LOGARITHMIC LINK INVARIANTS OF $\mathcal{U}_q^{H}(\mathfrak{sl}_2)$ AND ASYMPTOTIC DIMENSIONS OF SINGLET VERTEX ALGEBRAS

THOMAS CREUTZIG, ANTUN MILAS AND MATT RUPERT

Abstract. We study relationships between the restricted unrolled quantum group $\mathcal{U}_q^{H}(\mathfrak{sl}_2)$ at $q = e^{\pi i/r}$, $r \geq 2$, and the singlet vertex operator algebra $\mathcal{M}(r)$. We use deformable families of modules to efficiently compute $(1,1)$-tangle invariants colored with projective modules of $\mathcal{U}_q^{H}(\mathfrak{sl}_2)$. These relate to the colored Alexander tangle invariants studied in [6, 39]. It follows that the regularized asymptotic dimensions of characters of $\mathcal{M}(r)$ coincide with the corresponding modified traces of open Hopf link invariants. We also discuss various categorical properties of $\mathcal{M}(r)$-mod in connection to braided tensor categories.

1. Introduction

This work is concerned with the restricted "unrolled" quantum group $\mathcal{U}_q^{H}(\mathfrak{sl}_2)$, $q = e^{\pi i/r}$, $r \geq 2$, and the singlet vertex operator algebra $\mathcal{M}(r)$. Representation categories of both are neither semi-simple nor do they have finitely many simple objects. While this quantum group has been used to construct link and 3-manifold invariants [7, 9, 10, 15, 25, 26, 27], categorical properties of the singlet vertex operator algebra (and more generally, vertex algebras with infinitely many simple objects) are still not completely understood. Previously, it was realized in examples that modular-like properties of characters [1, 16, 20, 21, 22], as well as their asymptotic dimensions (often also called quantum dimensions) [16, 18], correctly capture the fusion ring of the singlet vertex algebras and other vertex (super)algebras. This begs for a categorical interpretation and in this work the relation between $\mathcal{M}(r)$ and $\mathcal{U}_q^{H}(\mathfrak{sl}_2)$ gives such an interpretation via open Hopf link invariants. In particular, this shows that the Jacobi variable introduced in [16] as a regularization parameter for the singlet characters has a novel interpretation from the point of view of quantum group invariants.

1.1. Tensor Categories and Vertex Algebras. Vertex operator algebras are important sources of braided and modular tensor categories. If a vertex operator algebra V is regular (i.e. C_2-cofinite and rational), together with some additional mild conditions, then it is well-understood [28, 29] that its representation category is modular and especially ribbon. Moreover in this case, there are three actions of the modular group: on the linear span of torus one-point functions, a categorical one given by twists and Hopf links, and the one that diagonalizes the fusion rules (this is only an S-matrix). All three coincide in the appropriate sense.

If V is not rational but still C_2-cofinite (again, subject to a few additional assumptions), then there is still a modular group action on the space of one-point functions on the torus [38]. Moreover, there is also a modular group action in the category provided it is ribbon [34, 35] and a relation between the character S-matrix and logarithmic Hopf link invariants has been given in [12, 13] for the triplet vertex algebras. In this work we would like to extend these observations beyond categories with finitely many simple objects. From the vertex algebra point of view, vertex algebras which are not C_2-cofinite are considerably difficult to study and no general results are known. One

T.C. was supported by an NSERC Research Grant (RES0020460).
A.M. was supported by a Simons Foundation Collaboration Grant (# 317908) and the Max Planck Institute of Mathematics, Bonn.
issue with these algebras is that their categories of weak modules are way too big and only after restriction to a subcategory we hope to have good categorical properties. In an important series of papers, Huang, Lepowsky and Zhang [30] obtained sufficient conditions on a category \(C \) to possess a braided (vertex) tensor category structure. Roughly speaking, they proved that if all objects in an abelian subcategory \(C \) of generalized \(V \)-modules satisfy certain conditions, the category is closed under \(P(z) \)-tensor products. If in addition we assume a few additional conditions, then the convergence and extension properties for products and iterates hold in \(C \), and thus the category can be endowed with a braided tensor category structure. More precisely, Assumptions 10.1, 12.1 and 12.2 [30] have to be satisfied. The most difficult part in the verification of these axioms is that a suitable subcategory is closed under the \(P(z) \)-tensor product. We should mention that Miyamoto recently obtained a sufficient condition on the closure of the tensor product in a \(C_1 \)-cofinite category of modules [37]. But his result alone does not give a braided tensor product, so our approach is to combine both [30] and [37].

The singlet vertex algebra \(\mathcal{M}(r) \), \(r \in \mathbb{N}_{\geq 2} \), is a prominent example among non-generic irrational non-\(C_2 \)-cofinite vertex algebras and it was studied by many authors [2, 3, 4, 5, 16, 18], including early works of mathematical physicists. This vertex algebra (which can be realized as a subalgebra of better known triplet vertex algebra [3]) contains both atypical and typical representations so it serves as a very good testing ground for categorical exploration beyond \(C_2 \)-cofiniteness. We have already understood in previous works that the asymptotic dimensions of characters relate to representations of the fusion ring [16, 18] and our conjecture was that this has a precise categorical meaning. Here, we will give such an interpretation. One important guiding principle is our conjectural correspondence between \(\mathfrak{f} \mathcal{U}_q^H(\mathfrak{sl}_2) \)-modules and the singlet VOA \(\mathcal{M}(r) \)-modules as monoidal categories and maybe even as braided tensor categories, after restriction to suitable sub-categories. This restriction is indeed needed in order to have a braiding on the quantum group side - one needs the category of weight modules introduced in [9].

1.2. Summary of the present work. Representations of the tensor ring in a ribbon category are directly given by open logarithmic Hopf link invariants [44] (for a proof in non-strict categories see [12]). Here, we first successfully compare them with the regularized asymptotic dimensions of characters and secondly we find a novel way of computing them. Previously, they have been computed using the known tensor ring [9], which from our perspective is not ideal as we are seeking ways to better understand the fusion ring of the singlet vertex algebra. Our computation is a deformation argument analogous to ideas of Murakami and Nagatomo [40, 41] in the case of the restricted quantum group \(\mathcal{U}_q(\mathfrak{sl}_2) \) but also motivated by the idea of deformable families of VOAs [19]. The idea is that if one has a continuous set of modules, all but a discrete set of them semisimple, then one can construct a deformable family of modules \(M(x) \) which specializes to specific modules if specializing the variable \(x \) and especially at non-generic position also specializing to the indecomposable but reducible modules of particular interest in logarithmic conformal field theory. Moreover, this process commutes with the computation of invariants of interest such as Hopf links and twists. Since these are next to trivial to compute on simple modules our process gives a nice way of obtaining them also for the complicated cases of indecomposable but reducible modules.

Our trajectory of computation actually extends straight forwardly to any open \((1,1)\)-tangle invariants. It turns out that the results very nicely compare to the colored Alexander invariants introduced by Akutsu, Deguchi and Ohtsuki in [6] and further developed by Murakami [39, 41, 40]. This has already been observed earlier if only simple projective modules were used as colors [26]. We would like to stress one important difference between \(\mathcal{U}_q^H(\mathfrak{sl}_2) \) and \(\mathcal{U}_q(\mathfrak{sl}_2) \). The latter is not

1Regretfully, there is no consistent notation for the singlet algebra in the literature; previously it was also denoted by \(\mathcal{W}(2, 2r - 1) \) in [16] as well as by \(M(1) \) in [2, 3].
braidable and therefore the category of finite-dimensional $U_q(\mathfrak{sl}_2)$-modules does not have a universal R-matrix [33]. On the other hand the category of (suitably defined) weight modules for $U^H_q(\mathfrak{sl}_2)$ is braided. We also would like to announce that this problem for $U_q(\mathfrak{sl}_2)$ can be cured by finding a suitable non-trivial associator in the module category of $U_q(\mathfrak{sl}_2)$ [24, 11]. This associator is found in identifying the module category of $U_q(\mathfrak{sl}_2)$ as the representation category of local modules of an algebra in $U^H_q(\mathfrak{sl}_2)$ [11]. It remains however to be proven that the resulting module category gives rise to the colored Alexander invariants studied by Murakami.

1.3. Results. It is believed that the representation categories of $U^H_q(\mathfrak{sl}_2)$ and $\mathcal{M}(r)$ are equivalent as monoidal and hopefully as braided tensor categories (we will have a more precise conjecture below). The fusion ring of $\mathcal{M}(r)$ is not known and its Grothendieck ring has been conjectured in [16]. Comparison does work though (see Section 5):

Theorem 1. Irreducible representations of $U^H_q(\mathfrak{sl}_2)$ and $\mathcal{M}(r)$ are related as follows:

1. Assume that the Grothendieck ring of $\mathcal{M}(r)$ is as conjectured (see Section 2). Let $\alpha \in (\mathbb{C} \setminus \mathbb{Z}) \cup r\mathbb{Z}$. Then the map $\varphi: V_\alpha \mapsto F_{\frac{\alpha}{\sqrt{2r}}} \otimes \mathbb{C}C_{kr} \mapsto M_{1-k+i+1}$ between simple objects for $U^H_q(\mathfrak{sl}_2)$ and $\mathcal{M}(r)$ induces a ring isomorphism.

2. Let $k \in \mathbb{Z}$ and $j \in \{0, \ldots, r-2\}$ and let $\epsilon \in \mathbb{C}$ satisfy $Re(\epsilon) < B^r_\epsilon$ as well as $\epsilon \in S(k, j+1+r(k+1))$ (for the precise definitions of these sets, see Section 2) then

$$qdim[\varphi(X)] = \frac{t_{P_j \otimes \mathbb{C}C_{kr}}(\Phi_{X, P_j \otimes \mathbb{C}C_{kr}} \circ x_{j,k})}{t_{P_j \otimes \mathbb{C}C_{kr}}(\Phi_{S_0, P_j \otimes \mathbb{C}C_{kr}} \circ x_{j,k})},$$

and if $Re(\epsilon) > B^r_\epsilon$ then for $\alpha = i\sqrt{2r}\epsilon$ we have

$$qdim[\varphi(X)] = \frac{t_{V_\alpha}(\Phi_{X, V_\alpha})}{t_{V_\alpha}(\Phi_{S_0, V_\alpha})},$$

Here t_X is the modified trace on the ideal of negligible (projective) objects X.

The previous result has an interpretation in terms of Hopf link invariants. In a modular tensor category, with objects X_i, it is known that quantum dimensions of simple objects can be expressed in terms of the coefficient of the S-matrix

$$qdim(V_i) = \frac{S_{i,0}}{S_{0,0}}.$$

The entries of the S-matrix diagrammatically correspond to the closed Hopf link diagram colored by simple objects, that is, $S_{i,j} = tr(c_{V_i, V_j} \circ c_{V_j, V_i})$. In a non-semisimple braided, rigid tensor category, there are additional open Hopf link invariants coming from indecomposable projective modules [44] (see also [9, 12, 13]).

If the representation categories of $U^H_q(\mathfrak{sl}_2)$ and $\mathcal{M}(r)$ are braided equivalent then this means that the asymptotic dimensions of regularized characters of the VOA $\mathcal{M}(r)$ precisely capture the modified traces of the logarithmic Hopf link invariants. In the continuous regularization regime these are the
ordinary modified traces while the strip-wise constant regime corresponds to traces of logarithmic Hopf link invariants weighted with the nilpotent endomorphisms. It is instructive to view the formulas in Theorem 1 as

\[\text{qdim}[\varphi(X)^\epsilon] = \frac{S_{X,P}^{x_P}}{S_{V,P}^{x_P}} \]

where \(P \) and \(x_P \in \text{End}(P) \) depend on the Jacobi variable \(\epsilon \).

In [16], the regularized quantum dimensions of modules were used to at least conjecture the Grothendieck ring of \(\mathcal{M}(r) \) and in [9] the Hopf link invariants of \(U_q^{H}(\mathfrak{sl}_2) \) were computed using the known tensor ring of \(U_q^{H}(\mathfrak{sl}_2) \). Our picture is that one should use the Hopf link invariants to compute the tensor ring of \(U_q^{H}(\mathfrak{sl}_2) \) and we indeed can find a strategy that works well. The key Lemma (see Theorem 5) is the construction of a deformable family of modules \(X_\epsilon \) for \(\epsilon \in (-\frac{1}{2}, \frac{1}{2}) \) such that

\[X_\epsilon = \begin{cases} V_{1+i-r+\epsilon} \oplus V_{-1-i+r+\epsilon} & \text{if } \epsilon \neq 0 \\ P_1 \otimes \mathbb{C}_r & \text{if } \epsilon = 0 \end{cases} \]

This deformable family can be used to compute open Hopf link invariants and more generally open tangle invariants of \((1,1)-\text{tangles} T\). For this we recall Section 3 of [26].

Let \(L \) be a \(C \)-colored ribbon graph, such that at least one of the colors is a simple \(V_\lambda \). Then \(T_\lambda(L) \in \text{End}(V_\lambda) \) is obtained by first cutting the edge belonging to \(V_\lambda \) of the colored \((1,1)-\text{ribbon graph} L \) and then applying the usual ribbon functor to obtain a morphism in \(C \). Then the renormalized Reshetikhin-Turaev link invariant is

\[F'(L) = t_{V_\lambda}(T_\lambda(L)) \]

where \(t_{V_\lambda} \) is the modified trace on \(V_\lambda \). These invariants where shown in [26] to coincide with Murakami’s Alexander invariants [39]. We can now extend these results to any projective module. For this let \(L \) be as above but with at least one of the colors the module \(P_1 \otimes \mathbb{C}_r \). Let \(T_{P_1 \otimes \mathbb{C}_r}(L) \) be the colored \((1,1)-\text{ribbon graph} by cutting the edge belonging to \(P_1 \otimes \mathbb{C}_r \). We define

\[F'(L) = t_{P_1 \otimes \mathbb{C}_r}(T_{P_1 \otimes \mathbb{C}_r}(L)) \]

If one of the colors of \(L \) is a simple \(V_\lambda \) then the properties of the modified trace ensure that this definition and the previous one of \(F'(L) \) coincide. Let \(L_{V_\lambda} \) be the colored \((1,1)-\text{ribbon graph} obtained by replacing the strand which is colored with \(P_1 \otimes \mathbb{C}_r \) with \(V_\lambda \). Let \(d(X) = t_X(Id_X) \) be the modified dimension of a projective module \(X \) and let \(x_{i,\ell r} \) be the nilpotent endomorphism of \(P_1 \otimes \mathbb{C}_r \) normalized as in section 3.2, then (Theorem 9):

Theorem 2. The colored \((1,1)-\text{ribbon graph} L \) satisfies

\[F'(L) = t_{P_1 \otimes \mathbb{C}_r}(T_{P_1 \otimes \mathbb{C}_r}(L)) = \lim_{\epsilon \to 0} \left(F'(L_{V_{1+i-r+\ell r+i\epsilon}}) + F'(L_{V_{-1-i+r+\ell r+i\epsilon}}) \right) \]

and

\[T_{P_1 \otimes \mathbb{C}_r}(L) = a \text{Id}_{P_1 \otimes \mathbb{C}_r} + bx_{i,\ell r} \]

with coefficients

\[a = \lim_{\epsilon \to 0} \frac{F'(L_{V_{1+i-r+\ell r+i\epsilon}})}{d(V_{1+i-r+\ell r+i\epsilon})} = \frac{F'(L_{V_{1+i-r+\ell r+i\epsilon}})}{d(V_{1+i-r+\ell r+i\epsilon})} \quad \text{and} \]

\[b = \frac{r}{2\pi i(1+i)} \left(\frac{dF'(L_{V_\lambda})}{d\lambda} \bigg|_{\lambda=\ell r+i-r-i} - \frac{dF'(L_{V_\lambda})}{d\lambda} \bigg|_{\lambda=i+i-r+\ell r} \right). \]
The construction of the deformable family of modules X_r is the only key ingredient in proving this theorem. Murakami and Nagatomo [41] also constructed a deformable family of modules of the semi-restricted quantum group that specialized at a special point to a projective indecomposable but reducible module and that only at this special point also became a module of $\mathcal{U}_q(\mathfrak{sl}_2)$, while in [39], Murakami varied the q-parameter of $\mathcal{U}_q(\mathfrak{sl}_2)$ such that in the limit $q = e^{\frac{2\pi i}{r}}$ the module specialized to projective indecomposable but reducible module. In both cases it was then used that the employed R-matrix of the involved quantum groups is basically the same. We however recall again, that $\mathcal{U}_q(\mathfrak{sl}_2)$ is not braided.

On the vertex algebra side, the categorical picture is still to be developed. Presently, the only vertex operator algebras with infinitely many simple objects and non semi-simple representations whose categories of modules are known to be braided is the Heisenberg vertex algebra (see Remark 21) and the Kazhdan-Lusztig category [32]. The last section present the key step to push the tensor product theory beyond the Heisenberg vertex algebra. We think that the singlet algebra is an excellent candidate in this direction. In order to apply the Huang-Lepowsky-Zhang theory, several non-trivial conditions have to be verified including the existence of a fundamental field of conformal weight 2 and a braided tensor category structure. We however recall again, that $\mathcal{U}_q(\mathfrak{sl}_2)$ is not braided.

Theorem 3. All finite-length $\mathcal{M}(r)$-modules are C_1-cofinite. Assume that Assumption 12.2 of [30] holds in C_{fin}, the category of finite-length $\mathcal{M}(r)$-modules. Then, the category C_{fin} can be equipped with a braided tensor category structure.

1.4. Future work. This work has several ramifications and extensions. In [17], we introduced and studied regularized characters of modules of certain non C_2-cofinite W-algebras denoted by $W^0(Q)_r$, where $r \geq 2$ and Q is the root lattice of a simply-laced simple Lie algebra \mathfrak{g}. These vertex algebras are ”higher rank” generalization of the singlet vertex algebra $\mathcal{M}(r)$. Their categories of modules are expected to be closely related to the category of modules for higher rank unrolled quantum groups $\mathcal{U}_q^b(\mathfrak{g})$ at $2r$-th root of unity. We plan to study asymptotic dimensions of $W^0(Q)_r$-modules in connection to quantum invariants of knots and links colored with representations of $\mathcal{U}_q^b(\mathfrak{g})$.

Acknowledgements. T.C. is very grateful to Terry Gannon for collaboration on C_2-cofinite VOAs and modular tensor categories resulting in the works [12, 13] where the importance of logarithmic Hopf links in C_2-cofinite VOAs has been realized. He is also thankful to Azat Gainutdinov and Ingo Runkel for valuable discussions on the relation of $\mathcal{U}_q^H(\mathfrak{sl}_2)$ and $\mathcal{U}_q(\mathfrak{sl}_2)$ [11]. A.M. would like to thank Yi-Zhi Huang for discussions on various aspects of the vertex tensor product theory [30] and to Dražen Adamović for discussions on correspondences. Finally, we are grateful to Jun Murakami for a correspondence.

2. The singlet vertex operator algebra $\mathcal{M}(r)$

Let $r \in \mathbb{N}_{\geq 2}$. Here, we review necessary information of the vertex algebra $\mathcal{M}(r)$ following [16]; see also [2, 3, 4]. The vertex algebra $\mathcal{M}(r)$ is realized as a subalgebra of the rank one Heisenberg vertex algebra \mathcal{F}_0. It is strongly generated by the Virasoro vector ω (suitably chosen such that the central charge is $1 - \frac{6(r-1)^2}{r}$), together with one primary field of conformal weight $2r - 1$, usually denoted by H. Introduce

$$\alpha_+ = \sqrt{2r}, \quad \alpha_- = -\sqrt{2/r}, \quad \text{and} \quad \alpha_0 = \alpha_- + \alpha_+.$$

Denote by F_λ the Fock space with the highest weight $\lambda \in \mathbb{C}$, which is also an \mathcal{F}_0-module. All irreducible \mathcal{M}-modules are realized as subquotients of F_λ, which we now describe briefly.
Let \(L = \sqrt{2r}\mathbb{Z} \), viewed as a rank one lattice, and \(L' \) denotes its dual lattice. Then typical simple modules \(F_\lambda \) are parameterized by \(\lambda \) in \((\mathbb{C} \setminus L') \cup L\), while atypical simple modules \(M_{t,s} \subset F_{\alpha_{t,s}} \) are parameterized by integers \(t, s \) with \(1 \leq s \leq r - 1 \). Characters of irreducible \(\mathcal{M}(r) \)-modules can be easily computed. Irreducible characters admit an \(\epsilon \)-regularization, as explained in [16], where they are denoted by \(\text{ch}[X^\epsilon] \), where \(X \) is an \(\mathcal{M}(r) \)-module. Here \(\epsilon \in \mathbb{C} \). The main result of [16] is a formula for the modular transformation of regularized partial and false theta functions, which then gives modular properties of regularized characters. These in turn give a Verlinde-type algebra for the regularized characters, where the product is defined (for \(\text{Re}(\epsilon) > 0^2 \) as
\[
\text{ch}[X^\epsilon] \times \text{ch}[X^\epsilon] = \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{S_{\alpha p}^\epsilon S_{\alpha p}^\epsilon S_{\rho}^\epsilon}{S_{(1,1)}^\epsilon} \text{ch}[F_{\mu}^\epsilon]d\mu d\rho,
\]
and where \(S_{\cdot,\cdot} \) defines the \(S \)-kernel. For irreducible characters this formula reads
\[
\text{ch}[F_{\lambda}^\epsilon] \times \text{ch}[F_{\mu}^\epsilon] = \sum_{\ell=0}^{p-1} \text{ch}[F_{\lambda+\mu+\ell \alpha_{-\epsilon}}], \quad \text{ch}[M_{t,s}^\epsilon] \times \text{ch}[F_{\mu}^\epsilon] = \sum_{\ell=-s+2}^{s} \text{ch}[F_{\mu+\alpha_{\ell,s}}]
\]

Then regularized asymptotic dimensions are introduced as
\[
\text{qdim}[X^\epsilon] := \lim_{\tau \to 0^+} \frac{\text{ch}[X^\epsilon(\tau)]}{\text{ch}[M_{1,1}^\epsilon](\tau)}.
\]
Following [18] introduce
\[
B_{\epsilon}^r := -\min \left\{ \left\lfloor \frac{m}{\sqrt{2r}} \right\rfloor - \text{Im}(\epsilon) \middle| m \in \mathbb{Z} \setminus r\mathbb{Z} \right\}.
\]
Then for \(\text{Re}(\epsilon) > B_{\epsilon}^r \) the regularized asymptotic dimensions are
\[
\text{qdim}[F_{\lambda}^\epsilon] = q_{\epsilon}^{2\lambda-\alpha_0} \sin(-\pi \alpha_+ \epsilon i) / \sin(\pi \alpha_- \epsilon i) = q_{\epsilon}^{2\lambda-\alpha_0} \sum_{\ell=-p+1}^{p-1} q_{\epsilon}^{\alpha_- \ell}
\]
\[
\text{qdim}[M_{t,s}^\epsilon] = q_{\epsilon}^{-(t-1)\alpha_+} \sin(\pi s \alpha_- \epsilon i) / \sin(\pi \alpha_- \epsilon i) = q_{\epsilon}^{-(t-1)\alpha_+} \sum_{\ell=-s+1}^{s-1} q_{\epsilon}^{\alpha_- \ell}
\]
and for \(\text{Re}(\epsilon) < B_{\epsilon}^r \) the answer is \(\text{qdim}[F_{\lambda}^\epsilon] = 0 \) and for \(\epsilon \in \mathbb{S}(k,m), k \in \mathbb{Z}, m = 0, \ldots, 2r-1, \)
\[
\text{qdim}[M_{t,s}^\epsilon] = \begin{cases}
 (t-1)m(t-1) \sin(\pi ms/r) / \sin(\pi r) & \text{if } m \neq 0, r, \\
 (t-1)(m+1)(t-1) - \frac{m}{r} (s-1) \sin(\pi s/r) / \sin(\pi r) & \text{if } m = 0, r.
\end{cases}
\]

\(^2\)In [16], we used \(-\epsilon\) instead of \(\epsilon\) so the formula was given in the \(\text{Re}(\epsilon) < 0\) region.
with
\[
S(k, m) = \left\{ \epsilon \in \mathbb{C} \left| k + \frac{2m - 1}{4r} < \frac{\text{Im}(\epsilon)}{\sqrt{2r}} < k + \frac{2m + 1}{4r} \right\} \right.,
\]
k \in \mathbb{Z} \text{ where } m = 0, \ldots, 2r - 1. \text{ It turns out that the algebra of quantum dimensions and above Verlinde algebra of characters coincide. Further the conjecture of [16] is that these relations also hold in the Grothendieck ring of the module category of } \mathcal{M}(r). \text{ Note, that the latter is also only conjectured to be braided. }

3. The unrolled restricted quantum group \(\overline{U}_q^H(\mathfrak{sl}_2) \)

Throughout \(q = e^{\pi i/r}, r \geq 2 \). Also, \(\{\alpha\} = q^\alpha - q^{-\alpha}, \{\alpha\} = \frac{\{\alpha\}}{\{1\}}, \text{ and } [n]! = [n] \cdots [1]. \)

In this section we review basic facts about the unrolled quantum group \(\overline{U}_q^H(\mathfrak{sl}_2) \) following primarily [9]. The quantum group \(\overline{U}_q^H(\mathfrak{sl}_2) \) as a unital associative algebra is generated \(E,F,K,K^{-1} \) and \(H \), with the following relations:

\[
KE = q^2EK, \quad KF = q^{-2}FK, \quad HK = KH
\]

\[
[H, E] = 2E, \quad [H, F] = -2F, \quad [E, F] = \frac{K - K^{-1}}{q - q^{-1}}.
\]

\(E^r = 0, \quad F^r = 0. \)

The Hopf algebra structure is defined as usual; we use standard comultiplication formulas for \(E, F \) and \(K \), while \(H \) is primitive, that is \(\Delta(H) = 1 \otimes H + H \otimes 1 \). Thus, the antipode map \(S \) is induced by letting \(S(H) = -H \) and \(S(E), S(K) \) and \(S(F) \) are defined as usual. Not all \(\overline{U}_q^H(\mathfrak{sl}_2) \) representations are of interest. We say that an \(\overline{U}_q^H(\mathfrak{sl}_2) \)-module \(M \) is a weight module if \(M \) is finite-dimensional and \(H \)-diagonalizable such that \(q^K = H \) (as an operator on \(M \)). As in [9], we denote by \(\mathcal{C} \) the category of weight \(\overline{U}_q^H(\mathfrak{sl}_2) \)-modules. Irreducible objects in \(\mathcal{C} \) are easy to classify. They are clearly of highest weight and belong to three types: \(S_\alpha, n = 0, \ldots, r - 1, \text{ of dimension } n + 1, \text{ with } \alpha \in \mathbb{C} := (\mathbb{C} \setminus \mathbb{Z}) \cup r\mathbb{Z} \text{ are of dimension } r, \text{ and one-dimensional modules } \mathcal{C}^H_{kr} \). Then a complete list of irreps is given by: (atypicals) \(S_i \otimes \mathcal{C}^H_{kr}, k \in \mathbb{Z}, n = 0, \ldots, r - 2 \) and (typicals) \(V_\alpha, \alpha \in (\mathbb{C} \setminus \mathbb{Z}) \cup r\mathbb{Z} \). All the irreducible modules can be constructed explicitly in terms of their bases [9].

3.1. Beyond category \(\mathcal{C} \). Here we discuss an enlargement of the category \(\mathcal{C} \). As we shall explain below, it is actually not true that the (full) category of finitely generated \(\mathcal{M}(r) \)-modules is equivalent to \(\mathcal{C} \). This is why it is interesting and important to consider \(\overline{U}_q^H(\mathfrak{sl}_2) \)-modules outside the category \(\mathcal{C} \).

Next we introduce what we call category \(\mathcal{C}_\text{log} \) (here \(\text{log} \) is meant to indicate inclusion of logarithmic modules - this terminology is motivated by a closely related notion in logarithmic conformal field theory [30, 36]). Objects in \(\mathcal{C}_\text{log} \) are finite-dimensional \(\mathcal{M}(p) \)-modules such that \(q^H = K \) (as operators) but \(H \) does not act necessarily semisimple (of course, here \(q^H = \sum_{n \geq 0} (\pi H)^n \)). Now we show that this category admits self-extensions of generic modules \(V_\alpha \) but no self-extension of simple modules of dimension \(< r \). As we already indicated in the introduction, under the conjectural correspondence of representations generic representation of the quantum group this is in agreement with the singlet algebra case [3, 36]).

Consider a \(2r \)-dimensional module \(\tilde{V}_\lambda \) with a basis \(v_i^0, v_i^1, i = 0, \ldots, r - 1 \) with the action:

\[
H.v_i^0 = (\lambda - 2i)v_i^0 + v_i^1, \quad H.v_i^1 = (\lambda - 2i)v_i^1, \quad 0 \leq i \leq r - 1
\]
\[
Kv_i^0 = q^{\lambda - 2i} v_i^0 + \frac{\pi i}{r} q^{\lambda - 2i} v_i^1, \quad Kv_i^1 = q^{\lambda - 2i} v_i^1
\]
\[
Ev_i^0 = \frac{\{i\}}{\{i\}^2} v_{i-1}^0 + \beta_i v_{i-1}^1, \quad Ev_i^1 = \frac{\{i\}}{\{i\}^2} v_{i-1}^1, \quad Ev_0^0 = E_0^1 = 0,
\]
\[
Fv_i^0 = v_{i+1}^0, \quad Fv_i^1 = v_{i+1}^1; \quad 0 \leq i \leq r - 2, \quad Fv_{r-1}^0 = Fv_{r-1}^1 = 0,
\]

where
\[
\beta_0 = 0, \quad \beta_i = \frac{\pi i}{r} \frac{1}{q - q^{-1}} \sum_{j=1}^i \left(q^{\lambda - 2(j-1)} + q^{2(j-1) - \lambda} \right)
\]

Claim: \(\tilde{V}_\lambda \) is a \(U_q^{H}(\mathfrak{sl}_2) \)-module, a self-extension of \(V_\lambda \). In order to show that \(\tilde{V}_\lambda \) is an \(U_q^{H}(\mathfrak{sl}_2) \)-module the only non-trivial relation relation to verify is
\[
(EF - FE)v_i^0 = \frac{K - K^{-1}}{q - q^{-1}} v_i^0.
\]

For this it is essential that
\[
\beta_r = \sum_{j=1}^r q^{2j} = 0.
\]

It is clear that we now get a non-split short exact sequece:
\[
0 \to V_\lambda \to \tilde{V}_\lambda \to V_\lambda \to 0.
\]

Any irreducible modules of dimension \(i < r \), is isomorphic to \(S_i \otimes \mathbb{C}_k^H \). In order to rule out its self extension it is enough to follows steps in the proof of the claim and observe that \(\sum_{j=0}^i q^{2j} \neq 0 \).

We conclude with the conjecture that the category of finite-length \(\mathcal{M}(r) \)-modules is equivalent to the category \(C_{\log} \). Moreover, the full subcategory \(C \subset C_{\log} \) is expected to be equivalent to the subcategory of \(\mathcal{M}(r) \)-mod generated by irreducible objects (as a tensor category). We also plan to investigate further properties of the category \(C_{\log} \). For example, by examining the existing proof of braiding in \(C \) we can show

Proposition 4. The category \(C_{\log} \) is braided.

3.2. **Projective modules.** Projective modules in \(C \) are classified in [9]. Although this paper did not discuss projective covers, it can be easily shown that the projective modules denoted by \(P_i \) are projective covers of \(S_i \), \(P_i \otimes \mathbb{C}_k^H \) are projective covers of \(S_i \otimes \mathbb{C}_k^H \), and \(V_\alpha, \alpha \in \tilde{C} \), are their own projective covers. Their Jordan-Hölder filtration is described by Figure 1.

Figure 1. Loewy diagram of \(P_i \otimes \mathbb{C}_k^H \) in terms of simple (left) and typical (right) composition factors
We have $\text{End}_{U_q(\mathfrak{sl}_2)}(V_\alpha) = \mathbb{C}\text{Id}_{V_\alpha}$ and it can be shown that $\text{End}_{U_q(\mathfrak{sl}_2)}(P_i) = \mathbb{C}\text{Id}_{P_i \otimes \mathbb{C}_k^H} \oplus \mathbb{C}x_{i,k}$ where $x_{i,k}$ is the nilpotent endomorphism of $P_i \otimes \mathbb{C}_k^H$ uniquely determined by $w_i^H \mapsto w_i^S$ (see Figure 1).

3.3. Modified quantum dimension. Let \mathcal{P} be the full subtensor category of modules generated by projective $\mathcal{P}_q^H(\mathfrak{sl}_2)$-modules. There exists a unique trace on \mathcal{P}, up to multiplication by an element of \mathbb{C}. In particular, there is a unique trace $t = \{t_V\}$ on \mathcal{P}, such that for any $f \in \text{End}_C(V_0)$ we have $t_{V_0}(f) = (-1)^{r-1}(f)$. For such choice of t, following [9], we define the modified quantum dimension function as $d : \text{Ob}(\mathcal{P}) \to \mathbb{C}$, $d(V) := t_V(\text{Id}_V)$.

4. Logarithmic invariants via deformable modules

Open Hopf link invariants have been computed in [9]. However for those involving projective modules knowledge of the tensor ring is required. Here we find a new way of computation that does not require this knowledge. For this, we introduce a deformable family of modules that then will be used to compute logarithmic tangle invariants.

Theorem 5. Let $\epsilon \in (-\frac{1}{2}, \frac{1}{2})$, $i \in \{0, ..., r-2\}$ and let $l \in \mathbb{Z}$. Denote by X_ϵ the module with vector space basis $\{w_i^L_{r-i-2, r-i-2}, ..., w_i^H_{r-i-2, r-i-2}, w_i^S, w_i^R, ..., w_i^R_{i+2, i+2}, w_i^R_{2r-2-i}\}$ and action given by

$$w_{i+2}^R = (-1)^l Ew_i^H, \quad w_{i-2}^L = Fw_{i-2}^H, \quad Fw_{i+2}^R = w_i^S + [1+i][\epsilon]w_i^H$$

$$w_{i-2}^H = F^k w_i^H \quad \text{and} \quad w_i^S = F^k w_i^S \quad \text{for} \quad k \in \{0, ..., i\}$$

$$w_{i-2}^L = F^k w_{i-2}^L \quad \text{and} \quad w_{i+2}^R = (-1)^{k+l} F^k w_{i+2}^R \quad \text{for} \quad k \in \{0, ..., r-2-i\}$$

$$H w_k^X = (k+\ell r+\epsilon) w_k^X, \quad K w_k^X = (-1)^{l} q^{k+i+\ell} w_k^X, \quad \text{for} \quad X \in \{L, H, S, R\}$$

$$E w_k^S = (-1)^{l} w_{k+2}^L, \quad F w_k^X = w_{k-2}^L, \quad \text{for} \quad X \in \{L, S, H\}$$

$$F w_i^S = [1+i][\epsilon]w_{i-2}^L, \quad E w_i^S = 2(-1)^{l+1}[1+i][\epsilon]w_{i+2}^R, \quad E w_i^R = F w_{i+2}^R = 0$$

$$E w_{i-2}^L = 2(-1)^{l}[i+1][\epsilon]w_{i+1}^H + (-1)^{l} w_{i-1}^S$$

$$E w_{i-2}^H = (-1)^{l+1}[i+1+k][k-\epsilon] w_{i-2}^L + 2(-1)^{l+1}[i+1]^{2}[\epsilon]^{2} w_{i-2}^H$$

$$F w_{i-2}^L = -[1+i+k][k+\epsilon] w_{i+2}^L + 2(-1)^{k+i+2}[\epsilon] w_{i+2}^L$$

Then

$$X_\epsilon = \begin{cases} V_{1+i-\ell r+\ell \epsilon} \oplus V_{1-i+\ell r+\ell \epsilon} & \text{if} \ \epsilon \neq 0 \\ P_{i} \otimes \mathbb{C}_k^H & \text{if} \ \epsilon = 0 \end{cases}$$

Proof: Let $\epsilon \in (-\frac{1}{2}, \frac{1}{2}) \setminus \{0\}$. Let $\{x_0, ..., x_{r-1}\}$ denote the standard basis for $V_{1+i-\ell r+\ell \epsilon}$ and $\{y_0, ..., y_{r-1}\}$ the standard basis for $V_{1-i+\ell r+\ell \epsilon}$. Define a new basis $\{w^L_{i+2, i+2}, w^L_{i+4, i+2}, ..., w^L_{i+2, i+2}, w^H_{i+2, i+2}, w^S_{i+2, i+2}, w^S_{i+2, i+2}, w^R_{i+2, i+2}, ..., w^R_{i+2, i+2}\}$ for $V_{1+i-\ell r+\ell \epsilon} \oplus V_{1-i+\ell r+\ell \epsilon}$ by

$$w^H_{i-2} = 2x_k + \frac{1}{2[1+i][\epsilon]} y_{r-1-i+k} \quad w^S_{i-2} = -2[1+i][\epsilon] x_k + y_{r-1-i+k}$$
\[w^L_{i-2-2k} = 2x_{1+i+k}, \quad w^R_{i+2+2k} = \frac{-1}{2[1+i][\epsilon]} \left(\prod_{s=0}^{k} [1+i+s][-s-\epsilon] \right) y_{r-2-i-k} \]

We will first prove the statement for \(\epsilon \neq 0 \). We will show that the action of \(\mathfrak{H}^H_q(\mathfrak{sl}_2) \) on the new basis is precisely as stated in the theorem. Recall that the action on the standard basis element \(v_k \in V_\alpha \) is given by

\[
Hv_k = (\alpha + r - 1 - 2k)v_k, \quad Ev_k = [k][k-\alpha]v_{k-1}, \quad Fv_k = v_{k+1}.
\]

By direct computation, we obtain the following:

\[
Ew^H_i = 2Ex_i - \frac{1}{2[1+i][\epsilon]} Eyr_{r-1-i} = -\frac{[r-1-i][1+r - \epsilon]}{2[1+i][\epsilon]} y_{r-2-i},
\]
\[
Fw^H_i = 2Fx_i - \frac{1}{2[1+i][\epsilon]} Fyr_{r-1} = 2x_{i+1} = w^L_{i-2}.
\]

\[
w^S_i + [1+i][\epsilon]w^H_i = -2[1+i][\epsilon]x_0 + y_{r-1-i} + 2[1+i][\epsilon]x_0 - \frac{1}{2} y_{r-1-i} = \frac{1}{2} Fy_{r-2-i} = Fw^R_i + 1.
\]

Hence, we have shown \(w^R_{i+2} = (-1)^r Ew^H_i, w^L_{i-2} = Fw^H_i, \) and \(Fw^R_{i+2} = w^S_i + [1+i][\epsilon]w^H_i \). It is easily seen that \(Fw^X_k = w^X_{k-2} \) for all \(X \in \{L, S, H\} \) and that

\[
Ew^R_{i+2+2k} = -\frac{[r-2-i-k][1+r - \epsilon]}{2[1+i][\epsilon]} \left(\prod_{s=0}^{k} [1+i+s][-s-\epsilon] \right) y_{r-2-i-(k+1)} = (-1)^k w^R_{i+1+2+2k(k+1)}
\]

so \(Ew^R_k = (-1)^{\ell} w^R_{k+2}, \) which gives \(w^R_{i+2+2k} = (-1)^r E^k w^R_{i+2}, w^H_{i-2k} = F^k w^H_i, \) and \(w^S_{i-2} = F^k w^S_i \), and \(w^L_{i-2-2k} = F^k w^L_{i-2} \).

\(H \) acts on a standard basis vector \(v_k \in V_\alpha \) by \(Hv_k = (\alpha + r - 1 - 2k)v_k \), so we have

\[
Hx_k = (1+i + r + \ell r + \epsilon + r - 1 - 2k)x_k = (i - 2k + \ell r + \epsilon)x_k
\]
\[
Hy_{r-1-i+k} = (-1 - i + r + \ell r + \epsilon + r - 1 - 2(r - 1 - i + k))y_{r-1-i+k} = (i - 2k + \ell r + \epsilon)y_{r-1-i+k}
\]
\[
Hx_{1+i+k} = (1+i + r + \ell r + \epsilon + r - 1 - 2(1 + i + k))x_{1+i+k} = (-i - 2 - 2k + \ell r + \epsilon)x_{1+i+k}
\]
\[
Hy_{r-1-i-(k+1)} = (-1 - i + r + \ell r + \epsilon + r - 1 - 2(r - 1 - i - (k + 1))y_{r-1-i-(k+1)} = (i + 2 + 2k + \ell r + \epsilon)y_{r-1-i-(k+1)}
\]

From this, it immediately follows that

\[
Hw^H_{i-2k} = (i - 2k + \ell r + \epsilon)w^H_{i-2k}, \quad Hw^S_{i-2k} = (i - 2k + \ell r + \epsilon)w^S_{i-2k}, \quad Hw^R_{i+2+2k} = (i + 2 + 2k + \ell r + \epsilon)w^R_{i+2+2k}
\]
and K acts as q^H, so we have shown that $Hw^X_k = (k + \ell r + \epsilon)w^X_k$ and $Kw^X_k = q^{k+\ell r+\epsilon}w^X_k = (1)^q k^{k+\ell r+\epsilon}w^X_k$ for all $X \in \{L, H, S, R\}$. It is easy to see that $Ew^{R}_{2r-2-i} = Fw^{L}_{i+2-2r} = 0$ as $Fx_{r-1} = Ey_0 = 0$. We also have

\[
Ey_{i}^{\ell} = -2[1+i][\epsilon]Fx_{i} + Fy_{r-1} = -2[1+i][\epsilon]x_{i+1} = -[1+i][\epsilon]w_{i-2}^{L},
\]

\[
Ey_{i}^{S} = -2[1+i][\epsilon]Ex_{0} + Ey_{r-1-i} = [1+i][-\ell r - \epsilon]y_{r-2-i} = 2(-1)^{\ell+1}[1+i][\epsilon]w_{i+2}^{R},
\]

\[
Ey_{i-2-2k}^{L} = 2Ex_{i+i+k} = 2[1+i+k][r+k - \ell r - \epsilon)x_{i+k} = (-1)^{\ell+1}[1+i+k][k - \epsilon]w_{i-2-2(k-1)}^{L},
\]

\[
Ey_{i+2+2k}^{R} = \frac{-1}{2[1+i][\epsilon]} \left(\prod_{s=0}^{k}[1+i+s][-s-\epsilon] \right) y_{r-1-i-k} = -[1+i+k][k + \epsilon]w_{i+2+2(k-1)}^{R},
\]

and

\[
(-1)^{\ell} (w_{i-2k}^{S} + 2[1+i][\epsilon]w_{i-2k}^{H}) = (-1)^{\ell} (-2[1+i][\epsilon)x_{i} + y_{r-1} + 4[1+i][\epsilon]x_{i} - y_{r-1}) = 2(-1)^{\ell}[1+i][\epsilon)x_{i} = 2[1+i][\ell r + \epsilon)x_{i} = Ey_{i-2}.\]

From the definition of w_{i-2k}^{H} and w_{i-2k}^{S} it is easy to show that

\[
x_{k} = w_{i-2k}^{H} + \frac{1}{2[1+i][\epsilon]} w_{i-2k}^{S}, \quad y_{r-1-i-k} = 2w_{i-2k}^{S} + 2[1+i][\epsilon]w_{i-2k}^{H}.
\]

From this, we see that

\[
Ey_{i-2}^{H} = 2Ex_{k} - \frac{1}{2[1+i][\epsilon]} Ey_{r-1-i+k} = 2[k][1+i-k + \ell r + \epsilon)x_{k-1} - \frac{1+i-k}[k - \ell r - \epsilon]y_{r-2-i+k} = 2[k][1+i-k + \epsilon](-1)^{\ell} \left(W_{i-2(k-1)}^{H} + \frac{1}{2[1+i][\epsilon]} w_{i-2(k-1)}^{S} \right) - \frac{[1+i-k][k - \epsilon]}{2[1+i][\epsilon]} (-1)^{\ell} \left(2w_{i-2(k-1)}^{S} + 2[1+i][\epsilon]W_{i-2(k-1)}^{H} \right) + \left(\frac{k[1+i-k+\epsilon]-[1+i-k][k-\epsilon]}{[1+i][\epsilon]} \right) (-1)^{\ell} w_{i-2(k-1)}^{S},
\]

and

\[
Ey_{i-2}^{S} = -2[1+i][\epsilon] Ex_{k} + Ey_{r-1-i+k} = -2[1+i][\epsilon][k][1+i-k + \ell r + \epsilon)x_{k-1} + [1+i-k][k - \ell r - \epsilon]y_{r-2-i+k} = -2[1+i][\epsilon][k][1+i-k + \epsilon](-1)^{\ell} \left(W_{i-2(k-1)}^{H} + \frac{1}{2[1+i][\epsilon]} W_{i-2(k-1)}^{S} \right) + [1+i-k][k - \epsilon](-1)^{\ell} \left(2w_{i-2(k-1)}^{S} + 2[1+i][\epsilon]W_{i-2(k-1)}^{H} \right) = (2[1+i-k][k - \epsilon] - [1+i-k+\epsilon][k]) (-1)^{\ell} w_{i-2(k-1)}^{S}.
\]
\[+ 2[1 + i][\epsilon]([1 + i - k][k - \epsilon] - [1 + i - k + \epsilon][k])(-1)^{k}w_{i-2(k-1)}^{H}. \]

However, by expanding the brackets one has \([k][1 + i - k + \epsilon] - [1 + i - k][k - \epsilon] = [1 + i][\epsilon].\) Hence, the above equations give
\[
w_{i-2k}^{H} = (2[k][1 + i - k + \epsilon] - [1 + i - k][k - \epsilon])(-1)^{k}w_{i-2(k-1)}^{H} + (-1)^{k}w_{i-2(k-1)}^{S},
\]

\[
w_{i-2k}^{S} = (2[1 + i - k][k - \epsilon] - [1 + i - k + \epsilon][k])(-1)^{k}w_{i-2(k-1)}^{S} + 2(-1)^{k+1}[1 + i][\epsilon]^{2}w_{i-2(k-1)}^{H}
\]
as desired. This proves that \(X_{\epsilon} = V_{1+i-r+\epsilon} \otimes V_{1-i+r+\epsilon} \oplus \) when \(\epsilon \neq 0.\) As \(\epsilon \to 0,\) it is easy to see that the action on \(X_{\epsilon}\) is exactly the action on \(P_{i} \otimes C_{l}^{H}\) (see [9]) by identifying \(w_{k}^{X} \in X_{0}\) with \(w_{k}^{X} \otimes v \in P_{i} \otimes C_{k}^{H}\) (here \(C_{k}^{H} = C_{v}\)). Hence, we have shown
\[
X_{\epsilon} = \begin{cases} V_{1+i-r+\epsilon} \oplus V_{1-i+r+\epsilon} & \text{if } \epsilon \neq 0 \\ P_{i} \otimes C_{l}^{H} & \text{if } \epsilon = 0 \end{cases}
\]

\[\square\]

Corollary 6. \(\lim_{\epsilon \to \alpha} AX_{\epsilon} = A \lim_{\epsilon \to \alpha} X_{\epsilon} \quad \forall A \in U_{q}^{H}(sl_{2})\)

Proof: The Theorem holds for \(E, F, H\) and

Corollary 7. Morphisms that consist of compositions of braiding, twists, evaluations and co-evaluations commute with limits.

Proof: This follows from the previous Theorem as braiding, twist, evaluation and co-evaluation are expressed in terms of the action of elements of \(U_{q}^{H}(sl_{2})\) or in the \(H\)-completion of \(U_{q}^{H}(sl_{2})\) (for the braiding).

Proposition 8. The modified quantum dimension satisfies \(\lim_{\epsilon \to 0} d(X_{\epsilon}) = d(X_{0}).\)

Proof: Set \(\lambda = 1 + i - r,\) then we have
\[
d(X_{\epsilon}) = d(V_{\lambda+\epsilon} \oplus V_{-\lambda+\epsilon}) = d(V_{\lambda+\epsilon}) + d(V_{-\lambda+\epsilon})
\]
\[
= (-1)^{r-1+a} \left(\begin{aligned} &\frac{\lambda + \epsilon}{r(\lambda + \epsilon)} + \frac{-\lambda + \epsilon}{r(-\lambda + \epsilon)} \\ &\frac{\lambda + \epsilon}{r(\lambda + \epsilon)} + \frac{\lambda + \epsilon}{r(-\lambda + \epsilon)} \end{aligned} \right)
\]
\[
= (-1)^{\ell(r-1)+a} \left(\begin{aligned} &\frac{\lambda + \epsilon}{r(\lambda + \epsilon)} + \frac{\lambda + \epsilon}{r(-\lambda + \epsilon)} \\ &\frac{\lambda + \epsilon}{r(\lambda + \epsilon)} + \frac{-\lambda + \epsilon}{r(-\lambda + \epsilon)} \end{aligned} \right)
\]
\[
= (-1)^{\ell+1}(r-1)^{2} \left(\begin{aligned} &q^{r(\lambda+\epsilon)} - q^{r(-\lambda+\epsilon)} \\ &q^{r(-\lambda+\epsilon)} - q^{r(-\lambda+\epsilon)} \end{aligned} \right)
\]
\[
= \frac{8r(1+i-r)(q^{1+i-r} + q^{-(1+i-r)})}{8r^{2}}.
\]

We have to evaluate this expression for \(\epsilon \to 0.\) Both the denominator and nominator vanish in this limit. It turns out that the same happens for the derivatives of both denominator and nominator and so we have to apply the rule of L'Hôpital twice and we get as nominator \(8r(-1)^{1+i-r}(r^{1+i-r} + \)

\(q^{-(1+i-r)}),\) and a denominator of \(8r^{2}.\) Hence,
\[
\lim_{\epsilon \to 0} d(X_{\epsilon}) = (-1)^{\ell(r-1)+a} \left(\begin{aligned} &8r(1+i-r)(q^{1+i-r} + q^{-(1+i-r)}) \\ &8r^{2} \end{aligned} \right)
\]
\[
= (-1)^{\ell(r-1)+a} (q^{i+1} + q^{-i-1}) = d(P_{i} \otimes C_{l}^{H}).
\]

\[\square\]
4.1. Colored Alexander invariants. We now apply the above construction. For this we need to recall Section 3 of [26]. Let L be a \mathcal{C}-colored ribbon graph, such that at least one of the colors is a simple V_λ. Then $T_\lambda(L) \in \text{End}(V_\lambda)$ is obtained by first cutting the edge belonging to V_λ of the colored $(1,1)$-ribbon graph L and then applying the usual ribbon functor to obtain a morphism in \mathcal{C}. Then the re-normalized Reshetikhin-Turaev link invariant is

$$F'(L) = t_{V_\lambda}(T_\lambda(L)).$$

These where shown in [26] to coincide with Murakami’s Alexander invariants [39] provided all colors are simple projective modules. We can now extend these results to any projective module. For this let L be as above but with at least one of the colors the module $P_i \otimes \mathbb{C}^H_{\ell r}$. Let $T_{P_i \otimes \mathbb{C}^H_{\ell r}}(L)$ be the colored $(1,1)$-ribbon graph by cutting the edge belonging to $P_i \otimes \mathbb{C}^H_{\ell r}$. We define

$$F'(L) = t_{P_i \otimes \mathbb{C}^H_{\ell r}}(T_{P_i \otimes \mathbb{C}^H_{\ell r}}(L)).$$

If one of the colors of L is a simple V_λ then the properties of the modified trace ensure that this definition and the previous one of $F'(L)$ coincide. Let L_{V_λ} be the colored $(1,1)$-ribbon graph obtained by replacing the strand which is colored with $P_i \otimes \mathbb{C}^H_{\ell r}$ with V_λ.

Theorem 9. The colored $(1,1)$-ribbon graph L satisfies

$$F'(L) = t_{P_i \otimes \mathbb{C}^H_{\ell r}}(T_{P_i \otimes \mathbb{C}^H_{\ell r}}(L)) = \lim_{\epsilon \to 0} (F'(L_{V_{1+i-i+r+\ell+\epsilon}}) + F'(L_{V_{-1-i-i-r+r+\ell+\epsilon}}))$$

and

$$T_{P_i \otimes \mathbb{C}^H_{\ell r}}(L) = aI_{P_i \otimes \mathbb{C}^H_{\ell r}} + bx_{i,\ell r}$$

with coefficients

$$a = \lim_{\epsilon \to 0} \frac{F'(L_{V_{1+i-i-r+r+\ell+\epsilon}})}{d(V_{1+i-i+r+\ell+\epsilon})} = \lim_{\epsilon \to 0} \frac{F'(L_{V_{1+i-i+r+\ell+\epsilon}})}{d(V_{1+i-i+r+\ell+\epsilon})}$$

$$b = \lim_{\epsilon \to 0} \frac{-1}{[1+i][\epsilon]} \left(\frac{F'(L_{V_{1+i-i-r+r+\ell+\epsilon}})}{d(V_{1+i-i+r+\ell+\epsilon})} - \frac{F'(L_{V_{1+i-i+r+\ell+\epsilon}})}{d(V_{1+i-i+r+\ell+\epsilon})} \right)$$

$$= \frac{r}{2\pi i[1+i]} \left(\frac{d}{d\lambda} F'(L_{V_\lambda}) \bigg|_{\lambda=\ell r+i-1} - \frac{d}{d\lambda} F'(L_{V_\lambda}) \bigg|_{\lambda=1+i-i+\ell r} \right).$$

Before proving this theorem, we remark that this result nicely relates to the work of Murakami and Nagatomo on logarithmic link invariants obtained using different quantum groups but the same R-matrix [39, 40, 41]. We also remark that

$$T_\lambda(L) = \frac{F'(L_{V_\lambda})}{d(V_\lambda)} I_{V_\lambda}.$$

Proof: For the first statement, we use the identity $\lim_{\epsilon \to 0} V_{1+i-i-r+\ell+\epsilon} \oplus V_{-1-i-i-r+\ell+\epsilon} = P_i \otimes \mathbb{C}^H_{\ell r}$ which gives

$$F'(L) = \lim_{\epsilon \to 0} t_{V_{1+i-i-r+\ell+\epsilon} \oplus V_{-1-i-i-r+\ell+\epsilon}}(T_{V_{1+i-i-r+\ell+\epsilon} \oplus V_{-1-i-i-r+\ell+\epsilon}}(L_{V_{1+i-i-r+\ell+\epsilon} \oplus V_{-1-i-i-r+\ell+\epsilon}}))$$

where we pulled the limit out of the function using the fact that limits commute with the partial trace and the action of $\overline{U}_q^{H}(\mathfrak{sl}_2)$. The relation follows since coloring with the direct sum of two objects $X \oplus Y$ amounts to computing the sum of the individually colored components $t_{X \otimes Y}(T_{X \otimes Y}(L_{X \otimes Y})) = t_X(T_X(L_X)) + t_Y(T_Y(L_Y)).$

For the second statement, since w_i^H generates $P_i \otimes \mathbb{C}^H_{\ell r}$, it is enough to find the action of $T_{P_i \otimes \mathbb{C}^H_{\ell r}}(L)$ on w_i^H. For this we first act with $T_{V_{1+i-i-r+\ell+\epsilon} \oplus V_{-1-i-i-r+\ell+\epsilon}}(L_{V_{1+i-i-r+\ell+\epsilon} \oplus V_{-1-i-i-r+\ell+\epsilon}})$ on w_i^H and then take the limit ϵ to zero. Recall that we have $w_i^H = a_\epsilon x_0 + b_\epsilon y_{r-1-i}$ and $w_i^S = c_\epsilon x_0 + d_\epsilon y_{r-1-i}$
where \(x_0, y_{r-1-i}, a_\epsilon = 2, b_\epsilon = -\frac{1}{2[1+i][\epsilon]}, c_\epsilon = -2[1+i][\epsilon], \) and \(d_\epsilon = 1 \) are as in the construction of \(X_\epsilon \). Notice that \(x_0 = d_\epsilon w_i^H - b_\epsilon w_i^S \) and \(y_{r-1-i} = a_\epsilon w_i^S - c_\epsilon w_i^H \). To avoid too many indices we introduce the short-hand notation \(T_\lambda := T_{\lambda}(L_{\lambda}) \). We can now compute the action of \(T_{P_i \otimes C_{kr}^H}^H \) on \(w_i^H \):

\[
T_{P_i \otimes C_{kr}^H}^H(w_i^H) = T_{P_i \otimes C_{kr}^H}^H \left(\lim_{\epsilon \rightarrow 0} \left(a_\epsilon x_0 + b_\epsilon y_{r-1-i} \right) \right) = \lim_{\epsilon \rightarrow 0} \left(a_\epsilon d_\epsilon \frac{tv_{1+i-r+\epsilon+}(T_{1+i-r+\epsilon+})}{d(V_{1+i-r+\epsilon+})} (d_\epsilon w_i^H - b_\epsilon w_i^S) + b_\epsilon \frac{tv_{-1-i-r+\epsilon+}(T_{-1-i-r+\epsilon+})}{d(V_{-1-i-r+\epsilon+})} (a_\epsilon w_i^S - c_\epsilon w_i^H) \right).
\]

It follows that

\[
a = \lim_{\epsilon \rightarrow 0} \left(a_\epsilon d_\epsilon \frac{tv_{1+i-r+\epsilon+}(T_{1+i-r+\epsilon+})}{d(V_{1+i-r+\epsilon+})} - b_\epsilon c_\epsilon \frac{tv_{-1-i-r+\epsilon+}(T_{-1-i-r+\epsilon+})}{d(V_{-1-i-r+\epsilon+})} \right)
\]

and

\[
b = -\lim_{\epsilon \rightarrow 0} \left(a_\epsilon b_\epsilon \frac{tv_{1+i-r+\epsilon+}(T_{1+i-r+\epsilon+})}{d(V_{1+i-r+\epsilon+})} - a_\epsilon b_\epsilon \frac{tv_{-1-i-r+\epsilon+}(T_{-1-i-r+\epsilon+})}{d(V_{-1-i-r+\epsilon+})} \right)
\]

Evaluating the limits (using L'Hôpital’s rule for \(b \)) give the result. \(\square \)

Recall the definition of general Hopf link invariants. Given two modules \(V, W \) in \(C \), define

\[
\Phi_{V,W} = (Id_W \otimes ev'_V) \circ (cv_{W} \otimes Id_{V^*}) \circ (cw_{V} \otimes Id_{V^*}) \circ (Id_W \otimes coev_V) \in \text{End}(W).
\]

where \(ev'_V \) and \(coev_V \) are the right evaluation and left coevaluation, respectively. These invariants have been computed in \([9]\). If \(W \) is simple then this computation is relatively straightforward as one only needs to know the action on a highest-weight state. One gets for example

\[
\Phi_{V_\alpha,V_\beta} = \frac{\langle r \beta \rangle}{\langle \beta \rangle} q^{\alpha_\beta} \text{Id}_{V_\beta}, \quad \Phi_{S_i \otimes C_{kr}^H,V_\beta} = \frac{\langle (i+1) \beta \rangle}{\langle \beta \rangle} q^{kr_\beta} \text{Id}_{V_\beta},
\]

\[
\Phi_{P_i \otimes C_{kr}^H,V_\beta} = \frac{\langle r \beta \rangle}{\langle \beta \rangle} q^{kr_\beta} \left(q^{(r-1)\beta} + q^{-(r-1)\beta} \right) \text{Id}_{V_\beta}.
\]

(6)

Also note that \(d(V_\beta) = \frac{\langle \beta \rangle}{q^{r_\beta}} (-1)^{r-1} \). If \(W \) is not simple the computation is more involved and \([9]\) needs tensor product decomposition. Using above theorem and (6) we immediately get

Corollary 10. The colored Hopf links \(\Phi_{Z,P_j} \) with \(Z \in \{S_i \otimes C_{kr}^H, V_\alpha, P_i \otimes C_{kr}^H \} \) are given by

\[
\Phi_{Z,P_j \otimes C_{kr}^H} = a_Z \text{Id}_{P_j \otimes C_{kr}^H} + b_Z x_{j,\epsilon},
\]

\[14\]
where \(a_{P_j \otimes C_{kr}^H} = a_{V_\alpha} = 0 \) and

\[
\begin{align*}
 a_{S_j \otimes C_{kr}^H} &= (-1)^{i+e+kr} \frac{(i+1)(j+1)}{j+1}, \\
 b_{S_j \otimes C_{kr}^H} &= (-1)^{i+e+kr} i \frac{((i+2)(j+1)) - (i+2)(i+1)}{j+1^2 (j+1)}, \\
 b_{V_\alpha} &= q^{\alpha e} \frac{(-1)^{r-j} (q^{r-j} + q^{-(r-j)})}{j+1^2}, \\
 b_{P_j \otimes C_{kr}^H} &= 2r(-1)^{i+e+kr} \frac{(q^{i+1}(j+1) + q^{-(i+1)(j+1)})}{j+1^2}.
\end{align*}
\]

5. **Open Hopf links and asymptotic dimensions**

We will see that continuous quantum/asymptotic dimensions of the singlet algebra correspond to semi-simple parts of logarithmic Hopf links of \(\mathcal{U}_q^{\mathcal{H}} (sl_2) \) and the discrete ones correspond to the nilpotent ones; thus giving a categorical interpretation of asymptotic dimensions as suggested by \([16, 18]\) (see also \([8]\) for another derivation of asymptotic dimensions).

Proposition 11. The quantum dimensions of the typical and atypical modules for the singlet vertex algebra are in agreement with the modified traces of their corresponding \(\mathcal{U}_q^{\mathcal{H}} (sl_2) \) modules in the following sense: Let \(\beta \in \hat{\mathbb{C}} \) and \(i, j \in \{0, \ldots, r-2\} \) and \(k, k' \in \mathbb{Z} \) then for \(\text{Re}(\epsilon) > B' \) and \(\alpha = \sqrt{2} r \epsilon i \)

\[
\begin{align*}
 \text{qdim} \left[\frac{\alpha}{2r+1} \right] &= \frac{t_{V_\alpha} (\Phi_{V_\alpha \circ V_\alpha})}{t_{V_\alpha} (\Phi_{S_j \otimes C_{kr}^H \circ V_\alpha})}, \\
 \text{qdim} \left[M_{1-kr+1} \right] &= \frac{t_{V_\alpha} (\Phi_{S_j \otimes C_{kr}^H \circ V_\alpha})}{t_{V_\alpha} (\Phi_{S_j \otimes C_{kr}^H \circ V_\alpha})},
\end{align*}
\]

and for \(\text{Re}(\epsilon) < B' \) and \(\epsilon \in \mathbb{S}(k, j+1 + r(k+1)) \) then

\[
\begin{align*}
 \text{qdim} \left[\frac{\alpha}{2r+1} \right] &= \frac{t_{P_j \otimes C_{kr}^H} (\Phi_{V_\alpha \circ V_\alpha \circ P_j \otimes C_{kr}^H \circ V_\alpha})}{t_{P_j \otimes C_{kr}^H} (\Phi_{S_j \otimes C_{kr}^H \circ V_\alpha})}, \\
 \text{qdim} \left[M_{1-kr+1} \right] &= \frac{t_{P_j \otimes C_{kr}^H} (\Phi_{S_j \otimes C_{kr}^H \circ P_j \otimes C_{kr}^H \circ V_\alpha})}{t_{P_j \otimes C_{kr}^H} (\Phi_{S_j \otimes C_{kr}^H \circ V_\alpha})}.
\end{align*}
\]

Proof: The proof follows directly by comparing Corollary 10 and the quantum dimensions listed in section 2, namely

\[
\begin{align*}
 \text{qdim} \left[\frac{\alpha}{2r+1} \right] &= e^{-\frac{\alpha}{2r+1} \frac{2(2r+1)^2}{\sqrt{2}(2r)}} \frac{e^{-\frac{\sqrt{2}(2r+1)^2}{\sqrt{2}(2r)}} - e^{\frac{\sqrt{2}(2r+1)^2}{\sqrt{2}(2r)}}}{e^{-\frac{\sqrt{2}(2r+1)^2}{\sqrt{2}(2r)}} - e^{\frac{\sqrt{2}(2r+1)^2}{\sqrt{2}(2r)}}} = e^{-\frac{\pi \alpha}{r} \frac{e^{-\frac{\pi i \alpha}{r}} - e^{\frac{\pi i \alpha}{r}}}{e^{-\frac{\pi i \alpha}{r}} - e^{\frac{\pi i \alpha}{r}}}}, \\
 \text{qdim} \left[M_{1-kr+1} \right] &= e^{\frac{\pi k}{\sqrt{2r}} \frac{2(2r)^2}{\sqrt{2}(2r)}} \frac{e^{-\frac{\pi (j+1)^2}{\sqrt{2r}} - \frac{\pi i (j+1)^2}{\sqrt{2r}}}}{e^{-\frac{\pi \sqrt{2r}^2}{2r} - \frac{\pi i \sqrt{2r}^2}{2r}} - e^{\frac{\pi \sqrt{2r}^2}{2r} + \frac{\pi i \sqrt{2r}^2}{2r}}} = e^{-\frac{\pi i k}{2r} \frac{e^{-\frac{\pi (j+1)^2}{\sqrt{2r}}} - e^{\frac{\pi (j+1)^2}{\sqrt{2r}}}}{e^{-\frac{\pi i \alpha}{r}} - e^{\frac{\pi i \alpha}{r}}}},
\end{align*}
\]

and for \(\text{Re}(\epsilon) < B' \) together with \(\epsilon \in \mathbb{S}(k, j+1 + r(k+1)) \)

\[
\text{qdim} \left[M_{1-kr+1} \right] = (-1)^{kr+1-r} (-1)^{i+kr+1-r} \frac{e^{-\frac{\pi (j+1)(j+1+r(k+1))}{2r}}}{e^{-\frac{\pi (j+1)(j+1+r(k+1))}{2r}}}
\]

\[
\frac{1}{j+1 + r(k+1)}
\]
\[(-1)^{i(k+1)+(j+kr+1-r)k'} \begin{pmatrix} (i+1)(j+1) \\ j+1 \end{pmatrix} = \frac{t_{P_j \otimes C_{kr}^H} (\Phi_{S_0 \otimes C_{kr}^H, P_j \otimes C_{kr}^H \circ x_{j,k}})}{t_{P_j \otimes C_{kr}^H} (\Phi_{S_0 \otimes C_{kr}^H \circ x_{j,k}})}. \]

Finally in this region both \(\text{qdim}\left[F_{\alpha+1}^{\tilde{\alpha}+1} \right] \) and \(\frac{t_{P_j \otimes C_{kr}^H} (\Phi_{v_d, P_j \otimes C_{kr}^H \circ x_{j,k}})}{t_{P_j \otimes C_{kr}^H} (\Phi_{S_0, P_j \otimes C_{kr}^H \circ x_{j,k}})} \) vanish. \(\square \)

Corollary 12. Let \(\alpha \in \tilde{C} \). Then the map \(\varphi : V_\alpha \mapsto F_{\alpha+1}^{\tilde{\alpha}+1}, S_1 \otimes C_{kr}^H \mapsto M_{1-k,i+1} \) extended linearly over direct sums for \(\alpha \in \tilde{C} \) is a morphism up to equality of characters.

Proof: This can be directly verified via computation. It however also follows since the Hopf links as well as the asymptotic dimensions uniquely specify the (conjectured) tensor ring up to equality of characters; see Theorem 28 of [16] and [9]. \(\square \)

6. **Towards braided tensor category structure on \(M(r)\)-Mod**

6.1. **\(C_1 \)-cofiniteness.** In this section we obtain sufficient conditions for the existence of a braided tensor category (and more) structure on a suitable category of \(M \) of characters; see Theorem 28 of [16] and [9].

Lemma 13. Let \(L(c, h) \) be a non-generic (i.e. not isomorphic to the Verma module) Virasoro module for the Virasoro vertex operator algebra \(L(c, 0) \). Then \(L(c, h) \) is \(C_1 \)-cofinite, viewed as an \(L(c, 0) \)-module.

Proof: By definition, every non-generic Verma module admits a singular vector \(0 \neq w \in M(c, h) \) of weight \(n \) (depending on \(c \) and \(h \)). From the structure of singular vectors for the Virasoro algebra (see Chapter 5, [31]) we get a decomposition

\[w = L(-1)^n v_{c,h} + w' v_{c,h} \]

where \(v_{c,h} \) is the highest weight vector in \(L(c, h) \) and \(w' \in U(\text{Vir}_{<0}) \), which is lower in the filtration than \(L(-1)^n \). Clearly, we have \(w' v_{c,h} \in C_1(L(c, h)) \). We claim that

\[L(c, h) = C_1(L(c, h)) + \sum_{i=0}^{n-1} L(-1)^i v_{c,h}. \]

Denote the right hand-side by \(U \). Clearly we only have to prove that \(L(-1)^i v_{c,h} \in U \) for \(i \geq 0 \). This follows immediately because of \(L(-1)(C_1(L(c, h))) \subset C_1(L(c, h)) \). \(\square \)

Theorem 14. All irreducible \(M(r) \)-modules are \(C_1 \)-cofinite.

Proof: We first consider atypical modules. It is known that

\[M_{t,s} = \bigoplus_{n=0}^{\infty} L_{\text{Vir}}(c_{r,1}, h_{n}^{t,s}), \]
where $L^{Vir}(c_{r,1}, h_n^{ls})$ are certain irreducible Virasoro modules of central charge $c_{r,1}$; for explicit formulas see for instance [3, 4, 16]. These singlet modules can be realized inside the lattice vertex algebra modules by using the short screening $Q = e^0$ acting on special highest weight vectors e^γ inside the generalized lattice vertex algebra V_L'. More precisely, we have

$$M_{t,s} = \bigoplus_{n=0}^{\infty} U(Vir_{<0}).v^{(n)} = \bigoplus_{n=0}^{\infty} U(Vir_{<0}).Q^n e^{\beta_t,R-n\alpha}, \ \beta_{t,s} \in L'.$$

Claim: For every $n \geq 1$, there is a nonzero constant C and $j \leq -1$ (depending on n) such that

$$H_j v^{(n)} = C v^{(n+1)} + w,$$

where

$$w \in V_n := \bigoplus_{i=0}^{n} U(Vir_{<0}).v^{(i)}.$$

This claim follows along the lines of Lemma 5.3 in [3].

It is now sufficient to show that

$$M_{t,s} = C_1(M_{t,s}) + \bigoplus_{i=0}^{k_{t,s}} L(-1)^i v^{(0)},$$

(7)

where $k_{t,s} \in \mathbb{N}$ depend only on $L(c_{r,1}, h_n^{ls})$. Notice that this follows from Lemma 13 once we prove that

$$H_{-i_1} \cdots H_{-i_k} L_{-j_1} \cdots L_{-j_\ell} v^{(0)},$$

(8)

$$i_m \geq 1, 1 \leq m \leq k, \ j_n \geq 1, 1 \leq n \leq \ell,$$

is a spanning set for $M_{t,s}$. Let V_n be defined as above. We shall prove by induction on $n \geq 0$, that V_n is spanned by vectors in (8). For $n = 0$, this follows from Lemma 13. Now the above claim together with the inductive hypothesis imply that V_{n+1} is spanned by vectors of the form

$$L_{-k_1} \cdots L_{-k_p} H_{-i_1} \cdots H_{-i_k} L_{-j_1} \cdots L_{-j_\ell} v^{(0)}.$$

By using the bracket relations among L_i and H_j, we can move all Virasoro generators that are on the left across the H-generators to the right. The resulting vector is clearly inside the span of vectors in (8).

Now we switch to typical modules $F_\lambda, \ \lambda \notin L'$. At first we let λ to be arbitrary. We already know that all atypsicals are C_1-cofinite. In particular, this family includes infinitely many Fock spaces $F_\lambda, \ \lambda \in L$. We will need the following two known facts. Fact 1. If $A = \mathbb{C} \setminus B$, where B is a countable set, then any complex number can be written as a finite sum of elements in A. Fact 2 (Miyamoto [37]) Suppose that M and N are C_1-cofinite and $\mathcal{V} \in \left(\frac{W}{M,N} \right)$ is surjective, then W is also C_1-cofinite. We shall apply the latter for $M = F_\lambda, \ N = F_{\lambda'}$ and $W = F_{\lambda'+\lambda}$, with \mathcal{V} the obvious Heisenberg VOA intertwining operator \mathcal{V} acting among three modules.

Now we proceed with the proof. Clearly, it is sufficient to show that F_λ is C_1-cofinite for $\lambda \in B$, where B is as above. Let

$$F_\lambda = \bigoplus_{n=0}^{\infty} F_\lambda(n),$$

graded space decomposition of F_λ. Then F_λ being C_1-cofinite means that

$$F_\lambda(n) \subseteq C_1(F_\lambda), \ n \geq k,$$

for some fixed $k \in \mathbb{N}$. Consider

$$C_1F_\lambda(n) := C_1(F_\lambda) \cap F_\lambda(n).$$

17
Because \(C_1(F_\lambda)(n) \) depends polynomially on \(\lambda \) (due to the fact that it picks up \(\lambda \) when we act with the Heisenberg generator \(\varphi(0) \) on \(\nu_\lambda \)), there will be only finitely many \(\lambda \) values for which \(\dim(C_1(F_\lambda)(n)) \) will drop (non-generic values) and for all other values \(\dim(C_1(F_\lambda)(n)) \) will be constant (generic values). We know that there is \(\lambda \) for which \(F_\lambda \) is \(C_1 \)-cofinite and thus \(\dim(C_1(F_\lambda)(n)) = p(n) \), here \(p(n) \) is the number of partitions of \(n \), for all \(n \geq k_\lambda \). For every \(n \geq k_\lambda \), denote by \(B_i \) the set of all non-generic \(\lambda \)-values for \(\dim(C_1(F_\lambda)(i)) < p(i) \) (this set is always finite). We let

\[
A := \mathbb{C} \setminus \bigcup_{i=k_\lambda}^{\infty} B_i
\]

and \(B = \bigcup_{i=k_\lambda}^{\infty} B_i \) is a desired countable set. The proof follows. \(\square \)

Corollary 15. All finite-length \(\mathcal{M}(r) \)-modules are \(C_1 \)-cofinite.

Remark 16. It is not hard to see that \(F_\lambda \) is not \(C_1 \)-cofinite if viewed as a module for the Virasoro vertex operator algebra.

6.2. Fusion rules.

Proposition 17. Let \(M_i \), \(i = 1, 2 \) be irreducible \(\mathcal{M}(r) \)-module. Then there are only finitely many irreducible modules \(M_3 \) such that \(I(\mathcal{M}_M) \neq 0 \). Moreover, each such space is finite-dimensional.

Proof: In [5] we already analyzed the structure of \(A(M_1) \otimes_{A(\mathcal{M}(r))} M_2(0) \). We already know that the dimension of the space of intertwining operators is bounded from above is

\[
\dim \text{Hom}_{A(\mathcal{M}(r))}(A(M_1) \otimes_{A(\mathcal{M}(r))} M_2(0), \mathbb{C}),
\]

where we identified \(M_3(0) \) with \(\mathbb{C} \). So we only have to argue that \(A(M_1) \otimes_{A(\mathcal{M}(r))} M_2(0) \) is finite-dimensional. Denote by \(m_1 \) and \(m_2 \) highest weight vectors of \(M_1 \) and \(M_2 \). By using \(C_1 \)-cofiniteness, we see that \(\text{Span}\{m_1 \ast a : a \in V\} \) is of finite-codimension in \(M_1 \). Thus, by using the right action of \(A(\mathcal{M}(r)) \) on \(A(M_1) \) and the formula \(m_1 \ast a \otimes m_2 = m_1 \otimes o(a)m_2 \in \text{Span}\{m_1 \otimes m_2\} \), it follows that \(A(M_1) \otimes_{A(\mathcal{M}(r))} M_2(0) \) is finite-dimensional. \(\square \)

Formula (1), when specialized to \(p = 2 \), gives the following conjectural relations in the Grothendieck ring (here \(\lambda, \mu \notin L' \)):

\[
[F_\lambda] \times [F_\mu] = [F_{\lambda+\mu}] + [F_{\lambda+\mu+\alpha_+}], \tag{9}
\]

\[
[M_{t,1}] \times [F_\mu] = [F_{\mu+\alpha_r,-1}], \tag{10}
\]

\[
[M_{t,1}] \times [M_{t',1}] = [M_{t+t'-2,1}], \tag{11}
\]

\[
[M_{t,2}] \times [M_{t',1}] = [M_{t+t'-2,2}], \tag{12}
\]

\[
[M_{t,2}] \times [M_{t',2}] = 2[M_{t+t'-2,1}] + [M_{t+t'+1,1}] + [M_{t+t'+1,1}] \tag{13}
\]

Next we discuss rigorous results pertaining to fusion rules of irreducible \(\mathcal{M}(2) \)-modules. As in [5], for a triple of equivalence classes of irreducible \(\mathcal{M}(2) \)-modules, \([M], [N] \) and \([K]\), where \(M, N \) and \(K \) are representatives of classes, respectively, we define

\[
[M] \times [N] := \sum_{[K] \in \text{Irrep}} \dim I \left(\begin{array}{c} K \\ M & N \end{array} \right) [K], \tag{14}
\]

where \(\text{Irrep} \) denotes the set of all equivalence classes of irreducible modules. In [5], D. Adamović and the second author essentially proved the following result, thus verifying the correctness of fusion rules formulas obtained conjecture in [16] for \(r = 2 \).
Theorem 18. We have:

(i) All typical modules $M_{t,1}$ are simple currents, in the sense that for a given irreducible module N there is a unique irreducible module M such that $I(M, N)$ is nontrivial and one-dimensional. Moreover, under the product (14), formula (9) holds if $\lambda + \mu \notin L'$, and formulas (10)-(12) also hold.

(ii) If $\lambda + \mu \in L'$, then there exists a logarithmic module P such that in the Grothendieck group $[P] = [F_{\lambda+\mu}] + [F_{\lambda+\mu+\alpha}]$ and $I_* (\varPhi P_{\lambda}) \neq 0$.

(iii) There exists a logarithmic module Q, with $[Q] = 2[M_{t+t'-1,1}] + [M_{t+t'-2,1}] + [M_{t+t',1}]$ such that $I (M_{t,2} \otimes M_{t',2}) \neq 0$.

Parts (i) and (ii) are already proven in [5] in the setup of lattice vertex algebras. Part (iii) can be also proven by using [5] (additional details will appear elsewhere). Alternatively, we can also argue as follows. As we know, the $r = 2$ case corresponds to a subalgebra of the rank one symplectic fermions. Logarithmic intertwining operator based on symplectic fermions modules was constructed in [42], albeit in a slightly different setup. By virtue of restriction to the singlet algebra modules we obtain a family of (logarithmic) intertwining operators, leading to (iii).

6.3. Tensor category structure. According to [HLZ], in order for a suitably (sub)category of V-modules C to have the structure of a braided tensor category, it suffices that Assumptions 10.1,12.1 and 12.2 in [30] hold. Let C denote the category of N-gradable C_1-cofinite $M(r)$-modules. By [37] any such module is logarithmic, that is its graded components decompose into generalized spaces with respect to the Virasoro generator $L(0)$. Denote its full subcategory of finite-length $(1,r)$-modules by C_{fin}. Now we find sufficient conditions for applicability of the HLZ-tensor product theory.

Assumptions 10.1 (i)-10.1 (v) are satisfied in both categories. Assumption 12.1 clearly holds. Assumption 12.2 is also satisfied if every finitely generated N-graded, generalized module is C_1-cofinite (see [30] for details), which we shall discuss below. It remains to analyze:

Assumption 10.1 (vi): For any object of C, the (generalized) weights are real numbers and in addition there exists $K \in \mathbb{Z}_+$ such that $(L(0) - L(0)_{ss})^K = 0$ on the generalized module. The "realness" condition is not satisfied (there are clearly irreducible modules with non-real weights) but it can be in fact replaced with a weaker condition where the weights are allowed to be complex and there are only finitely many complex weights entering the fusion of two finite-length modules (we thank Y.-Z. Huang for clarification of this point). Notice that the second condition holds in C_{fin}. Indeed, a finite-length module M must satisfy this condition because of $K \leq \ell(M)$, where $\ell(M)$ is the length of M. This condition might not hold in C; see however below.

Assumption 10.1 (vii): C is closed under images, under the contragredient functor, under taking finite direct sums, and under $P(z)$-tensor products for some $z \in \mathbb{C}^\times$. Because the dual of a finite length modules is of finite length, C_{fin} is closed under the contragredient functor. However, in the category C, it is a priori not clear that the dual of a module remains C_1-cofinite. Finally, we have to check whether our categories are closed under the $P(z)$-tensor product. For the category C, this is verified in the paper of Miyamoto (see Main Theorem in [37]). Due to C_1-cofiniteness, there can be only finitely-many irreducible modules entering the fusion of two irreducible modules by Proposition 17. Therefore their tensor product cannot be of infinite length. Now, an Induction on the length, implies that for any pair of finite-length modules M_1 and M_2, $M_1 \boxtimes M_2$ is also of finite-length. Consequently, C_{fin} is also closed under \boxtimes.

Theorem 19. Assume that Assumption 12.2 of [30] holds for C_{fin}. Then, by virtue of [30], the category C_{fin} can be equipped with a braided tensor category structure.
Remark 20. As shown in [30], Assumption 12.2 is satisfied if every finitely generated, generalized, \(\mathbb{N}\)-graded \(M(r)\)-module is also in \(C_{\text{fin}}\).

Remark 21. It is perhaps unclear why the Heisenberg vertex algebra has not been much discussed in the context of tensor categories. For one, this vertex algebra is much easier to study. The reason is that the category of \(F_0\)-modules is much less interesting compared to the singlet algebra and in addition does not produce any non-trivial quantum invariants. The category of modules for the Heisenberg vertex algebra \(F_0\) that are diagonalizable under the zero mode subalgebra \(h\) is known to be semisimple. Intertwining operators, tensor product and associativity in the sense of [30] can be easily verified and all irreducible modules are clearly \(C_1\)-cofinite, see [14] for details. There is an enlargement of this category by inclusion of generalized (or logarithmic) \(F_0\)-modules [36]. (Logarithmic) intertwining operators of logarithmic \(F_0\)-modules are completely classified and explicitly constructed in [36] (see also [42]). Now we consider the subcategory of finite-length \(F_0\)-modules. It is not hard to see that any finitely generated, generalized \(\mathbb{N}\)-graded \(F_0\)-module is of finite-length. By combining results of [36, 42] with [30], we infer that this category is indeed braided. Again, this new category is not terribly interesting; for instance, as a tensor category, it is equivalent to the category of finite-dimensional \(h\)-modules equipped with the usual tensor product. Of course, it would be desirable to work out complete details even in the Heisenberg case, but that is outside the scope of the present paper (see however [42]).

References

[44] V. G. Turaev, Quantum Invariants of Knots and 3-manifolds, Volume 18 of De Gruyter studies in mathematics.

Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta T6G 2G1, Canada. emails: creutzig@ualberta.ca, mrupert@hotmail.ca

Current address: Max Planck Institute für Mathematik, Vivatsgasse 7, Bonn, Germany.
Permanent address: Department of Mathematics and Statistics, SUNY-Albany, 1400 Washington Avenue, Albany, NY 12222, USA. email: amilas@albany.edu