of C lassE invokes the a lp h aO in

In te rfaceA . The call super (In te r fa c e C) .a lp h a O invokes the a lp h aO in

In te rfaceB . The call s u p e r .a lp h a O invokes the a lp h aO in ClassD, because

we do not change the meaning of the single-inheritance super call.

Now consider the interfaces and classes of Figure 5.2. The m ethod call

su p e r(In te rfa c e G) .a lp h aO in a m ethod of ClassM invokes the a lp h aO in

In te rfa c e F . The call s u p e r . a lp h aO would behave identically with the usual

super call. The traditional call su p e r . a lp h aO would not find the a lp h aO in

In te r f a c e J and in fact would result in a compile-time error since there is no

a lp h aO declared in the superclass chain of ClassM (i.e., there is no declaration

of a lp h aO in C lassL nor ClassK). If there was also an a lp h aO in ClassK,

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

r InterfaceF aipha()
I_______* *

. I, i in i *

ClassKInterfaceJInterfaceG
alpha()

ClassLInterfaceH
alpha()

... alpha()

ClassM
super(?).alpha();alpha()

Figure 5.2: More classes and interfaces for super calls.

then an inheritance conflict exception would have been thrown when C lassL

was loaded.

5.3 Im plem entation o f Super

Our implementation of the multiple-inheritance super call, with the proposed

syntax super (S ta r t) .a lp h a O , generates an in v o k e in te r f ace bytecode in­

stead of an in v o k e sp e c ia l bytecode generated to implement a single-inheritance

super call, su p er. a lp h aO .

The instruction stores the argument interface (in this case, S ta r t) in the

constant pool and marks the m ethod call-site by storing a special value in

an operand of in v o k e in te r f ace bytecode. W ith compiler support, we would

prefer to create a different bytecode (in v o k em u lti-su p e r) .

We will refer to this operation as an in v o k em u lti-su p e r, even when it is

represented by a marked in v o k e in te r f ace. It appears th a t two JVM changes

are required to support in v o k em u lti-su p e r, one in resolution and one in

computing the execution m ethodblock. In fact, resolution does not require

changes. Regular in v o k e in te r f ace resolution finds an appropriate resolu­

tion m ethodblock. However, execution m ethodblock com putation is different

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for in v o k em u lti-su p e r and in v o k e in te r fa c e . An in v o k e in te r fa c e uses

a guess and the resolved m ethodblock stored in the quicked bytecodes to

find the execution m ethodblock using the formula given in Figure 3.13. For

in v o k em u lti-su p e r, we can just use the resolved m ethodblock directly as the

execution m ethodblock, as we show later in this Chapter.

We preserve the semantics of the traditional super calls w ithout altering

their performance. If we use the normal super syntax (without any argument

for super), the classic super would be executed, therefore the code from the

superclass would be retrieved. The compiler emits an in v o k e sp e c ia l bytecode

followed by one operand, which is an index into the constant pool of the current

class. The entry at this index is the m ethod signature (in this case, a lp h aO)

of the m ethod being invoked, along with the first superclass th a t contains a

declaration of a lp h a O , when the super call was compiled.

If an existing program contains a super call, we expect the new JVM to

generate the same results. This is consistent with Figure 5.2 where a regular

su p e r . a lp h aO call in ClassM generates a compiler error instead of executing

the code in In te r f a c e J . If on the other hand we use the m ulti-super syntax

with an interface argument, then we expect the code from an interface to be

executed.

If the user wants the code from a specified superinterface to be executed,

then the name of the superinterface has to be supplied as an argument to the

m ulti-super. In this case, the scripting process applied to the interfaces and

classes involved recognizes the special marker (from the number-of-arguments

operand of in v o k e in te r f ace) and replaces the static receiver of the method

with the specified interface name.

We have slightly modified the .JVM code th a t executes the in v o k e in te r f ace

bytecode in order to differentiate between the two cases when this bytecode

is generated: the traditional case (real in v o k e in te r f aces) and this special

case (the multi-inheritance super call). In fact, we have modified the .qu ick

counterpart of the in v o k e in te rfa c e , i.e., in v o k e in te r f ace .q u ick . In the

case the flag set in the operand is on, when an in v o k e in te r f a ce .q u ick byte­

code is executed, our execution m ethodblock is retrieved, instead of the usual

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

case op cM n v o k e in te r face^q u ick :
imb = constant_pool[GET_INDEX(pc + l)] .m b ;
i n t e r f a c e = im b .c l a s s ;
o f f s e t = i m b . o f f s e t ;

/ / We change th e code so t h a t nargs i s r e t r i e v e d from
/ / the r e s o lv e d i n t e r f a c e methodblock imb i n s t e a d of
/ / from the na rgs bytecode (p c [3]) .
/ / a rg s_ s ize = p c [3] ; / / REMOVED
args_size = im b.args_size ; / / ADDED
optop -= a rgS-S ize;

/ / We use t h e t h i r d operand (nargs) as a marker f o r the
/ / m u l t i - s u p e r case ,
if (pc[3] = = 255) / / ADDED

m b = in te r face .M T [o f f se t] ; / / ADDED
g o to c a l l m e th o d ; / / ADDED

end if / / ADDED

end case

Figure 5.3: The modifications made at the in v o k e in te rfa ce _ q u ic k bytecode
execution.

methodblock. Details of our im plem entation are illustrated in Figure 5.3. This

does not affect the non-marked in v o k e in te r f ace executions, because if the

flag is not set, then the next tim e an in v o k e in te r f ace is encountered, the

usual (non-modified) execution process occurs and the proper m ethodblock is

executed. The execution of the traditional in v o k e in te r f ace^quick is more

complicated, since the resolution m ethodblock may be different from the ex­

ecution m ethodblock as described in Chapter 3, Section 3.7.

In our case, it turns out th a t the resolution methodblock is the actual exe­

cution methodblock. The reason for this convenient situation is th a t once we

specify the starting point of the lookup (the interface argument) the interface

method table (IMT) of the specified interface is searched, beginning with its

first entry, which is the interface itself, and continuing w ith all the direct and

indirect superinterfaces until a matching signature for the m ethod is found in

the method table (MT) of some interface. The resolved m ethod is the m ethod

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

th a t should be executed since in a super call the dynamic type of the receiver

is irrelevant.

If no code is found on the superinterface chain, the compiler would have

generated an error. Note th a t it is currently possible to use our scripts to put

code in a method a lp h aO in an interface IA and to declare a lp h aO to be

abstract in a sub-type interface IB. This should be a compile-time error since

it violates substitutability [14]. Because we currently do not have compiler

support for code in interfaces, we catch this error at load-time.

5.4 C oncluding R em arks

In this Chapter, we presented the JVM changes necessary to support our

generalization of the super operation for multiple inheritance. We defined and

implemented a super call mechanism that resembles the one in C + + . We

achieved this by making a change to the execution of the in v o k e in te r f ace

bytecode.

We provided a simple notation for super calls to interfaces, which does not

require compiler support. In Chapter 7, we detail the scripting process used

to work around the standard Java compilers in the presence of multiple code

inheritance. We proposed syntax changes for super calls to interfaces th a t

would simplify coding.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 6

E xperim ental R esu lts

This Chapter provides an overview of experiments and tests conducted during

the process of verifying the implementation of our SUN JVM for JDK 1.2.2

modifications. The goal of our JVM validation is to show th a t our multiple

code inheritance implementation preserves semantics and performance of ex­

isting single inheritance code, w ithout altering Java language syntax or Java

compilers. In addition, we show th a t both our basic multiple code inheritance

and the super call mechanism we implemented execute correctly in multiple

inheritance programs. We also provide some measurements of the software

engineering advantages of using multiple code inheritance.

6.1 E xperim ental P latform

The experiments were executed on an Intel PC, single Pentium III processor

700MHz, with 256 KB L2 cache size and 512 MB RAM. We compiled the Sun

Microsystems .JDK 1.2.2 for the Linux v. 2.2.16-3 operating system with the

GCC compiler v. egcs-2.91.66 with optim ization flags -0 2 (default) in JVM

internal debug mode based on conditional compilation. This JVM version does

not have a j i t compiler. We developed a scripting process using Perl v5.6.0

for Linux.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 C om patib ility and Perform ance

We ran two large single-inheritance Java programs on the unmodified JVM

and on our modified JVM. We wanted to test th a t our modified JVM did not

introduce errors into single-inheritance programs.

The single inheritance test programs were ja v ac and ja s p e r . The ja s p e r

application takes a .c la s s file and turns it into a . j file containing a human

readable version for the binary code of a .c la s s file. In the first experiment

we compiled all of the files in the ja v a . io package. In the second experiment

we applied ja s p e r to all of the .c l a s s files in the j a v a . io package. Both

jav ac and ja s p e r are written in Java, so they require a JVM to run.

In order to check if the results were consistent, we compared w ith the Unix

command d i f f the binary files produced by the javac compiler ran on the

classic JVM against the jav ac compiler ran on our modified JVM. and we

verified they are identical. We also verified th a t the outputs of ja s p e r are

identical when ran on the two .JVMs.

We repeated this experiment for jav ap (Chapter -3, Section 3.1 illustrates

an example of using this tool), a single inheritance application within the

JDK, which generates a description of any .c la s s file th a t is provided as

an argument. We tested the .c la s s file disassembler jav ap on the .c la s s

files generated by jav ac in the j a v a . i o library. Again, the output using our

modified JVM is identical to the output using the classic -JVM.

We also wanted to measure the performance overhead of using our modified

JVM on single inheritance programs.

In all three of these tests, there is no measurable change in the execution

times, the performance is the same within measurement errors. Table 6.1

shows the average times (seconds) obtained with the Unix command tim e,

after 20 runs of ja v ac and ja sp e r . The table shows also the corresponding

standard deviation with both JVM implementations. No times are included

for javap since it only runs on a single .c la s s file and the time is too short

for meaningful comparisons.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

JV M javac ja s p e r
S un JV M
avg

10.25s 11.85s

O u r JV M
avg

10.08s 11.56s

Sun JV M
s td e v

0.02 0.54

O u r JV M
s td e v

0.15 0.05

Table 6.1: Time measurements for jav ac and ja s p e r on ja v a . io library files.

6.3 C orrectness

We then ran programs whose inheritance structures are represented in Figure

4.3, to test the basic implementation of multiple-inheritance. This includes

code in interfaces and inheritance of this code. These situations test all paths

through our modified class loader code shown in Figure 4.1.

We also included tests for the special call-sites th i s .a lp h a O in an inter­

face method code. Also, we included tests for in p u t .a lp h aO call-sites within

an interface with code, where in p u t is declared to be th a t interface. These

call sites would normally be compiled into in v o k e v ir tu a l bytecodes as a re­

sult of applying our scripting process. We tu rn them into in v o k e in te r f ace

bytecodes. In all cases, we obtained the expected results described in more

detail in Chapter 4.

To test our implementation of super calls, we ran programs with all of the

inheritance structures of Figure 5.1 and Figure 5.2. We tested the execution

of the traditional super calls when code is provided in superinterfaces and

the execution of multiple inheritance super calls. The results demonstrate

th a t the semantics of traditional super calls are preserved and th a t multiple

inheritance super calls are correctly dispatched, as compared to the expected

results discussed in Chapter 5.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Source Sink
•p »

InputStream DataOutput OutputStreamDatalnput

DatalnputStream RandomAccessFile DataOutputStream

Figure 6.1: Re-factored hierarchy in ja v a . io library.

/ / j a v a . i o .D a ta ln p u tS t r e a m and java . io .RandomAccessFi le
p u b l i c f i n a l f l o a t r e a d F l o a t O throws lOException {

r e t u r n F l o a t . i n t B i t s T o F l o a t (r e a d l n t ()) ;
__

Figure 6/2: Identical code in the input stream files.

6.4 R e-factoring th e java. io Library

One of the common examples which motivates the use of multiple code inher­

itance is the j a v a . i o library. Identical code appears in several classes within

this library. Figure 6.1 shows the existing hierarchy of classes and interfaces,

along with two new interfaces, Source and Sink, tha t are used to help promote

code to superinterf'aces.

6.4 .1 In p u t S tream C lasses

Classes RandomAccessFile and Data lnputS tream have either identical code

or code th a t requires a simple abstraction in order to be m ade identical. The

goal is to promote the common code into the Data lnpu t interface where it

would be available for instances of both classes. For example, the method

r e a d F l o a t O from Figure 6.2 has the same code in both classes. The method

readByteO from Figure 6.3 needs one abstraction. We accomplish th a t by

replacing references to data by abstract accessor m ethod invocations (e.g.

source() and sink() as discussed below) placed in the interfaces and imple-

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ / ja v a .io .D a ta ln p u tS tre a m and java.io .R andom A ccessF ile
p u b lic f i n a l b y te read B y teO throw s IO Exception {

in t ch = t h i s . in .re a d () ; / / i n t ch = t h i s . r e a d O ;
i f (ch < 0)

throw new EOFExceptionO ;
r e tu r n (b y te) (c h) ;

__

Figure 6.3: Similar code in the input stream files.

/ / j a v a . i o .D ata lnpu t
p u b lic f i n a l b y te read B y teO throw s IO Exception {

i n t ch = t h i s . s o u r c e () .r e a d 0 ;
i f (ch < 0)

throw new EOFExceptionO ;
r e tu r n (b y te) (c h) ;

__

Figure 6.4: Abstraction of similar code in D a ta ln p u t interface.

mented in the classes down the hierarchy. Figure 6.4 shows how we abstract

the code and promote it to the common superinterface D a ta ln p u t.

Let us consider the code in the readB y teO method from D atalnputS team

and RandomAccessFile shown in Figure 6.3. Both m ethods call the method

r e a d O . The only difference between the code in the classes D atalnpu tS tream

and RandomAccessFile (which implement D ata lnpu t) is the receiver of the

re a d O method. To generalize the code for this m ethod so th a t it can be

promoted to the interface D a ta ln p u t, we have to declare a m ethod s o u rc e 0

in the interface D a ta ln p u t which returns the right receiver for the re a d O

m ethod in each case. The implementations of the s o u rc e () m ethod for

classes D atalnpu tS tream and RandomAccessFile are shown in Figure 6.5.

Since the source () m ethod in D atalnpu tS tream returns an instance of class

Inpu tS tream and the s o u rc e () m ethod in RandomAccessFile returns an in­

stance of class RandomAccessFile, we need a smallest common super-type of

InputS tream and RandomAccessFile. Therefore we introduce a new inter­

face Source, as shown in Figure 6.1. In the same manner, we need a s in k Q

m ethod declared in D ataO utput and a Sink interface, as we will see in the

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// class java.io.DatalnputStream

p u b l i c Source s o u r c e () {
r e t u r n t h i s . i n ;

}

/ / c l a s s j a v a . i o . RandomAccessFile

p u b l i c Source s o u r c e () {
r e t u r n t h i s ;

}

Figure 6.5: Implementation of the sou rce 0 method.

/ / package mi
p u b lic in te r f a c e Source {

p u b lic i n t re a d O throw s IO Exception;
}
p u b lic in te r f a c e Sink {

p u b lic v o id w r i t e (in t b) throw s IO Exception;
}___

Figure 6.6: The mi package.

next Section.

We have re-factored the ja v a . io library by moving common code up into

interfaces. To support this process, we have built a package named mi (Figure

6.6) th a t is imported in every class or interface th a t implements or extends our

two new interfaces: Source and Sink. The Source interface has one abstract

method, re ad O and S ink interface has one abstract method, w r ite (in t) as

illustrated in Figure 6.6. These two interfaces represent the least common

superinterfa.ee of the types returned by the s o u rc e () and s in k () methods.

InputS tream and RandomAccessFile both implement the new interface

Source, and at the same time O utputStream and RandomAccessFile both

implement the new interface Sink.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ / j a v a . i o . DataOutputStream and java . io .RandomAccessFi le
p u b l ic f i n a l void w r i t e F l o a t (f l o a t v) throws IOException {

w r i t e I n t (F l o a t . f l o a t T o I n t B i t s (v)) ;
} __

Figure 6.7: Identical code in output stream classes.

/ / j av a . io .D a taO u tp u tS t r eam
p u b l i c f i n a l void w r i t e l n t (i n t v) throws IOException {

OutputStream out = t h i s . o u t ;
ou t . w r i t e ((v » > 24) & OxFF) ;
o u t . w r i t e ((v >>> 16) & OxFF);
o u t . w r i t e ((v >>> 8) & OxFF);
o u t . w r i t e ((v > » 0) & OxFF);
incCount(4) ;

___}__

Figure 6.8: M ethod w r i t e l n t () in DataOutputStream.

6.4 .2 O u tp u t S tream C lasses

Classes RandomAccessFile and DataOutputStream have some identical m eth­

ods (for example, m ethod w r i t e F l o a t 0 in Figure 6.7).

In addition, there are several situations where the code in DataOutputStream

can be made identical to the code in RandomAccessFile (using an abstrac­

tion), except for some extra lines of code following the identical part. We can

promote all such code to the common superinterface and make a super call to

it from the type which contains the extra lines of code.

For example, Figure 6.8 and Figure 6.9 show the method w r ite ln t () from

classes DataOutputStream and RandomAccessFile respectively. Figure 6.10

shows the common abstracted m ethod th a t has been promoted to interface

DataOutput. There is no method for w r ite ln t () in RandomAccessFile. How­

ever, Figure 6.11 shows the m ethod th a t remains in DataOutputStream to

make the super call and perform the extra action. The super (DataOutput) is

not standard .Java. It is the super call to a superinterface, discussed through­

out this dissertation. In fact, only the m ethods from DataOutputStream

have to provide both an abstraction and a super call. The methods from

RandomAccessFile only need to be abstracted. Therefore, they are completely

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ / java.io .RandomAccessFi le
p u b l ic f i n a l void w r i t e l n t (i n t v) throws IOException {

t h i s . w r i t e ((v >>> 24) & OxFF);
t h i s . w r i t e ((v » > 16) & OxFF);
t h i s . w r i t e ((v > » 8) & OxFF);
t h i s . w r i t e ((v » > 0) & OxFF);

}

Figure 6.9: Method w r i t e l n t O in RandomAccessFile.

/ / j a v a . io .D a ta O u tp u t
p u b l ic f i n a l void w r i t e l n t (i n t v) throws IOException {

Sink out = t h i s . s i n k O ;
o u t . w r i t e ((v » > 24) & OxFF);
o u t . w r i t e ((v » > 16) & OxFF);
o u t . w r i t e ((v » > 8) & OxFF);
o u t . w r i t e ((v » > 0) & OxFF);

}

Figure 6.10: Code abstracted in DataOutput interface.

promoted to DataOutput.

We ran test programs th a t used the re-designed ja v a . io library partially

shown in Figure 6.1. In Table 6.2 and Table 6.3 we show how multiple code

inheritance reduces the amount of identical and similar code to simplify pro­

gram construction and maintenance. Table 6.2 shows the num ber of methods

tha t could be promoted in these stream classes of the ja v a . io library, if Java

supported multiple code inheritance. Table 6.3 shows the number of lines of

executable code moved to the superinterfaces using the same multiple code

inheritance assumption. We counted only executable lines and declarations,

not comments or m ethod signatures.

/ / j ava . io .D a taO u tp u tS t ream
p u b l ic f i n a l void w r i t e l n t (i n t v) throws IOException {

s u p e r (D a t a O u t p u t) . w r i t e l n t (v) ; / / Proposed syn tax .
in cCoun t(4) ;

Figure 6.11: Re-factored code in D ataO utputS tream with both abstraction
and super.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

Class Identical
methods

Abstract Abstract
and Super

Total
pro­
moted

Method
De­
crease

DatalnputStream 4/19 8/19 0/19 12/19 63%
DataOutputStream 2/17 0/17 6*/IT 2+6717 12%
RandomAccessFile 6/45 "8/45 6/45 20/45 44%

Table 6,2: Method promotion in the Java stream classes using multiple code
inheritance.

Class Initial
Lines

Added Lines
Abstract
and Super

Net Lines
Abstract
and Super

Line
De­
crease

DatalnputStream 127 1 84 34%
DataOutputStream 83 r~7 66 20%
RandomAccessFile 154 2 97 37%

Table 6.3: Lines of code promotion in the Java stream using multiple code
inheritance.

More im portant than the size of the reductions is the reduced cost of un­

derstanding and m aintaining the abstracted code. Even though most of the

m ethod bodies of six methods move up from DataOutputStream to DataOutput,

small m ethods remain th a t make super calls to these promoted methods. This

is the reason th a t the method decrease is smaller for DataOutputStream than

its code decrease. Reducing the number of lines of code reduces the main-

tainance cost for this code and enhances readability for users of this code.

These re-factored library classes exercise all of the multiple code inheritance

implementation changes th a t we made. The test programs ran without error

and with negligible tim e penalties for multiple-cocle inheritance.

Our test program (which uses the re-factored types) creates an instance of

D ataO utputS tream which is sent w r ite messages (w riteD ouble () , w r i te ln t 0 .

w riteC h arO , and w rite C h a rs ()) in order to create an output text file and

write some values in it. Then a D atalnpu tS tream object is created which uses

the same file to read information for it (readD oubleO , r e a d ln tO , readC harO ,

and read L in eQ). Although D atalnpu tS tream does not override any of the

m ethods sent to a D atalnpu tS tream object (because these m ethods have been

81

with permission of the copyright owner. Further reproduction prohibited without permission.

promoted to D a ta lnpu t), the program generates the same results as the un­

modified ja v a . io library.

6.5 C oncluding R em arks

In this Chapter, we described several experiments we conducted to validate

our JVM changes, targeting both single and multiple inheritance programs.

The results of the tests and experiments show th a t our multiple code inheri­

tance implementation preserves semantics and performance of existing single

inheritance code, w ithout altering Java language syntax or .Java compilers.

The dispatch scenarios illustrated in Chapter 4 were implemented and ran

correctly.

In addition, we showed th a t both our basic multiple code inheritance and

the super call mechanism th a t we implemented execute correctly in multiple

inheritance programs. We also described how all the dispatch scenarios il­

lustrated in Chapter 5 were implemented and ran w ithout error, generating

correct results.

Finally, we provided some measurements of the software engineering advan­

tages of using multiple code inheritance. In order to test multiple inheritance

programs, we used the re-factored ja v a . io library, with code in interfaces

and super calls to interface code. By using multiple code inheritance, a con­

siderable amount of executable code was promoted to common super-types by

being removed from the base type or replaced with only a super call.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 7

Syntax Support for C om pilation

The ability to support multiple-inheritance of code introduces two specific

challenges to the compilation process. First, as discussed earlier, current Java

compilers do not support executable code inside interfaces. Second, a mecha­

nism is needed to handle generalized super calls. Future work will be to modify

the compiler to support both code in interfaces and the super call mechanism.

7.1 T he Scrip ting P rocess

We have developed a translation process tha t uses an unmodified -Java com­

piler and does not affect the existent language syntax. Our technique is based

on source-to-source and class-file-to-class-file transform ations using custom

scripts, publicly available Java tools, and syntactic conventions in the user’s

Java code. All of our scripts have the prefix ”MI_” (multiple-inheritance) in

their names. Although there are several steps in the compilation process, the

process is autom ated and it is summarized in a flow chart in Figure 7.3.

At the programmer level, the process is the following:

1. The programmer includes code in the interface, but the code is within

comments with a special label MI_C0DE.

2. Our scripts transform the .Jav a file for the interface into a .c la s s file

that contains the code. We make use of the following tools: ja s p e r [16]

and jasm in [15].

83

with permission of the copyright owner. Further reproduction prohibited without permission.

interface Datalnput {
p u b l i c f l o a t r e a d F l o a t ()

t h r o w s I O E x c e p t i o n ;
/ * M I _ C O D E

r e t u r n
Float.intBitsToFloat(readlnt())

M I _ C O D E * /

abstract class DataInput__MI {
p u b l i c f l o a t r e a d F l o a t O

t h r o w s I O E x c e p t i o n

r e t u r n
Float.intBitsToFloat(readlnt());

Figure 7.1: Syntax of interface code in ja v a . io .D a ta ln p u t interface and the
result of applying the script MI J iy b r id ln te r f a c e .

3. M ulti-inheritance super calls are written as two standard Java instruc­

tions and our scripts translate them into the in v o k e in te r f ace bytecodes

described in C hapter -5.

7.2 C ode in Interfaces

Current -Java compilers do not allow code to be included in interfaces so the

programmer delimits the code using special comment delimiters /* MI-CODE

and MI-CODE * /. For example, consider the interface D a ta ln p u t and the class

D atalnpu tS tream from Figure 3.14. The code for re a d F lo a t () in the interface

D atalnpu t is shown in Figure 7.1.

The goal of our compilation process is to create a file D a ta ln p u t. c la s s

with Java bytecodes for the body of the method re a d F lo a t 0 , i.e., an interface

with code. This is accomplished by creating both an interface D a ta ln p u t and

a class with the same name followed by _MI (i.e., multiple inheritance), then

combining the . c la s s files of both the interface and class into a single . c la s s

file th a t is like an interface, except tha t it contains code from the specially

commented methods. Therefore step 2 of our process is divided into sub-steps

th a t use several translation tools and scripts.

• 2.1 The interface source file (D a ta ln p u t. ja v a of Figure 7.1) is compiled

using a standard ja v ac compiler to create a binary file (D a ta ln p u t. c la s s)

for the interface th a t contains no code.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• 2.2 The interface binary file (D a ta ln p u t. c la s s) is disassembled, using

the ja s p e r [7] tool into an interface jasper file (D a ta ln p u t. j) . The

jasper file is a human-readable form of the binary file th a t begins with

a description indicating tha t the file was originally compiled from an

interface.

• 2.3 Script M U ry b rid ln te rfa c e performs a source-to-source translation

from an interface source file (D a ta ln p u t. jav a) into an abstract class

source file (D ata lnpu t 311 .ja v a) in which the special comment delimiters

are removed from the interface’s m ethods (re a d F lo a tO), making the

code visible to a compiler. The class DataInput_MI is made abstract to

avoid irrelevant compiler error messages since some interface methods

may not contain code and a class th a t contains at least one m ethod

without code (abstract method) should be declared abstract.

• 2.4 The abstract class source file (D atalnput_M I. java) is compiled by

jav ac into an abstract class binary file (Datalnput_MI .c la s s) tha t con­

tains code for all of the m ethods in the original interface th a t had m eth­

ods (re a d F lo a tO).

• 2.5 The abstract class binary file (D atalnput_M I. c la s s) is disassembled

into an abstract class jasper file (D ata lnpu t _MI . j) using the ja s p e r

tool.

® 2.6 Script MI-CopyHeader In te r f a c e first replaces all the in v o k ev ir tu a l

bytecodes whose static types have a suffix _MI with in v o k e in te rf ace

bytecodes. Due to the difference in the number of operands required

by in v o k ev ir tu a l (only two operands) and in v o k e in te rf ace (four

operands), another bytecode which represents the number of arguments

taken by the m ethod has to be added at the new in v o k e in te rf ace lo­

cation. This number is actually ignored a t run-time, since the actual

number of arguments is taken from the resolved methodblock. However,

some number must be placed in the operands in order to allow the gener­

ation of the modified . c la s s file with jasmin. The fourth operand is set

8-5

permission of the copyright owner. Further reproduction prohibited without permission.

to zero by default, so we do not have to explicitly provide it. Recall tha t

this step is necessary, because of the situation when we have a call-site

th i s .a lp h a O within an interface method.

In this case, the script removes the _MI suffixes of all references in

the abstract class jasper file (D atalnput_M I. j). Note th a t although

the static type of the receiver a t an in v o k e v ir tu a l call-site is a class

(D a ta ln p u tJ ll) , after removing the _MI suffix and replacing the opcode

with invoke i n t e r f ace , the static type of the receiver a t the same call-

site becomes an interface (D ata lnpu t) as expected for an in v o k e in te r f ace

bytecode. The script combines this modified abstract class jasper file

(D a ta ln p u tJ f l . j) with the interface jasper file (D a ta ln p u t. j) to obtain

a hybrid jasper file th a t has the header (description of the type of the

. c la s s file) of an interface (D a ta ln p u t. j) and the code for the methods

(D ataInput_M I. j) , except for the constructors. The hybrid jasper file

overwrites the interface jasper file (D a ta ln p u t. j) .

• 2.7 The hybrid jasper file (D a ta ln p u t. j) is assembled into a hybrid

binary file (D a ta ln p u t. c la s s) using the jasm in [8] tool. Since jasm in

is not a full-fledged compiler, it does not explicitly check wffiether or not

interfaces have code so no errors are reported.

Although there are seven steps in this process, they are hidden from the pro­

grammer who uses the simple syntax of Figure 7.1. For now, all the steps of

the process are autom ated in a m ak efile , therefore the user only types the

make command. In the future, we would like the user to run a script instead of

a m ak efile in order to trigger the execution of this process. Currently, when

a program th a t has code in interfaces is executed by jav a , the verifier m ust be

turned off (-n o v e r ify flag). We plan to modify our JVM to remove only the

verification code for interfaces so the rest of verification can be m aintained.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ / M u l t i - supe r : t h e lookup s t a r t s from th e a rgument’s IMT,
/ / con t inu ing a long i t s s u p e r i n t e r f a c e h ie r a r c h y .

MI. s u p e r c a l l (" I n t e r f a c e H ") ;
s u p e r . a l p h a () ;

/ / Normal super : th e lookup s t a r t s in th e s u p e r c l a s s MI,
/ / con t inu ing along i t s s u p e r c l a s s chain ,

s u p e r . a l p h a () ;

Figure 7.2: Syntax of s u p e r c a l l for call-sites in ClassM.

7.3 Super Calls

In Chapter 5. we described multi-inheritance super calls and introduced the

syntax super (S t a r t) . a lp h a () , indicating the interface S t a r t as the place

the lookup begins from. Our approach currently uses two standard Java state­

ments to represent this language extension. This allows us to still use the

standard Java compiler, javac , albeit as part of a multi-step, scripted compi­

lation process. To make a multi-inheritance super call, the program m er inserts

a special static m ethod call th a t contains the start interface as an argument,

followed by a standard local m ethod call. For example, Figure 7.2 shows the

current syntax for the super calls shown in Figure 5.2 th a t s ta rt searching in

In te r faceH (multi-inheritance super) and ClassL (normal super), respectiv-

elly. MI is a new library class specifically designed to provide syntax support

for multiple-inheritance. It can be discarded once compiler support is de­

veloped for multiple-inheritance using super (S t a r t) . a lp h a () . The MI class

contains a static method super c a l l th a t takes as an argument the interface

from which the lookup starts. This is a marker which indicates th a t the super

call immediately following it is a special super, i.e., a multi-inheritance super

call.

Since we do not alter the semantics of the existing super calls, we do not

provide an M l.su p e rc a ll statem ent before a normal super to a class. Thus

we do not impose any overhead on existing super calls.

If the j avac compiler;tries to compile the code in Figure 7.2, based on

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the inheritance hierarchy of Figure 5.2. it will produce a compilation error for

both s u p e r . a l p h a () call-sites. In each case, it will search the superclass chain

of ClassM, starting with ClassL and will not find a declaration for a lp h aQ .

To avoid spurious compilation errors, we can replace the super keyword with

t h i s for all the call-sites immediately preceded by an MI. s u p e r c a l l before

compilation. This works since if the call-site s u p e r . alphaC) is turned into

t h i s . a l p h a 0 , the compiler finds the method in the virtual m ethod table

(VMT) of the current class, therefore it does not report an error. However,

an in v o k e v i r t u a l bytecode is generated instead of an invokespec ia l . We

further need to replace this i n v o k e v i r t u a l with an i n v o k e i n t e r f ace, so tha t

the lookup starts in the IM T of the specified interface, and not in the method

table (MT) of the superclass of the class which contains the super call-site.

Here is our multi-step compilation process th a t translates the syntax of

Figure 7.2, to the bytecodes described in Chapter 5. These steps are the sub­

steps of step 3 of the high-level compilation process presented at the beginning

of Chapter 5. In each step, the term current class refers to the class tha t

contains the super call. The example used is the code in Figure 7.2 with the

inheritance hierarchy of Figure 5.2.

• 3.1 Script MI_preprocessClass transforms the current class source file

(ClassM. java) into an abstract class source file (ClassM_MI. java) by

adding the abstract modifier to the class. At the same time, the super

keyword is replaced by the t h i s keyword at all the call-sites immediately

preceded by MI. s u p e r c a l l . The abstract modifier is needed since the

current class may not actually declare the m ethod invoked by the super

call. For example, consider the situation where the code in Figure 7.2, is

in a method called b e t a () and there is no code for a l p h a () in ClassM.

By making the current class (ClassM) abstract, no compiler error will

be generated by the t h i s . a l p h a O call, because a slot for a l p h a () is

autom atically created in the virtual method table (VMT) of ClassM,

representing a M iranda Method (detailed in C hapter 4).

• 3.2 The abstract class source file (ClassMJf l . java) is compiled into an

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

abstract class binary file (ClassMLMI. c la s s) using javac.

• 3.3 The abstract class binary file (ClassM_MI. c la s s) is disassembled into

an abstract class jasper file (ClassM_MI. j) using ja sp e r .

• 3.4 The script MI_abstractToConcrete translates the abstract class

jasper file (C lassM JII. j) into a concrete class jasper file (ClassM. j) .

The abstract class modifier is removed and the in v o k e v ir tu a l instruc­

tion after the MI. s u p e r c a l l (S ta r t) m ethod invocation is changed to

an in v o k e in te r f ace instruction. The argument of the MI. s u p e r c a l l is

copied over the static type of the receiver in the in v o k e in te r f ace imme­

diately following this statem ent. As in all cases where the in v o k e v ir tu a l

bytecode was replaced with an in v o k e in te r f ace requiring two more

operands, the num ber of arguments is also supplied. Since the number

of arguments is ignored at run-tim e, being retrieved from the resolved

methodblock, we can use it as a marker for the multi-super case, set­

ting it to 255. Now the modified . j file can be correctly generated with

jasm in resulting in a valid . c la s s file, since the in v o k e in te r f ace has

been provided w ith the number of operands it requires.

• 3.5 The concrete class jasper file (ClassM . j) is assembled into a concrete

class binary file (C lassM .class) using jasm in.

The same process works on an interface source file th a t contains a super call.

Although there are five steps in this process, they are hidden from the pro­

grammer who uses the simple syntax of Figure 7.2.

7.4 C oncluding R em arks

In this Chapter, we presented our scripting process th a t was developed to cope

with the absence of compiler support for multiple code inheritance.

We solved two specific challenges to the compilation process. First, as

discussed earlier, current Java compilers do not support executable code inside

interfaces. Second, a mechanism is needed to handle generalized super calls.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The proper wav to solve these problems is to modify a compiler- to support

our changes and we plan to complete this task in the future. In the meantime,

we prototyped the compiler, through the scripting process described in this

Chapter. Our scripting process works with any existing java compiler.

Although there are several steps in this scripting process, they are auto­

mated and the user only executes a m ak efile to trigger their execution. In

the future, we would like to have a script with the same functionality as the

current m akefile .

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Datalnput.java

/ 7
lalalnput.classJ DataInput_Ml.java

javac

DatalnputStream.java

MLpreprc cessClass

DatalnputStream_Ml.java

l
javac

'

ia sPer /Datalnput Ml.ciass / / DatalnputStream.MI.class.

jasperjasper

Datalnput.. Ml. j atalnputStream. Ml.jDatalnput.i

Ml abstractloConcreteMl cbovHeaderlmerface

DatalnputStream.jDatalnput.j

jasm injasmin

DatalnputStream.classDatalnput.class Test, java

javac

/Test.class

our java
’

Datalnput code is executed

Figure 7.3: The scripting process.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 8

C onclusions and Future W ork

In this dissertation we presented the design and implementation of an extended

JVM th a t supports multiple code inheritance. We conclude with a summary

of Chapters, future directions and research contributions.

8.1 Sum m ary o f C hapters

We started by motivating the need for multiple code inheritance in .Java, em­

phasizing its advantages: facilitates code re-use, supports separation of inher­

itance concepts, and improves expressiveness and clarity of implementation.

Moreover, multiple code inheritance avoids duplicated code and supports re­

factoring.

We continued with a short review of the current state of multiple inher­

itance, investigating the mechanisms of multiple code inheritance in several

programming languages. We support multiple code inheritance, and not mul­

tiple data inheritance, since the la tte r is not as im portant as code inheritance.

Multiple data inheritance is not a popular feature among programming lan­

guages which support multiple inheritance, being the source of many compli­

cations. Re-using code is a powerful object-oriented feature which decreases

the effort of programmers, who are mainly focused on implementing m ethod

bodies.

We described the current im plem entation of those parts of the JVM in­

volved in m ethod dispatch. The steps of m ethod dispatch, resolution and exe­

cution, are detailed for the in v o k e v ir tu a l and in v o k e in te r f ace bytecodes.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since resolution is slow, bytecode quicking is introduced.

We proposed a mechanism to support multiple code inheritance in Java

through code in special interfaces th a t represent code-types. Then we de­

scribed how we modified the JVM loader to support these special types and

showed how the code was dispatched. We also described our solution to the

dispatch of th i s .a lp h a O call-sites within interface methods.

We presented the changes necessary to support a generalization of the

super operation for multiple inheritance. We defined and implemented a super

call mechanism that resembles the one in C-f-fi. We implemented this by

making a dispatch time change to the virtual machine. We provided a comment

notation for including code in interfaces and a simple notation for super calls

to interfaces th a t does not require compiler support. We proposed syntax

changes for super calls to interfaces th a t would simplify coding and would

require future compiler modification.

We conducted several experiments to validate our approach, targeting both

single and multiple inheritance programs. The dispatch scenarios illustrated

in Chapter 4 and Chapter 5 were implemented and ran correctly for both the

basic multiple code inheritance and our generalized super call implementations.

The multiple inheritance test programs used the re-factored ja v a . i o li­

brary hierarchy, in which interface code and our generalized super calls to

interfaces are correctly dispatched. The measurements of the software engi­

neering advantages of using multiple code inheritance show th a t a considerable

amount of executable code is promoted to common super-types, being either

removed from the base types or replaced with a super call.

Finally, we discussed the scripting process we used in order to insert code

into interfaces and to support super calls to interfaces, since the compiler is

not modified. We proposed syntax changes to simplify this mechanism in the

perspective of a modified compiler which accepts code within interfaces.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.2 Future Work

In this Section, we mention several ideas which, if expanded, can contribute

to the improvement of our JVM.

1. Even though the changes we have completed in order to support super

calls are small and localized, it is more appropriate to provide a new byte­

code for the multiple-inheritance super calls, namely in v o k em u lti-su p e r.

We would like to add this bytecode to our JVM and further evaluate its

performance. Alternately, we could mark the in v o k e in te r f ace byte­

code using code attributes. O ther researchers have successfully used

code attributes to mark bytecodes [27].

2. Currently, in order to compile code in interfaces, we execute a set of

scripts. We plan to change this in the future by modifying a compiler to

support the super (In te rfac e A) syntax in .Java, which would make our

scripting process unnecessary.

3. We also plan to modify our .JVM to support the verification of code

in interfaces, at the same time m aintaining the rest of the verification

stages.

4. We would like to validate the portability of our modifications to a dif­

ferent JVM which supports a JIT compiler.

5. In addition, we look for other opportunities to re-factor type hierarchies

by using our modified JVM, evaluate the decrease in code th a t we could

achieve and measure the performance differences.

8.3 R esearch C ontributions

The research contributions of this dissertation include:

1. The first implementation of multiple code inheritance in Java is provided.

It is based on the novel concept of adding code to a new type of interface,

called a code-type. No changes need to be made to the syntax of Java

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to use multiple code inheritance, so no compiler changes are necessary.

However, syntax changes th a t would simplify coding are proposed for

the future.

2. We show how multiple code inheritance reduces the amount of identical

and similar code (such as in the standard libraries) to simplify program

construction and maintenance. We re-factor the ja v a . io library and

show th a t programs using the classes in this library run correctly.

3. We define and implement a super call mechanism th a t resembles the

one in C + + , in which programmers can specify an inheritance path to

the desired superinterface (code-type) implementation. We introduce

a simple notation for these super calls th a t does not require compiler

support and propose a simple syntax for future compiler support.

Our modifications are small and localized. The changes consist of:

1. The changes to algorithm C o n stru c t IMT executed by the class loader as

shown in Chapter 4.

2. The changes to execution of the in v o k e in te rfa ce _ q u ic k bytecode to

recognize a marked in v o k em u lti-su p e r th a t are shown in Chapter 5.

Our approach facilitates code re-use, reducing the amount of code th a t

the programmer has to write, supports separation of inheritance concepts,

and improves expressiveness and clarity of implementation. Existing Java

compilers, libraries and programs are not affected by our JVM modifications

and single-inheritance programs can achieve performance comparable to the

original JVM. Moreover, execution of multiple inheritance programs is correct,

for both our basic multiple code inheritance implementation and the super call

mechanism.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

B ibliography

[1] Gilad Bracha and W illiam Cook. Mixin-based Inheritance. In Proceedings
of the Conference on Object-Oriented Programming: Systems, Languages,
and Applications (O O P S L A ’90), pages 303-311. Ottawa, Canada, Octo­
ber 1990. ACM Press.

[2] Timothy Budd. A n Introduction to Object-Oriented Programming, Second
Edition. Addison-Wesley, 1997.

[3] Cecil, h ttp ://w w w .cs.w ashington.edu/research/projects/cecil/.

[4] Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd Millstein.
Multi Java: M odular Open Classes and Symmetric Multiple Dispatch for
Java. In Proceedings o f the Conference on Object-Oriented Programming,
Systems, Languages, and Applications (O O P S L A ’OO), volume 35(10),
pages 130-145, Minneapolis, USA, 2000.

[5] Clos. h ttp ://w w w -2 .cs.cm u.edu /groups/a i/h tm l/cltl/c ltl2 .h tm l.

[6] Brad Cox and Andrew J. Novobilski. Object-Oriented Programming: A n
Evolutionary Approach, Second Edition. Addison-Wesley, 1986.

[7] L. Peter Deutsch and Alan Schiffman. Efficient Implementation of the
Smalltalk-80 System. In Principles o f Programming Languages, 1994.

[8] C. Dutchyn, P. Lu, D. Szafron, S. Bromling, and W. Holst. Multi-Dispatch
in the Java Virtual Machine: Design and Implementation. In Proceedings
of 6th Usenix Conference on Object-Oriented Technologies and Systems
(C O O T S ’2001), pages 77-92, San Antonio, USA, .January 2001.

[9] Chris Dutchyn. M ulti-Dispatch in the Java Virtual M achine : Design, Im­
plementation, and Evaluation. M aster’s thesis, D epartm ent of Computing
Science, University of A lberta, 2002.

[10] Dylan, h ttp ://w w w .dylanworld.com/dylan_reference.html.

[11] Eiffel, http://clocs.eiffel.com /.

[12] M. Ellis and B. Stroustrup. The Annotated C+ + Reference Manual.
Addison-Wesley, New Jersey, 1990.

[13] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Lan­
guage Specification, 2nd Edition. Addison-Wesley Publishing Company,
Reading. Massachusetts, 2000.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.washington.edu/research/projects/cecil/
http://www-2.cs.cmu.edu/groups/ai/html/cltl/cltl2.html
http://www.dylanworld.com/dylan_reference.html
http://clocs.eiffel.com/

[14] W. Holst and D. Szafron. A General Framework for Inheritance Man­
agement and Method Dispatch in Object-Oriented Languages. In Pro­
ceedings of the Object-Oriented Programming 11th, European Conference
(ECOOP'97), Lecture Notes in Computing Science 1241, Springer- Verlag,
pages 276 -301, Finland, June 1997.

[15] Jasmin, http://w w w .m rl.nyu.edu/ mever/jvm .

[16] Jasper, h ttp :/ /www.angelfire.com/ 1x4/cus/jasper.

[17] W. R. LaLonde and J. Pugh. Subclassing subtyping is — a. Journal
of Object-Oriented Programming , 3(5):57 62, 1991.

[18] E language, h ttp ://w w w .erigh ts.o rg /e lang /in tro /.

[19] Y. Leontiev, M. T. Ozsu, and D. Szafron. On Separation between Inter­
face, Implementation and Representation in Object DBMSs. In Proceed­
ings of the 26th Technology of Object-Oriented Languages and System s
Conference (T O O L S USA98), pages 155-167. Santa Barbara, USA, Au­
gust 1998.

[20] Yuri Leontiev. Type System fo r an Object-Oriented Database Program­
ming Language. PhD thesis, D epartm ent of Computing Science, Univer­
sity of Alberta, 1999.

[21] Sheng Liang and Gilad Bracha. Dynamic Class Loading in the Java
Virtual Machine. In Proceedings of the 13th A nnua l A C M SLG P LAN
Conference on Object-Oriented Programming Sys tem s. Languages, and
Applications (O O P S L A ’98), S IG P L A N Notices, volume 33, pages 36-44,
Vancouver, Canada, October 1998. ACM Press.

[22] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specifica­
tion, 2nd Edition. Addison-Wesley Publishing Company, Reading, Mas­
sachusetts, 1999.

[23] M. Mohnen. Interfaces with Skeletal Implementations in Java.
In Proceedings of the I f t h European Conference on Object-
Oriented Programming (E C O O P ’OO), Poster Session, Cannes,
France, June 12th - 16th 2000. http://w w w -i2.inform atik.rw th-
aachen.de/ mohnen/PUBLICATIONS/ecoopOOposter.html.

[24] C. Pang, W. Holst, Yuri Leontiev, and D. Szafron. M ulti-M ethod Dis­
patch Using Multiple Row Displacement. In Proceedings of the 13th E u ­
ropean Conference on Object-Oriented Programming (E C O O P ’99), pages
304-328, Lisbon, Portugal, June 1999.

[25] Perl, h ttp ://w w w .perl.com /.

[26] Sun Microsystems Inc. Javajtm] 2 Platform,
http: / /www. sun.com /software/com m unitysource/java2/download.htm l.

[27] Patrice Pominville, Feng Qian, R aja Vallee-Rai, Laurie. Hendren, and
Clark Verbrugge. A Framework for Optimizing Java Using A ttributes.
Lecture Notes in Computer Science, 2027:334, 2001.

[28] Python, h ttp ://w w w .pvthon .org /.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.mrl.nyu.edu/
http://www.angelfire.com/
http://www.erights.org/elang/intro/
http://www-i2.informatik.rwth-
http://www.perl.com/
http://www.pvthon.org/

[29] Sather. http://www.icsi.berkeley.eclu/ sather/.

[30] Yen-Ping Shan, Tom Cargill, Brad Cox. William Cook, Mary Loomis, and
Alan Snyder. Is Multiple Inheritance Essential to OOP? In O O PSLA ’98.
A C M Sigplan Notices, volume 28(10). pages 360-363, October 1993.

[31] B. Stroustrup. The Design and Evolution of C++. Addison-Wesley, 1994.

[32] C. Szvperskv, S. Omohundro, and S. Murer. Engineering a Programming
Language: The Type and Class System of Sather. Technical report TR-
93-064, The International Com puter Science Institute, November 1993.

[33] A. Taivalsaari. On the Notion of Inheritance. A C M Computing Surveys,
28(3):439-479, September 1996.

[34] Bill Venners. Inside the Java Virtual Machine , Second Edition. McGraw-
Hill Osborne Media, 2000.

[35] Peter Wegner. Dimensions of Object-Based Language Design. In Proceed­
ings of the Conference on Object-Oriented Programming. System s , Lan­
guages, and Applications (O O P S L A ’87), pages 168-182, Orlando, USA,
October 1987.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.icsi.berkeley.eclu/

A ppendix A

D issertation H ighlights

This Appendix Section illustrates the most im portant parts of our implemen­

tation of multiple code inheritance in Java.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I

I

f l

§11

| } f) V S

jjr; V * *

I <

i l l

f l l

I f

i t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

