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Abstract

We discover new analytic properties of classical partial and false theta functions and their
potential applications to representation theory of W-algebras and vertex algebras in general. More
precisely, motivated by clues from conformal field theory, first, we are able to determine modular-
like transformation properties of regularized partial and false theta functions. Then, after suitable
identification of regularized partial/false theta functions with the characters of atypical modules for
the singlet vertex algebra W(2, 2p − 1), we formulate a Verlinde-type formula for the fusion rules
of irreducible W(2, 2p− 1)-modules.

1 Introduction: partial and false theta functions

In this paper, we are primarily concerned with modular-like transformation properties of functions

Pa,b(u, τ) =

∞∑
n=0

zn+ b
2a qa(n+ b

2a )2 , q = e(τ), z = e(u), (1.1)

where a, b ∈ N, τ ∈ H, u ∈ C, called partial theta functions [AB]1. If z is specialized to be qc, we call
them partial theta series. The names explain themselves as the usual Jacobi theta functions/series
are also given by (1.1), but with the summation over all integers. We will also be interested in
closely related series called false theta series, where the summation is over Z, but the sign choice
does not correspond to any specialization of the theta function. A typical example is∑

n∈Z
sgn(n)qa(n+ b

2a )2 , (1.2)

which plays a prominent role in our work. Actually, the only false theta series appearing in this
paper are simply differences of two partial thetas.

While theta functions of course enjoy modular transformation properties, and are related to nu-
merous concepts in mathematics and theoretical physics, partial/false theta functions do not seem
to have any modular properties and their relevance in mathematics is somewhat obscure and ran-
dom. Most prominently, false/partial thetas appear in various identities involving q-hypergeometric
series and even some partition identities (for a thorough selection of results see [AB] and references
therein). They also seem to arise in computation of topological invariants. For example, in [LZ],

1In [AB] a slightly different definition was used.
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the (rescaled) Witten-Reshetikhin-Turaev (WRT) invariant associated to the homology spheres was
studied as radial limiting value of certain partial/false theta series. Also, it was recently shown in
[GL] (see Section 14) that the generating series of colored Jones polynomials for alternating knots
are given by (1.2). But as far as we know, there were no serious attempts to relate false theta
functions to concepts in infinite-dimensional representation theory and to ideas in conformal field
theory (eg. Verlinde formula). We also point out that partial/false theta functions are not mock
theta functions as studied in [Z], although there is a connection (see [Za] for instance).

In this paper we take a radical different point of view to (1.1) and eventually (1.2). Our starting
observation is that some of the series discussed earlier are essentially (i.e. up to Dedekind η-function
factor) graded dimensions of modules for the vertex operator algebra W(2, 2p− 1), also called the
singlet algebra (this was also noticed by Flohr in [Fl]). This vertex algebra did not attract so much
attention, primarily because it is not C2-cofinite, although it is instrumental for studying more
interesting triplet vertex algebra [FHST], [FGST1], [FGST2], [NT], [TW], [AdM1], [CF], [Fl], etc.
Characters of modules for the triplet are well-understood; they can be organized so that they form
a vector-valued (logarithmic) modular form. Using this approach a Verlinde-type formula can be
also obtained [FHST] (in the rational setup see [Ve], and the proof of the Verlinde conjecture by
Huang [Hu]). Thus, it is very natural to ask: (i) Do irreducible characters of the singlet algebra
also obey modular-like transformations properties, and (ii) is there a Verlinde-type formula for
irreps based on these properties? Of course, because we have infinitely many irreps, in modular
transformation formulas we also allow integral part as in other works on ”continuous” Verlinde-
type formulas [AC], [BR], [CR1], [CR2], [CR3]. In order to describe the family of singlet algebras
W(2, 2p− 1) parameterized by integers p ≥ 2 we introduce the numbers α+ =

√
2p, α− = −

√
2/p

and α0 = α+ + α−. For our purposes we first note that the singlet algebra admits two types of
Z≥0-graded representations:

(1) generic (or typical). Fock space representations Fλ, with the character

ch[Fλ](τ) =
q

1
2 (λ−α0/2)2

η(τ)
; λ ∈ C

and η(τ) = q
1
24

∏∞
i=1(1− qi) is the usual Dedekind eta-function.

(2) Non-generic (or atypical). Certain subquotients or reducible Fock spaces, denoted by Mr,s,
with the character

ch[Mr,s](τ) =
Pp,pr−s(0, τ)− Pp,pr+s(0, τ)

η(τ)
,

where Pa,b is as in (1.1). The range is r ∈ Z and 1 ≤ s ≤ p 2.

Modular transformation properties of (1) are easily computed via Gauss’ integral, but those of (2)
are much more delicate. As a remedy, we introduce the ε-regularized characters ch[Xε] (see Section
2 for details; see also [Fl]) such that limε→0 ch[Xε] = ch[X]. These regularized atypical characters
transform much nicer as illustrated in our first main results of the paper.

Theorem 1 The modular S-transformation of atypical characters is

ch[M ε
r,s]
(
−1

τ

)
=

∫
R
Sε(r,s),µ+α0/2

ch[F εµ+α0/2
](τ)dµ+Xε

r,s(τ)

2Strictly speaking Mr,p modules can be also viewed as typical representations. For a precise definition of typi-
cal/atypical see Definition 18.
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with

Sε(r,s),µ+α0/2
= −e−2πε((r−1)α+/2+µ)eπi(r−1)α+µ

sin
(
πsα−(µ+ iε)

)
sin
(
πα+(µ+ iε)

)
and

Xε
r,s(τ) =

1

4η(τ)
(sgn(Re(ε)) + 1)

∑
n∈Z

(−1)rneπi
s
pnq

1
2 ( n

2

α2
+

−ε2)(
q
−iε n

α+ − qiε
n
α+
)
.

Although this result concerns certain characters of modules it relies on another key result for the
partial theta function (see Theorem 4). Interestingly, the previous theorem does not provide us with
the usual modular transformation properties one would expect in non-rational theories due to the
theta-like term Xε

r,s(τ) that has no obvious interpretation as a regularized character. Surprisingly,
the term disappears for Re(ε) < 0, which we assume to hold. By using the above S-transformation
formulas we define a suitable product on the space of characters by mimicking the Verlinde formula
for the fusion rules. We obtain the following result

Theorem 2 (Verlinde-type formula) With parametrization of irreps as in Section 4, and with
multiplication of regularized characters as in (4.5), we have

ch[F ελ]× ch[F εµ] =

p−1∑
`=0

ch[F ελ+µ+`α− ]

ch[M ε
r,s]× ch[F εµ] =

s∑
`=−s+2

`+s=0 mod 2

ch[F εµ+αr,`
]

ch[M ε
r,s]× ch[M ε

r′,s′ ] =

min{s+s′−1,p}∑
`=|s−s′|+1

`+s+s′=1 mod 2

ch[M ε
r+r′−1,`]

+

s+s′−1∑
`=p+1

`+s+s′=1 mod 2

(
ch[M ε

r+r′−2,`−p] + ch[M ε
r+r′−1,2p−`] + ch[M ε

r+r′,`−p]
)
.

The algebra structure on the integer span of characters given by this Verlinde-type formula we also
call Verlinde algebra (of characters). Notice that the product does not depend on the regularization
parameter ε. Independence of the choice of this parameter for the final answer is exactly the
requirement for a good regularization in mathematical physics.

At last, in parallel with the triplet algebra [FGST1, FGST2], and partially motivated by [KL],
we expect the category of (ordinary)W(2, 2p−1)-modules to be equivalent to the category of finite-
dimensional representations for a certain infinite-dimensional quantum group. This conjecture is
amplified with the computation of regularized quantum dimensions in Section 4.3 (see Theorem
28). We hope to return to the problem of identifying the relevant quantum group in our future
publications.

David Ridout and Simon Wood have informed us that they are preparing a manuscript on the
Verlinde formula of the (p, p′)-singlet algebra [RW]. Instead of an analytic approach they follow the
strategy of the previous works on the Verlinde formula, see e.g. [CR4] for an introduction and the
example of W(2, 3), of resolving atypical modules in terms of typical ones. They find agreement

3



with our Verlinde formula when restricting to the case of W(2, 2p − 1). Very recently, in [CMW],
we extended methods of this paper to obtain rigorous derivation of results in [RW].

Acknowledgements: We thank K. Bringmann on some discussions related to this paper. We
also thank D. Ridout and S. Wood for very useful discussion, suggestions and (S.W.) for pointing
out some inconsistencies in a previous version of the paper. T.C. appreciates that D.R. shared
some computations on the singlet algebra.

2 Modularity of regularized partial theta functions

In this part we study modular-like transformation properties of a partial theta function, which can
be used to express more complicated partial and eventually false theta functions. Let

P (u, τ) =
∑

k∈Z≥0+ 1
2

zkqk
2/2.

where q = e(τ), τ ∈ H, the upper half-plane, and z = e(u), where u ∈ C. This function is obviously
holomorphic. If one tries to compute modular transformation properties under (u, τ) 7→ (uτ ,−

1
τ ),

some divergent integrals quickly appear. To fix this inconvenience we use a method sometimes used
in the physics literature, and in particular in [Fl], called regularization. The idea is to deform the
”charge” variable u by introducing an additional parameter denoted by ε. On one hand ε can be
viewed as the contour deformation parameter, but also as a quantum group parameter (the two
seem to be connected). In this paper we do not try to make this connection precise, leaving it for
future considerations.

Definition 3 Let ε ∈ C \ iR, then the partial regularized theta function is

Pε(u, τ) =
∑

k∈Z≥0+ 1
2

zke2πεkqk
2/2.

The main result of this section will be

Theorem 4 Let ε ∈ C \ iR, then the modular properties of the regularized partial theta function
are:

Pε(u, τ + 1) = eπi/4Pε(u, τ),

Pε((u/τ,−1/τ) =
eπiu

2/τ
√
−iτ

2

(
−i
∫
R

qx
2/2zx

sin(π(x+ iε))
dx+

1

2
(sgn(Re(ε)) + 1)ϑ4,ε(u, τ)

)
,

with the regularized ordinary theta function

ϑ4,ε(u, τ) =
∑
n∈Z

(−1)nzn−iεq(n−iε)2/2.

The modular T-transformation (τ 7→ τ + 1) is obvious, and the rest of this section will be devoted
to proving the modular S-transformation of the theorem.

Let us start with its elliptic transformation properties.
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Proposition 5 The elliptic transformations of Pε are

Pε(u+ 1, τ) = −Pε(u, τ),

Pε(u+ τ, τ) = z−1q−1/2e−2πεPε(u, τ)− z−1/2q−3/8e−πε .

Proof A straightforward rewriting of the sums. �

As a corollary, we get

Corollary 6 Let ũ = u/τ and τ̃ = −1/τ , then

Pε((u+ 1)/τ,−1/τ) = z̃q̃−1/2e2πεPε(ũ, τ̃) + z̃1/2q̃−3/8eπε

Pε((u+ τ)/τ,−1/τ) = −Pε(ũ, τ̃) .

Proof This follows from Proposition 5 as follows. Let ũ = u/τ , τ̃ = −1/τ and u′ = ũ − τ̃ and
correspondingly z̃ = e2πiũ, q̃ = e2πiτ̃ , z′ = e2πiu′ , then

Pε((u+ 1)/τ,−1/τ) = Pε(ũ− τ̃ , τ̃) = Pε(u
′, τ̃)

and hence with Proposition 5

Pε(u
′, τ̃) = z′q̃1/2e2πεPε(u

′ + τ̃ , τ̃) + z′1/2q̃1/8eπε = z̃q̃−1/2e2πεPε(ũ, τ̃) + z̃1/2q̃−3/8eπε.

The second equation is obvious. �

Proposition 7 Let γ(u, τ) = e−πiu
2/τ , then fε(u, τ) = γ(u, τ)Pε(ũ, τ̃) satisfies

fε(u, τ)− e−2πεfε(u+ 1, τ) = −e−πεγ(u+ 1/2, τ) (2.1)

fε(u, τ) + zq1/2fε(u+ τ, τ) = 0 . (2.2)

Proof This follows from corollary 6. �

Lemma 8 Let z̃ = e(u/τ), q̃ = e(−1/τ), then we have

z̃kq̃
k2

2 =
√
−iτeπiu

2

τ

∫ ∞
−∞

q
w2

2 zwe−2πiwk dw .

Proof This is a Gauss integral. �

Proposition 9 Let

hε(u, τ) = − i
√
−iτ
2

∫
R

qx
2/2zx

sin(π(x+ iε))
dx,

then hε satisfies

hε(u, τ)− e−2πεhε(u+ 1, τ) = −e−πεγ(u+ 1/2, τ) (2.3)

hε(u, τ) + zq1/2hε(u+ τ, τ) = 0 . (2.4)

Also note, that since ε /∈ iR, the integral is absolutely convergent for all u ∈ C, τ ∈ H.
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Proof The left-hand side of the first equation is a Gauss integral, so the equation follows with
Lemma 8. The second equation follows with the substitution x→ x+ 1 in the second integral. �

We define the correction
Rε = fε − hε.

Proposition 10 The correction term is holomorphic and satisfies the following functional equation

Rε(u, τ)− e−2πεRε(u+ 1, τ) = 0 (2.5)

Rε(u, τ) + zq1/2Rε(u+ τ, τ) = 0 . (2.6)

Proof Follows from Proposition 7 and 9. �

Proposition 11 The Jacobi-theta-like function (for fixed ε ∈ C)

ϑ4,ε(u, τ) =
∑
n∈Z

(−1)nzn−iεq(n−iε)2/2

satisfies

ϑ4,ε(u, τ)− e−2πεϑ4,ε(u+ 1, τ) = 0 (2.7)

ϑ4,ε(u, τ) + zq1/2ϑ4,ε(u+ τ, τ) = 0 (2.8)

and up to a scalar multiple it is the unique holomorphic function in u with this property.

Proof Well-known fact for standard theta-functions, but q−ε
2/2z−iεϑ4,0(u−iετ, τ) = ϑ4,ε(u, τ) can

be expressed in terms of the standard Jacobi-theta function ϑ4,0(u, τ). �

We define αε(τ) by Rε(u, τ) = αε(τ)ϑ4,ε(u, τ).

Proposition 12 αε(τ) = αε
√
−iτ where αε is independent of τ .

Proof Define

∆ =
1

πi
∂τ −

1

(2πi)2
∂2
u,

then we compute that

∆
fε(u, τ)√
−iτ

= ∆
hε(u, τ)√
−iτ

= ∆ϑ4,ε(u, τ) = 0

now, let
√
−iτβε(τ) = αε(τ), then the statement implies ∂τβε(τ) = 0. �

Proposition 13 There exists α ∈ C, such that

αε =

{
α if Re(ε) > 0

α− 1 if Re(ε) < 0
.
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Proof Let µ ∈ C with Re(ε) 6= −Im(µ), then rewriting the appropriate sums yields

zµqµ
2/2ϑ4, ε− iµ(u+ µτ, τ) = ϑ4,ε(u, τ) , zµqµ

2/2fε−iµ(u+ µτ, τ) = fε(u, τ).

With the substitution y = x+ µ, we get

zµqµ
2/2hε−iµ(u+ µτ, τ) = − i

√
−iτ
2

∫
R

qx
2/2+µx+µ2/2zx+µ

sin(π(x+ µ+ iε))
dx = − i

√
−iτ
2

∫
R+µ

qy
2/2zy

sin(π(y + iε))
dy.

Since τ is in the upper half plane, we can thus write the difference hε(u, τ)−zµqµ2/2hε−iµ(u+µτ, τ)
as a contour integral over the contour Cµ which connects the two areas of integration of the previous
equation,

hε(u, τ)− zµqµ
2/2hε−iµ(u+ µτ, τ) = − i

√
−iτ
2

∫
Cµ

qx
2/2zx

sin(π(x+ iε))
dx.

Let ε′ = ε− iµ, we can then evaluate the integral by the residuum theorem and get

− i
√
−iτ
2

∫
Cµ

qx
2/2zx

sin(π(x+ iε))
dx =

√
−iτ

∑
n∈Z

(−1)nzn−iεq(n−iε)2/2


0 if Re(ε) > 0 , Re(ε′) > 0

1 if Re(ε) > 0 , Re(ε′) < 0

−1 if Re(ε) < 0 , Re(ε′) > 0

0 if Re(ε) < 0 , Re(ε′) < 0

=
√
−iτϑ4,ε(u, τ)


0 if Re(ε) > 0 , Re(ε′) > 0

1 if Re(ε) > 0 , Re(ε′) < 0

−1 if Re(ε) < 0 , Re(ε′) > 0

0 if Re(ε) < 0 , Re(ε′) < 0

but this implies

αε =

{
α if Re(ε) > 0

α− 1 if Re(ε) < 0

for some α ∈ C. �

It remains to compute α.

Definition 14 We define the regularized false theta function

Fϑε(u, τ) = Pε(u, τ)− P−ε(−u, τ).

Proposition 15 The modular S-transformation of the regularized false theta function is

Fϑε(u/τ,−1/τ) = eπiu
2/τ
√
−iτ

(
−i
∫
R

qx
2/2zx

sin(π(x+ iε))
dx+ sgn(Re(ε))ϑ4,ε(u, τ)

)
Proof This follows directly from h−ε(−u, τ) = −hε(u, τ), ϑ4,−ε(−u, τ) = ϑ4,ε(u, τ), αε − α−ε =
sgn(Re(ε)) and the expression for αε(τ) that is Proposition 12 and 13. �
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Proposition 16 α = 1

Proof Define ϑ2,ε(u, τ) =
∑
k∈Z+ 1

2
zke2πεkqk

2/2. Then a short computation gives

ϑ2,ε(u/τ,−1/τ) = eπiu
2/τ
√
−iτϑ4,ε(u, τ).

The partital regularized theta function satisfies 2Pε(u, τ) = Fϑε(u, τ) + ϑ2,ε(u, τ) and hence with
Proposition 15 and above equation the claim follows. �

This proposition completes the proof of Theorem 4.

Remark 17 Clearly,

Pa,b(u, τ) =

∞∑
n=0

zn+ b
2a qa(n+ b

2a )2 = z
b
2a−

1
2 qa( b2a−

1
2 )2P (u+ (b− a)τ, 2aτ)

so the previous theorem solves the problem of finding the modular-like transformations of the
non-generic family of regularized singlet algebra characters.

3 The singlet vertex algebra W(2, 2p− 1)

Let
ĥ = h⊗ C[t, t−1] + Ck.

denote the rank one Heisenberg Lie algebra. We choose its generators to be ϕ(n), n ∈ Z, such that

[ϕ(n), ϕ(m)] = δm+n,0k. Denote by Fλ ∼= U(ĥ−), λ ∈ C, the usual Fock space of charge λ, so that
ϕ(0) · eλϕ = λeλϕ, where eλϕ is a lowest weight vector for Fλ. We fix the level to be one, i.e. the
central element k will act by multiplication with one on all Fock spaces. For every p ≥ 2, we choose
the conformal vector to be

ω =
1

2
ϕ(−1)21 +

p− 1√
2p

ϕ(−2)1 ∈ F0.

This equips F0 with a VOA structure of central charge cp,1 = 1 − 6 (p−1)2

p . We shall be using

standard parametrization of (1, p) lowest weight logarithmic minimal models following

hm,n =
(np−m)2 − (p− 1)2

4p
.

In this parametrization we may assume 1 ≤ m ≤ p and n ∈ Z.
Next, we introduce the singlet vertex algebra after Kausch [Ka], where we prefer to follow the

approach from [A], [AdM1] and [AdM2] (see also [FHST], [FGST1], [FGST2]).

3.1 Definition of W(2, 2p− 1)

Again, here p ∈ N≥2. Denote by

VL =
⊕

λ∈
√

2pZ

Fλ
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the lattice vertex algebra associated to rank one even lattice
√

2pZ [AdM2] (see also [LL]). Consider

its dual lattice L̃ = Z( 1√
2p

). Then we have a generalized vertex algebra structure on

VL̃ =
⊕

λ∈ 1√
2p

Z

Fλ =

2p−1⊕
i=0

VL+ i√
2p
.

The vertex algebra VL is then a vertex subalgebra of VL̃.
The element L(0) of the Virasoro algebra defines a N–gradation on VL. As in [Ka] define the

following long and short screening operators

Q = e
√

2pϕ
0 , Q̃ = e

−
√

2
pϕ

0 ,

respectively, where we use

eγ(x) =
∑
n∈Z

eγnx
−n−1,

the Fourier expansion of eγ . Then we have

[Q, Q̃] = 0, [L(n), Q] = [L(n), Q̃] = 0 (n ∈ Z).

Thus, the operators Q and Q̃ are intertwinners among Virasoro algebra modules. In fact, the
Virasoro vertex operator algebra L(cp,1, 0) ⊂ F0 is the kernel of the screening operator Q. Define

W(2, 2p− 1) = KerF0
Q̃,

called the singlet vertex algebra. Since Q̃ commutes with the action of the Virasoro algebra, we
have

L(cp,1, 0) ⊂ W(2, 2p− 1).

The vertex operator algebra W(2, 2p− 1) is completely reducible as a Virasoro algebra module
and the following decomposition holds:

W(2, 2p− 1) =

∞⊕
n=0

U(V ir). u(n) =

∞⊕
n=0

L(cp,1, n
2p+ np− n),

where
u(n) = Qne−n

√
2pϕ. (3.1)

In addition, W(2, 2p− 1) is strongly generated by ω and the primary vector

H = Qe−
√

2pϕ (3.2)

of conformal weight 2p− 1.

3.2 Irreducible W(2, 2p− 1)-modules

Complete classification of all (weak) irreducible W(2, 2p − 1)-modules is presently unknown. On
the other hand, Z≥0-gradable irreducible modules were classified in [A] (see also [AdM1] for some
additional details). From now on we consider finitely generated Z≥0-gradable ordinary modules
whose characters are well-defined. We do not consider logarithmic modules in this work. First we
distinguish between typical and atypical modules.
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Definition 18 An irreducible (Z≥0-graded) W(2, 2p − 1)-module is called typical if it remains
irreducible as a Virasoro module, and atypical otherwise.

We denote by ch[X](τ) the usual character of X, the trace of qL(0)−c/24. Generic characters are
easily computed. Denote by Fλ the Fock space of charge λ as in the previous section. Then clearly,

ch[Fλ](τ) =
qhλ−cp,1/24

(q; q)∞
=
q(λ−α0/2)2/2

η(τ)
.

We also observe the symmetry
ch[Fλ](τ) = ch[Fα0−λ](τ).

By using results from [A] and [AdM1], we easily infer that all atypical irreducible W(2, 2p− 1)-
modules can be constructed as subquotients of Fλ, where λ ∈

√
2pZ+ i√

2p
, 0 ≤ i ≤ 2p−1 (the dual

lattice L̃). Every such Fock space yields a unique irreducible W(2, 2p− 1)-module. To see this, we
shall first slightly adjust the parametrization of L̃. Let α+ =

√
2p, α− = −

√
2/p and let also

α0 = α+ + α−.

Further let

αr,s = −1

2
(rα+ + sα− − α0) = −r − 1

2

√
2p+

s− 1√
2p
∈ L̃.

The range for r is the set of integers and 1 ≤ s ≤ p. Now to each Fαr,s we associate an irreducible
module Mr,s.

It is known that for s = p, the singlet module Fαr,p is irreducible [AdM1]. So for r ∈ Z, we let

Mr,p := Fαr,p .

From now on we may assume the range to be 1 ≤ s ≤ p− 1. The module Fαr,s has a composition
series of length 2 with respect to W(2, 2p− 1). We denote by

Mr,s := soc(Fαr,s).

The socle can be also taken with respect to the Virasoro algebra though. We first consider the case
r ≥ 1. Then Mr,s is of the same highest weight as Fαr,s . We clearly have a short exact sequence

0→Mr,s → Fαr,s → Nr,s → 0,

where Nr,s is another irreducible module. By using well-known formulas for decomposition of Mr,s

into irreducible Virasoro modules [CRW], [AdM1] we easily obtain

ch[Mr,s](τ) =
1

η(τ)

( ∞∑
n=0

qp(
r
2 +n− s

2p )2 − qp(
r
2 +n+ s

2p )2

)
. (3.3)

Now we focus on Fαr,s , r ≤ 0. Similarly, we get

ch[Mr,s] =
1

η(τ)

( ∞∑
n=0

qp(−
r
2 + 1

2 +n+ p−s
2p )2 − qp(−

r
2 + 1

2 +n+ p+s
2p )2

)
.
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Observe now the relation (for r ≤ 0)

∞∑
n=0

qp(−
r
2 + 1

2 +n+ p−s
2p )2 − qp(−

r
2 + 1

2 +n+ p+s
2p )2 =

∞∑
n=0

qp(
r
2 +n− s

2p )2 − qp(
r
2 +n+ s

2p )2 ,

due to cancellations in the second sum. To summarize, for r ∈ Z and 1 ≤ s ≤ p we have

ch[Mr,s](τ) =
Pp,pr−s(0, τ)− Pp,pr+s(0, τ)

η(τ)
,

where Pa,b(τ) is as in the introduction. In particular, for M1,1 =W(2, 2p− 1), we get

ch[W(2, 2p− 1)](τ) =

∑
n∈Z sgn(n)qp(n+ p−1

2p )2

η(τ)
.

Remark 19 In addition to considerations coming from decomposition of Fock spaces into Virasoro
algebra modules it is also useful to apply Felder’s resolution in the category of W(2, 2p−1)-modules
(see formula (2.26) [CRW], for instance):

· · · → Fαr,s
Q̃[s]

−−→ Fαr+1,p−s

Q̃[p−s]

−−−−→ Fαr+2,s

Q̃[s]

−−→ Fαr+3,p−s → · · · ,

where Q̃[s] are suitable ”powers” of the short screening operator Q̃. It can be shown Mr,s =

Ker Q̃[s] ⊂ Fαr,s [CRW], so by the Euler-Poincaré principle we easily get

ch[Mr,s](τ) =

∞∑
n=0

ch[Fαr−2n−1,p−s ](τ)− ch[Fαr−2n−2,s ](τ).

This formula will be useful in the next section

3.3 Regularized characters of W(2, 2p− 1)-modules

Now, we define the regularized characters by introducing a parameter ε. We let

ch[F ελ](τ) = e2πε(λ−α0/2) q
(λ−α0/2)2/2

η(τ)

ch[M ε
r,s](τ) =

∞∑
n=0

ch[F εαr−2n−1,p−s
](τ)− ch[F εαr−2n−2,s

](τ)

(3.4)

Observe that typical ε-regularized characters are simply trFλe
2πε(ϕ(0)−α0/2)qL(0)−c/24. But atyp-

ical regularization is more subtle although very natural in view of Remark 19.
Note, that the characters of the atypical modules are parameterized by r, s ∈ Z with 1 ≤ s ≤ p.

Also, ch[M ε
r,0](τ) = 0 and in the case s > p, ch[M ε

r,s](τ) is actually an integral combination of
atypical module characters (virtual character):

Proposition 20 The regularized typical and atypical characters satisfy the following relations

ch[F εαr,s ](τ) = ch[M ε
r,s](τ) + ch[M ε

r+1,p−s](τ)

11



while ch[M ε
r,s](τ) for p < s ≤ 2p − 1 3 is the following linear combination of atypical module

characters

ch[M ε
r,s](τ) = ch[M ε

r−1,s−p](τ) + ch[M ε
r,2p−s](τ) + ch[M ε

r+1,s−p](τ).

Proof The first equality follows directly from (3.4), while for the second one, we use that αr,s =
αr+1,s+p for all r, s ∈ Z to compute

ch[M ε
r,s](τ) =

∞∑
n=0

ch[F εαr−2n−1,p−s
](τ)− ch[F εαr−2n−2,s

](τ)

=

∞∑
n=0

ch[F εαr−2n,2p−s
](τ)− ch[F εαr−2n−3,s−p

](τ)

= ch[F εαr,2p−s ](τ) + ch[M ε
r−1,s−p](τ)

= ch[M ε
r−1,s−p](τ) + ch[M ε

r,2p−s](τ) + ch[M ε
r+1,s−p](τ). �

Proposition 21 Let β±r,s = ((r − 1)α+ ± sα−)/2, then the atypical characters are

ch[M ε
r,s](τ) = ch[F ε

α0/2−β−r,s
](τ)Pα+ε(−α+β

−
r,sτ ;α2

+τ)− ch[F ε
α0/2−β+

r,s
](τ)Pα+ε(−α+β

+
r,sτ ;α2

+τ)

Proof This is a straightforward rewriting. �

3.4 Modular properties of characters

Proposition 22 The modular S-transformation of typical characters is

ch[F ελ+α0/2
]
(−1

τ

)
=

∫
R
Sελ+α0/2,µ+α0/2

ch[F εµ+α0/2
](τ)dµ,

with Sελ+α0/2,µ+α0/2
= e2πε(λ−µ)e−2πiλµ.

Proof This follows from the Gauss integral of Lemma 8. �

Proposition 23 The modular S-transformation of atypical characters is

ch[M ε
r,s]
(
−1

τ

)
=

∫
R
Sε(r,s),µ+α0/2

ch[F εµ+α0/2
](τ)dµ+Xε

r,s(τ)

with

Sε(r,s),µ+α0/2
= −e−2πε((r−1)α+/2+µ)eπi(r−1)α+µ

sin
(
πsα−(µ+ iε)

)
sin
(
πα+(µ+ iε)

)
and

Xε
r,s(τ) =

1

4η(τ)
(sgn(Re(ε)) + 1)

∑
n∈Z

(−1)rneπi
s
pnq

1
2 ( n

2

α2
+

−ε2)(
q
−iε n

α+ − qiε
n
α+
)
.

Note, that in the limit ε→ 0, Xε
r,s vanishes.

3Similar formulas can be obtained for higher s but we do not need them right now.
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Proof With Theorem 4, we get

ch[F ε
α0/2−β±r,s

]
(−1

τ

)
Pα+ε

(α+β
±
r,s

τ
;−

α2
+

τ

)
=

1

2i

∫
R

e−2πεµe2πiβ±r,s(µ+iε)ch[F εµ+α0/2
](τ)

sin
(
πα+(µ+ iε)

) dµ+

1

4η(τ)
(sgn(Re(ε)) + 1)ϑ4,α+ε

(β±r,s
α+

;
τ

α2
+

)
and hence with Proposition 21 the statement follows. �

4 A Verlinde-type formula

Let us consider the case Re(ε) < 0 so there is no correction term present. We are interested
in applying the Verlinde formula. This requires a unitary S-matrix (actually, S-kernel), which is
spoiled by the regularization and instead we have

”

∫
R

”SελµS
−ε̄
µν dµ = ”

∫
R

”e−2πiµ(λ−ν)e2πε(λ−ν)dµ = e2πε(λ−ν)δ(λ− ν) = δ(λ− ν), (4.1)

where δ(x − y) is the Dirac delta-function supported at x = y. We thus define the regularized
fusion coefficients

N ε
ab
c = ”

∫
R

”
SεaρS

ε
bρS
−ε̄
cρ

Sε(1,1)ρ

dρ (4.2)

where (1, 1) refers to the vacuum module M1,1. Consider the vector space Vch generated by ch[V ε]
where V = Mr,s or V = Fλ.

We want to turn Vch into a commutative associative algebra (called the Verlinde algebra of
characters) by defining the product to be

ch[V εa ]× ch[V εb ] := ”

∫
R

”N ε
ab
cch[V εc ]dc (4.3)

and extending this multiplication by linearity. We expect the right hand side to be a finite sum
with non-negative integer multiplicities (as in the Verlinde formula).

4.1 Making the Verlinde algebra of characters rigorous

The integration in (4.1) and (4.2) over R should not be taken literally. As we shall see shortly,
the function that we would like to integrate is clearly non-integrable. Yet, as we are primarily
interested in (4.3), and not so much (4.2), we explain first how to make (4.3) rigorous and then
how to view (4.2) not as a numerical quantity but rather as a distribution. Thus instead of working
with ∫

R

(∫
R

SεaρS
ε
bρS
−ε̄
ρµ

Sε(1,1)ρ

dρ

)
ch[F εµ]dµ, (4.4)

we redefine the fusion product in the Verlinde algebra of characters as∫
R

(∫
R

SεaρS
ε
bρS
−ε̄
ρµ

Sε(1,1)ρ

ch[F εµ]dµ

)
dρ (4.5)
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This double integral turns out to be well-defined in our examples.
To see this let us start from the classical Fourier inversion formula. Suppose that f(x) and its

Fourier transform f̂(x) lie in an appropriate L1-space. Then we have

f(x) =

∫
R

(

∫
R
e2πi(x−y)zf(y)dy)dz.

Going back to (4.5), in this setup the test functions are essentially

f(µ) = e2πε(µ+c)q(µ−α0/2)2/2e2πε(µ−α0/2),

where we ignore the Dedekind η denominator and c does not depend on µ. We are integrating∫
R

(

∫
R
e−2πiρ(µ+c)f(µ)dµ)dρ = f(−c) = q(−c−α0/2)2/2e2πε(−c−α0/2). (4.6)

Notice that the same result can be inferred by working with (4.4) and by using (heuristic) δ-function

δ(x− y) =

∫
R
e2πiρ(x−y)dρ,

as in (4.1). Then second integration, against the delta function (now viewed as distribution) is
simply evaluation so we obtain the same result as in (4.6). To handle infinite sums (see below) we
only have to notice that for every Re(ε) < 0 and f(µ) as before, we have∫

R

f(µ)

sin(µ+ εi)
dµ = 2i

∞∑
m=0

∫
R
f(µ)eε(2m+1)−iµ(2m+1)dµ.

We first fix ε = ε1 + iε2, where ε1 < 0 and ε2 ∈ R. To prove the last formula we first ob-
serve that |q(λ−α0/2)2 | = |q|(λ−α0/2)2 with |q| < 1. Now, Gauss’ integral formula shows that∑∞
m=0

∫
R |f(µ)e(ε1+ε2i)(2m+1)−iµ(2m+1)|dµ =

∑∞
m=0

∫
R |f(µ)eε1(2m+1)|dµ is convergent. Finally, by

Fubini’s theorem we can interchange the sum and integration. This section clarifies all future
computations involving the formal delta function.

4.2 Verlinde algebra of characters

In the next theorem we explicitly determine this algebra.

Theorem 24 Let 1 ≤ s, s′ ≤ p, then the Verlinde algebra of characters is associative and commu-

14



tative and is given by

ch[F ελ]× ch[F εµ] =

p−1∑
`=0

ch[F ελ+µ+`α− ]

ch[M ε
r,s]× ch[F εµ] =

s∑
`=−s+2

`+s=0 mod 2

ch[F εµ+αr,`
]

ch[M ε
r,s]× ch[M ε

r′,s′ ] =

min{s+s′−1,p}∑
`=|s−s′|+1

`+s+s′=1 mod 2

ch[M ε
r+r′−1,`]

+

s+s′−1∑
`=p+1

`+s+s′=1 mod 2

(
ch[M ε

r+r′−2,`−p] + ch[M ε
r+r′−1,2p−`] + ch[M ε

r+r′,`−p]
)
,

where

j∑
l=i

(·) = 0 for i > j.

Remark 25 In mathematical physics a regularization is introduced to avoid divergent quantities.
It is then required that the final result is independent of the regularization scheme. In our case the
final result is the Verlinde algebra, which indeed is independent of the choice of our regularization
parameter ε.

Proof We first note the following identity

sin(sx)

sin(x)
=

s−1∑
`=−s+1

`+s=1 mod 2

eix`

which is verified by multiplying both sides with sin(x). It follows the Verlinde fusion of typicals
with themselves. Note that α+ = −pα−.

N ε
λ+α0/2,µ+α0/2

ν+α0/2 = −
∫
R
e−2πi(ρ+iε)(λ+µ−ν) sin(πα+(ρ+ iε))

sin(πα−(ρ+ iε))
dρ

=

∫
R

p−1∑
`=−p+1

`+p=1 mod 2

e−2πi(ρ+iε)(λ+µ−ν+`α−/2)dρ

=

p−1∑
`=−p+1

`+p=1 mod 2

δ(λ+ µ− ν + `α−/2)e2πε(λ+µ−ν+`α−/2)

=

p−1∑
`=−p+1

`+p=1 mod 2

δ(λ+ µ− ν + `α−/2)
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and hence

ch[F ελ+α0/2
]× ch[F εµ+α0/2

] =

p−1∑
`=−p+1

`+p=1 mod 2

ch[F ελ+µ+`α−/2+α0/2
]

so that

ch[F ελ]× ch[F εµ] =

p−1∑
`=−p+1

`+p=1 mod 2

ch[F ελ+µ+`α−/2−α0/2
] =

p−1∑
`=0

ch[F ελ+µ+`α− ]

since −α0 = (p−1)α−. The Verlinde fusion of atypicals with typicals is proven in the same manner
as the previous case.

N ε
(r,s),µ+α0/2

ν+α0/2 =

∫
R
e−2πi(ρ+iε)(µ−(r−1)α+/2−ν) sin(πsα−(ρ+ iε))

sin(πα−(ρ+ iε))
dρ

=

∫
R

s−1∑
`=−s+1

`+s=1 mod 2

e−2πi(ρ+iε)(µ−(r−1)α+/2−ν+`α−/2)dρ

=

s−1∑
`=−s+1

`+s=1 mod 2

δ(µ− (r − 1)α+/2− ν + `α−/2)

=

s−1∑
`=−s+1

`+s=1 mod 2

δ(αr,`+1 + µ− ν)

Recall that αr,s = − 1
2 (rα+ + sα− − α0). It follows that

ch[M ε
r,s]× ch[F εµ+α0/2

] =

s∑
`=−s+2

`+s=0 mod 2

ch[F εµ+α0/2+αr,`
].

Finally, the case of atypicals uses the following identity for Im(x) < 0, and positive integers s, s′, p

− sin(sx)sin(s′x)

sin(x)sin(px)
=

∞∑
`′=0

e−ipx(2`′+1)
s′+s−1∑

`=|s′−s|+1
s+s′+`=1 mod 2

(
e−ix` − eix`

)
,

Im(x) < 0 ensures convergence and the identity is verified by multiplying both sides with the
denominator of the left-hand side. We thus get

N ε
(r,s)(r′,s′)

ν+α0/2 = −
∫
R
e−πi(ρ+iε)(−(r+r′−2)α+−2ν) sin(πsα−(ρ+ iε))sin(πs′α−(ρ+ iε))

sin(πα−(ρ+ iε))sin(πα+(ρ+ iε))
dρ

=

∫
R

∞∑
`′=0

s′+s−1∑
`=|s′−s|+1

s+s′+`=1 mod 2

e−πi(ρ+iε)((2`
′+3−r−r′)α+−2ν)

(
e−πiα−`(ρ+iε) − eπiα−`(ρ+iε)

)
dρ

=

∞∑
`′=0

s′+s−1∑
`=|s′−s|+1

s+s′+`=1 mod 2

(
δ(αr+r′−2`′−2,−`+1 − ν)− δ(αr+r′−2`′−2,`+1 − ν)

)
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Now using αr,s+α0/2 = αr−1,s−1 and αr,s = αr+1,p+s and the expression of atypical characters
in terms of typicals, we get

ch[M ε
r,s]× ch[M ε

r′,s′ ] =

∞∑
`′=0

s′+s−1∑
`=|s′−s|+1

s+s′+`=1 mod 2

(
ch[F εαr+r′−1−2`′−1,p−`

]− ch[F εαr+r′−1−2`′−2,`

)

=

s+s′−1∑
`=|s−s′|+1

`+s+s′=1 mod 2

ch[M ε
r+r′−1,`]

In the case of p < s+ s′ − 1 ≤ 2p− 1 we have to use Proposition 20 to obtain

ch[M ε
r,s]× ch[M ε

r′,s′ ] =

s+s′−1∑
`=p+1

`+s+s′=1 mod 2

(
ch[M ε

r+r′−2,`−p] + ch[M ε
r+r′−1,2p−`] + ch[M ε

r+r′,`−p]
)

+

p∑
`=|s−s′|+1

`+s+s′=1 mod 2

ch[M ε
r+r′−1,`].

We also have to check that the following relation inside the Verlinde algebra of characters

ch[F εαr−1,p−s
] = ch[M ε

r,s] + ch[M ε
r−1,p−s]

is consistent with the proposed multiplication. This follows immediately from the relation

ch[F εαr−1,p−s
]× ch[F εν ] = (ch[M ε

r,s] + ch[M ε
r−1,p−s])× ch[F εµ]

=

s∑
l=−s+2;2

ch[F εµ+αr,l
] +

p−s∑
l=−(p−s)+2;2

ch[F εµ+αr−1,l
]

=

p−1∑
l=0

ch[F εαr−1,p−s−2l+µ
].

Commutativity is clear from the definition, while associativity can be easily checked directly (It
also follows from Theorem 28 below). This completes the proof of the theorem. �

The previous computations with the characters is very useful because it gives us lots of hints
about the fusion rules between triples of modules for the singlet. Although we do not have a proof
that the category of W(2, 2p− 1)-Mod is a braided tensor category, we believe this to be the case
(or at least a suitable sub-category). Thus we can talk about its Grothendieck ring.

Conjecture 26 The relations in Theorem 24 also hold inside the Grothendieck ring.

A vertex operator algebra approach to this conjecture will be subject of [AdM4].
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4.3 Regularized quantum dimensions

We introduce the regularized quantum dimension of a module for Re(ε) < 0 as

qdim[V ε] = lim
τ→0+

ch[V ε(τ)]

ch[M ε
1,1](τ)

. (4.7)

They are

Proposition 27 The regularized quantum dimension of typical characters are

qdim[F ελ] = q2λ−α0
ε

sin(−πα+εi)

sin(πα−εi)
= q2λ−α0

ε

p−1∑
`=−p+1

`+p=1 mod 2

qα−`ε

and of atypicals they are

qdim[M ε
r,s] = q−(r−1)α+

ε

sin(πsα−εi)

sin(πα−εi)
= q−(r−1)α+

ε

s−1∑
`=−s+1

`+s=1 mod 2

qα−`ε

for qε = eπε.

Proof We have the limits

lim
τ→0

η(q)ch[F ελ] = e2πε(λ−α0/2) = q2λ−α0
ε

and for positive a

lim
τ→0

Paε(bτ ; cτ) =

∞∑
n=0

e2πεa(n+1/2) = (e−aπε − eaπε)−1

Observe that here it was essential that Re(ε) < 0.

lim
τ→0

η(q)ch[M ε
r,s] =

e−β
−
r,s2πε − e−β

+
r,s2πε

e−aπε − eaπε
= e−(r−1)α+ε

sin(πsα−εi)

sin(−πα+εi)
.

The quantum dimensions follow. The sum expansion of the quotients of sin(x) are as in the proof
of Theorem 24. �

The regularized quantum dimensions should be regarded as functions of the regularization
parameter ε with Re(ε) < 0. Consider the vector space Q spanned by (regularized) quantum
dimensions of atypical and typical modules. Pointwise multiplication of quantum dimensions defines
a commutative product on Q, which compares nicely to the Verlinde algebra.

Theorem 28 The algebra of regularized quantum dimensions Q is isomorphic to the Verlinde
algebra Vch.
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Proof The products of regularized quantum dimensions are

qdim[F ελ]× qdim[F εµ] = q2λ+2µ−α0
ε

sin(−πα+εi)

sin(πα−εi)

p−1∑
`=−p+1

`+p=1 mod 2

qα−`−α0
ε

=

p−1∑
`=0

sin(−πα+εi)

sin(πα−εi)
q2λ+2µ+2α−`−α0
ε =

p−1∑
`=0

qdim[F ελ+µ+`α− ]

qdim[M ε
r,s]× qdim[F εµ] = q2µ−α0−(r−1)α+

ε

sin(−πα+εi)

sin(πα−εi)

s−1∑
`=−s+1

`+s=1 mod 2

qα−`−α0
ε

=

s∑
`=−s+2

`+s=0 mod 2

sin(−πα+εi)

sin(πα−εi)
q2µ−(rα++`α−−α0)−α0
ε =

s∑
`=−s+2

`+s=0 mod 2

qdim[F εµ+αr,`
]

qdim[M ε
r,s]× qdim[M ε

r′,s′ ] =
q
−(r+r′−2)α+
ε

sin(πα−εi)

q
−sα−
ε − qsα−ε

2i

s′−1∑
`=−s′+1

`+s′=1 mod 2

qα−`ε

=

s′−1∑
`=−s′+1

`+s′=1 mod 2

q−(r+r′−2)α+
ε

sin(πα−(`+ s)εi)

sin(πα−εi)
=

s+s′−1∑
`=|s−s′|+1

`+s+s′=1 mod 2

qdim[M ε
r+r′−1,`].

Here qdim[M ε
r,s] for s > p is defined as

lim
τ→0+

ch[M ε
r,s(τ)]

ch[M ε
1,1](τ)

so that by Proposition 20

qdim[M ε
r,s] = qdim[M ε

r−1,s−p] + qdim[M ε
r,2p−s] + qdim[M ε

r+1,s−p]

since all limits involved exist. It follows that

qdim[M ε
r,s]× qdim[M ε

r′,s′ ] =

s+s′−1∑
`=|s−s′|+1

`+s+s′=1 mod 2

qdim[M ε
r+r′−1,`]

for s+ s′ − 1 ≤ p and

qdim[M ε
r,s]×qdim[M ε

r′,s′ ] =

s+s′−1∑
`=|s−s′|+1

`+s+s′=1 mod 2

qdim[M ε
r+r′−1,`]+

s+s′−1∑
`=p+1

`+s+s′=1 mod 2

(
qdim[M ε

r+r′−2,`−p] + qdim[M ε
r+r′−1,2p−`] + qdim[M ε

r+r′,`−p]
)
.

19



for s+ s′ − 1 > p.
Observe also the relation

qdim[F εαr−1,p−s
] = qdim[M ε

r,s] + qdim[M ε
r−1,p−s],

which is true as all three limits involved exist. The rest of the proof is the observation that the
linear map from Vch to Q induced by

ch(Xε) 7→ qdim[Xε]

is one-to-one, which follows easily by using the linear independence of power functions qνε . �

Remark 29 In rational conformal field theory, the map from the Verlinde algebra to quantum
dimensions is an algebra homomorphism with non-trivial kernel. The information about fusion
rules obtained from quantum dimension is then very limited. In our case the quantum dimension
in the limit ε → 0 of typical modules Fλ is p and of atypicals Mr,s is s. On the other hand the
regularized quantum dimension as a function of ε contains the same information as the Verlinde
algebra.

Remark 30 Recall the fusion rules for atypical representations of the Virasoro vertex algebra
L(cp,1, 0) (cf. [L], [Fl], and [M]):

L(cp,1, hr,s)× L(cp,1, hr′,s′) =
∑

r′′∈A(r,r′),s′′∈A(s,s′)

L(cp,1, hr′′,s′′),

where we assume that all indices are positive and Ai,j = {i+ j − 1, i+ j − 3, · · · , |i− j|+ 1}. This
formula merely indicates the fusion rules among triples of irreducibles, defined as dimensions of the
space of intertwining operators [HLZ], and should not be viewed as a relation in the (hypothetical)
Grothendieck ring. If we view L(cp,1, hr′′,s′′) as the top (summand) component of an atypical singlet
module, the above fusion rules can be used to give an upper bound for the singlet fusion rules. But
this ”upper bound” is of course different compared to the proposed fusion rules in Conjecture 26.

Remark 31 As shown in [BM], partial and false theta functions admit higher rank generalizations
coming from higher rank ADE-type Lie algebras in a way that g = sl2 recovers the functions studied
in this paper. In the same paper, various properties of characters of modules and their quantum
dimensions are studied. In particular, we expect their q-dimensions to be positive integers. In
[CMW] we also study the (p+, p−) singlet algebra and the supertriplet introduced in [AdM3].
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