
Bin Zhao, Su-Yin Tham, Jia Lu, Mui Hoon Lai, Lionel K.H. Lee, Shabbir M Moochhala
Defence Medical and Environmental Research Institute, DSO National Laboratories, (DMERI @ DSO), Singapore, Republic of Singapore

Received 03 November 2003, Revised 05 May 2004, Accepted 11 May 2004, Published 30 June 2004

Abstract Purpose: To develop a high-performance liquid chromatography (HPLC) method with photodiode-array ultraviolet detection for the simultaneous determination of vitamin C, vitamin E and β-carotene. Methods: Following liquid-phase extraction from the human plasma samples, these three vitamins were successfully separated on the LiChrospher 100 RP-18 column (125 x 4 mm I.D.; particle size, 5 µm) at a flow-rate of 1.2 ml/min, with a mobile phase of methanol-acetonitrile-tetrahydrofuran (75: 20: 5, v/v/v). Results: The limits of quantitation were 100, 0.25 and 0.25 µg/ml for vitamin C, vitamin E and β-carotene respectively. The method is linear over the studied range of 0.25 to 5 µg/ml for vitamin E and β-carotene and 100 to 5000 µg/ml for vitamin C. The extraction recoveries were greater than 83% for these three vitamins. The within day and between-day precision of the analysis did not exceed 15.3 and 16.2%, respectively. Conclusion: A suitable method to determine the concentration of vitamin C, vitamin E and β-carotene following oral administration of antioxidant supplement capsules to a healthy Chinese volunteer.

INTRODUCTION

Free radicals are highly reactive molecules that react with and damage cells throughout the body. They are suspected of causing cardiovascular disease, cancer, neurological disorders, cataracts, arthritis, aging and other conditions such as muscle damage and fatigue that could inhibit performance (1, 2). Antioxidants are molecules, which can safely interact with free radicals and terminate the chain reaction before vital molecules are damaged. There are several enzyme systems within the body that scavenge free radicals, whereby the principal micronutrient (vitamin) antioxidants are vitamin C, vitamin E and β-carotene. The body cannot manufacture these micronutrients so they must be supplied in the diet (2).

Many researchers believe that vitamin supplements can dramatically reduce free radical damage, prevent and delay the onset of chronic degenerative diseases, and possibly extend lifespan (3). Numerous epidemiological studies have demonstrated an association between higher intakes or higher blood concentrations of certain antioxidants and a lower incidence of certain degenerative diseases (4, 5). Clinical studies have shown that supplemental levels of antioxidant vitamins reduce an individual's risk for certain cancers and cardiovascular diseases (6, 7). Moreover, studies have shown that fruit and vegetable consumption (the major source of antioxidant nutrients) has a protective effect against cancer (8). Evidence also suggests that vitamins C, E and β-carotene supplementation have ergogenic or performance enhancing effects (9).

High-performance liquid chromatography (HPLC) combined with a UV-Vis detector is the most common method for identification and quantification of antioxidant vitamins in biological fluids. Several HPLC methods have been presented for the determination of vitamin C in serum or plasma (10, 11, 12, 18). The procedures for simultaneous measurement of vitamin E and β-carotene by HPLC have also been described (13, 14, 17). Recently, an isocratic liquid chromatographic method was reported for the simultaneous determination of vitamins C, E and β-carotene in pharmaceutical preparations (15). However, no reports for the simultaneous determination of these three antioxidant vitamins in human biological fluids were described. This is attributed to the extraction and reconstitution difficulties from biological fluids that are linked to their chemical properties (Vitamin C is water-soluble; Vitamin E and β-carotene are fat-soluble).

In this paper, we report a simple, sensitive and reliable
isocratic HPLC assay for the simultaneous determination of antioxidant vitamins (vitamin C, vitamin E and
β-carotene) in human plasma using photodiode-array
detection. This method has been successfully employed
to monitor plasma vitamin C, vitamin E and
β-carotene levels following oral administration of antioxidant sup-
plement capsules to a healthy Chinese volunteer.

METHODS

Chemicals and materials:

Vitamin C (L-ascorbic acid, purity: 99%), vitamin E [(±)-alpha-tocopherol, purity: 95%] and
β-carotene (purity: 97%) were obtained from Sigma Chemical Co. (St. Louis, MO, USA). Methanol, acetonitrile and tet-
rahydrofuran were obtained from Merck KGaA (Darm-
stadt, Germany). All solvents were of HPLC grade. All
the reagents were used without further purification.
Deionized water, purified by Milli Q system (Millipore,
Milford, MA, USA), was used throughout the study.
Stock solutions of vitamin E and
β-carotene were pre-
pared at 10 mg/ml in chloroform. Stock solution of vita-
mion C was prepared at 10 mg/ml in methanol. All stock
solutions were protected from light and stored at -20ºC.
The stock solutions were further diluted with methanol
to give a series of working standards. The working solu-
tions for spiking blank human plasma samples were pre-
pared fresh daily.

Instrumentation:

The HPLC system (Waters 2690 Separation Module) consisted of a Waters 600E multisolvent delivery system
pump, a Waters Ultra WISP 715 autoinjector, and a
Waters 996 diode-array detection system set in a range of 200 – 400 nm (all from Waters, Milford, MA, USA).
Vitamins C, E and beta-carotene were separated on the
LiChrospher 100 RP-18 column (125 × 4 mm I.D.; par-
ticle size, 5 µm) from Merck KGaA (Darmstadt, Ger-
many), with a mobile phase of methanol-acetonitrile-tetrahydrofuran (75: 20: 5, v/v/v) at a flow-rate of 1.2
ml/min.

Sample preparation:

Human plasma samples were spiked with concentrations ranging from 100 to 5000 µg/ml for vitamin C and from 0.25 to 5 µg/ml for vitamin E and β -carotene. Vitamin C in plasma was extracted as follows: plasma protein was precipitated with 60% methanol and 1mM
EDTA. Plasma (100µl) was mixed with 400µl of 60%
methanol/EDTA, incubated for 10min at 4ºC before cen-
trifuging at 12,000 rpm for 8min. The clear phase was
transferred to another polypropylene tube and evapo-
rated to dryness under nitrogen. The dried extracts were
dissolved in 100µl of methanol.

Vitamin E and β-carotene in plasma were extracted as follows: 100µl of plasma was deproteinized with 100µl of ethanol and was extracted with 600µl of chloroform. The extract was shaken for 5min before cen-
trifuging. The organic layer was extracted and evapo-
rated to dryness under nitrogen. The dried extracts were
dissolved in 100µl of methanol. All reconstituted anti-
oxidants were mixed together before injecting into the
HPLC system.

Assay validation:

Samples were quantified using peak area of vitamin C, vitamin E and
β-carotene. Standard calibration curves were
constructed by spiked drug-free pooled human plasma with a known amount of vitamin C, vitamin E and
β-carotene. These plasma standards were also used
to determine the extraction recovery, within day and
between-day precision (n = 5) of the method. The recov-
eries of vitamin C, vitamin E and
β-carotene after liq-
uid-phase extraction were calculated by comparing
observed vitamins C, E and
β-carotene peak areas in
extracted plasma, to those of non-processed standard
solutions. Limit of quantitation is based on the lowest
concentration validated by the method.

Applicability:

One healthy non-smoking Chinese volunteer (male,
age 25 year) ingested three capsules of antioxidant sup-
plement (Antioxidant Fuel, Twin Laboratories Inc., NY,
USA) each day for 40 days. Each capsule contains 333
mg of vitamin C, 266 IU of vitamin E, 8,333 IU of
β-carotene, 39 mg of dicalcium phosphate anhydrous, 33
µg of sodium selenate, 10 mg of Co enzyme Q10, 66 mg
of N-acetyl-L-cysteine, 33 mg of L-glutathione and 33
mg of alpha-lipoic acid. Venous blood samples were col-
clected just before the first oral dose, and on the 15th,
30th, 33rd, 34th, 36th and 40th day of the study period. .
The plasma was obtained immediately by centrifugation
at 2000 g for 5 min and stored at -20ºC until analysis by
HPLC.
RESULTS AND DISCUSSION

In the current study, we developed a simple HPLC method for simultaneous determination of antioxidant vitamins (vitamins C, E and β-carotene) in human plasma. The solubility and polarity of the three analytes are vastly different, thus leading to the need for different grades of polar solvents to extract and constitute. After extraction, the final component reconstituents were mixed to enable a single injection into the HPLC. This method utilizes the photodiode-array detector for measuring three vitamins at various wavelengths in a single injection. The photodiode-array detector has an added advantage of effecting a rapid identification of UV-Vis spectra. In addition, peak purity of plasma samples as compared with standards can be monitored by this detection method.

Representative chromatograms of blank and spiked human plasma samples are shown in Figure 1. The wavelength for the detection of vitamins C and E was 245 nm (upper panels); and was switched to 400 nm for β-carotene (lower panels). Figure 2 shows the spectra of the compounds. Under the described conditions, the retention times were 0.92, 4.1 and 13.7 min for vitamin C, vitamin E and β-carotene, respectively. The total run time was 15 min. Clean chromatogram shows negligible interference from endogenous substances in plasma sample. Limits of quantitation were 100 µg/ml for vitamin C, 0.25 µg/ml for vitamin E and 0.25 µg/ml for β-carotene. Regression analysis was performed on the calibration curve in plasma. The calibration curves of the analytes obtained for five independent runs were linear within the studied range between 0.25 to 5 µg/ml for vitamin E and β-carotene, and 100 to 5000 µg/ml for vitamin C based on the peak area. The regression equations describing the calibration runs were vitamin C, y = 500000x + 88306 (R² = 0.9918); vitamin E, y = 12486x + 7609 (R² = 0.9781); and β-carotene, y = 45052x + 2844 (R² = 0.9929), where y is the peak area of the antioxidants and x is the concentration. These studied ranges were found to be appropriate to cover the range of analyte concentration in plasma after oral administration of antioxidant supplement capsules to the healthy Chinese volunteer. The extraction recoveries of standards spiked in plasma samples were calculated. The recoveries of vitamin C, vitamin E and β-carotene within the concentration range of the assay were 83%, 100% and 91% respectively.
The vitamins under study are unstable and especially sensitive to light, heat, oxygen and peroxide (16). Therefore, special precautions have to be during the experiments. Stock solutions were tested four times from the time of their preparation up to 14 days and the results indicated that the stock solutions were stable within this period. However, the working solutions for spiking blank human plasma samples were freshly prepared from these stock solutions, and used immediately.

The within- and between-day variations \((n = 5) \) of the method are given in Table 1. For each level, the repeatability and reproducibility criteria were clearly satisfactory. For the three analytes, within-day variability was lower than 15.3% while between-day variability did not exceed 16.2%. Within-day variability averaged 11.0% for vitamin C, 5.3% for vitamin E and 5.9% for \(\beta \)-carotene. Mean between-day variability was 11.6% for vitamin C, 5.5% for vitamin E and 9.6% for \(\beta \)-carotene. To minimize analytical variability, analyte concentrations in human plasma were always derived according to the same day standard curve.

The applicability of the assay was demonstrated in plasma samples following oral administration of antioxidant supplement capsules to one healthy Chinese volunteer. After liquid-phase extraction, HPLC chromatogram was obtained (Figure 1). The results of the assay are shown in Table 2. The amount of vitamin C, vitamin E and \(\beta \)-carotene in plasma was above the limit of detection of the assay.

Table 2: Blood concentration of antioxidants after ingestion of vitamin supplements at various time points.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Day 15</th>
<th>Day 30</th>
<th>Day 45</th>
<th>Day 60</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin C (mg/ml)</td>
<td>2.48</td>
<td>1.64</td>
<td>1.35</td>
<td>2.10</td>
<td>1.20 ± 1.85</td>
</tr>
<tr>
<td>Vitamin E (µg/ml)</td>
<td>9.94</td>
<td>4.90</td>
<td>14.05</td>
<td>19.13</td>
<td>4.167 ± 4.56</td>
</tr>
<tr>
<td>(\beta)-carotene (µg/ml)</td>
<td>2.16</td>
<td>1.29</td>
<td>2.21</td>
<td>1.26</td>
<td>0.91 ± 0.90</td>
</tr>
</tbody>
</table>

CONCLUSIONS

The proposed HPLC method, which combines photodiode-array detection, reaches the optimum performance in terms of selectivity, precision, and accuracy for antioxidant study in humans. The procedure employs a relatively simple liquid phase clean-up procedure for sample preparation. The efficiency is enhanced by the use of only one isocratic chromatographic elution that separates and quantifies the water-soluble vitamin C and fat-soluble vitamin E and \(\beta \)-carotene. This method can be utilized in studies that require monitoring of plasma vitamin C, vitamin E and \(\beta \)-carotene levels after oral administration of antioxidant supplement capsules to human subjects.

REFERENCES

