Writing Interactive Stories in the Classroom

Duane Szafron, University of Alberta
Mike Carbonaro, University of Alberta
Maria Cutumisu, University of Alberta
Stephanie Gillis, Holy Trinity High School
Matthew McNaughton, University of Alberta
Curtis Onuczko, University of Alberta
Thomas Roy, University of Alberta
Jonathan Schaeffer, University of Alberta

Abstract

The last five years have seen interactive storywriting technology mature to the point where it has become widely popular and is starting to be recognized as a new communications medium. The two most common examples of interactive stories are computer games and educational training simulations. Non-linear interactive stories involve the reader as an active participant in the story where the player (reader) has a direct influence on the plot of the story. Compared to traditional linear pen-and-paper (or word processor-created) stories, interactive stories come with a new set of challenges, but also provide an interesting set of opportunities. Currently, students are not exposed to the challenges or opportunities of writing interactive stories for two reasons. First, interactive storywriting technology is too complex to be used in the classroom. Second, critical parts of this new technology require the writer to construct sophisticated computer programs to tell the story. In this paper, we describe how we have solved these two problems by developing a student-friendly environment (ScriptEase) that enables non-programmers to write interactive stories using a simple set of tools. Specifically we describe how High School students used our tools to create Computer Role Playing Game (CRPG) stories that can be played (read) as adventures in the popular Neverwinter Nights computer game.

1. Introduction

An interactive story consists of several non-traditional elements including sound, graphical characters, and an interactive storyline in
which the "reader" participates as a player character (PC) in the story. This participation allows the "reader" to make choices that determine the story line. The last five years have seen interactive storywriting technology mature to the point where it has become widely popular. Unfortunately this technology requires the writer to also write sophisticated computer programs to control the interactions between the game components. For example, when the "player" steps on a particular stone in a corridor, scripting code must be written to recognize that the stone has been stepped on and to trigger an appropriate trap. Writing scripts to control this level of detail in a story is very burdensome to the writer. The goal of our research is to create an environment that enables non-programmers to write interactive stories without providing scripts to control this level of detail. To reduce the scale of the problem to a manageable level, we decided to focus on computer role playing games (CRPGs). In our project, interactive stories are "written" by creating game adventures for the Neverwinter Nights (NWN) computer game system. NWN is a multi-award winning (86 awards) CRPG from BioWare Corp. Stories are "read" by playing them as NWN adventures.

Although game play can be used as an educational experience, we are more interested in game design than game play (McFarlane et al. 2002). This is a relatively new endeavor (Robertson & Good, 2005). The focus of the research described in this paper is to use interactive storywriting as a new vehicle for creative expression. In a traditional story, the world is created with words, using descriptive prose, and the story is told with words, through narrative prose. In an interactive story, the world is "painted" with a computer-aided design tool and the story is told dynamically as the PC navigates through the world. BioWare provides the Aurora toolset along with the NWN game system, so that amateur writers (including students) can paint the background for their stories. There are three potential benefits of interactive storywriting. First, students can improve the skills necessary to effectively use an increasingly important communications medium. Second, they will learn important logical thinking skills, similar to computer programming, but in an environment that does not have the stigma of computer programming. Third, this new communications medium provides an alternative mechanism for creative expression that may allow students to improve their expressive skills.

The structure of this paper mirrors the student experience. Student writers begin by completing a tutorial that teaches them how to play (read) a story using NWN. Students then complete a second tutorial that teaches them how to use the Aurora Toolset. They use it to
create the setting, props, non-player characters (NPCs) and dialogs for their story. The paper then describes one of the main stumbling blocks that can prevent a writer from creating an interactive story - the necessity of writing computer program scripts to control the interactions in the story. We describe our novel solution to the problem, which we call generative patterns, and our tool, ScriptEase (2005), that allows writers to generate scripts from patterns without programming. Finally, we describe feedback we received from the teacher after piloting our storywriting software in a class of grade 10 English students.

2. Game Playing and Creation Using NWN Tools
The NWN game contains an engine that renders the graphical objects and characters, manages sound and motion, and dispatches game events to scripts. This game engine is designed to play stories composed of individual modules constructed by game designers (storywriters). A module contains areas (map sections), NPCs and other game objects (props) that can be scripted to respond to game events using the NWScript language.

The game comes with a story that contains seven modules. Recently, expansion packs for two more stories have been released. However, NWN is a community-based game. Thousands of people write stories and post them on the web for others to enjoy. For example, Neverwinter Vault hosts more than 4,100 adventures. The most popular community adventure has been downloaded more than 250,000 times and the tenth most popular has been downloaded more than 87,000 times, as of March 2005.

For the students to play the Neverwinter Nights game and to develop the backgrounds for their own stories, we developed two tutorials based on the existing BioWare tools. The tutorials were developed by a high school teacher and tested by high school students before our pilot project was conducted.

2.1 Playing the Game
The first tutorial helps the student to navigate a PC through the prolog of the NWN story that comes with the game, learning the controls and making choices about where the PC should go, what the PC should do and what the PC should say. The Video clip shows the...
actions of a PC at the start of the Prelude. It shows the PC interacting with two NPCs, Pavel and his brother Bim. When the PC meets Bim, the user is offered a short "in-game" tutorial on adventuring that describes many of the controls that the player can use to manipulate the PC. The video clip shows only the first 30 seconds of play for the Prelude, with some of the conversation with Pavel omitted for brevity. In our experience it takes high school students from 2 to 3 hours to play through the Prelude and gain a basic understanding of the game.

2.2 Creating the Story World
The second tutorial helps students to create the "areas" that form the backdrop of their stories and to populate each area with a collection of props and NPCs that the PC can interact with as the protagonist of the story. In the tutorial, there are two areas, the outside of a castle (Exterior) and the interior (Castle). The castle is divided into rooms and the students use the Aurora toolset to populate the rooms with appropriate props and NPCs. The video clip shows how a statue is created and placed in a room of the castle. First an existing statue is selected to use as a model. Then a copy of the statue is created so that it can be edited. The "Usable" checkbox is selected so that the PC can interact with the statue (when the user clicks on it). The "Has Inventory" checkbox is selected so that the statue can have items hidden in it. The designer drags a book called the "Origins of Magic" from the "Custom Items" palette to the "Contents" palette to place a copy of the book in the statue. Later in this paper, we will see how the story is "scripted" so that when the PC takes this book out of the statue, a locked door is unlocked and opened. The Aurora toolset tutorial shows how to create many other kinds of placeables (props), such as tables, chairs and chests, and how to place them in the virtual world. It also shows how to create and paint doors and triggers. A trigger is an area on the floor that is activated when a character walks on it. There are several kinds of triggers including traps and area transitions, which transport a character from one area of the virtual world to another. The tutorial also shows how to create items, such as books, clothing and jewelry that can be carried and used by creatures. Finally, the tutorial also shows how to create non-player characters (NPCs) and how to write dialogs that the PC can have with various NPCs.
3. Problems with Manual Scripting

In addition to world and object layout, the Aurora toolset can also be used to attach scripts to objects. An object is selected and a script is entered using a C-like programming language called NWScript. Essentially, an event handler can be scripted for any of the events to which the object can respond. For example, when a specific item (such as the "Origins of Magic" book) in a specific container (such as a statue) is disturbed (removed), the writer may want a nearby door to be unlocked and opened. However, since most amateur and student writers are not programmers, they find scripting very difficult. Amateur writers often try to copy-and-paste scripts from existing stories without understanding the code. For example, Figure 1 shows some hand-written scripting code that closes a door when a specific item (a sword) is taken out of a container (a chest).

Figure 1. Scripting code that closes a door when a sword is removed from a chest.
To re-use this scripting code for the statue and book, it could be copied from the OnDisturbed event of the chest and pasted into the OnDisturbed event of the statue. However, several changes would need to be made to the code to "adapt" it properly, as shown in Figure 2.

Figure 2. Modified scripting code that unlocks a door when a book is removed from a statue.
First, the tags door1 and UA_SWORD were changed to door2 and NW_IT_BOOK017. Second, the code to close the door was changed to code that opens the door, by replacing the line

```
AssignCommand(myDoor, ActionCloseDoor(myDoor))
```

by the line

```
AssignCommand(myDoor, ActionOpenDoor(myDoor)).
```

However, the writer must also figure out how to unlock the door, before opening it and there is no obvious way to do it. Perhaps the command is

```
AssignCommand(myDoor, ActionUnlockDoor(myDoor)).
```

In fact, this will not work and the correct command is:

```
SetLocked(myDoor, FALSE).
```

Most non-programmers would have difficulty figuring out what to change and how to change it. There are web forums on the BioWare site, where writers ask other amateur writers who know how to program to write individual scripts for them. However, these forums are not a good substitute for writers being able to generate the scripting code for
themselves.

A commercial or amateur (non-student) CRPG story is comparable in scope to a novel and can contain thousands of NPCs and other game objects that must be scripted. An interesting short story, written by a high school student can contain anywhere from five to one hundred scripted NPCs and other scripted game objects. Although there is a difference in scale between a novel-sized story and a short story, the four manual scripting problems encountered by the storyteller are the same:

1. Without scripting, objects have behaviors that are too simplistic to be interesting.
2. Most writers are unable to do the scripting themselves, since they do not know how to program.
3. The scripted NPCs and objects in the story are difficult to organize and track as they change during the storywriting process.
4. Testing manually-written scripts is difficult, since the stories are non-linear, depending on user choices for the PC. This makes it hard to test all possible story paths.

4. Patterns - A Solution to Writing Scripts

Our solution to the problems of scripting in interactive storywriting is embodied in a new tool called ScriptEase. ScriptEase uses patterns that generate scripting code automatically. A storywriting pattern is a reusable device that encapsulates a common storywriting theme or idiom. An example of a large-scale theme is a hero who must perform several quests before reaching the climax of the story. This theme is as old as the labors of Hercules, and we would classify such themes as plot patterns. If a writer wants to incorporate this theme into an interactive story, scripts must be written to prevent the PC from moving to the climax without performing the required quests. A plot pattern that represents this theme would generate the scripting code automatically. On a smaller scale, the idiom of a door that is unlocked when the protagonist disturbs an item in a container is common in the fantasy genre. We represent this idiom using an encounter pattern. In ScriptEase, this particular encounter pattern is referred to as Container disturb – (specific item) toggle door. Rather
than forcing the writer to write a script every time this idiom is used, in ScriptEase, the writer selects the pattern corresponding to this idiom and the scripting code is generated from the pattern.

Our patterns are inspired by software design patterns, but they are different. Design patterns are recurring patterns of software, but our patterns are really storywriting patterns. Each pattern is general enough to be used in many different situations within a story and indeed across many stories. However, this generality comes with a price. A pattern must be adapted for an individual story whenever it is used and adaptation requires some effort.

ScriptEase provides more than fifty encounter patterns that can be adapted for use in thousands of different stories. In fact, there are several kinds of adaptation, each requiring different levels of abstraction skill and, therefore, different levels of cognitive ability. The simplest kind of adaptation only requires the writer to select the options required by a pattern; for example, selecting the container, the item and the door objects for the pattern described previously. The kinds of adaptation in increasing order of difficulty are:

1. Option setting.
2. Choosing whether a pattern applies only once or many times.
3. Removing scenarios (situations in the tutorial), actions and conditions from patterns.
4. Adding actions to patterns.
5. Adding definitions to patterns.
6. Adding conditions to patterns.
7. Adding scenarios to patterns.

In the pilot, the students used a ScriptEase tutorial that describes some of the patterns and shows how to adapt them. The Video clip shows how the ScriptEase tool is used to select encounter patterns, adapt them for a story and generate the scripting code from them. In the first part of the video, the tutorial story module that was created using the Aurora toolset is opened and an instance of the Container disturb -- (specific item) toggle door pattern is created. This instance is adapted by selecting game objects that correspond to the container (the statue), the specific item (the book) and the door (the door) to be unlocked and opened. In the second part of the video, more complex adaptations are illustrated (cognitive levels 2, 3, and 4). The next Video clip shows what happens in the story when a PC
encounters a Container open/dead pattern that was one of the most popular patterns used by the students in their stories. In this case, the pattern has been adapted (conceptual level 4) to create a visual effect and spawn a creature when the chest was opened. The creature is an animated suit of armor. The creature would also be spawned if the PC destroyed the container instead of opening it. The container contains a brass key that is needed by the PC to develop the plot of the story.

5. The Classroom Experience
A grade 10 English class used NWN, the Aurora Toolset and ScriptEase to write interactive short stories as part of their short-story curriculum. The 20 students had just finished learning how to write traditional short stories in their English class and the teacher wanted to provide them with a non-traditional learning activity that was fun. The students participated in a two-day workshop at the University of Alberta, where they became familiar with NWN, the Aurora Toolset and ScriptEase by working through the three tutorials described in this paper and by starting their own interactive story. They worked under the supervision of their teacher and some teaching assistants who were familiar with the tools and tutorials. The students then returned to their high school to finish their short stories during three class periods. The interactive stories were submitted and graded by their English teacher.

Our goals for this pilot project were:

1. To determine if high-school students could create interactive stories using ScriptEase.
2. To determine any weaknesses in the Aurora toolset, ScriptEase and the tutorial material so that we could improve them.
3. Observe students' attitudes and behaviors, when using this new communications medium to aid in the formulation of hypotheses concerning the differences in attitudes and behaviors between writing traditional and interactive stories.

The feedback we received from the pilot indicates that students have different attitudes towards interactive storywriting and traditional storywriting and that they exhibit different behaviors when performing the two activities. This feedback has resulted in several hypotheses.
about the differences. In this section, we describe the feedback we obtained along with some preliminary hypotheses we have developed to explain the feedback.

There are many ways to describe, analyze and interpret the feedback we received. Our approach is to begin with an observation from the teacher involved in the project. She stated:

"Never underestimate the importance of fun in learning, since activities where students want to do the work make learning easier and allow students to learn more quickly."

However, fun is such a generic term that finding out whether the students had more fun with the interactive story than the traditional story would not be helpful unless we can quantify the consequences of the "extra" fun. Therefore, to interpret the feedback we asked the teacher and ourselves four informal questions:

1. Did students have more fun writing interactive stories than traditional stories?
2. If so, what are the possible differences in the two storywriting modes that accounted for this fun?
3. How did these differences materialize during the writing process?
4. What potential benefits resulted from these differences?

We were not surprised to discover that all of the students found that at least parts of interactive storywriting were fun. Although only about a third of the students in the class were interested in writing a second traditional short story, about two thirds of the students wanted to write another interactive story (even if they had to do it at home, outside of school time).

We discovered two differences in the two storywriting modes. One difference is related to getting started and the other difference is related to staying on task. In addition we gathered some other general feedback.

5.1 Getting Started
It is often difficult for students to start writing a short story and many students complain: "I don't know where to start". None of the students
had problems starting their interactive story. Why? It is easy to say that students did not have trouble getting started since starting an interactive story is “fun”. However, to really understand why it was easy to start their story, we must look at the differences between the process of starting to write a traditional story and starting to write an interactive story. In other words, we must explain why starting the interactive story was more fun than starting a traditional story.

To start a traditional story, it is necessary to set the scene of the story by writing a considerable amount of descriptive prose, before getting to the "good" part of telling the story. With an interactive story, the scene can be quickly "painted" using the Aurora Toolset to add scene components. We hypothesize three main consequences of this difference that we believe make it easier to start an interactive story (and therefore make it more fun).

1. Writing descriptive text can require more technical skill than selecting and placing scene objects.
2. Feedback is slow and often difficult to evaluate in the traditional approach, since it can take a long time to write the descriptive text and when the author reads what he/she has written, it is often hard to know if the text adequately describes the scene, or whether the author’s mental vision is compensating for what is missing from the text. Often the text must be read several times to discover what is missing or is inconsistent with the mental vision. With an interactive story, the author can set the scene quickly and view it immediately. Authors can turn their imaginations into tangible stories that come alive both visually and aurally. This results both in a higher chance of alignment with the desired goal and less doubt as to whether the scene can stand alone without relying on information from the vision known only to the author. This clarity increases the likelihood that the author is willing to make incremental changes to the scene to align it more closely with a mental image and reduces the urge to completely scrap what was created and start over. From a Computing Science perspective, this is visual debugging at its finest.
3. Early positive feedback from correctly setting part of the scene increases self-confidence in technical skills. Steady obvious incremental improvement of the story results in an increase in
motivation since the author is always getting closer to the
goal, rather than making progress at an irregular rate due to
false starts.

Time saved during scene set-up provides more time to write the
classroom story. It is possible that writing a play instead of a story could have the same effect, but a
playwright must write a textual description of the stage to
replace the description in a story. Setting a scene is just easier to do visually than textually. This is not surprising since an early age
children use toys to set the stage for stories that they want to play.
The toys provide the visual background that replaces the tedious
scene description necessary in a written story and children quickly
focus on the dialog between the toys - the story itself.

5.2 Staying On Task
Many high school students have difficulty completing tasks that
require many hours of work - and a traditional short story is no
exception. Some deviations from task to other learning activities may
provide alternative benefits, but ultimately students must complete a
short story to gain full benefit from the exercise. Few students had
difficulty staying on task while writing their interactive short story and
the deviations from task were usually viewed as beneficial to the
outcome of completing the story. Most students were so engaged
that they wanted to work during their lunch breaks during the
workshop. After returning to the school many asked to spend more
time working on their stories outside of class time and a lab at the
school was made available to accommodate their wishes.

Why are students more willing to stay on task when writing an
interactive story, or equivalently why is interactive storywriting more
engaging, during the middle or end of the storywriting process?
Although quick visual feedback is useful in getting started quickly,
students can be distracted from any task that is repetitive or does not
evolve in difficulty or stimulation level over time. One might think that,
for some students, the fact that interactive storywriting is easier at the
start could actually increase the boredom factor and make them tire
of it more quickly. Based on our experience, we postulate that it is the
"interactive" nature of interactive storywriting that most contributes to
staying on task. We identified two kinds of interaction that we feel are
important. There is interaction between the writer and the tools
(already discussed in the Getting Started section) and there is
interaction between the writer and the other students.

Interpersonal collaboration was not encouraged or discouraged during the interactive storywriting process. In fact, we did not even think about interpersonal collaboration in designing the activity. What we discovered was that students began collaborating on their stories from the beginning of the tutorial exercises. One student would spontaneously say to the next student, "look what I tried" and the other student would immediately get involved by adapting the idea to his/her own story or by suggesting related things to try. Groups of students began gathering at one workstation or another observing particular students' activities. This encouraged all the students to produce better stories, knowing that their work was being seen/appreciated by their fellow students. Constructive collaboration within a community of learners provided students with an opportunity to improve their critiquing skills. We believe that it also resulted in better understanding of concepts since students would often try to explain things (that they had figured out by themselves or that were clarified by the teacher) to their peers. The teacher contrasted this high level of interpersonal collaboration in interactive storywriting with the collaboration in traditional learning activities:

"ScriptEase created interaction among my students which was not typical of an individual activity such as storywriting. This way of storywriting encouraged collaboration before, during and after their stories were complete."

5.3 Other Feedback
Several other differences were noted in student behavior, that may or may not be related to the fun factor, and we have not yet constructed any model to explain them.

1. The teacher observed that some students with lower academic achievements embraced interactive storywriting - perhaps because they found an expression mechanism that was easier or more suitable for them. Ghostwriter (Robertson 2001) provides other examples of the utility of an alternative creative outlet. Gardner's work (1993) on different modes of intelligence and their connection to expressive modes (music, dance, etc.) seems to apply here, since our interactive stories contain visual and sound aspects.
2. Sometimes the form of creative expression was unexpected. For example, a child who had never used humor in any previously written stories inserted a running gag into the interactive story that lampooned the advertisements of a national chain store. This phenomena of unexpected creativity modes was observed for younger children using games such as TellTale (Ananny 2002).

3. Many students displayed a higher than normal level of curiosity - in addition to completion of the tutorial material, students asked questions about other game elements, such as character, area and item creation. Many of the students tried these features, even though there was no explicit documentation about them and many succeeded.

4. Several of the students built characters for their interactive stories that were based on characters that they read about in books. Students who are eager to build a rich and interesting story module may be motivated to search for character ideas by reading more.

There is a current trend in education to integrate technology throughout the curriculum. However, it is a challenge in some disciplines. For English classes, besides the standard approaches of using word processors and slide presentations, there are few opportunities for adding relevant and innovative technology into the curriculum. Interactive storywriting provides a natural opportunity for technology integration.

The use of computer technology to promote critical thinking during problem-solving activities can be an important part of a student's educational experience (Jonassen, 2000). Critical thinking involves being able to think reflectively and effectively and to analytically assess evidence (Santrock, 2001). Various aspects of critical thinking are often associated with the higher-order instructional objectives of application, analysis, synthesis and evaluation as described in Bloom's et al. (1956) taxonomy. Such instructional objectives are well suited to the context of interactive storywriting. Application objectives require having students apply existing knowledge to new situations they encountered during problem-solving. For example, students can apply computer game playing experience to their interactive storywriting exercise. Analysis objectives involve breaking complex information down into constituent parts, such as identifying the main elements of the story plot and specific character interrelationships.
Synthesis objectives require the construction of something new by integrating several pieces of information, an integral part of any story-writing exercise. Finally, evaluation objectives are concerned with placing a value judgment on the data by comparing it with a given standard; e.g., comparing the traditional story writing experience with that of writing an interactive story.

Finally, it may take some training for students and teachers to take full advantage of some aspects of interactive stories. Most students wrote sequential stories, even though they were writing an interactive story that would not have to be "read" in the same sequential order by all readers. For example, we were told of a story that contained a plot that involved the completion of three quests. In a traditional story, the author would have described how the protagonist completed each of the quests in a particular order. In an interactive medium it would have been possible to write the story so that the three quests could have been completed in any order. However, the student storyteller required them to be in a linear order - this was probably due to experience with traditional linear stories. Students and teachers are so accustomed to traditional modes of expression that "thinking outside the traditional linear storywriting box" will take time and explicit effort.

6. Conclusion
We felt that our pilot storywriting exercise was successful. We have learned that high school students are able to create interactive stories using ScriptEase. We evaluated the effectiveness of our tools and the tutorial material. In general, the students embraced our tools and tutorials, although we did accumulate a series of ideas for minor changes to both the tools and the tutorials. The teacher noted a distinct positive change in attitude and behavior during the interactive storywriting exercise. To test some of the hypotheses generated from our pilot and described in this paper, we have planned a series of empirical studies, both with high school students and university students. We are also interested in determining the generality of our findings. For example, is interactive storywriting more engaging over time or does the novelty factor play a large role? Is interactive storywriting more engaging for all kinds of stories, for all learners of a particular age or for people of all ages?
7. Acknowledgements
This research was supported by grants from the (Canadian) Institute for Robotics and Intelligent Systems (IRIS), the Natural Sciences and Engineering Research Council of Canada (NSERC), Alberta's Informatics Circle of Research Excellence (iCORE), BioWare Corp. and Electronic Arts (Canada) Ltd. We thank former ScriptEase team members James Redford (M.Sc.), Dominique Parker (M.Sc.) and Sabrina Kratchmer (WISEST summer student) for their efforts on ScriptEase. We also thank the anonymous referees for suggestions that improved the manuscript and we especially thank our many friends at BioWare for their feedback, support and encouragement, with special thanks to Mark Brockington. Finally, we thank the students from the Grade 10 English class that participated in the pilot, not only for their great feedback, but also for sharing their unbridled enthusiasm for interactive storywriting with our team.

8. References

http://www.cs.ualberta.ca/~script/scriptease.html
[Retrieved April 2005].

******** End of Document ********

IMEJ multimedia team member assigned to this paper Yue-Ling Wong