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AbstratIn this thesis we initiate a systemati study of branes in Wess-Zumino-Novikov-Wittenmodels with Lie supergroup target spae. We start by showing that a branes' worldvolumeis a twisted superonjugay lass and onstrut the ation of the boundary WZNWmodel.Then we onsider sympleti fermions and give a omplete desription of boundary statesinluding twisted setors. Further we show that the GL(1|1) WZNW model is equivalentto sympleti fermions plus two salars. We then onsider the GL(1|1) boundary theory.Twisted and untwisted Cardy boundary states are onstruted expliitly and their ampli-tudes are omputed. In the twisted ase we �nd a perturbative formulation of the model.For this purpose the introdution of an additional fermioni boundary degree of freedomis neessary. We ompute all bulk one-point funtions, bulk-boundary two-point funtionsand boundary three-point funtions. Logarithmi singularities appear in bulk-boundaryas well as pure boundary orrelation funtions.Finally we turn to world-sheet and target spae supersymmetri models. There is
N = 2 superonformal symmetry in many superosets and also in ertain supergroups. Inthe supergroup ase we �nd some branes that preserve the topologial A-twist and somethat preserve the B-twist.

ZusammenfassungIn dieser Arbeit beginnen wir mit einer systematishen Untersuhung von Branen in Wess-Zumino-Novikov-Witten Modellen mit Lie Supergruppen Zielraum. Zuerst zeigen wir,dass das Weltvolumen einer Bran eine getwistete Superkonjugationsklasse ist. Dann kon-struieren wir die Wirkung des Rand WZNW Models. Danah betrahten wir symplektis-he Fermionen und geben eine komplette Beshreibung von Randzuständen einshliesslihgetwisteter Sektoren. Weiterhin zeigen wir, dass das GL(1|1) WZNW Model äquivalentist zu symplektishen Fermionen plus zwei skalaren Feldern. Danah betrahten wir dieGL(1|1) Randtheorie. Getwistete und niht getwistete Cardy Randzustände sind ex-plizit konstruiert und Amplituden berehnet. In der getwisteten Randtheorie �nden wireine perturbative Beshreibung des Models. Dafür ist die Einführung eines zusätzlihenfermionishen Randfreiheitsgrades notwendig. Wir berehnen alle Bulk Ein-Punkt Funk-tionen, Bulk-Rand Zwei-Punkt Funtionen und Rand Drei-Punkt Funktionen. Logarith-mishe Singularitäten treten sowohl in den Bulk-Rand Korrelationsfuntionen auf wie auhin den reinen Randkorrelatoren.Letzendlih betrahten wir Modelle, deren Zielraum wie auh deren Welt�ähe super-symmetrish ist. Es gibt N = 2 superkonforme Symmetrie in vielen Superosets aber auhin einigen Supergruppen. Im Supergruppenfall �nden wir Branen die den topologishenA-twist erhalten und welhe die den B-twist erhalten.
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Chapter 1IntrodutionConformal �eld theory (CFT) with supersymmetri target spae reeived inreasedinterest with the disovery of dualities between gauge theories and models of gravity.These orrespondenes are highly valuable sine in the strongly oupled regime of onemodel, where it is almost inaessible, the dual desription is weakly oupled and thuswell treatable. The �rst example of suh a duality is due to Juan Maldaena [1℄. Hisonjeture is that type IIB string theory ompati�ed on AdS5× S5 is exatly equivalentto four-dimensional N = 4 super Yang-Mills theory. The group of global symmetries ofthese two models is the Lie supergroup PSU(2,2|4). In the limit of large rank of the gaugegroup the dual string theory is desribed by a onformal �eld theory with target spaebeing a oset of the supergroup PSU(2,2|4). The bosoni subspae of this oset is theten-dimensional spae AdS5 × S5.Sine Maldaena's disovery many more dualities where onjetured, studied andtested. One of them involves string theory on AdS3 × S3 whose global symmetry isthe Lie supergroup PSU(1,1|2) [1℄. The orresponding sigma model is the prinipal hiralmodel of this supergroup. It is an exatly marginal perturbation of the Wess-Zumino-Novikov-Witten (WZNW) model on PSU(1,1|2).Lie supergroup WZNW models are an interesting lass of theories in its own right.They desribe onformal �eld theories with target spae supersymmetry. Their symme-try algebra onsists of two opies of an a�ne Lie superalgebra. This additional in�nitedimensional symmetry is a powerfull aide in solving the theory. Studying these WZNWmodels gives valuable insights in the representation theory of the a�ne Lie superalgebra.Moreover supergroup WZNW models provide a lass of non-unitary logarithmi CFTs.Here logarithmi means that some orrelation funtions possess logarithmi singularities.These are due to �elds whih transform in representations of the Virasoro algebra thatare reduible but indeomposable.Logarithmi CFTs have important appliations in many statistial models. Some ex-amples are ritial polymers and perolation [2�5℄, two-dimensional turbulenes [6,7℄, thequantum Hall e�et [8℄ and disordered systems [9�11℄. Furthermore, supersymmetri tar-get spaes play an important role in the desription of polymers and perolation. Theinteger quantum Hall e�et is argued to be desribed by a sigma model on the superman-ifold U(1, 1|2)/
(
U(1|1)×U(1|1)

) [8,12℄. Further the supergroup GL(N |N) appears in theontext of disordered Dira fermions [9℄.Problems in ondensed matter and statistial physis naturally involve boundaries. Insuh ases boundary CFT beomes relevant (see e.g. [13, 14℄). Moreover, in the stringtheory ontext a boundary CFT orresponds to an open string starting and ending on1



2 CHAPTER 1. INTRODUCTIONtwo branes. In addition, boundary CFT displays a rih mathematial struture. Theunderstanding of the boundary theory is losely onneted to modular properties andfusion. Further twisted K-theory appears in the geometri desription of branes [15℄.These problems are not understood for boundary logarithmi �eld theory, see however [16�22℄ for progress in spei� models. WZNW models on Lie supergroups present themselvesas an ideal playground to extend many of the beautiful results of unitary rational CFTto logarithmi models.Inspired by these appliations it is an apparent task to systematially study Lie su-pergroup onformal �eld theory.For every Lie supergroup, as for every Lie group, there exists one onformal �eld theory,the Wess-Zumino-Novikov-Witten model. But some Lie supergroups possess an evenriher struture. If a Lie supergroup is simple and its dual Coxeter number vanishes thenthere exists a whole family of exatly marginal deformations of the WZNW model [23℄.In view of the AdS/CFT orrespondene the supergroup PSU(1,1|2) is an interestingexample.First steps in understanding supergroup WZNW models were done by Rozansky andSaleur, who studied the simplest example the GL(1|1) WZNW model [24�26℄. Later, theGL(1|1) model was reonsidered from a more geometri perspetive [27℄. This geometriapproah was then further generalised to the supergroup PSU(1,1|2) [28℄ and to a generallass of supergroups [29℄.These onsiderations were restrited to bulk WZNW models that is, in the stringlanguage, to losed strings. There are two natural tasks. One also should understand theexatly marginal deformations of WZNW models on simple supergroups with vanishingdual Coxeter number. In [30℄ we onsidered the deformation of boundary spetra in thePSL(2|2) sigma model.The other task is to understand boundary WZNW models on supergroups. The aim ofthis thesis is to initiate a systemati study of suh boundary CFTs. We want to understandhow to ompute boundary orrelation funtions and boundary spetra. Moreover we wantto investigate harateristi features of logarithmi theories as e.g. indeomposability ofrepresentations and logarithmi singularities of orrelation funtions.Most of this thesis we will restrit to the boundary GL(1|1) WZNW model, sine thisis the simplest example that aptures prototypial features. The thesis is organised asfollows.In hapter two, we introdue Lie superalgebras. We start with the example of theLie superalgebra gl(1|1) and its representations before we turn to the general lass of Liesuperalgebras. Representations of Lie superalgebras are sometimes reduible but inde-omposable. These representations, whih we all atypial, are responsible for logarithmisingularities in orrelation funtions. We give a geometri interpretation of representa-tions and atypiality in terms of superonjugay lasses. The relevane of this geometridesription is then given in hapter three.In hapter three, we start with some introdutory remarks to two-dimensional CFTand to the onept of boundary states. Then we explain onformal and a�ne Lie super-algebra symmetry of the WZNW models. Further we explain a method to treat the bulk2



3theory. Thereafter we begin with the boundary theory. Boundary �elds are supported ona subsupermanifold of the supergroup, the branes' worldvolume. We show that this is atwisted superonjugay lass. This insight is then used to �nd the ation of the boundaryWZNW model.In hapter four, we investigate sympleti fermions. We start by reviewing the bulkmodel inluding twisted setors. In a twisted setor the modes of the �elds are non-integer.We then turn to the boundary theory. The sympleti fermions possess an SL(2)-family ofboundary onditions that preserve onformal symmetry. Boundary states in twisted anduntwisted setors are onstruted. Further we ompute the spetrum of an open stringstrething between two branes and we onstrut the orresponding boundary theory.Chapter �ve is the main part of this thesis, a detailed study of GL(1|1). We start byreonsidering the bulk model and give a new approah via sympleti fermions. Preisely,we show that the GL(1|1) WZNW model is exatly equivalent to a pair of sympletifermions and a pair of salars. Twisted �elds are important in this orrespondene.Then we turn to the boundary theory. GL(1|1) possesses two families of branes. Theuntwisted family onsists of point-like branes in the bosoni diretions and generiallyextending into the fermioni diretions. The twisted ase ontains only one volume-�llingbrane. We use the sympleti fermion orrespondene to onstrut all Cardy boundarystates expliitly. Then we ompute spetra of strings strething between two branes.We identify boundary states with representations and �nd as in the Lie group ase thatamplitudes are given by fusion. Further we �nd that in the semilassial limit a boundarystate is a distribution on a superonjugay lass. This superonjugay lass is identi�edwith the same representation as the boundary state.Then we restrit to the volume-�lling brane. We �nd a �rst order formulation, whihallows for a perturbative omputation of orrelation funtions. In �nding the set-up,it turned out that it is neessary to introdue additional fermioni boundary degreesof freedom. We then ompute those orrelation funtions that determine the theoryompletely, i.e. we solve this boundary model. We �nd logarithmi singularities in bulk-boundary as well as boundary-boundary orrelators.In hapter six, we turn to a di�erent question. We want to investigate CFTs thatpossess world-sheet supersymmetry in addition to target spae supersymmetry. We startwith a presentation of topologial CFT and gauged N = 1 supersymmetri WZNWmodels. In the spirit of Kazama and Suzuki we then �nd N = 2 superonformal �eldtheories with superoset target. But remarkably we also �nd some with supergroup target.We show that these models possess two families of branes preserving either the topologialA-twist or the B-twist.In the outlook, we state some open questions for future researh.The appendix ontains modular properties of representations of the a�ne Lie super-algebra ĝl(1|1), as well as some integral formulae. In addition, we disuss the bc-ghostsystem of entral harge c = −2. This model is non-logarithmi in the bulk, but for ourhoie of boundary onditions the boundary theory is logarithmi.The original part of this thesis begins with setion 3.3. Additional results before thissetion are indiated. 3
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Chapter 2Super algebraThe aim of this thesis is to study sigma models with Lie supergroup as target spae.As a �rst step we need to understand some onepts of supergroups and their assoiatedLie superalgebras. The theory is in many aspets losely related to its bosoni analogueof Lie theory, but with some important new features.This hapter is an introdution of the mathematial onepts neessary to study su-pergroup sigma models. Sine this thesis will be mainly onerned with the sigma modelon the Lie supergroup GL(1|1) we start with its Lie superalgebra as an example. It ex-hibits most features that are speial to Lie superalgebras. In the remaining setions of thishapter, we will then introdue some onepts of the general theory of Lie superalgebras,Lie supergroups and their representations.2.1 An example: The Lie superalgebra gl(1|1)The Lie superalgebra gl(1|1) has been disussed in detail in [27℄.gl(1|1) is generated by two bosoni elements E,N and two fermioni elements ψ±. Eis entral and the other three generators obey
[N,ψ±] = ±ψ± and {ψ+, ψ−} = E . (2.1.1)This superalgebra is solvable and not semi-simple, it thus has two linear independenthoies of invariant bilinear form. The relevant one for our purposes will be

〈N , E 〉 = 〈E , N 〉 = 〈ψ+ , ψ− 〉 = −〈ψ− , ψ+ 〉 = 1 . (2.1.2)The bilinear form is supersymmetri, i.e. symmetri in the bosoni part and antisymmetriin the fermioni part. There exists another important operator, the quadrati Casimir.For the above hoie of metri it is
C = NE + EN + ψ−ψ+ − ψ+ψ− . (2.1.3)It ommutes with every element of the Lie superalgebra.2.1.1 AutomorphismsOne important ingredient to boundary sigma models are automorphisms of the Liesuperalgebra. Automorphisms are one-to-one maps of the Lie superalgebra to itself that5



6 CHAPTER 2. SUPER ALGEBRAare ompatible with the struture of the Lie superalgebra. As in the Lie algebra ase,one distinguishes inner and outer automorphisms. An inner automorphism is obtained byonjugation with an element of the bosoni subgroup. Sine E is entral only onjugationby exp iαN is non-trivial. It ats as follows
ωα(E) = E , ωα(N) = N and ωα(ψ

±) = e±iαψ± . (2.1.4)The group of outer automorphism is generated by
Ω(E) = −E , Ω(N) = −N and Ω(ψ±) = ±ψ∓ , (2.1.5)by

Π(E) = E , Π(N) = −N and Π(ψ±) = ψ∓ (2.1.6)and by the family
τα(E) = E , τα(N) = N + αE and τα(ψ

±) = ψ± . (2.1.7)An automorphism is suitable for boundary onformal �eld theory if it preserves the metri,or equivalently if it leaves the Casimir invariant. We ompute that the inner automor-phisms ωα as well as Ω leave the Casimir invariant,
ωα(C) = Ω(C) = C . (2.1.8)On the other hand Π and τα at non-trivially on C,

Π(C) = −C and τα(C) 6= C for α 6= 0 . (2.1.9)2.1.2 RepresentationsRepresentations of Lie superalgebras fall into two types, typial irreduible represen-tations and atypial indeomposable representations1.In gl(1|1) all typial representations are two dimensional, we denote them by 〈e, n〉.They are onstruted from a state |e, n〉 (with e 6= 0) satisfying
E|e, n〉 = e|e, n〉 ,
N |e, n〉 = n|e, n〉 ,
ψ+|e, n〉 = 0

(2.1.10)and ψ− ats freely on this state, hene
ψ+ψ−|e, n〉 = e|e, n〉 . (2.1.11)We summarise the representation in �gure 2.1.1Atypial representations an also be irreduible6



2.1. AN EXAMPLE: THE LIE SUPERALGEBRA GL(1|1) 7
`

PSfrag replaements
|e, n〉 ψ−|e, n〉

ψ−

e−1ψ+Figure 2.1: Typial irreduible representation 〈e, n〉The ation an be stated onveniently in supermatrix form, i.e.
E =

(
e 0
0 e

)
, N =

(
n 0
0 n− 1

)
, (2.1.12)

ψ+ =

(
0 1
0 0

) and ψ− =

(
0 0
e 0

)
. (2.1.13)The supertrae in suh a matrix representation is a non-degenerate invariant supersym-metri bilinear formstr((a b

c d

))
= a− d i.e. str(EN) = str(ψ+ ψ−) = e . (2.1.14)For the typial representations we assumed the parameter e to be non-zero. If weset e = 0, we still obtain a representation of gl(1|1) but this representation is reduible,i.e. it ontains a proper invariant subrepresentation generated by the state ψ−|0, n〉. Onthe other hand this representation is indeomposable, sine it does not deompose intoa diret some of irreduible representations. Moreover, this representation is part of alarger representation, the projetive over Pn. The projetive over is onstruted from astate |n〉 satisfying
E|n〉 = 0 , N |n〉 = n|n〉 (2.1.15)and ψ+, ψ− are ating freely on it. We summarise this in �gure 2.2.PSfrag replaements
|n〉

ψ+|n〉

ψ−|n〉

±ψ+ψ−|n〉

ψ−

ψ−
ψ+

ψ+

Figure 2.2: Projetive over Pn: ψ± at as indiated. There is a 3-dimensional subrepre-sentation, two 2-dimensional ones and the trivial 1-dimensional subrepresentation.We observe that this representation ontains proper invariant subrepresentations butit is impossible to deompose the representation in a diret sum of irreduible represen-tations. 7



8 CHAPTER 2. SUPER ALGEBRAA generi feature of these indeomposable but reduible representations is that theCasimir is not diagonalisable on this representations, i.e.
C|n〉 = 2ψ−ψ+|n〉 and Cψ−|n〉 = Cψ+|n〉 = Cψ−ψ+|n〉 = 0 . (2.1.16)2.1.3 Harmoni analysisIn the Lie algebra ase one an obtain the elements of a Lie group by taking exponentsof elements of the Lie algebra. The Lie superalgebra ase is slightly di�erent. Let η± betwo Grassmann odd numbers. This means that they satisfy

η±η± = 0 and η+η− = −η−η+ . (2.1.17)Then an element g of the Lie supergroup GL(1|1) an be written as
g = eiη−ψ−eixE+iyNeiη+ψ

+ (2.1.18)for some real numbers x and y. On the other hand given a Lie supergroup one an �nd adi�erential operator realisation of the Lie superalgebra in terms of invariant vetor �elds.They are de�ned by
RXg = −Xg and LXg = gX for X = E,N, ψ± . (2.1.19)Right and left invariant vetor �elds take the following form

RE = i∂x , RN = i∂y + η−∂− , R+ = ie−iy∂+ − η−∂x , R− = i∂− , (2.1.20)and
LE = −i∂x , LN = −i∂y−η+∂+ , L− = −ie−iy∂−−η+∂x , L+ = −i∂+ . (2.1.21)These di�erential operators satisfy the relations of the Lie superalgebra gl(1|1), i.e.

R[X,Y ] = (−1)|X||Y |RXRY − RYRX and
L[X,Y ] = (−1)|X||Y |LXLY − LY LX .

(2.1.22)Note the unusual sign2. In the above formula |X| denotes the parity of X, i.e.
|X| =

{ 0 X bosoni
1 X fermioni . (2.1.23)2Naively one might have expeted

R[X,Y ] = RXRY − (−1)|X||Y |RY RX and L[X,Y ] = LXLY − (−1)|X||Y |LY LX .8



2.1. AN EXAMPLE: THE LIE SUPERALGEBRA GL(1|1) 9The invariant vetor �elds at on the spae of funtions of the supergroup Fun
(GL(1|1))spanned by the elements

e0(e, n) = eiex+iny , e±(e, n) = η±e0(e, n) e2(e, n) = η−η+e0(e, n) . (2.1.24)The invariant Haar measure orresponding to the invariant vetor �elds is
dµ = e−iydxdydη+dη− . (2.1.25)The deomposition of Fun

(GL(1|1)) with respet to both left and right regular ation wasanalysed in [27℄. In order to illustrate this harmoni analysis, let us review the deompo-sition of Fun
(GL(1|1)) under the left-regular ation. Consider the funtion e0(e, n). For

e 6= 0, it satis�es
LEe0(e, n) = ee0(e, n) ,

LNe0(e, n) = ne0(e, n) ,

L+e0(e, n) = 0 ,

L−e0(e, n) = −iee+(e, n) and
L+L−e0(e, n) = −ee0(e, n).

(2.1.26)
If we ompare these relations with (2.1.10) and (2.1.11), we see that the funtions e0(e, n)and e+(e, n) span the typial representation 〈e, n〉. The minus sign in the last equationof (2.1.26) is due to the unusual minus sign in (2.1.22). Analogously one an see that thefuntions e−(e, n) and e0(e, n − 1) − ee2(e, n) also form the typial representation 〈e, n〉(for e 6= 0).Let us now onsider the ase e = 0. Then the state e2(0, n+ 1) satis�es

LEe2(0, n+ 1) = 0 and
LNe2(0, n+ 1) = ne2(0, n+ 1)

(2.1.27)and L± at as indiated in �gure 2.3.We onlude that the funtions e2(0, n + 1), ie−(0, n + 1), e+(0, n) and e0(0, n) formthe projetive over Pn. In summary we have obtained the following result [27℄.Proposition 2.1.1. The spae of funtions Fun
(GL(1|1)) of the supergroup GL(1|1)deomposes under the ation of the left invariant vetor �elds as follows

Fun(GL(1|1)) =

∫

e 6=0

de dn
(
〈e, n〉 ⊕ 〈e, n〉

)
⊕
∫
dnPn . (2.1.28)The analysis of the deomposition of Fun

(GL(1|1)) under the ation of the rightinvariant vetor �elds an be performed analogously.9



10 CHAPTER 2. SUPER ALGEBRA
PSfrag replaements

e2(0, n+ 1)

ie−(0, n+ 1)

−ie+(0, n)

∓e0(0, n)

L−

L−
L+

L+

Figure 2.3: Projetive over Pn2.1.4 The a�ne Lie superalgebra ĝl(1|1)The a�ne Lie superalgebra ĝl(1|1) is an in�nite dimensional Lie superalgebra withgenerators En, Nn, ψ
±
n (n in Z ) and K, d, where K is entral and d is a derivation, i.e.
[d,Xn] = nXn for X ∈ {E,N, ψ±} . (2.1.29)The non-vanishing relations of the remaining generators are

[En, Nm] = Knδn+m,0 ,

[Nn, ψ
±
m] = ψ±

n+m and
{ψ−

n , ψ
+
m} = En+m +Knδn+m,0 .

(2.1.30)All representations in the WZNW model have �xed K-eigenvalue k. From now on werestrit to these representations and write the number k instead of the operator K. As inthe ase of Lie algebras one an onstrut the generators of another in�nite dimensionalLie algebra, the Virasoro algebra, out of the generators of the a�ne Lie superalgebra.The Virasoro algebra is the symmetry algebra of two dimensional onformal �eld theory.The generators are
Ln =

1

2k
(2NnE0 − En + Ψ−

nΨ+
0 + Ψ−

0 Ψ+
n +

1

k
EnE0)

+
1

k

∑

m>0

(En−mNm +Nn−mEm + Ψ−
n−mΨ+

m −Ψ+
n−mΨ−

m +
1

k
En−mEm)and they satisfy the relations of the Virasoro algebra

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 (2.1.31)with entral harge c = 0. This onstrution is referred to as the Sugawara onstrution(see e.g. [31℄). The Virasoro zero mode is the a�ne analogue of the quadrati Casimir.10



2.1. AN EXAMPLE: THE LIE SUPERALGEBRA GL(1|1) 11The ation of the Virasoro zero mode on the generators of the a�ne Lie superalgebraoinides with that of the derivation d (2.1.29)
[L0, Xn] = nXn for X ∈ {E,N, ψ±} . (2.1.32)In WZNW models one identi�es these two operators d = L0.The zero mode subalgebra is the �nite dimensional Lie superalgebra gl(1|1). It isusually alled the horizontal subalgebra. Automorphisms that do not leave the horizontalsubalgebra invariant are alled spetral �ow automorphisms. For ĝl(1|1) there is a one-parameter family of non-trivial spetral �ow automorphisms. They are (for m ∈ Z)
γm(En) = En +mkδn,0 , γm(ψ±

n ) = ψ±
n±m (2.1.33)and leave Nn invariant. They beome relevant in the disussion of representations.Representations of ĝl(1|1)Representations of the a�ne Lie superalgebra are onstruted as follows. We startwith a representation of the horizontal subalgebra, and promote it to a representationof the a�ne Lie superalgebra by de�ning all positive mode operators to be annihilationoperators and letting the negative mode operators at freely. As in the �nite dimensionalLie superalgebra ase they fall into two lasses, typial irreduible and atypial indeom-posable but reduible ones. The typials are de�ned on a state |e, n, k〉, where n 6= mkfor any integer m. This state satis�es

E0|e, n, k〉 = e|e, n, k〉 , N0|e, n, k〉 = n|e, n, k〉 ,
K|e, n, k〉 = k|e, n, k〉 , ψ+

0 |e, n, k〉 = 0 and
Xn|0, n〉 = 0 for n > 0 and X ∈ {E,N, ψ±} .

(2.1.34)The remaining operators at freely on this state.Whenever e = mk for some integer m the above onstrution leads to reduible butindeomposable representations (for a proof see [27℄) and as in the �nite dimensional Liesuperalgebra ase these representations are part of a larger indeomposable representa-tion. All these speial atypial representations an be obtained via spetral �ow from theprojetive over P̂(0)
n . This representation is already atypial on the level of the horizontalsubalgebra. It is de�ned by a state |0, n, k〉 satisfying

E0|0, n, k〉 = 0

N0|0, n, k〉 = n|0, n, k〉
K|0, n, k〉 = k|0, n, k〉
Xn|0, n, k〉 = 0 for n > 0 and X ∈ {E,N, ψ±} .

(2.1.35)The remaining operators at freely on this state.11



12 CHAPTER 2. SUPER ALGEBRAThe onstrution is based on a hoie of horizontal subalgebra. Any other hoie isobtained by appliation of a spetral �ow automorphism. The orresponding representa-tions are alled twisted representations. For the projetive overs, they an be onstrutedfrom a state |mk, n, k〉, where m ∈ Z, satisfying
E0|mk, n, k〉 = mk|mk, n, k〉
N0|mk, n, k〉 = n|mk, n, k〉
K|mk, n, k〉 = k|mk, n, k〉
En|mk, n, k〉 = 0 for n > 0

Nn|mk, n, k〉 = 0 for n > 0

ψ±
n |mk, n, k〉 = 0 for n > ∓m (2.1.36)

and the remaining modes ating freely on it, it is alled P̂(mk)
n . Sine this representationis obtained by applying a spetral �ow automorphism to the atypial representation P̂(0)

nonstruted in (2.1.35) it must also be atypial.It turns out that these are all atypial representations of ĝl(1|1), i.e. any atypialrepresentation of ĝl(1|1) an be obtained from a representation that is already atypial atthe level of ground states [27℄.2.2 Lie superalgebrasWe turn to the general theory of Lie superalgebras and Lie supergroups. The theoryof Lie superalgebras was developed by Vitor Ka [32, 33℄, a olletion of results is givenin [34℄. As a guideline to Lie supergroups we use the book by Berezin [35℄. Most of thissetion is ontained in [36℄.In the following, the Lie superalgebras will be over the �eld of real numbers R oromplex numbers C. First we need to de�ne them.De�nition 2.2.1. Let g be a Z2 graded algebra g = g0̄⊕g1̄ with produt [ , ] : g×g→ gthat respets the grading. The parity of a homogeneous element is denoted by
|X| =

{ 0 X in g0̄

1 X in g1̄
. (2.2.1)Then g is a Lie superalgebra if it satis�es antisupersymmetry and graded Jaobi iden-tity, i.e.

0 = [X, Y ] + (−1)|X||Y |[Y,X] and
0 = (−1)|X||Z|[X, [Y, Z]] + (−1)|Y ||X|[Y, [Z,X]] + (−1)|Z||Y |[Z, [X, Y ]] ,

(2.2.2)for all X, Y and Z in g. 12



2.2. LIE SUPERALGEBRAS 13Further a bilinear form B : g×g→ R(resp.C) is alled a onsistent supersymmet-ri invariant bilinear form if
B(X, Y ) = 0 ∀X ∈ g0̄ ∧ ∀Y ∈ g1̄

B(X, Y )− (−1)|X||Y |B(Y,X) = 0 ∀X, Y ∈ g and
B([X, Y ], Z)− B(X, [Y, Z]) = 0 ∀X, Y, Z ∈ g .

(2.2.3)A simple Lie superalgebra whose even part is a redutive Lie algebra and whih pos-sesses a nonzero supersymmetri invariant bilinear form, is alled a basi Lie superalgebra.They are ompletely lassi�ed [32, 33℄. There are the in�nite series of unitary superal-gebras sl(n|m) for m 6= n, psl(n|n) and the orthosympleti series osp(m|2n) as wellas some exeptional ones. In addition we will also onsider Lie superalgebras of type
gl(n|m). As in the ase of Lie algebras it is instrutive to keep their fundamental matrixrepresentations in mind. We provide them for the superalgebras gl(m|n), sl(m|n) and
osp(m|2n).Example 2.2.2. gl(n|m) is given bygl(n|m) =

{(
A B
C D

)}
, (2.2.4)where A and D are square matries of size n and m, B is a n × m matrix and C is a

m×n matrix. The supertrae is a supersymmetri non-degenerate invariant bilinear formand it is de�ned via str( A B
C D

)
= trA− trD . (2.2.5)Then, we have the unitary superalgebraExample 2.2.3. sl(n|m)sl(n|m) =

{
X ∈ gl(n|m) | strX = 0

}
, (2.2.6)for n 6= m. If n = m sl(n|n) is not simple, in this ase one obtains the projetive unitarysuperalgebra psl(n|n) as the quotient of sl(n|n) by its one dimensional ideal I generatedby the identity matrix 12n, i.e. psl(n|n) = sl(n|n)/I.Further there is the orthosympleti seriesExample 2.2.4. osp(m|2n)osp(m|2n) =

{
X ∈ gl(m|2n) | XstBm,n +Bm,nX = 0

}
, (2.2.7)where the supertranspose is

(
A B
C D

)st
=

(
At −Ct

Bt Dt

) (2.2.8)13



14 CHAPTER 2. SUPER ALGEBRAand
Bm,n =

(
1m 0
0 Jn

)
,where Jn =

(
0 1n
−1n 0

)
. (2.2.9)An important ingredient in Lie super theory is the dual Coxeter number.De�nition 2.2.5. Let g be a Lie superalgebra, {ta} a basis of g and fabc the strutureonstants, i.e. they satisfy

[ta, tb] = fabct
c , (2.2.10)where the summation over the repeated index c is understood.Then the dual Coxeter number h∨ is de�ned via

2h∨ = (−1)nfnamf
mb

nκab (2.2.11)and κab denotes the supertrae in the adjoint representation, i.e. the Killing form.In the ase of Lie algebras one usually uses the Killing form as non-degenerate invariantsymmetri bilinear form. The Lie superalgebras psl(n|n), gl(n|n) and osp(2n+ 2|2n) arespeial, beause their Killing form and also their dual Coxeter number vanish. Hene in thefollowing we will always use the supertrae str in the fundamental matrix representation(Example 2.2.2, 2.2.3 and 2.2.4) as supersymmetri non-degenerate invariant bilinear form.Classial Lie superalgebras fall into two ases. The fermioni subspae is a represen-tation of the bosoni subalgebra. If this representation is irreduible the Lie superalgebrais of type II and it possesses the following distinguished Z-gradation
g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 . (2.2.12)Otherwise this representation deomposes into a diret sum of two irreduible representa-tions. In that ase the Lie superalgebra is said to be of type I. They possess the followingdistinguished Z-gradation whih will turn out to be very helpful

g = g− ⊕ g0 ⊕ g+ . (2.2.13)Here g± are the two irreduible representations forming the fermioni subspae and g0 isthe bosoni Lie subalgebra.A Cartan subalgebra of a Lie superalgebra is de�ned to be a maximal abelian subsu-peralgebra. It turns out that the Cartan subalgebra of the underlying bosoni Lie algebrais also a Cartan subalgebra of the Lie superalgebra. Fix a Cartan subalgebra h of g anddenote the dual spae by h∗. A non degenerate supersymmetri invariant bilinear formof the lassial Lie superalgebras restrits non degenerately to a Cartan subalgebra h andindues a non degenerate bilinear form on its dual spae. We denote it by ( | ). Furthera root is de�ned as follows. 14



2.2. LIE SUPERALGEBRAS 15De�nition 2.2.6. For α 6= 0 in h∗ one sets
gα = {a ∈ g | [h, a] = α(h)a ∀ h ∈ h } . (2.2.14)

α is alled a root if gα 6= 0 and gα is alled rootspae. Further a root is alled even if
gα ∩ g0̄ 6= 0 and odd if gα ∩ g1̄ 6= 0. Denote by ∆ the set of roots, by ∆0 the set of evenroots and by ∆1 the set of odd roots.The Lie superalgebra g possesses the usual nonunique triangular deomposition

g = n− ⊕ h⊕ n+ . (2.2.15)Here n± are isotropi Lie subsuperalgebras. One alls a root positive if gα ∩ n+ 6= 0 andnegative if gα ∩ n− 6= 0. Let ρ0 be half the sum of even positive roots and ρ1 half the sumof odd positive roots, then the Weyl vetor is
ρ = ρ0 − ρ1 . (2.2.16)2.2.1 Lie supergroupsA Lie supergroup an be obtained from a Lie superalgebra as follows. Let {ta} bea basis of g0̄ and {sb} a basis of g1̄, further let Λ be a Grassmann algebra, then theGrassmann envelope Λ(g) of g onsists of formal linear ombinations

X = xat
a + θbs

b (2.2.17)where the xa ∈ Λ are Grassmann even elements, the θb ∈ Λ are Grassmann odd elementsand summation over the indies is implied. Note, that Λ(g) is a Lie algebra. Thenfollowing Berezin [35℄, a supergroup G is the group generated by elements g of the form
g = expX with X in the Grassmann envelope of g, i.e. the Lie supergroup G of theLie superalgebra g is the Lie group of the Lie algebra Λ(g). Further we denote the Liesubgroup of the subalgebra g0̄ by G0.The Lie group G ats on its Lie algebra Λ(g) by onjugationAd(a) : Λ(g) → Λ(g) , X 7→ aXa−1 (2.2.18)for a in G and X in Λ(g). Sine the invariant bilinear form is the supertrae of a repre-sentation it is invariant under the adjoint ation, i.e.str(Ad(a)X,Ad(a)Y ) = str(X, Y ) (2.2.19)for any X, Y in Λ(g) and a in G.Consider a Lie supergroup G with a supersymmetri invariant nonzero bilinear form.We identify the Grassmann envelope of the underlying Lie superalgebra with the tangent15



16 CHAPTER 2. SUPER ALGEBRAspae at the identity, Λ(g) = TeG. On the tangent spae TgG at g in G we have left andright identi�ation,
Lg : Λ(g) −→ TgG, Lg(X) = gX and
Rg : Λ(g) −→ TgG, Rg(X) = −Xg . (2.2.20)The left identi�ation de�nes a left invariant metri, i.e. (gX, gY ) := str(X, Y ). Thismetri is also right invariant, sine it is invariant under the adjoint ation Ad(g−1).Invariant vetor �elds will turn out to be a useful tool in the analysis of the onformal�eld theory on the supergroup, beause in the semilassial limit the invariant vetor�elds mimi the role of the urrents in the full quantum theory.There is a way of obtaining an expliit di�erential operator realisation of the Liesuperalgebra in terms of invariant vetor �elds. Let G be a Lie supergroup of type I, thenwe parameterise an element aording to the distinguished Z-graduation (2.2.13)

g = eθ
a
−
s−a g0e

θb
+s

b
+ , (2.2.21)where the θa± are Grassman odd oordinates, the s±a generate g± and g0 is an element ofthe Lie subgroup. Then we ompute reursively

Rg(s
a
−) = −∂θ−a

Rg(X) = Rg0(X)− θ−a Rg([s
a
−, X])

Rg(Ad(g0)(s
a
+)) = −∂θ+a − θ

−
b Rg({sb−,Ad(g0)(s

a
+)})+

− θ−b θ−c Rg([s
b
−, {sc−,Ad(g0)(s

a
+)}]) .

(2.2.22)
Rg0(X) is the invariant vetor �eld of the Lie subgroup. Similar the left-invariant vetor�elds are

Lg(s
a
+) = ∂θ+a

Lg(X) = Lg0(X)− θ+
a Lg([X, s

a
+])

Lg(Ad(g−1
0 )(sa−)) = ∂θ−a − θ

−
b Lg({sb+,Ad(g−1

0 )(sa−)})+
− θ+

b θ
+
c Lg([s

b
+, {sc+,Ad(g−1

0 )(sa−)}])

(2.2.23)Due to the Grassmannian nature of the oordinates one gets some unusual signs. Forexample, the invariant vetor �elds obey the relations of the Lie superalgebra if we takethe Lie braket as
Rg([X, Y ]) = (−1)|X||Y |Rg(X)Rg(Y )− Rg(Y )Rg(X)

Lg([X, Y ]) = (−1)|X||Y |Lg(X)Lg(Y )− Lg(Y )Lg(X) .
(2.2.24)Later on, we will make analogous observations in the full quantum theory.The invariant vetor �elds at on the spae of funtions of the supergroup. Thede�nition of this spae is not obvious and we refer to [29℄. In that artile also the invariantmeasure orresponding to above invariant vetor �elds is omputed. It is

dµ(g) = dµb(g0) det(Ad(g0))−
∏

a,b

dθa−dθ
b
+ . (2.2.25)16



2.2. LIE SUPERALGEBRAS 17Here dµb(g0) denotes the invariant measure of the Lie subgroup and det(Ad(g0))− is thedeterminant of the adjoint ation of g0 on g−.2.2.2 AutomorphismsAs in the Lie algebra ase, the group of automorphisms onsists of inner and outerautomorphisms. An inner automorphism of the Grassmann envelope Λ(g) of the Liesuperalgebra g is obtained by onjugating with an element of the orresponding Lie su-pergroup. Only if this element is in the Lie subgroup the automorphism desends to theLie superalgebra g. For the study of branes automorphisms that preserve the invariantbilinear form are relevant. We saw that this is true for inner automorphisms (2.2.19).It remains to �nd the group of outer automorphisms. For omplex Lie superalgebrasit is lassi�ed by Vera Serganova [37℄. We start by listing the relevant automorphisms.It is most onvenient to state its ation in the fundamental matrix representation. Let
X =

(
A B
C D

) be a supermatrix in gl(n|m), then we have the following list
(−st)(X) =

(
−At Ct

−Bt −Dt

)
,

Π(X) =

(
D C
B A

) for m = n ,

δλ(X) =

(
A λB

λ−1C D

) for m = n and λ ∈ C

(2.2.26)
(−st) and δλ leave the metri invariant, but Π does not. In addition we introdue theelement Jm,n in gl(2m|2n), with det Jm,n = −1, J2

m,n = 12m+2n and Jm,nB2m,nJm,n =
B2m,n.

g Generators of Out g Metri preserving generatorssl(n|m) , n 6= m (−st) (−st)psl(n|n) , n 6= 2 (−st), Π, {δλ | for λn 6= 1} (−st), {δλ | for λn 6= 1}psl(2|2) Π, SL(2) SL(2)osp(2m+1|2n) � �osp(2m|2n) AdJm,n AdJm,nTable 2.1: Outer automorphisms of Lie superalgebrasThe supergroup psl(2|2) is speial, it arries an ation of SL(2) indued by a sl(2)braket of the type
[(

a b
c −a

)
,

(
A B
C D

) ]
=

(
0 aB + bJ1C

tJ−1
1

−cJ1B
tJ−1

1 − aC 0

)17



18 CHAPTER 2. SUPER ALGEBRAthis de�nes an automorphism and sine it leaves the bosoni subalgebra invariant it pre-serves the metri.We list the group of outer automorphisms and those whih preserve the metri in table2.1. The group of automorphisms of gl(n|n) oinides with the group of automorphismsof psl(n|n). The only di�erene is that in gl(n|n) the fermioni dilatation δλ is an innerautomorphism.Note, that the exeptional Lie superalgebras do not admit a metri preserving outerautomorphism.2.2.3 Real formsReal forms of lassial Lie superalgebras are lassi�ed in [38℄ and [39℄. As in thease of simple Lie algebras this is done by lassifying the involutive semimorphisms ofthe omplex Lie superalgebras. A semimorphism φ of a omplex Lie superalgebra g is asemilinear transformation suh that
[φ(X), φ(Y )] = φ([X, Y ]) for all X, Y in g . (2.2.27)Then for every involutive semimorphism φ

gφ = {X + φ(X) | X in g } (2.2.28)is a real lassial Lie superalgebra and these are all (Theorem 2.5 in [39℄).Real forms of Lie supergroups orrespond to real forms of the underlying Lie algebra,that is the Grassmann envelope Λ(g) of the Lie superalgebra g. There is the followingreal form that is not indued from a real form of a Lie superalgebra. De�ne the superstaroperation as [34℄
(cθ)# = c̄θ# , θ## = −θ , (θ1θ2)

# = θ#
1 θ

#
2 (2.2.29)for any Grassmann elements θ, θi and any omplex number c. Then onatenation of thesuperstar # with the automorphism (−st) is a semimorphism of Λ(g) giving rise to a realform of Λ(g).Furthermore, an automorphism Ω of the Lie algebra Λ(g) restrits to an automorphismof Λ(g)φ if and only if it leaves Λ(g)φ invariant that is Ω and φ ommute.Let us provide an example of a real form.Example 2.2.7. psu(1,1|2)psu(1,1|2) is the Lie superalgebra of the Lie supergroup PSU(1,1|2), whose bosonisubgroup is AdS3 × S3. Sigma models on this supermanifold are highly relevant for thestring theory in the AdS3/CFT2 orrespondene.A good way to desribe the real form is in terms of a matrix realisation. Consider the

4× 4 supertraeless supermatrix
X =

(
A B
C D

)
, (2.2.30)18



2.2. LIE SUPERALGEBRAS 19where A,B,C and D are 2× 2 matries. Consider the involutive semimorphism given by
φ : X 7→ −ηX̄stη−1 , where η = diag(−1, 1, 1, 1) (2.2.31)and the bar denotes omplex onjugation. If we in addition divide out the ideal generatedby the identity matrix we obtain psu(1,1|2). Espeially the upper diagonal blok is a matrixrealisation of su(1,1) over R, while the lower diagonal blok orresponds to su(2).2.2.4 RepresentationsIn this setion all Lie superalgebras are basi simple Lie superalgebras of type I.The �nite dimensional representations of �nite dimensional lassial Lie superalgebrasare desribed by Ka in [32℄ and [40℄. Gould gives a generalisation to in�nite dimensionalrepresentations [41℄.We reall the lassi�ation results for irreduible representations of type I Lie superal-gebras by Gould [41℄. Let λ in h∗ be the highest weight of a highest weight representation

V (λ) and let Z be the entre of the universal enveloping algebra U(g) of the Lie super-algebra g, then Z takes onstant values on V (λ). The eigenvalue of z in Z on V (λ) isdenoted by χλ(z), this de�nes an algebra homomorphism
χλ : Z → C , z 7→ χλ(z) (2.2.32)alled in�nitesimal harater. A (not neessarily highest-weight) representation admitsan in�nitesimal harater χλ if the elements z in Z take onstant values χλ(z) in therepresentation. In the ase of simple Lie algebras it is well known that every irreduiblerepresentation admits an in�nitesimal harater [42℄. The generalisation to type I Liesuperalgebras is proved by Gould [41℄:Theorem 2.2.8. Every irreduible representation of a Lie superalgebra of type I admitsan in�nitesimal harater χλ for some λ in h∗.We onstrut representations expliitly as done by Ka [40℄. Reall the triangulardeomposition of type I Lie superalgebras g = g−⊕g0⊕g+ (2.2.13). Let V0 be a represen-tation of the bosoni subalgebra g0 of ountable dimension then one gets a representationof g0 ⊕ g+ by promoting the elements in g+ to annihilation operators g+(V0) = 0 and theelements in g− to reation operators, i.e. we de�ne the Ka module of V0 to be
K(V0) = Indg

g0⊕g+
(V0) . (2.2.33)The main results in [41℄ are summarised inTheorem 2.2.9. Let V0 be an irreduible representation of g0 and K(V0) the Ka module.Then

• there exists a maximal proper submodule M(V0),19



20 CHAPTER 2. SUPER ALGEBRA
• the quotient K(V0)/M(V0) is irreduible and all irreduible representations are ofthis form.
• V0 admits an in�nitesimal harater χ0

λ and K(V0) is irreduible if and only if (λ+
ρ|α) 6= 0 for all odd positive roots α.Denote the olletion of representations with in�nitesimal harater χλ by Mλ. Inview of this theorem we all a representation Vλ in Mλ atypial if there exists an oddpositive root α suh that (λ+ ρ|α) = 0.Geometri interpretation of representationsThis subsetion is part of [36℄.The o-adjoint orbit method of Kirilov and Kostant [43℄ relates o-adjoint orbits of aLie group to representations of the group. In the ase of ompat simple Lie groups thisorrespondene is ( [44℄ and referenes therein)

πλ ←→ Ωλ+ρ (2.2.34)where πλ is a irreduible highest weight representation of the ompat Lie group G withdominant highest weight λ, ρ the Weyl vetor and Ω the o-adjoint orbit in the dual ofthe Lie algebra g∗ ontaining λ+ ρ.We seek an analogous desription for Lie supergroups enoding information aboutatypiality. Let us onsider o-adjoint orbits. We �x a Cartan subalgebra h. Sine themetri restrits non-degenerately to h there exists a hλ+ρ in h suh that (λ + ρ)(h) =
(hλ+ρ, h) for all h in h. We write λ + ρ = (hλ+ρ, · ), then the o-adjoint orbit ontaining
λ+ ρ is

Ωλ+ρ = { (ghλ+ρg
−1, · ) | g in G } . (2.2.35)It follows that the orbit extends into the dual spae g∗

α of the root spae of the root α ifand only if (λ+ ρ|α) 6= 0, i.e.
Ωλ+ρ ∩ g∗

α 6= ∅ ⇐⇒ (λ+ ρ|α) 6= 0 . (2.2.36)In other words, if (λ+ ρ|α) = 0 then Ωλ+ρ ∩ g∗
α = ∅ and we say that the o-adjoint orbit

Ωλ+ρ is loalised in the diretion orresponding to the root α. This gives us the followingrelation between representations and o-adjoint orbits.Proposition 2.2.10. There is a one-to-one orrespondene between olletions of repre-sentations with in�nitesimal harater χλ and o-adjoint orbits
Ωλ+ρ ←→ Mλ , (2.2.37)suh that if and only if a representation is atypial the assoiated o-adjoint orbit is lo-alised in a fermioni diretion. 20



2.3. AFFINE LIE SUPERALGEBRAS 212.3 A�ne Lie superalgebrasThis setion is part of [36℄. The onformal �eld theories we are going to onsider areWess-Zumino-Novikov-Witten models on Lie supergroups. These possess an a�ne Liesuperalgebra symmetry.Referenes to a�ne Lie superalgebras are [45℄ and [46℄. Denote by {ta} a basis of the�nite dimensional Lie superalgebra g with struture onstants fabc and non-degenerateinvariant supersymmetri bilinear form ( , ). Then the a�ne Lie superalgebra ĝ orre-sponding to g is the in�nite dimensional Lie superalgebra generated by {tan, K, d} for n in
Z. K is entral and the non-vanishing relations are

[ tam, t
b
n ] = fabct

c
m+n +mδm+n(t

a, tb)K

[ d, tan ] = ntan .
(2.3.1)The vetor spae

ĥ = h⊕ CK ⊕ Cd (2.3.2)is a Cartan subalgebra of ĝ. We extend a linear funtion λ on h to ĥ by setting λ(K) =

λ(d) = 0 and de�ne linear funtions Λ0 and δ on ĥ by
Λ0(h⊕Cd) = 0 , Λ0(K) = 1 , δ(h⊕CK) = 0 and δ(d) = 1 . (2.3.3)Then ĥ∗ = h∗⊕CΛ0⊕Cδ. We also extend the bilinear form ( , ) from g to ĝ by setting

(tam, t
b
n) = δm+n(t

a, tb) , (tam, K) = (tam, d) = 0 ,

(K,K) = (d, d) = 0 and (K, d) = 1 .
(2.3.4)Further the spae of positive roots is

∆̂+ = ∆+ ∪ {α + nδ|n > 0} . (2.3.5)The a�ne Weyl vetor is
ρ̂ = ρ+ h∨Λ0 , (2.3.6)where h∨ is the dual Coxeter number of g (de�nition 2.2.5).2.3.1 RepresentationsIn this setion, we onsider representations of a�ne Lie superalgebras. Reall theonstrution of the Virasoro algebra out of the a�ne Lie superalgebra ĝl(1|1) (setion2.1.4). This Sugawara onstrution holds in general as we will demonstrate in the nexthapter. The relations of the Virasoro zero mode L0 with elements of the a�ne Liesuperalgebra ĝ are
[L0, t

a
n] = n tan , (2.3.7)21



22 CHAPTER 2. SUPER ALGEBRAi.e. they oinide with the ation of the derivation d of the a�ne Lie superalgebra ĝ(2.3.1). In a WZNW model one identi�es these two operators d = L0. The highest-weightrepresentations relevant for the WZNW model are onstruted as follows.De�nition 2.3.1. Consider a weight Λ = λ + kΛ0 of ĥ∗, then the Verma module V+(Λ)of highest-weight Λ is onstruted from a state |Λ+〉 satisfying
h|Λ+〉 = Λ(h)|Λ+〉 for h ∈ h ,

K|Λ+〉 = k|Λ+〉 ,
tan|Λ+〉 = 0 for n > 0 and
ta0|Λ+〉 = 0 for ta ∈ n+ .

(2.3.8)The Verma module V−(Λ) of lowest-weight Λ is onstruted analogously from a state |Λ−〉satisfying
h|Λ−〉 = Λ(h)|Λ−〉 for h ∈ h ,

K|Λ−〉 = k|Λ−〉 ,
tan|Λ−〉 = 0 for n < 0 and
ta0|Λ−〉 = 0 for ta ∈ n− .

(2.3.9)The highest(lowest)-weight state then has onformal dimension (L0 eigenvalue)
hΛ =

(Λ + 2ρ̂ | Λ)

2(k + h∨)
. (2.3.10)A singular vetor is a state of the representations that generates a proper subrepresenta-tion. We all suh a Verma module typial if all its singular vetors are inherited fromthe bosoni subalgebra, otherwise if there are also fermioni singular vetors it is alledatypial. Aording to [29℄ a neessary ondition for atypiality is

hΛ−α′ = hΛ + n (2.3.11)where α = α′ + nδ for some integer n and an odd root α′ of g. If α is a positive oddroot the highest-weight representation V+(Λ) an be atypial, and if α is a negative oddroot the lowest-weight representation V−(Λ) an be atypial. Equation (2.3.11) an berewritten as
(Λ + ρ̂ | α) = 0 . (2.3.12)In [47℄ it is shown that this is exatly the atypiality ondition for basi a�ne Lie super-algebras of type I.Atypial representations are losely related to atypial representations of the horizontalsubalgebra. We know that V±(Λ) is atypial if there is a singular vetor on the level of thehorizontal subalgebra g. Conatenating the representation with an inner automorphismof ĝ gives an isomorphi representation that is also atypial. The a�ne Weyl group22



2.3. AFFINE LIE SUPERALGEBRAS 23indues suh automorphisms of the a�ne Lie superalgebra ĝ. The a�ne Weyl group is theautomorphism group on the root and oroot systems and hene indues an automorphismon the a�ne Lie superalgebra sine this in return is uniquely de�ned via its roots, orootsand Cartan subalgebra. Denote by M the Z span of the oroots of g and de�ne thetranslation Tα as (α in M)
Tα(Λ) = Λ + Λ(K)α− ((Λ|α) +

1

2
(α|α)Λ(K))δ . (2.3.13)for Λ in ĥ∗. We denote the group of translations {Tα | α in M} by TM . Then the a�neWeyl group is [45℄ (W denotes the Weyl group of g)

Ŵ = W ⋉ TM . (2.3.14)The translation Tα indues an isomorphism T̃α on ĝ whih ats expliitly as
T̃α : h 7→ h + α(h)K for h in h

K 7→ K

L0 7→ L0 − hα −
1

2
(α|α)K

tβn 7→ tβn−(α|β) for tβ in gβ .

(2.3.15)
These automorphisms are usually alled spetral �ow automorphisms in the physis lit-erature. If one knows the haraters of the representations of ĝ then one an identifythe representations obtained by an automorphism via (the h1, . . . hr form an orthonormalbasis of h)

χρ◦T̃α
(q, zi) = trρ(qT̃α(L0) z

T̃α(h1)
1 . . . zT̃α(hr)

r (−1)F )

= q−
k
2
(α|α) z

α(h1)k
1 . . . zα(hr)k

r χρ(q, ziq
−α(hi)) .

(2.3.16)If every harater orresponds uniquely to a representation then this identi�ation is exat.In the ases of ĝl(1|1)3 [27℄, ŝu(2|1) [48℄ and p̂su(1, 1|2) [28℄ all atypial representationsould be obtained in this way from representations that have a singular vetor on thelevel of the horizontal subalgebra g.Geometri interpretation of representationsWe saw that the geometry of o-adjoint orbits provided information whether the asso-iated representations are atypial or not. In a similar manner one an relate superonju-gay lasses to representations of the a�ne Lie superalgebra ĝ. Choose an element hλ+ρ3Even though gl(1|1) is not lassial the above statements hold23



24 CHAPTER 2. SUPER ALGEBRAof the bosoni subalgebra g0 and hoose a Cartan subalgebra h ontaining hλ+ρ. Then weonsider the superonjugay lass ontaining the point exp
2πihλ+ρ

k+h∨
,

Ca = { gag−1 | g in G } , a = exp
2πihλ+ρ

k + h∨
. (2.3.17)The superonjugay lass is loalised into a fermioni diretion orresponding to an oddroot α of g if and only if α(hλ+ρ) = n(k + h∨) for some n in Z. But this is equivalent to

(λ+ kΛ0 + ρ̂ |α− nδ) = (λ+ ρ |α)− n(k + h∨)(Λ0 | δ) = 0 . (2.3.18)Thus we arrive at the a�ne analogue of proposition 2.2.10.Proposition 2.3.2. There is a one-to-one orrespondene between Verma modules V±(Λ),
(Λ = λ+ kΛ0) and superonjugay lasses

C
exp

2πihλ+ρ

k+h∨

←→ V±(Λ) , (2.3.19)suh that a representation is atypial if and only if the assoiated superonjugay lass isnot ompletely deloalised in the fermioni diretions.In the next hapter, we will show that superonjugay lasses have the physial inter-pretation of a brane.In the ase of ompat simple Lie groups the above orrespondene has an interpreta-tion in terms of Cardy boundary states [49℄ (or equivalently branes). To eah irreduible�nite dimensional highest-weight representation of highest-weight Λ = λ + kΛ0 there ex-ists a boundary state B(Λ) and in the semilassial limit k → ∞ this state beomes adistribution onentrated on the onjugay lass Ca (a = exp
2πihλ+ρ

k+h∨
) [50℄.Later we will see that this statement also holds in the example of the Lie supergroupGL(1|1).

24



Chapter 3Conformal �eld theory with Lie super-group as target spaeThe aim of this hapter is to introdue bulk and boundary Wess-Zumino-Novikov-Witten models. We begin with some general onsiderations of two-dimensional onformal�eld theory and its boundary theory. Then we introdue the relevant models the Wess-Zumino-Novikov-Witten models with Lie supergroup target. We show that they areindeed onformal �eld theories and that they in addition possess an a�ne Lie superalgebraurrent symmetry. We present the bulk model and explain a perturbative formalism toompute orrelation funtions.Then we start to investigate the boundary theory. First we explain that a boundaryWess-Zumino-Novikov-Witten model is desribed by boundary onditions for the hiral�elds. These onditions desribe a subsupermanifold of the supergroup, the branes' world-volume. We show that these branes are twisted superonjugay lasses. These insightsare then used to �nd the ation of the boundary WZNW model.3.1 Conformal �eld theory in two dimensionsThe onformal �eld theories we are onsidering are two dimensional. As a referenewe use [51℄.We start with some general onsiderations about quantum �eld theory. In general theworld-sheet of a two-dimensional �eld theory is a two-dimensional orientable Riemannsurfae Σ. We will mostly restrit to the sphere and to the dis in the boundary ase (orequivalently the omplex plane and upper half plane) and parameterise it by holomorphiand anti-holomorphi oordinates z, z̄. A �eld Φ(z, z̄) maps the world-sheet to some targetspae. There exist some distinguished �elds, hiral �elds, that depend only on one of thetwo oordinates z or z̄. We take a Lagrangian approah, that is a model is desribedby an ation S and �elds Φi(zi, z̄i). Observable quantities are orrelation funtions. Let
X = Φ1(z1, z̄1) . . .Φn(zn, z̄n) be a produt of �elds and DΦ denote the path integralmeasure, then a orrelation funtion is de�ned by the path integral

〈X 〉 =

∫
DΦ X e−S . (3.1.1)For the omputation of orrelation funtions the symmetry of the model is an essentialaide. Let δ be an in�nitesimal symmetry transformation of the theory. Symmetry means25



26 CHAPTER 3. CFT WITH LIE SUPERGROUP AS TARGET SPACEthat any orrelation funtion is invariant under suh a transformation, i.e.
0 = δ〈X 〉 = 〈 δX 〉 − 〈 (δS)X 〉 . (3.1.2)These onstraints to the form of orrelation funtions are alled Ward identities.The seond onept we need is that of an operator produt expansion. Let A(z)and B(w) be two loal hiral �elds then their operator produt expansion is the Laurentexpansion of the produt of the two �elds at the point w. In other words the operatorprodut expansion desribes the behaviour of the produt of the two �elds A(z) and B(w)in a small neighbourhood of z − w. The �rst regular term in this expansion is alled thenormal ordered produt indiated by olons, that is

: AB : (w) =
1

2πi

∮

w

dx

(x− w)
A(x)B(w) . (3.1.3)Now, let us desribe the main ingredients of onformal �eld theory. The �rst objetis the energy-momentum tensor, it onsists of a holomorphi part T (z) and an antiholo-morphi one T̄ (z̄). They satisfy the operator produt expansion

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)

T̄ (z̄)T̄ (w̄) ∼ c/2

(z̄ − w̄)4
+

2T̄ (w̄)

(z̄ − w̄)2
+

∂̄T̄ (w̄)

(z̄ − w̄)

T (z)T̄ (w̄) ∼ 0 .

(3.1.4)The number c is alled the entral harge of the model. If we turn to the operatorformalism and express the energy-momentum tensor in a Laurent expansion
T (z) =

∑

n∈Z

Lnz
−n−2 , T̄ (z̄) =

∑

n∈Z

L̄nz̄
−n−2 , (3.1.5)then the modes of this expansion satisfy the relations of an in�nite-dimensional Lie alge-bra, that is two opies of the Virasoro algebra

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0

[L̄n, L̄m] = (n−m)L̄n+m +
c

12
n(n2 − 1)δn+m,0

[Ln, L̄m] = 0 .

(3.1.6)This is the in�nite dimensional symmetry of a two-dimensional CFT.The seond ingredient are the primary �elds. A �eld φ(z, z̄) is alled a primary �eldof onformal dimension (h, h̄) if it satis�es
T (z)φ(w, w̄) ∼ h

(z − w)2
+
∂φ(w, w̄)

(z − w)

T̄ (z̄)φ(w, w̄) ∼ h̄

(z̄ − w̄)2
+
∂̄φ(w, w̄)

(z̄ − w̄)

(3.1.7)26



3.1. CONFORMAL FIELD THEORY IN TWO DIMENSIONS 27Conformal invariane in two dimensions is remarkable. The group of loal onformaltransformations on the omplex plane is the group of holomorphi funtions. The groupof global onformal transformations restrits the form of orrelation funtions of primary�elds, e.g. the two-point funtions and three-point funtions to have the form
〈φ1(z1, z̄1)φ2(z2, z̄2) 〉 =

δh1,h2δh̄1,h̄2
C12

(z1 − z2)2h1(z̄1 − z̄2)2h̄1

〈φ1(z1, z̄1)φ2(z2, z̄2)φ3(z3, z̄3) 〉 =
C123

(z1 − z2)∆123(z2 − z3)∆231(z1 − z3)∆132
×

1

(z̄1 − z̄2)∆̄123(z̄2 − z̄3)∆̄231(z̄1 − z̄3)∆̄132
,where ∆abc = ha + hb − hc and ∆̄abc = h̄a + h̄b − h̄c .

(3.1.8)
A two-dimensional bulk onformal �eld theory is ompletely spei�ed by the knowledgeof all two- and three-point funtions of primary �elds.Now, we onsider a world-sheet with boundary. The simplest example is the upper-half plane, Imz > 0 with boundary the real line z = z̄. The boundary onformal �eldtheory is in the interior of the upper half plane loally equivalent to the bulk theory. Thismeans, that the leading singularities in the OPE of �elds inserted in the interior of theupper-half plane oinide with the OPEs of the bulk theory. On the boundary we wantthe theory to stay onformal, whih is guaranteed if the energy-momentum tensor satis�esthe gluing onditions

T (z) = T̄ (z̄) for z = z̄. (3.1.9)In a two-dimensional CFT this ondition ensures that there is no momentum �ow arossthe boundary.The additional data of a boundary onformal �eld theory that ompletely spei�esthe model are bulk one-point funtions, bulk-boundary two-point funtions and boundarythree-point funtions.3.1.1 Boundary statesThere is an e�ient onept in boundary onformal �eld theory, that of boundarystates. In this setion we follow [52℄ and [53℄. To eah boundary CFT there exists aformal state (formal, beause it is not normalisable in the usual sense) in the bulk theoryontaining the information of the boundary onditions and of bulk one-point funtions inthe boundary theory.The goal is to express orrelation funtions at �nite temperature in the boundarytheory through quantities whih are ompletely spei�ed in the bulk theory. In stringtheory terms, a boundary theory desribes open strings starting and ending on somebranes, while a bulk theory desribes losed strings. From this point of view, boundarystates are an example of a losed string to open string duality.27



28 CHAPTER 3. CFT WITH LIE SUPERGROUP AS TARGET SPACEConsider a CFT with energy-momentum tensor T (z) and T̄ (z̄) and additional hiral�elds W (z) and W̄ (z̄) of half-integer onformal dimension hW . In addition to preserv-ing onformal symmetry along the boundary (3.1.9), in the boundary CFT we want topreserve half of the hiral symmetry. This means we require gluing onditions of the form
W (z) = Ω(W̄ (z̄)) for z = z̄ . (3.1.10)Here Ω denotes an automorphism on the spae of hiral �elds. In general there exists morethan one boundary CFT for the gluing onditions (3.1.10). Hene we label a boundarytheory by the automorphism Ω and an additional parameter α. In our examples thisadditional parameter is the transverse position of the brane whih the boundary theorydesribes.In the following the world-sheet of the boundary theory is the upper-half plane, whilethe bulk world-sheet is the omplex plane, and we denote �elds of the boundary theoryby φbdy and those of the bulk model by φbulk.A orrelation funtion at �nite temperature labelled by β0 in the boundary theory is

〈φbdy1 (z1, z̄1) . . . φ
bdy
n (zn, z̄n)〉β0 = tr(eβ0Hbdy

φbdy1 (z1, z̄1) . . . φ
bdy
n (zn, z̄n)) (3.1.11)where the arguments zi are radially ordered, the trae is over the state spae of theboundary theory and the Hamiltonian is Hbdy = Lbdy

0 − c/24. If the above �elds areprimaries, i.e. they sale like φbdy(λz, λ̄z̄) = λ−hλ̄−h̄φbdy(z, z̄), then the above orrelatorsare periodi in the time variable t = ln z up to a sale fator. We piture the aboveproess essentially as a one-loop diagram of an open string starting and ending on ourbrane (Ω, α).If we exhange the role of time and spae, then this proess should be viewed as alosed string emitted from the brane, propagating and then being absorbed by the braneagain (illustrated in �gure 3.1). The interhange of spae and time is realised by
z 7→ ξ = exp(

2πi

β0
ln z) and z̄ 7→ ξ̄ = exp(−2πi

β0
ln z̄) . (3.1.12)Fields depending on ξ and ξ̄ should now be interpreted as bulk states, i.e. states desribinglosed strings. For the primaries and the energy-stress tensor, this transformation is

φbulk(ξ, ξ̄) =
(dz
dξ

)h (dz̄
dξ̄

)h̄
φbdy(z, z̄)

T bulk(ξ) =
(dz
dξ

)2

T bdy(z) +
c

12
{z, ξ} ,

(3.1.13)
{z, ξ} denotes the Shwartz derivative. The boundary state |α,Ω〉 is now de�ned, suhthat the following equation holds for any �eld insertions
〈φbdy1 (z1, z̄1) . . . φ

bdy
n (zn, z̄n)〉β0 =

〈α,Ω|e−
2π2

β0
Hbulk

φbulk1 (ξ1, ξ̄1) . . . φ
bulk
n (ξn, ξ̄n)|α,Ω〉 .

(3.1.14)28



3.1. CONFORMAL FIELD THEORY IN TWO DIMENSIONS 29

Figure 3.1: The diagram an be viewed as a losed string emitted from a brane and thenbeing absorbed by another brane. It an also be seen as an one-loop diagram of an openstring starting and ending on the two branes.This equation also makes sense if we replae one of the two boundary states by anotherboundary state |β, Ω̃〉. Then the left-hand side desribes a boundary theory with boundaryonditions (α,Ω) on the negative real axis and boundary onditions (β, Ω̃) on the positivereal axis. We will see examples thereof in the following hapters.There is another equivalent desription of boundary states. The upper-half plane ismapped to the omplement of the unit disk in the omplex plane via
z 7→ ζ =

1− iz
1 + iz

z̄ 7→ ζ̄ =
1 + iz̄

1− iz̄ . (3.1.15)Under suh a oordinate transformation a primary φbdy(z, z̄) of onformal dimension (h, h̄)hanges as follows
φbdy(z, z̄) =

(dζ
dz

)h (dζ̄
dz̄

)h̄
φbulk(ζ, ζ̄) . (3.1.16)A boundary state is a formal state |α,Ω〉 in the bulk de�ned suh that the followingequation holds for any primary φ

〈φbdy(z, z̄)〉 =
(dζ
dz

)h (dζ̄
dz̄

)h̄
〈0|φbulk(ζ, ζ̄)|α,Ω〉 (3.1.17)where the left-hand side is a one-point funtion evaluated in the boundary theory, whilethe right-hand side is evaluated in the bulk theory. If we apply the equation above tothe speial ase of our hiral urrents inserted along the boundary ζζ̄ = 1 and we use thegluing onditions (3.1.10), then we see that the boundary state has to satisfy the Ishibashionditions [54℄

(Wn − (−1)hW Ω(W̄−n))|α,Ω〉 = 0 . (3.1.18)29



30 CHAPTER 3. CFT WITH LIE SUPERGROUP AS TARGET SPACEHere Wn denotes the mode of the Laurent expansion of W (z), i.e.
W (z) =

∑

n∈Z

Wnz
−n−hW . (3.1.19)The analogous expression holds for W̄ (z̄). An irreduible representation ρi of the bulktheory allows at most one solution to the above onstraint, the Ishibashi state |i〉〉Ω. Itan be normalised suh that

Ω〈〈i|q̃L
bulk
0 − c

24 (−1)F
bulk|j〉〉Ω = δi,jχi(q̃) , (3.1.20)where F bulk is a fermion number operator and χi(q̃) is the harater of the representation

ρi. One feature of the superalgebras is that representations might be reduible but inde-omposable, as we have seen. In that ase they might possess more than one Ishibashistate and the amplitude of two Ishibashi states, in the sense of above equation, is notneessarily a true harater but an also have a log q̃ dependene. We will see this in theexamples in the following hapters.The boundary state is a linear ombination of the Ishibashi states
|α〉 =

∑

i

Bi
α|i〉〉Ω . (3.1.21)It is very remarkable that the oe�ients Bi

α enode all the information about the bulkone-point funtions of the boundary theory α [55℄, [52℄, that is
〈φi(z, z̄)〉α =

Bi+

α,Ω

|z − z̄|hi+h̄i
(3.1.22)where i+ denotes the representation onjugate to i with respet to the metri given bythe two-point funtions of the bulk theory.We ompute the oe�ients Bi

α,Ω using (3.1.14) without any �eld insertions. Thenthe left-hand side of (3.1.14) is the partition funtion of the boundary theory. For theevaluation of the right-hand side we use (3.1.20), then we have
Z(α,Ω);(β,Ω̃)(q) = 〈α,Ω|q̃ 1

2
(Lbulk0 +L̄bulk0 − c

12
)(−1)F

bulk|β, Ω̃〉
=
∑

i

Bi
α,ΩB

i
β,Ω̃
χi(q̃) .

(3.1.23)Here we introdued q = exp(−β0) and q̃ = exp(−2π2

β0
). The haraters in terms of q̃ arelinearly related to those in terms of q by the modular S-matrix

χi(q̃) =
∑

j

Sijχj(q) . (3.1.24)Sine Z(α,Ω);(β,Ω̃)(q) is a true partition funtion, i.e. an integer ombination of haraters
Z(α,Ω);(β,Ω̃)(q) =

∑

i

ni
(α,Ω);(β,Ω̃)

χi(q) (3.1.25)30



3.2. THE BULK WESS-ZUMINO-NOVIKOV-WITTEN MODEL 31we get the following Cardy [49℄ onstraint for our oe�ients
∑

j

Bj
α,ΩB

j

β,Ω̃
Sji = ni

(α,Ω);(β,Ω̃)
. (3.1.26)Often these onstraints su�e to onstrut the boundary states. This is alled modularbootstrap.Our goal for the following hapters is to understand in examples how to �nd and treatboundary states.We now turn to the spei� lass of models we are interested in.3.2 The bulk Wess-Zumino-Novikov-Witten modelIn this setion, we introdue the bulk Wess-Zumino-Novikov-Witten (WZNW) modelof a Lie supergroup. We start by introduing the ation, then we show that the modelpossesses the a�ne urrent symmetry whih allows for the Sugawara onstrution of theenergy-momentum tensor. Finally, we state a formalism to ompute orrelation funtions.We follow the reasoning for Lie groups, see e.g [51℄. But in generalising to Lie supergroupsone has to be arefull to inlude the fermions orretly.3.2.1 The bulk ationFor a �eld theoreti desription, we need the notion of a supergroup valued �eld. Let

Σ be an orientable Riemann surfae. Further let xa : Σ→ Λ0(R) and θb : Σ→ Λ1(R) bein�nitely di�erentiable funtions into the even, respetively odd, part of the Grassmannalgebra over R. By in�nitely di�erentiable we mean a funtion of the form [35℄
f = f(τ, σ) =

∑

k≥0

∑

i1,...,ik

fi1,...,ik(τ, σ)θi1 . . . θik , (3.2.1)where τ, σ ∈ Σ, the fi1,...,ik(x) are R-valued in�nitely di�erentiable funtions on Σ and the
θi generate the Grassmann algebra Λ(R). Then we introdue the loal Λ(g)-valued �eldon Σ

X(τ, σ) = xa(τ, σ)ta + θb(τ, σ)sb (3.2.2)and the G-valued �eld g(τ, σ) = expX(τ, σ).The setup for the WZNW model is exatly as in the Lie group ase. So let Σ be theworld-sheet, that is a ompat Riemann surfae without boundary, and g : Σ → G amap from the Riemann surfae to the Lie supergroup G. Assume that there exists anextension of this map to a map g̃ : B → G from a 3-manifold B with boundary ∂B = Σto G. Further let z = τ + iσ and z̄ = τ − iσ then the kineti term of the ation is
Skin[g] =

k

2π

∫

Σ

dτdσ str(g−1∂g g−1∂̄g) (3.2.3)31



32 CHAPTER 3. CFT WITH LIE SUPERGROUP AS TARGET SPACEand the Wess-Zumino term is [56℄
SWZ[g̃] =

k

2π

∫

B

H =
k

6π

∫

B

str(g̃−1dg̃ ∧ g̃−1dg̃ ∧ g̃−1dg̃) . (3.2.4)The number k is alled the level of the model. The full ation is then
S[g̃] = Skin[g] + SWZ[g̃] . (3.2.5)Further the variation of the ation is

δS = S[g̃ + δg̃]− S[g̃] =
k

π

∫

Σ

dτdσ str(g−1δg ∂(g−1∂̄g)) . (3.2.6)Thus the bulk equations of motion tell us that we have the onserved urrents J, J̄ with
∂̄J = ∂J̄ = 0, where

J(z) = −k∂gg−1 and
J̄(z̄) = kg−1∂̄g .

(3.2.7)It is straightforward to ompute the Polyakov-Wiegmann identity
S[g̃h̃] = S[g̃] + S[h̃] +

k

π

∫

Σ

dτdσ str(∂hh−1 g−1∂̄g) . (3.2.8)The ation (3.2.5) is well-de�ned if it does not depend on the extension g̃ to a 3-manifoldB.For type I Lie supergroup models this is done as follows [27�29℄. Type I Lie superalgebrashave the distinguished Z-graduation g = g−⊕g0⊕g+ (2.2.13), where g± are two irreduiblerepresentations of the bosoni subgroup g0 and the supertrae satis�esstr(X+ Y+) = str(X− Y−) = 0 for all X± and Y± in g± . (3.2.9)Let {ta±} be a basis of g±, then we de�ne the fermioni �elds θ± = θ±a t
a
±. Further,we parameterise a Lie supergroup element aording to the distinguished Z-graduation

g = eθ−g0e
θ+ , where g0 is an element of the bosoni subgroup. Applying the Polyakov-Wiegmann identity (3.2.8) twie the ation beomes

S[g̃] = S[g̃0] +
k

π

∫

Σ

dτdσ str(Ad(g0)(∂θ+)∂̄θ−) . (3.2.10)Thus the ambiguity in the extension of this model is the ambiguity of the Lie groupWZNW model of the bosoni subgroup G0 and gives well-known quantisation onditionson the level k [57℄.Type II Lie supergroups an be treated similarly [58℄. The distinguished Z-graduationis g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 and the supertrae satis�esstr(Xi Yj) = 0 (3.2.11)32



3.2. THE BULK WESS-ZUMINO-NOVIKOV-WITTEN MODEL 33if Xi in gi, Yj in gj and i + j 6= 0. Then parameterising a Lie supergroup elementaording to the distinguished Z-graduation g = g−e
θ−g0e

θ+g+ and applying the Polyakov-Wiegmann identity (3.2.8) four times the ation beomes
S[g̃] = S[g̃0] +

k

π

∫

Σ

dτdσ str(Ad(g0)(∂θ+)∂̄θ−) +

k

2π

∫

Σ

dτdσ str(Ad(g0)([θ+, ∂θ+] + 2∂g+g
−1
+ )([∂̄θ−, θ−] + 2g−1

− ∂̄g−)) .

(3.2.12)Thus the ambiguity in the extension in this model is the ambiguity of the Lie groupWZNW model of the bosoni subgroup whih orresponds to the Lie subalgebra g0.3.2.2 The urrent symmetryOur next goal is to show, that this model possesses an a�ne urrent symmetry. Thismeans that the modes of the urrents J(z) and J̄(z̄) form two ommuting opies of thea�ne Lie superalgebra ĝ at level k, where g is the underlying Lie superalgebra of the Liesupergroup G. Level k means that the entral element K of the Lie superalgebra ĝ ats asthe onstant k, i.e. the WZNW model is a representation of ĝ of K-eigenvalue k. We onlyshow this symmetry for the holomorphi part, the anti-holomorphi urrents are treatedanalogously.Consider a variation by a holomorphi funtion ω(z) of the form g → (1+ω(z))g thenthe Ward identity (3.1.2) for this variation with X = J is
〈 δωJ(w) 〉 = 〈 [ω, J ]− k∂ω 〉 = − 1

2πi

∮
dz 〈 (ω, J)J(w) 〉 = 〈 (δωS)J 〉 . (3.2.13)The ontour is taken ounterlokwise. The �rst equality sign is a diret omputation asin [51℄

δωJ = −k∂(ωg)g−1 + k∂gg−1ω

= [ω, J ]− k∂ω (3.2.14)and the last equality follows from (3.2.6), by using Ad(g)∂(g−1∂̄g) = ∂̄(∂gg−1) and hang-ing the measure as d2z = 2idτdσ and integrating by parts. We want to perform someexpliit alulations. We start by introduing some notation. First de�ne the omponentsof J via (here and in the following, summation over repeated indies is understood)
J = J̃aκabtb and also ω = ωaκabtb (3.2.15)where κab denotes the invariant bilinear form ( ta , tb ) and {ta} a basis of our Lie super-algebra g. We hoose the basis suh that

κabκbc = (−1)aδac , (3.2.16)33



34 CHAPTER 3. CFT WITH LIE SUPERGROUP AS TARGET SPACEwhih is always possible as an be seen from the fundamental matrix realisations providedin example 2.2.2�2.2.4. Here and in the following we use the notation
(−1)a := (−1)|t

a| . (3.2.17)Sine our bilinear form is non-degenerate, we an de�ne a dual basis {ta}
(ta, tb) = δab (3.2.18)with dual metri κab. We raise and lower indies by using the metri, espeially we needthe formulae

fabc = fabdκcd ,

fabc = fabdκ
dc and also

κab = κab .

(3.2.19)Then the Ward identity (3.2.13) implies the following operator produt expansion
J̃a(z)J̃ b(w) ∼ kκba

(z − w)2
− f bacJ̃

c(w)

(z − w)
. (3.2.20)This is almost an a�ne Lie superalgebra urrent symmetry, but we get some unusualsigns. We observed a similar behaviour for the invariant vetor �elds (2.2.24). We get ana�ne urrent symmetry if we de�ne

Ja(z) =

{
J̃a(z) if ta in g0 ⊕ g−1

−J̃a(z) if ta in g1
(3.2.21)for type I Lie supergroups. In the type II ase we set

Ja(z) =

{
J̃a(z) if ta in g0 ⊕ g−1

−J̃a(z) if ta in g−2 ⊕ g1 ⊕ g2
. (3.2.22)Now, the operator produt expansion of these urrents is as desired

Ja(z)J b(w) ∼ kκab

(z − w)2
+
fabcJ

c(w)

(z − w)
. (3.2.23)This means that the modes of the Laurent expansion of the urrents obey the relationsof the a�ne Lie superalgebra ĝ (2.3.1), i.e.

Ja(z) =
∑

n∈Z

tanz
−n−1

[tan, t
b
m] = fabct

c
n+m + knδn+m,0κ

ab .

(3.2.24)34



3.2. THE BULK WESS-ZUMINO-NOVIKOV-WITTEN MODEL 353.2.3 The Sugawara onstrutionThe next step is to �nd the Virasoro symmetry. We present the Sugawara onstrutionfor the holomorphi part of the energy-momentum tensor. We de�ne the hiral �eld
T (z) =

(: J(z), J(z) :)

2(k + h∨)
=

: J̃a(z)κabJ̃ b(z) :

2(k + h∨)
=

: Ja(z)κbaJ b(z) :

2(k + h∨)
(3.2.25)and want to show that this �eld is the holomorphi energy-momentum tensor. For thispurpose we ompute exatly as in [51℄ exept for taking are of additional minus signsdue to the fermions

Ja(z) : J bκcbJc : (w) =
2(k + h∨)Ja(w)

(z − w)2
. (3.2.26)This equation implies that the urrents are primaries of onformal dimension one

T (z)Ja(w) ∼ Ja(w)

(z − w)2
+
∂Ja(w)

(z − w)
. (3.2.27)We use this equation to show that T (z) indeed satis�es the operator produt expansionof an energy-momentum tensor (3.1.4)

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
(3.2.28)with entral harge

c =
k sdim(g)

k + h∨
. (3.2.29)The superdimension is the dimension of the bosoni subalgebra minus the dimension ofthe fermioni part of the Lie superalgebra. Thus, many WZNW models on supergroupshave zero or negative entral harge.The next step is to �nd vertex operators of our theory. In a WZNW model of a Liegroup these are the primaries of the urrent algebra.3.2.4 The �rst order formulationThe formulation provided in this setion was established in [29℄. It works only for Liesupergroups of type I, beause we need the triangular deomposition (2.2.13). We willsketh the proedure here. Let {ta±} be a basis of g±, then we de�ne the fermioni �elds

c = cat
a
− and c̄ = c̄at

a
+. Further, we parameterise a Lie supergroup element aording tothe distinguished Z-graduation (2.2.13)

g = ec g0 e
c̄ . (3.2.30)Here, g0 is an element of the Lie subgroup. Then the ation is (3.2.10)

S[g̃] = S[g̃0] +
k

π

∫

Σ

dτdσ str(Ad(g0)(∂c̄)∂̄c) . (3.2.31)35



36 CHAPTER 3. CFT WITH LIE SUPERGROUP AS TARGET SPACEThe idea is to �nd a perturbative presription in terms of the WZNWmodel of the bosonisubgroup and of free fermions. For this purpose we introdue auxiliary fermioni �elds
b̄ = b̄at

a
− taking values in g− and b = bat

a
+ taking values in g+. The model we want toonsider is

S = S0 + Spert
S0 = S[g̃0]ren +

1

2π

∫

Σ

dτdσ str(b∂̄c)− str(b̄∂c̄)
Spert =

1

4πk

∫

Σ

dτdσ str(Ad(g0)(b̄)b) .

(3.2.32)This model is equivalent to the above WZNW model if we integrate the auxiliary �elds b, b̄and if we take are about the measures. The measure of the Lie supergroup is the invariantsupergroup measure (2.2.25), while in the model S, we want the invariant measure of thebosoni subgroup times the free fermioni measure. Thus we have to ompute the Jaobianof hange of oordinates. We will see in hapter 5 in an example how this works preisely.In general, it is shown in [29℄ that this involves the following renormalised metri for thebosoni WZNW model
κij → κijren = κij − 1

k

∑

a,b∈g+

f iabf
jb
a . (3.2.33)The seond onsequene of the renormalisation is the possible appearane of a lineardilaton term oupling to the world-sheet urvature R

−1

4π

∫
dτdσR ln detAd(g0)− . (3.2.34)Here, detAd(g0)− means the determinant of the adjoint ation of g0 on g− (ompare with(2.2.25). Suh a term appears whenever the bosoni subgroup is not simple, i.e. in theases sl(n|m), gl(n|m) and osp(2|2n).Consider the model desribed by the ation S0[g0, c, c̄, b, b̄]. It possesses the a�neurrent symmetry of the bosoni subalgebra ĝ0, e.g. the holomorphi part satis�es

J iB(z)J jB(w) ∼ κijren
(z − w)2

+
f ij lJ

l
B(w)

(z − w)
. (3.2.35)The ghosts ba have onformal dimension 1 and the ca dimension 0. They satisfy

ba(z)cb(w) ∼ κab
(z − w)

. (3.2.36)It turns out that one an also �nd an a�ne Lie superalgebra ĝ urrent symmetry in themodel S0. The omponents of
J = J− + J0 + J+ where
J− = −k∂c + [c, JB]− 1

2
: [c, : [c, b] :] :

J0 = JB− : [c, b] :

J+ = −b

(3.2.37)36



3.3. THE BOUNDARY WZNW MODEL 37satisfy the relations of the ĝ urrent algebra of level k
Ja(z)J b(w) ∼ kκab

(z − w)2
+
fabcJ

c(w)

(z − w)
. (3.2.38)Similarly, there exists an anti-holomorphi opy of the a�ne urrent symmetry, given bythe omponents of the following urrent.

J̄ = J̄− + J̄0 + J̄+ where
J̄− = −b̄
J̄0 = J̄B+ : [c̄, b̄] :

J̄+ = k∂̄c̄− [c̄, J̄B]− 1

2
: [c̄, : [c̄, b̄] :] : .

(3.2.39)Vertex operators are those of the model S0, i.e. vertex operators of the WZNW modelof the bosoni subgroup times free ghost operators. Further omputations of orrelationfuntions are performed perturbatively.3.3 The boundary WZNW modelWe turn to the boundary. While bulk WZNW models on type I Lie supergroups areunder good ontrol, the boundary ase has not been studied before the beginning of thisthesis. This setion is the main part of [36℄.Boundary theory means, that the world-sheet Σ is an orientable Riemann surfae withone boundary ∂Σ. Loally one usually parameterises any element in Σ as (τ, σ), wherethe �rst oordinate belongs to the diretion parallel to the boundary and the seond oneto the perpendiular diretion. We also introdue omplex variables z = τ + iσ and
z̄ = τ − iσ.Reall, that onformal invariane is preserved along the boundary if the energy-momentum tensor satis�es the boundary ondition

T = T̄ for z = z̄ . (3.3.1)This is ertainly satis�ed if the boundary onditions of the urrents are
J = Ω(J̄) for z = z̄ , (3.3.2)where Ω is an automorphism of g preserving any invariant non-degenerate supersymmetribilinear form of g. The urrents are Λ(g)-valued �elds and Ω lifts to an automorphismof Λ(g) in the obvious way. Sine these gluing onditions do not only preserve onformalsymmetry but also half the urrent symmetry they are alled maximally symmetri. Welisted those automorphisms that preserve the metri in setion 2.2.2.37



38 CHAPTER 3. CFT WITH LIE SUPERGROUP AS TARGET SPACE3.3.1 Geometry of branes on supergroupsThe �rst question we ask is what kind of geometri objets the gluing onditions (3.3.2)desribe.For WZNW models on Lie groups the geometry of branes has been studied in detaile.g. [59�61℄. If a �eld g takes values in a Lie group with de�nite metri, then the boundaryonditions (3.3.2) imply that the restrition of g to the boundary of the Riemann surfae
Σ takes values in a twisted onjugay lass.The generalisation to Lie supergroups is the following.Proposition 3.3.1. Let the restrition of g to the boundary of the Riemann surfae Σtake values in a subspae N ⊂ G suh that the boundary onditions (3.3.2) hold. We all
N the branes' worldvolume. If the metri restrits non-degenerately to the tangent spae
TgN of the branes' worldvolume N and if the tangent spae of G at the point g deomposesin the diret sum of TgN and its orthogonal omplement TgN⊥,

TgG = TgN ⊕ TgN⊥ , (3.3.3)then the worldvolume N is the twisted superonjugay lass1
CΩ
g = { Ω(h)gh−1 | h ∈ G } . (3.3.4)Sine the metri is not de�nite, the deomposition (3.3.3) is not guaranteed to holdin general. But for Lie supergroups with the property that the restrition of the metrito any simple or abelian subgroup of the underlying Lie group G0 is de�nite it holds fora twisted superonjugay lass that is ompletely deloalised in the fermioni diretions,i.e. exp Λ(g1̄) ⊂ CΩ

g . This is the regular ase and we all these branes typial in analogyto typial representations. Reall proposition 2.3.2 that this is more than a mere analogy.We will all all other branes atypial. If the gluing automorphism Ω is inner, then theabove assumptions also hold for non-regular twisted superonjugay lasses ontaining apoint g in the bosoni Lie subgroup G0 while they never hold for twisted superonjugaylasses ontaining a point g = expX with X nilpotent. We give an example in [36℄ ofbranes overing these regions.Now, let us explain the above proposition. The gluing onditions (3.3.2) an be trans-lated to boundary onditions in the tangent spae TgG tangent to the point g ∈ G, i.e.with the help of the left and right translation the boundary onditions read
∂g = −Ω̃g∂̄g (3.3.5)where Ω̃g is the map on the tangent spae at g de�ned as

Ω̃g = Rg ◦ Ω ◦ Lg−1 : TgG→ TgG . (3.3.6)1The automorphism Ω of the Lie superalgebra lifts to an automorphism of the Lie supergroup via
Ω(exp X) = exp Ω(X). We still denote it by Ω. 38



3.3. THE BOUNDARY WZNW MODEL 39Note that for any given tangent vetor V in TgG we have Ω̃g(V ) = Ω(g−1V )g. In termsof Dirihlet and Neumann derivatives (2∂p = ∂ + ∂̄ and 2i∂n = ∂ − ∂̄) the boundaryonditions are
(1 + Ω̃g)∂pg = −i(1− Ω̃g)∂ng . (3.3.7)We need the assumption that the metri restrits non-degenerately to TgN and thatthe tangent spae TgG splits into a diret sum
TgG = TgN ⊕ TgN⊥ , (3.3.8)then equation (3.3.7) identi�es those vetors in TgG whih have nonzero (1−Ω̃g) eigenvalueas diretions of Neumann boundary onditions, i.e. they are vetors tangent to the branesworldvolume N . Then TgN⊥ is spanned by the vetors having zero (1− Ω̃g) eigenvalue.Let V be in TgN⊥ then Ω̃g(V ) = V whih is expressed in terms of Ω

Ω(g−1V ) = V g−1 . (3.3.9)Thus
(Ω(g−1V )− V g−1,Ω(X)) = 0 for all X in Λ(g) . (3.3.10)Sine the metri is left- and right-invariant and invariant under Ω (reall that Ω is requiredto be metri preserving) (3.3.10) is equivalent to

(V, gX − Ω(X)g) = 0 . (3.3.11)Hene gX −Ω(X)g is orthogonal to TgN⊥, i.e. it is tangent to the worldvolume N of thebrane, but it is also tangent to the twisted superonjugay lass
CΩ
g = { Ω(h)gh−1 | h ∈ G } . (3.3.12)This an be seen as follows. Consider the urve Ω(h(t))gh(t)−1 in CΩ

g through g, i.e.
h(0) = 1 and ḣ(0) = −X, then its tangent vetor at g is

d

dt
Ω(h(t))gh(t)−1

∣∣∣
t=0

= gX − Ω(X)g . (3.3.13)Hene the tangent vetors of the form gX−Ω(X)g are the tangent vetors of the twistedsuperonjugay lass CΩ
g . It remains to show that any tangent vetor tangent to theworldvolume of the brane has the form gX − Ω(X)g. Reall that those tangent vetors

V desribe Dirihlet boundary onditions whih are in the kernel of 1 − Ω̃g. Hene theimage of the adjoint operator (1 − Ω̃g)
† must be TgN . Sine Ω̃g = Rg ◦ Ω ◦ Lg−1 is anisometry the adjoint is the inverse

(1− Ω̃g)
† = (1− Rg ◦ Ω ◦ Lg−1)† = 1− Lg ◦ Ω−1 ◦Rg−1 , (3.3.14)39



40 CHAPTER 3. CFT WITH LIE SUPERGROUP AS TARGET SPACEi.e. any element W in TgN an be written as
W = U − gΩ−1(Ug−1) (3.3.15)for some U in TgG. Further any vetor U in TgG an be written as U = Ω(X)g for some

X in Λ(g), hene W = Ω(X)g − gX for some X. We onlude that the worldvolume of abrane is a twisted superonjugay lass.There are some remarks.Remark 1The Lie supergroup ats on a twisted superonjugay lass by the twisted adjointation AdΩAdΩ(a) : CΩ
g −→ CΩ

gAdΩ(a)(Ω(h)gh−1) = Ω(a)Ω(h)gh−1a−1 = Ω(ah)g(ah)−1
(3.3.16)for any a in G and Ω(h)gh−1 in CΩ

g . When analysing branes on a Lie supergroup oneusually starts with its semilassial limit, the minisuperspae [30,62℄. The minisuperspaeof a brane of a Lie supergroup is the quotient of the spae of funtions on the supergroupby those that vanish on the brane. The in�nitesimal twisted adjoint ation ats on thisspae. This ation is the semilassial limit of the ation of the boundary urrents on theboundary �elds. The in�nitesimal twisted adjoint ation an be expressed through thein�nitesimal right-translation (2.2.22). Let h be in G and Rh
X be the left-translation inthe diretion X, i.e.

Rh
X : G −→ ThG , Rh

Xh = −Xh . (3.3.17)Further its ation on h−1 is Rh
Xh

−1 = h−1X sine RX(hh−1) = 0, hene its ation on thetwisted superonjugay lass element a = Ω(h)gh−1 is the in�nitesimal twisted adjointation
Rh
X(Ω(h)gh−1) = −Ω(Xh)gh−1 + Ω(h)gh−1X = −Ω(X)a + aX . (3.3.18)Remark 2The stabiliser of g under the twisted adjoint ation is the twisted superentraliser

Z(g,Ω) = {h ∈ G | Ω(h)g = gh } . (3.3.19)Its tangent spae at g is the kernel of 1 − Ω̃g. The twisted superonjugay lass an bedesribed by the homogeneous spae G/Z(g,Ω). In the regular ase the twisted super-entraliser is isomorphi to the maximal set TΩ of ommuting points whih are pointwise�xed under the ation of Ω, i.e. it is ontained in a maximal torus. Whenever Ω is inner
TΩ is a maximal torus. A maximal torus of a basi Lie superalgebra is isomorphi to40



3.3. THE BOUNDARY WZNW MODEL 41the maximal torus of its bosoni Lie subalgebra. Hene in the regular ase the brane isompletely deloalised in the fermioni diretions and sine the metri is onsistent (seeDe�nition 2.2.1) the assumed orthogonal deomposition (3.3.3) is true if it is true forthe restrition to the Lie subgroup G0. At non regular points the brane is not neessarilyompletely deloalised in the fermioni diretions. In these ases one has to hek whether(3.3.3) holds.It ertainly does not hold for superonjugay lasses ontaining a point g = expXwith X nilpotent, sine then the operator 1− Ω̃g is not diagonalisable. In this ase thereis a new type of branes whose geometry is rather di�erent, we give an example in [36℄.Remark 3Gluing automorphisms must be metri preserving automorphisms of the relevant Liealgebra that is the Grassmann envelope Λ(g) of the Lie superalgebra g. So far we obtainedsuh an automorphism by lifting it from an automorphism of the Lie superalgebra g.These are not all possible gluing automorphisms beause onjugating by a fermioni Liesupergroup element θ is an automorphism of Λ(g) but not of g. The above statements alsohold for Ω = Ad(θ) and a Ad(θ) twisted superonjugay lass is simply a left translate by
θ of an ordinary superonjugay lass.3.3.2 The boundary ationIn this setion we will state the boundary ation. Following [57℄, we represent aRiemann surfae Σ with boundary as Σ′\D, where Σ′ is a Riemann surfae withoutboundary and D an open dis. We want to have a WZNW model based on a map
g : Σ → G from the world-sheet with boundary to the Lie supergroup G. For thispurpose one needs to extend the map to a 3-manifold B. This is not possible for a world-sheet with boundary. Thus the idea is to �rst extend g to a map g′ : Σ′ → G then toonsider the WZ term based on g′ and to subtrat a boundary term whih only dependson the restrition of g′ to the losure of the dis D̄. This boundary term has to be suhthat it oinides with the restrition of the Wess-Zumino term to the dis and suh thatthe variation of the total ation vanishes provided the usual equation of motion hold inthe bulk and the desired gluing ondition at the boundary.Let us introdue the ation and show that it has the two properties mentioned above.Let g, g′,Σ,Σ′ as above, let g̃ : B → G an extension of g′ to a 3-manifold B withboundary ∂B = Σ′. Further let the restrition of g′ to the losure of the dis D̄ map to atwisted superonjugay lass CΩ

a at a regular point a,
g′(D̄) ⊂ CΩ

a . (3.3.20)Then the WZNW ation for the twisted boundary onditions J = Ω(J̄) is given by
SΩ,a[g] = SΣkin[g] + SBWZ[g̃]− k

2π

∫

D̄

ω , (3.3.21)where ω is (using the shorthand Ω̃ = Ad(g′−1) ◦ Ω)41



42 CHAPTER 3. CFT WITH LIE SUPERGROUP AS TARGET SPACE
ω =

1

2
str(g′−1dg′ ∧ Ω̃ + 1

Ω̃− 1
g′−1dg′) (3.3.22)and Ω̃− 1 restrited to a twisted superonjugay lass is invertible as already seen in theprevious setion. If we write g′|D̄ = Ω(h)ah−1 then

(Ω̃− 1)−1g′−1dg′
∣∣
D̄

= dhh−1 . (3.3.23)This allows us to rewrite the boundary term as
k

2π

∫

D̄

ω =
k

2π

∫

D̄

dτdσ str(Ω̃(∂hh−1)∂̄hh−1 − Ω̃(∂̄hh−1)∂hh−1) . (3.3.24)Now we an hek expliitly that the proposed ation has the desired properties. Firstthe restrition of the 3-form H to the twisted superonjugay lass indeed oinides with
dω

dω = H
∣∣
CΩ

a
. (3.3.25)Furthermore the variation of the ation vanishes provided the usual bulk equations ofmotion and the boundary equation of motions J = Ω(J̄) hold,

δSΩ,a[g] = δSbulk
Ω,a [g] +

ik

2π

∫

∂D̄

dτ str(δhh−1
(
(1− Ω̃)∂̄hh−1 + (Ω̃−1 − 1)∂hh−1

))

= δSbulk
Ω,a [g] +

i

2π

∫

∂D̄

dτ str(Ω(δhh−1)(J − Ω(J̄))) .A well-de�ned ation should not depend on the extensions of the map g. In setion 5.3the boundary GL(1|1) model with gluing automorphism Ω = (−st) (see setion 2.2.2 forthe desription of (−st)) is studied using a triangular deomposition of the group valued�eld. The question is, whether this an be generalised to all type I boundary WZNWmodels with gluing automorphism Ω = (−st).For general Ω and any basi Lie superalgebra, there is a parameterisation of the G-valued �eld g that is partiularly adapted to the problem: g = Ω(θ)g0θ
−1 where g0 inthe bosoni subgroup G0 and θ takes values in exp Λ(g1̄). Using the Polyakov-Wiegmannidentity (3.2.8) and the expliit form of the boundary term (3.3.24) one an rewrite theation as

SΩ,a[g] = SΩ|G0
,a[g0] +

k

2π

∫

Σ

dτdσ str(θ−1∂θ θ−1∂̄θ) + str(∂g0g
−1
0 Ω(θ−1∂̄θ))+

−str(θ−1∂θ g−1
0 ∂̄g0)− str(θ−1∂θ g−1

0 Ω(θ−1∂̄θ)g0) .

(3.3.26)This model then has the same quantisation onditions as the Lie group boundary WZNWmodel SΩ|G0
,a[g0].Our goal is to be able to ompute orrelation funtions in a boundary model, whihwe will do for GL(1|1) in hapter 5. 42



Chapter 4Sympleti fermionsThis hapter is part of [63℄. Sympleti fermions an be viewed as a simple exampleof a supergroup, that is a supergroup with trivial bosoni subgroup. They will turn outto be highly relevant in the GL(1|1) WZNW model as we will see in the next hapter.Sympleti fermions have been studied in detail in the bulk [64℄. After a short review ofthe bulk theory, we will give a detailed desription of the boundary theory fousing onboundary states and inluding twisted setors.4.1 The bulkSympleti fermions are two dimension zero fermioni �elds χ1 and χ2 with ation
S(χa) =

1

4π

∫

Σ

d2z ǫab∂χ
a∂̄χb , (4.1.1)where the anti-symmetri symbol is de�ned by ǫ12 = −ǫ21 = 1. This gives the operatorprodut expansions

χa(z, z̄)χb(w, w̄) ∼ −ǫab ln |z − w|2 , (4.1.2)where ǫ12 = −1. For orrelation funtions, we have the requirement that a orrelator isonly non-vanishing if the zero-modes of χ1 and χ2 are inserted.In view of the sympleti fermion orrespondene to GL(1|1) twisted setors beomeinteresting. A twisted setor is given, if we insert a �eld µλ at some point on the world-sheet, e.g. at zero. If we move the sympleti fermions around this �eld, they hange bya phase, i.e.
χ1(e2πiz)µλ(0) = e−2πiλχ1(z)µλ(0) , χ2(e2πiz)µλ(0) = e2πiλχ2(z)µλ(0) ,

χ̄1(e−2πiz̄)µλ(0) = e−2πiλχ̄1(z̄)µλ(0) , χ̄2(e−2πiz̄)µλ(0) = e2πiλχ̄2(z̄)µλ(0) .
(4.1.3)

χ1 and χ2 have to transform oppositely to give a symmetry of the Lagrangian. Then themode expansions of the �elds in these setors are
∂χ1(z) = −

∑

n∈Z

χ1
n+λz

−(n+λ)−1 and ∂̄χ̄1(z̄) = −
∑

n∈Z

χ̄1
n−λz̄

−(n−λ)−1

∂χ2(z) = −
∑

n∈Z

χ2
n−λz

−(n−λ)−1 and ∂̄χ̄2(z̄) = −
∑

n∈Z

χ̄2
n+λz̄

−(n+λ)−1 .
(4.1.4)43



44 CHAPTER 4. SYMPLECTIC FERMIONSSine the sympleti fermions do not have any zero modes in the twisted setor, therepresentation in this setor is irreduible. The onformal dimension of the ground-stateis
hλ = −λλ

∗

2
λ∗ = 1− λ . (4.1.5)Correlation funtions have been determined [64℄, they are

〈µλ(z1, z̄1)µλ∗(z2, z̄2)〉 = −|z12|2λλ
∗

〈µλ(z1, z̄1)µλ∗(z2, z̄2) : χ1χ2 : (z3, z̄3)〉 = |z12|2λλ
∗

(
Zλ + ln

∣∣∣z13z23
z12

∣∣∣
2) (4.1.6)

〈µλ1(z1, z̄1)µλ2(z2, z̄2)µλ3(z3, z̄3)〉 = Cλ1λ2λ3

{ ∣∣zλ1λ2
12 zλ1λ3

13 zλ2λ3
23

∣∣2 , λ1 + λ2 + λ3 = 1
∣∣zλ

∗

1λ
∗

2
12 z

λ∗1λ
∗

3
13 z

λ∗2λ
∗

3
23

∣∣2 , λ1 + λ2 + λ3 = 2where we take the short-hand zij = zi − zj as usual and
Cλ1λ2λ3 =

√
Γ(λ1)Γ(λ2)Γ(λ3)

Γ(λ∗1)Γ(λ∗2)Γ(λ∗3)
. (4.1.7)These oe�ients also appear in the GL(1|1) WZNW model and indiate the orrespon-dene we will prove later on.Let us now turn to the boundary theory. For earlier works on boundary models ofsympleti fermions see [18�20, 22℄. These works however do not onsider all boundaryonditions.4.2 Boundary onditionsWe start our onsiderations by investigating possible boundary onditions. Reall theenergy momentum tensor

T (z) = −1
2
ǫab : ∂χa∂χb : , T̄ (z̄) = −1

2
ǫab : ∂̄χa∂̄χb : . (4.2.1)They preserve the sympleti fermion symmetry and oinide along the boundary if

∂χ = A ∂̄χ for z = z̄ , (4.2.2)where A =
(
a b
c d

) is a matrix in SL(2) and for onveniene we ombined the two fermionsin the vetor χ =
(
χ1

χ2

). In terms of Dirihlet and Neumann derivatives (∂ = 1
2
∂u − i12∂nand ∂̄ = 1

2
∂u + i1

2
∂n) the boundary onditions are

−i∂nχ =
A− 1

A+ 1
∂uχ (4.2.3)44



4.3. THE RAMOND SECTOR 45provided 1 + A is invertible. Then the ation on the upper half-plane is
S = − 1

4π

∫
d2z ∂χt J ∂̄χ +

i

8π

∫

z=z̄

du χt J
A− 1

A+ 1
∂uχ , (4.2.4)where the matrix J is J =

(
0 −1
1 0

). The variation of this ation vanishes provided the aboveboundary onditions hold as well as the bulk equations of motion ∂∂̄χ± = 0. If 1 + Ais not invertible it has harateristi polynomial λ2, i.e. if 1 + A = 0 there are Dirihletonditions in both diretions while otherwise there is one Dirihlet and one Neumannondition. Note that these ases resemble the atypial branes in GL(1|1) [36℄.4.3 The Ramond setorWe �rst onsider the Ramond setor, ie. there are no twist �elds present. The expliitmode expansion is
χa(z, z̄) = ξa + χa0 ln |z|2 −

∑

n 6=0

1

n
χanz

−n +
1

n
χ̄anz̄

−n, (4.3.1)where the modes satisfy
{χam, χbn} = −mǫab δm,−n , {χ̄am, χ̄bn} = −mǫab δm,−n and {ξa, χb0} = ǫab . (4.3.2)All other anti-ommutators vanish. Note that for loality we have required χa0 = χ̄a0.In this setion we onstrut the boundary states in the Ramond setor, ompute theamplitudes and onstrut the orresponding open string model. We start the disussionof boundary states by investigating Dirihlet onditions in the two fermioni diretions.4.3.1 Dirihlet onditionsLet us �rst remind ourselves that if we have an extended hiral algebra given by W (z)and W̄ (z̄) we need a gluing automorphism, Ω, for the boundary (3.1.10)

W (z) = Ω(W̄ )(z̄) for z = z̄ . (4.3.3)We now pass to losed strings via world-sheet duality. The gluing onditions then beomethe following Ishibashi onditions for the boundary states |α〉〉Ω in the CFT on the fullplane (3.1.18) (
Wn − (−1)hW Ω(W̄−n)

)
|α〉〉Ω , (4.3.4)where hW is the onformal dimension of W .Using (4.3.4) we see that for the Dirihlet boundary onditions (A = −1 in (4.2.2))the orresponding Ishibashi states have to satisfy

(
χan − χ̄a−n

)
|D〉〉 = 0 for a = 1, 2 , (4.3.5)45



46 CHAPTER 4. SYMPLECTIC FERMIONSnote that there is no ondition on χa0 beause of the loality onstraint χa0 − χ̄a0 = 0. TheIshibashi states are expliitly onstruted as
|D0〉〉 =

√
2π exp

(∑
m>0

1
m

(
χ2
−mχ̄

1
−m − χ1

−mχ̄
2
−m
))
|0〉 , (4.3.6)

|D±〉〉 = ξ± exp
(∑

m>0
1
m

(
χ2
−mχ̄

1
−m − χ1

−mχ̄
2
−m
))
|0〉 , (4.3.7)

|D2〉〉 = ξ−ξ+√
2π

exp
(∑

m>0
1
m

(
χ2
−mχ̄

1
−m − χ1

−mχ̄
2
−m
))
|0〉 , (4.3.8)where the ground state |0〉 is de�ned by χan|0〉 = 0 for n ≥ 0. The dual Ishibashi state isobtained by dualizing the modes using (here m > 0)

χ1
−m

†
= χ1

m and χ2
−m

†
= −χ2

m . (4.3.9)For the omputation of amplitudes we need the Virasoro generators, they are
Ln = −1

2
ǫab
∑

m

: χan−mχ
b
m : (4.3.10)and the entral harge is c = −2. De�ne q = exp 2πiτ and q̃ = exp(−2πi/τ) as usual,where τ takes values in the upper half plane. Then the non-vanishing overlaps are

〈〈D0|qL
c
0+

1
12 (−1)F

c|D2〉〉 = 〈〈D2|qL
c
0+

1
12 (−1)F

c|D0〉〉 = η(τ)2,

〈〈D−|qL
c
0+ 1

12 (−1)F
c|D+〉〉 = −〈〈D+|qL

c
0+

1
12 (−1)F

c|D−〉〉 = η(τ)2,

〈〈D2|qL
c
0+

1
12 (−1)F

c|D2〉〉 = −iτη(τ)2 = η(τ̃)2 ,

(4.3.11)where Lc0 = L0 + L̄0. Further η(τ) is the Dedekind η-funtion
η(τ) = q

1
12

∏

m>0

(1− qm)2 . (4.3.12)Its modular S-transformation is (τ̃ = −1/τ)
η(τ̃ )2 = −iτη(τ)2 . (4.3.13)In setion 3.1.1 we saw that the modular transformation of an amplitude desribes thespetrum of an open string, i.e. it state must be a true harater. Thus only |D2〉 makessense as a boundary state.4.3.2 Neumann onditionsNext we would like to display the boundary state |A〉 for our general boundary ondi-tions (4.2.2). It has to satisfy the Ishibashi ondition (4.3.4)

χ1
n + a χ̄1

−n + b χ̄2
−n|A〉〉 = 0 ,

χ2
n + c χ̄1

−n + d χ̄2
−n|A〉〉 = 0 ,

(4.3.14)46



4.3. THE RAMOND SECTOR 47whih are satis�ed by
|A〉〉 = N exp

(
−
∑

m>0

1

m

(
aχ2

−mχ̄
1
−m + bχ2

−mχ̄
2
−m− cχ1

−mχ̄
1
−m− dχ1

−mχ̄
2
−m
))
|0〉 . (4.3.15)The dual state is

〈〈A| = N 〈〈0| exp
(
−
∑

m>0

1

m

(
−aχ2

mχ̄
1
m + bχ2

mχ̄
2
m − cχ1

mχ̄
1
m + dχ1

mχ̄
2
m

))
. (4.3.16)It will turn out that the normalisation should be �xed to be

N =
√

2π 2 sin πµ , (4.3.17)where we introdue µ via α = exp 2πiµ by −tr(A) = α + α−1.Now it is straightforward to ompute amplitudes between two boundary states. Anynon-zero amplitude requires the zero modes of χ1 and χ2 hene only the Dirihlet boundarystate has non-vanishing overlap with any Neumann state:
〈〈A| q 1

2
Lc

0+ 1
12 (−1)F

c |D2〉〉 =
N√
2π
q

1
12

∏

m>0

(1− α12q
m)(1− α−1

12 q
m) . (4.3.18)Upon modular transformation this amplitude is the spetrum of an open string streth-ing between two branes with respetively Neumann boundary onditions given by A andDirihlet onditions. Using the formulae provided in the appendix equation (4.3.18) be-omes

N√
2π

q
1
12

∏

m>0

(1− αqm)(1− α−1qm) = q̃
1
2
(µ− 1

2
)2− 1

24

∞∏

n=0

(
1− q̃n+1−µ)(1− q̃n+µ

)
. (4.3.19)Now, we onstrut the boundary theory of a string strething between these two branesand hek that its spetrum is indeed given by the amplitude we just omputed, we fol-low [65℄. For this purpose onsider the upper half plane, and demand boundary ondition

A for the negative real line, i.e.
∂χ = A ∂̄χ for z = z̄ and z + z̄ < 0 ; (4.3.20)and Dirihlet onditions for the positive real axis
∂uχ = 0 for z = z̄ and z + z̄ > 0 . (4.3.21)Then the �elds have the following SL(2) monodromy (ounterlokwise)

∂χ(ze2πi) = −A∂χ(z) , (4.3.22)47



48 CHAPTER 4. SYMPLECTIC FERMIONSand similar for the bared quantities. Denote by S the matrix that diagonalises the mon-odromy, i.e. S(−A)S−1 is diagonal. We denote the eigenvalues by α±1. Further, all theeigenvetors ∂χ±, they then have the usual mode expansion [64℄
χ±(z) =

∑

n∈Z

1

n± µχ
±
n±µz

−(n±µ) . (4.3.23)The original �elds are then expliitly
(
χ1

χ2

)
= S−1

(
χ+

χ−

)
. (4.3.24)Their partition funtion istr( qL0− c

24 (−1)F ) = q
1
2
(µ− 1

2
)2− 1

24

∞∏

n=0

(
1− qn+1−µ)(1− qn+µ

)
. (4.3.25)The omputation has been done similarly by Kaush [64℄. We see that the result �tswith (4.3.18) and the Cardy ondition is ful�lled. Thus, we niely established our bound-ary state and the open string theory it desribes.If we want to investigate amplitudes involving Neumann boundary states on bothends, we learnt [65℄ that it is neessary to insert additional zero modes in order to obtaina non-vanishing amplitude. Also introdue α12 via tr(A1A

−1
2 ) = α12 + α−1

12 then we get
〈〈A1|χ2χ1 q

1
2
Lc

0+ 1
12 (−1)F

c |A2〉〉 = N1N2 q
1
12

∏

m>0

(1− α12q
m)(1− α−1

12 q
m)

= N12 q̃
1
2
(µ12− 1

2
)2− 1

24

∞∏

n=0

(
1− q̃n+1−µ12

)(
1− q̃n+µ12

)
,(4.3.26)where

N12 = 4π
sin πµ1 sin πµ2

sin πµ12

. (4.3.27)The open string theory is onstruted almost exatly as above and again resembles [65℄.We demand boundary ondition A1 for the negative real line and A2 for the positive one,
∂χ =

{
A1 ∂̄χ if z = z̄ and z + z̄ < 0
A2 ∂̄χ if z = z̄ and z + z̄ > 0 .

(4.3.28)The �elds have the following SL(2) monodromy
∂χ(ze2πi) = A1A

−1
2 ∂χ(z) . (4.3.29)Let S diagonalise the monodromy, then its eigenvalues are α±1

12 and we all the eigenvetorsagain ∂χ±. They have the mode expansion
χ±(z) =

√
N12 ξ

± +
∑

n∈Z

1

n± µ12
χ±
n±µ12

z−(n±µ12) , (4.3.30)48



4.4. THE NEVEU-SCHWARZ SECTOR 49note the extra zero mode, sine the monodromy does only onern derivatives. Its parti-tion funtion with appropriate insertion istr(χ2χ1qL0− c
24 (−1)F ) = N12 q

1
2
(µ12− 1

2
)2− 1

24

∞∏

n=0

(
1− qn+1−µ12

)(
1− qn+µ12

)
, (4.3.31)and oinides with (4.3.26) as desired.4.4 The Neveu-Shwarz setorIn this setion we study the boundary states in the Neveu-Shwarz setor. The stateshave to satisfy the usual Ishibashi ondition

χ1
n + aχ̄1

−n + bχ̄2
−n|A〉〉NS = 0 ,

χ2
n + cχ̄1

−n + dχ̄2
−n|A〉〉NS = 0 ,

(4.4.1)where the modes are half-integer, i.e. n in Z + 1/2. The onditions are satis�ed by
|A〉〉 = exp

(
−

∑

m>0
m∈Z+1/2

1

m

(
aχ2

−mχ̄
1
−m + bχ2

−mχ̄
2
−m− cχ1

−mχ̄
1
−m− dχ1

−mχ̄
2
−m
))
|0〉 . (4.4.2)We introdue α12 as before, that is tr(A1A

−1
2 ) = α12 + α−1

12 , and get
NS〈〈A1|qL

c
0+

1
12 (−1)Fc|A2〉〉NS = q−

1
24

∏

m>0
m∈Z+1/2

(1− α12q
m)(1− α−1

12 q
m)

= q̃
1
2
(µ− 1

2
)2− 1

24

∏

n>0

(1 + q̃n−µ)(1 + q̃n−µ
∗

) ,

(4.4.3)where α12 = e2πiµ. This is the spetrum of an open string onstruted similarly as in theRamond setor, but with antisymmetri boundary onditions in the time-diretion.4.5 The twisted setorsGiven any twisted setor we an diagonalise it and thus we an restrit to twists thatare diagonal. Call the ground state of the setor µλ on whih χa has twists
χ1 −→ e−2πiλχ1 and χ2 −→ e2πiλχ2 . (4.5.1)Then reall that the mode expansions of the �elds in these setors are

∂χ1(z) = −
∑

n∈Z

χ1
n+λz

−(n+λ)−1 and ∂̄χ̄1(z̄) = −
∑

n∈Z

χ̄1
n−λz̄

−(n−λ)−1

∂χ2(z) = −
∑

n∈Z

χ2
n−λz

−(n−λ)−1 and ∂̄χ̄2(z̄) = −
∑

n∈Z

χ̄2
n+λz̄

−(n+λ)−1 .
(4.5.2)49



50 CHAPTER 4. SYMPLECTIC FERMIONSWhenever λ 6= 1/2 the boundary onditions are parameterised by just one parameter αaording to the boundary onditions
∂χ1 = α∂̄χ1 and ∂χ2 = α−1∂̄χ2 . (4.5.3)Only to these onditions there exist twisted Ishibashi states. The boundary state has tosatisfy the usual Ishibashi ondition

χ1
n+λ + αχ̄1

−n−λ|α〉〉λ = 0 ,

χ2
n−λ + α−1χ̄2

−n+λ|α〉〉λ = 0 ,
(4.5.4)and these are solved by (λ∗ = 1− λ)

|α〉〉λ = N exp
(
−
∑

m>0

α

m− λ∗χ
2
−m+λ∗χ̄

1
−m+λ∗ −

α−1

m− λχ
1
−m+λχ̄

2
−m+λ

)
µλ . (4.5.5)where we �x the normalisation to be N = e−2πi(λ−1/2)(µ−1/4) and α = e2πiµ. The dualboundary state is

λ〈〈α| = N̄µ†
λ exp

(∑

m>0

α

m− λχ
2
m−λχ̄

1
m−λ −

α−1

m− λ∗χ
1
m−λ∗χ̄

2
m−λ∗

)
. (4.5.6)Now we are prepared to ompute the amplitudes (note that the onformal dimension ofthe twist state is hλ = −λλ∗/2 and we use the shorthand α1α

−1
2 = e2πiµ)

λ〈α1|qL
c
0+

1
12 (−1)Fc|α2〉λ =

q
1
2
(λ− 1

2
)2− 1

24

e2πi(λ−
1
2
)(µ− 1

2
)

∏

n>0

(1− α1α
−1
2 qn−λ

∗

)(1− α2α
−1
1 qn−λ)

= q̃
1
2
(µ− 1

2
)2θ
(
τ̃ (

1

2
− µ)− (λ− 1

2
), τ̃
)
/η(τ̃)

= q̃
1
2
(µ− 1

2
)2− 1

24

∏

n>0

(1− u−1q̃n−µ)(1− uq̃n−µ∗) ,

(4.5.7)
where u = e2πiλ. This is the harater of a boundary theory twisted by µ12 in an orbifoldmodel of the sympleti fermions. The orbifold is by an abelian subgroup G of SL(2),where G is generated by u. We refer to [64℄ for a detailed disussion.
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Chapter 5The GL(1|1) WZNW modelWe turn to the main part of the thesis, the detailed disussion of an example, theGL(1|1) Wess-Zumino-Novikov-Witten model. The bulk model has been disussed in [26℄and [27℄. We start this hapter by giving an equivalent, but rather di�erent approah(setion 5.1). We show that GL(1|1) is equivalent to a pair of sympleti fermions andtwo salar �elds. This model is far from being trivial, sine we have to inlude twist �eldsfor the sympleti fermions. We use the orrespondene to reompute bulk orrelationfuntions.Our main goal is to understand the boundary theory. There exist two families ofboundary models. One onsists of branes that are point-like in the bosoni diretionsand generially deloalised in the fermioni diretions, while the other one onsists of onevolume-�lling brane. The former belongs to the identity gluing automorphism and we allthe orresponding branes untwisted, while the volume-�lling brane will be alled twistedbrane.In setion 5.2 we disuss boundary states in GL(1|1). We ompute the spetrum ofstrings ending on any two branes, verify Cardy's ondition and observe that the struturegiven by amplitudes involving only untwisted branes oinides with the fusion ring.In the last setion of this hapter we solve the boundary theory of the volume-�llingbrane ompletely. For this purpose we extend the �rst order formulation to the boundary,this involves the introdution of an extra fermioni boundary degree of freedom.5.1 The GL(1|1)-sympleti fermion orrespondeneThis setion is the main result of [63℄. In this setion we will show the relation betweenthe GL(1|1) WZNW model and the free salars and sympleti fermions. Finally, we willomment on the bulk orrelation funtions.5.1.1 The GL(1|1) WZNW modelOur starting point for the relation between the GL(1|1) WZNW model and the freetheory will be the �rst order ation for GL(1|1) found in [27℄. Reall that the Lie super-algebra is generated by two bosoni elements E,N and two fermioni ψ± whih have thefollowing non-zero (anti)ommutator relations
[N,ψ±] = ±ψ±, {ψ−, ψ+} = E. (5.1.1)51



52 CHAPTER 5. THE GL(1|1) WZNW MODELFurther, we have a family of supersymmetri bilinear forms, but below we will alwayswork with str(NE) = str(ψ+ψ−) = −1. (5.1.2)For the GL(1|1) supergroup we hoose a Gauss-like deomposition of the form
g = ec−ψ

−

eXE+Y N e−c+ψ
+

.The WZNW model thus has two bosoni �elds X(z, z̄), Y (z, z̄) and two fermioni �elds
c±(z, z̄), and the ation takes the form

SWZNW[g] =
k

4π

∫

Σ

d2z
(
−∂X∂̄Y − ∂Y ∂̄X + 2eY ∂c+∂̄c−

)
, (5.1.3)where k is the level. Variation of the ation leads to the usual bulk equations of motion[66℄.The holomorphi urrent of the GL(1|1) WZNW model is in our notation given by

k∂gg−1. The omponents orresponding to the generators are
JE = −k∂Y, JN = −k∂X + kc−∂c+ e

Y ,

J− = keY ∂c+, J+ = −k∂c− − kc−∂Y , (5.1.4)Similarly, for the anti-holomorphi urrent −kg−1∂̄g the omponents are
J̄E = k∂̄Y, J̄N = k∂̄X − k∂̄c− c+ eY ,

J̄+ = keY ∂̄c−, J̄− = −k∂̄c+ − kc+∂̄Y . (5.1.5)Let us also mention that the modes of this a�ne algebra satisfy
[JEn , J

N
m ] = −kmδn+m, [JNn , J

±
m] = ±J±

n+m, {J−
n , J

+
m} = JEn+m + kmδn+m, (5.1.6)where we note that the modes an be resaled suh that the algebra is independent of thelevel k. Equation (5.1.6) orresponds to the OPE

JA(z)JB(w) ∼ −k str(AB)

(z − w)2
+

[A,B}
z − w . (5.1.7)5.1.2 First order formulationFollowing setion 3.2.4 we will now pass to a �rst order formalism by introduing twoadditional fermioni auxiliary �elds b± of weight ∆(b±) = 1. Naively, the ation would be

1

4π

∫

Σ

d2z

(
−k∂X∂̄Y − k∂Y ∂̄X + 2b+∂c+ + 2b−∂̄c− +

2

k
e−Y b−b+

)
. (5.1.8)52



5.1. THE GL(1|1)-SYMPLECTIC FERMION CORRESPONDENCE 53This redues to (5.1.3) if we integrate out b± using their equations of motion
b− = k∂c+ expY, b+ = −k∂̄c− exp Y. (5.1.9)However, we get a quantum orretion in going from the GL(1|1) invariant measure usedfor the ation in (5.1.3) to the free-�eld measure DXDYDc−Dc+Db−Db+ that we wantto use for our �rst order formalism. In analogy with [67℄ the orretion is

ln det
(
|ρ|−2e−Y ∂eY ∂̄

)
=

1

4π

∫
d2z

(
∂Y ∂̄Y +

1

4

√
GRY

)
. (5.1.10)Here G is the determinant of the world-sheet metri and R its Gaussian urvature. |ρ|2is the metri and we have the relation √GR = 4∂∂̄ log |ρ|2. We thus get a orretionto the kineti term and a bakground harge for Y . The �rst order ation inluding theorretion is

S(X, Y, b±, c±) =
1

4π

∫

Σ

d2z

(
− k∂X∂̄Y − k∂Y ∂̄X + ∂Y ∂̄Y +

1

4

√
GRY

+ 2c+∂b+ + 2c−∂̄b− +
2

k
e−Y b−b+

)
. (5.1.11)We also get a quantum orretion to the urrent. This will happen where we have tohoose a normal ordering of the terms in the urrent (5.1.4). We �x this by demandingthat the urrents obey the OPEs (5.1.7). Indeed, we have to add ∂Y to JN to ensurethat it has a regular OPE with itself. Thus the holomorphi urrents in the free �eldformalism are

JE = −k∂Y, JN = −k∂X + c−b− + ∂Y ,

J− = b−, J+ = −k∂c− − kc−∂Y ,where we suppress the normal ordering. We get similar expressions for the anti-holomorphiurrents.5.1.3 The orrespondeneIf we integrate out b± in (5.1.11) we simply obtain the original GL(1|1) WZNWmodel.We will now show that if we instead bosonize the bc system to obtain a system of threesalars, it is possible to perform a �eld rede�nition suh that one of the salars deouples.We an then return to a new b′c′ formalism and integrate out b′± to arrive at a deoupledtheory of two salars and a set of sympleti fermions.In this proess the urrent beomes more symmetri and simple. It an be seen as aguideline for whih transformations to perform and we will therefore expliitly follow thetransformation of the urrent in eah step.We will start by only disussing the transformation of the ation and the urrent. Themap of the vertex operators will be determined in the next subsetion.53



54 CHAPTER 5. THE GL(1|1) WZNW MODELTo begin we bosonize the bc system in (5.1.11) in the standard way [68℄
c± = eρ

R,L

, b± = e−ρ
R,L

,

c+∂b+ + c−∂̄b− = −1

2
∂ρ∂̄ρ+

1

8

√
GRρ,

b−c− = −∂ρL, (5.1.12)where we denote left and right omponents of salars by supersripts L,R. In the urrentswe likewise have to introdue left and right indies and the holomorphi urrents thenbeome
JE = −k∂Y L, JN = −k∂XL + ∂ρL + ∂Y L ,

J− = e−ρ
L

, J+ = −k∂(ρL + Y L)eρ
L

, (5.1.13)and the ation is
S(X, Y, b±, c±) =

1

4π

∫

Σ

d2z
(
−k∂X∂̄Y − k∂Y ∂̄X + ∂Y ∂̄Y+

− ∂ρ∂̄ρ+
1

4

√
GR(Y + ρ) +

2

k
e−Y−ρ

)
.

(5.1.14)We observe, both from the urrent and the ation, that it is very natural to go tovariables Y, Z, ρ′ where
ρ′ = Y + ρ, Z = kX − ρ− Y = kX − ρ′. (5.1.15)The urrents and the ation in these variables are

JE = −k∂Y L, JN = −∂ZL,

J− = eY
L−ρ′L , J+ = −k∂ρ′Leρ′L−Y L (5.1.16)and

S(Z, Y, ρ′) =
1

4π

∫

Σ

d2z

(
−∂Z∂̄Y − ∂Y ∂̄Z − ∂ρ′∂̄ρ′ + 1

4

√
GRρ′ + 2

k
e−ρ

′

)
. (5.1.17)Hene we got a theory of two salars deoupled from another salar with sreening hargeand linear dilaton term. For alulation of orrelation funtions this is a very e�ientformulation of the theory. We will, however, go one step further and rewrite the sreenedCoulomb gas in terms of sympleti fermions.We thus return to a b′c′ system using again (5.1.12), but now for the �eld ρ′. Thisgives us the following simple expressions

JE = −k∂Y L, JN = −∂ZL,

J− = eY
L

b′−, J+ = −ke−Y L

∂c′− , (5.1.18)54



5.1. THE GL(1|1)-SYMPLECTIC FERMION CORRESPONDENCE 55for the urrents and for the ation it beomes
S(Z, Y, b′±, c

′
±) =

1

4π

∫

Σ

d2z

(
−∂Z∂̄Y − ∂Y ∂̄Z + 2c′+∂b

′
+ + 2c′−∂̄b

′
− +

2

k
b′−b

′
+

)
. (5.1.19)We an now integrate out the �elds b′± getting the equations of motion

b′+ = −k∂̄c′−, b′− = k∂c′+ , (5.1.20)and arrive at
S(X, Y, c±) =

1

4π

∫

Σ

d2z
(
−∂Z∂̄Y − ∂Y ∂̄Z + 2k∂c′+∂̄c

′
−
)
. (5.1.21)Of ourse, we have to be areful when the vertex operators depend on b′. As we will seebelow, the vertex operators for typial representations will be twist operators whih weinterpret as not ontaining b.To remove the dependene on the level k in the ation we introdue χa by

√
kc′+ = χ1,

√
kc′− = χ2, (5.1.22)and the urrents and ation are then

JE = −k∂Y L, JN = −∂ZL,

J− =
√
keY

L

∂χ1, J+ = −
√
ke−Y

L

∂χ2, (5.1.23)
S(X, Y, χa) =

1

4π

∫

Σ

d2z
(
−∂Z∂̄Y − ∂Y ∂̄Z + ǫab∂χ

a∂̄χb
)
. (5.1.24)where the anti-symmetri symbol is de�ned by ǫ12 = −ǫ21 = 1. This gives the OPEs

χa(z, z̄)χb(w, w̄) ∼ −ǫab ln |z − w|2 ,
Z(z, z̄)Y (w, w̄) ∼ ln |z − w|2 . (5.1.25)where ǫ12 = −1. This is the ation and urrent that was onstruted in [69℄. In thatreferene it was also found that the ation has an enlarged OSp(2|2) symmetry.For future referene, let us sum up the orrespondene between the sympleti fermionsand the underlying b′, c′ system. We have

∂̄χ1 =
√
k∂̄c′+, ∂̄χ2 =

√
k∂̄c′− = − 1√

k
b′+,

∂χ1 =
√
k∂c′+ =

1√
k
b′−, ∂χ2 =

√
k∂c′−, (5.1.26)whih will be useful in the next setion where we study what happens to the vertexoperators. 55



56 CHAPTER 5. THE GL(1|1) WZNW MODEL5.1.4 Mapping of the vertex operatorsWe now onsider the mapping of the GL(1|1) vertex operators under the transforma-tion that we found in the last subsetion. The basis of vertex operators to be used withthe �rst order ation (5.1.11) were found in [27℄ by a minisuperspae analysis. We willhere use the notation of [62℄ and write the operators as
V〈−e,−n+1〉 = : eeX+nY :

(
1 c−
c+ c−c+

)
, (5.1.27)and the onformal dimension is

∆(e,n) =
e

2k
(2n− 1 +

e

k
). (5.1.28)For e 6= mk, where m is an integer, the olumns of this matrix will orrespond to thetwo-dimensional representation 〈−e,−n + 1〉 for the left-moving urrents while the rowsorrespond to the representation 〈e, n〉 under the right-moving urrents.Let us �rst onsider the transformation giving us (5.1.17):

X =
1

k
(ρ′ + Z),

c− = eρ
′L
1 −Y L

, b− = e−ρ
′L
1 +Y L

. (5.1.29)This maps the vertex operators to
V〈−e,−n+1〉 = : e

e
k
ρ′+ e

k
Z+nY

(
1 eρ

′L−Y L

eρ
′R−Y R

eρ
′−Y

)
: . (5.1.30)Here we generally split salar �elds into the left and right handed part as ρ′ = ρ′L + ρ′R.Some omments are in order here: Firstly, rather than thinking of e.g. c− in (5.1.27) asa funtion to be evaluated under the path integral, we have here used bosonization andwill think about the vertex operators in the operator formalism. This means that c− is aholomorphi operator. Seondly, for the Y Z system the vertex operators are

V B
〈−e,−n+1〉 =

(
: e

e
k
Z+nY : : e

e
k
Z+(n−1)Y L+nY R

:

: e
e
k
Z+nY L+(n−1)Y R

: : e
e
k
Z+(n−1)Y :

)
, (5.1.31)whereas for the ρ′ system they are

V F
〈−e,−n+1〉 =

(
: e

e
k
ρ′ : : e(

e
k
+1)ρ′L+ e

k
ρ′R :

: e
e
k
ρ′L+( e

k
+1)ρ′R : : e(

e
k
+1)ρ′ :

)
. (5.1.32)Thus in the o�-diagonal terms, the splitting into holomorphi and anti-holomorphi partsmeans that the orrelation funtions alulated in respetively the Y Z system and the

ρ′ system are not separately real, but only the ombined orrelation funtion an be56



5.1. THE GL(1|1)-SYMPLECTIC FERMION CORRESPONDENCE 57expressed in the absolute values of the insertions zi. Also, we see that around the o�-diagonal terms in the operator (5.1.31) the �eld Z gets an additive twist. The overalltwist vanishes due to harge onservation for Y .Sine ρ′ now appears with non-integer momenta, we see that in going to the b′, c′system with ation (5.1.19) we get twist operators. Preisely, the vertex operator (5.1.32)maps into
V F
〈−e,−n+1〉 =

(
µ̃Le/kµ̃

R
e/k µ̃Le/k+1µ̃

R
e/k

µ̃Le/kµ̃
R
e/k+1 µ̃Le/k+1µ̃

R
e/k+1

)
, (5.1.33)where the twist states are de�ned by

c′−(e2πiz)µ̃Lλ (0) = e2πiλµ̃Lλ(0). (5.1.34)This is solved by
µ̃Lλ ≡ : eλρ

′L

: , (5.1.35)but only uniquely in λ modulo integers and, naturally, up to a normalisation. The on-formal dimension is −1
2
λ(1− λ) so the ground states have 0 < λ < 1. We an step λ upand down with respetively c′− and b′− e.g.

c′−(z)µ̃Lλ(0) ∼ 1

z−λ
µ̃Lλ+1(0). (5.1.36)Also note that

µ̃Rλ ≡ : eλρ
′R

: , (5.1.37)ful�ls
c′+(e−2πiz̄)µ̃Rλ (0) = e−2πiλµ̃Rλ (0). (5.1.38)To obtain the sympleti fermions requires integrating out b′. This means that theanti-holomorphi part of c′− is non-trivial in the OPEs. As an example, c′+ and c′−with ation (5.1.21) have a singular OPE that is ∼ 1

k
ln |z − w|2. However, using equa-tions (5.1.26) we get the mapping of ∂c′− and b′− to the holomorphi operators ∂χ2 and

∂χ1. Likewise, ∂̄c′+ and b′+ will orrespond to the anti-holomorphi operators ∂̄χ1 and
∂̄χ2.One has to be areful sine we in priniple an not integrate out b′ when the vertexoperators depend on b′−b′+. However, for the twist operators it seems plausible sine, atleast for λ > 0, we an naively think of µλ as c′λ. To hek this we will in the next setionompare the orrelation funtions to the already known alulation for the sympletifermions. The twist �elds in the b′, c′ system then diretly translates into twist �elds ofthe sympleti fermions. The sympleti fermion twist �elds are de�ned by [64℄

χ1(e2πiz)µλ(0) = e−2πiλχ1(z)µλ(0), χ2(e2πiz)µλ(0) = e2πiλχ2(z)µλ(0),

χ̄1(e−2πiz̄)µλ(0) = e−2πiλχ̄1(z̄)µλ(0), χ̄2(e−2πiz̄)µλ(0) = e2πiλχ̄2(z̄)µλ(0), (5.1.39)57



58 CHAPTER 5. THE GL(1|1) WZNW MODELwhere χ1 and χ2 has to transform oppositely to give a symmetry of the Lagrangian. Herewe have split the sympleti fermions into their hiral and anti-hiral parts χa(z, z̄) =
χa(z) + χ̄a(z̄). The anti-holomorphi part must transform in the same way under z̄ 7→
e−2πiz̄, but importantly λ an di�er by an integer between the holomorphi and anti-holomorphi setor. The ondition (5.1.39) is ful�lled by µ̃Lλ µ̃Rλ and the other operatorsin (5.1.33). However, we have done the resaling (5.1.22) so if we think of the twistoperator as (c′−)λ we should hoose the following normalisation:

µLλ =
√
k
λ
µ̃Lλ =

√
k
λ

: eλρ
′L

: , (5.1.40)and similarly for the anti-holomorphi part. Thus the vertex operator (5.1.33) maps into
V F
〈−e,−n+1〉 7→ k−

e
k

(
µLe/kµ

R
e/k

1√
k
µLe/k+1µ

R
e/k

1√
k
µLe/kµ

R
e/k+1

1
k
µLe/k+1µ

R
e/k+1

)
. (5.1.41)A notation with splitting into left and right part, like in the b′c′ system, turns out to beuseful. The twist values an be stepped up and down using the following OPEs:

∂χ1(z)µLλ (0) ∼ 1

zλ
µLλ−1(0), ∂χ2(z)µLλ(0) ∼ λ

z1−λµ
L
λ+1(0), (5.1.42)and orrespondingly

∂̄χ̄1(z̄)µRλ (0) ∼ λ

z̄1−λµ
R
λ+1(0), ∂̄χ̄2(z̄)µ̄Rλ (0) ∼ − 1

z̄λ
µRλ−1(0). (5.1.43)We note here again that up to a sign the anti-holomorphi side is understood by seeing

µRλ as µL1−λ.To onlude, the total vertex operator V〈−e,−n+1〉 in the Y Z and sympleti fermionsystem with ation (5.1.24) takes the form
V〈−e,−n+1〉 7→

k−
e
k

(
: e

e
k
Z+nY : µLe/kµ

R
e/k

1√
k

: e
e
k
Z+(n−1)Y L+nY R

: µLe/k+1µ
R
e/k

1√
k

: e
e
k
Z+nY L+(n−1)Y R

: µLe/kµ
R
e/k+1

1
k

: e
e
k
Z+(n−1)Y : µLe/k+1µ

R
e/k+1

) (5.1.44)We note that equations (5.1.42) an be used to hek that the olumns of this opera-tor transform in the 〈−e,−n + 1〉 representation of GL(1|1) under the left-moving ur-rents (5.1.23). These operators are indeed lose to the operators found in [69℄. Let usnow hek the orrelation funtions of these vertex operators.5.1.5 Bulk orrelation funtionsWe will now ompare the orrelation funtions of the primary �elds (5.1.27) obtainedin the GL(1|1) model to the alulations done for the sympleti fermions in [64℄. Thesimilarity was already noted in [27℄. 58



5.1. THE GL(1|1)-SYMPLECTIC FERMION CORRESPONDENCE 59Let us �rst note that from equations (5.1.31) and (5.1.32) the vertex operators (5.1.27)in the Y, Z, ρ′ piture (5.1.17) takes the form
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σ

= : e
e
k
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e(
e
k
+σ)ρ′L+( e

k
+σ̄)ρ′R : , (5.1.45)where σ, σ̄ ∈ {0, 1} labels respetively the olumns and the rows.We onsider the three-point funtion
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(z3)〉. (5.1.46)The orrelation funtion splits into a Y Z and a ρ′ part, A = ABAF. The Y Z part is easilyevaluated to be
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(5.1.47)where the indies run from 1 to 3. The δ-funtions follow diretly from the JE and JNurrents. The ρ′ part is also easily evaluated. Here one has to remember that the overall

ρ′ harge has to sum to one due to the bakground harge of ρ′. This means that we anmaximally have two insertions of the interation term of the ation (5.1.17). However, aswas ommented in [27℄, the part with two interation terms vanish. The part with oneinteration term is alulated using the Dotsenko-Fateev like integral used in [27℄. We get
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(5.1.48)
where the �rst part AF

1 orresponds to no interation term and the seond part AF
2 to oneinteration term. We have here used that ∑i ei = 0 due to the delta-funtion from the

Y Z part of the orrelation funtion in (5.1.47).If we ombine the two parts in (5.1.47) and (5.1.48) the symmetry between the holo-59



60 CHAPTER 5. THE GL(1|1) WZNW MODELmorphi and anti-holomorphi setor is restored and we arrive at
A = δ
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)
, (5.1.49)as was derived in [27℄. This indeed supports the validity of our deoupling of the GL(1|1)WZNW model into a set of free salars and the ρ′ system with ation (5.1.17). The resultmay not look loal, e.g. does not seem to be symmetri in interhanging operator 2 and3, due to the asymmetri-looking Γ funtions. However, these an be rewritten in thefollowing symmetri form
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.(5.1.50)As we see from the result (5.1.49) one has to be areful in the limit when ei is aninteger multiple of k. As was shown in [27℄ this gives logarithmi orrelation funtions.For now let us not onsider these limits. Thus we get genuine twist operators whengoing to the sympleti fermions and the twists are λi = ei/k + σi in the holomorphisetor and λ̄i = ei + σ̄i in the anti-holomorphi setor when we ompare equation (5.1.45)with (5.1.41). As we see from the vertex operators in (5.1.41), the results that we expetfrom the sympleti fermions to omply with orrelation funtion (5.1.48) are
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j (5.1.52)for∑i λi =
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i λ̄i = 2, where λ∗ = 1−λ and the subsript SF means that the expetationvalue is alulated using the sympleti fermion part of the ation (5.1.24). Here µλ are thetwist operators de�ned in eq. (5.1.39). We have also used that in going to this expetation60



5.1. THE GL(1|1)-SYMPLECTIC FERMION CORRESPONDENCE 61value under the resaling (5.1.22) we have to multiply the orrelation funtions with anoverall fator of k. This is beause the orrelation funtion normalisation is relative tothe orrelator of χ̄1χ2 or c′+c′− in the b′c′ system in eq. (5.1.19). This simply means thatthe dependene on k disappears due to the normalisation in eq. (5.1.40) as is expeted.We want to ompare this to the alulation of bulk twist orrelators done by Kaushin [64℄. In that paper, of ourse, only twist �elds with idential twist in the holomorphiand anti-holomorphi setor are treated so we take λi = λ̄i. Further, we have to rememberthat the twist �elds are only de�ned up to normalisation. To ompare with Kaush weuse one of the equations (5.1.51), (5.1.52) to �x the normalisation and an then ompareto the seond one. The normalisation is �xed by de�ning
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λi = 2,(5.1.54)whih is exatly as in [64℄. We an also ompare with the two-point funtion whih iseasily alulated and also get a math here. Note, however, that in [64℄ only ground statetwist �elds with 0 < λ < 1 are onsidered. Our results thus ompare preisely in thisrange, and are the analyti ontinuation of the twists λ for the results in [64℄.In the ase where we allow the ei to be zero or an integer multiple of k, we have totake into aount the zero modes of the sympleti fermions. This gives four di�erentground states in the sympleti model - two fermioni and two bosoni, where the lasttwo span a Jordan blok for L0. The result is that we get logarithmi branh uts inthe orrelation funtions. This an be seen from the GL(1|1) side where the Γ funtionsdiverge when λ beomes integer [27℄. Thus we also get agreement from the two sides ofthe orrespondene here.Now, having established the orrespondene, we want to apply it. There are twoapparent appliations. For point-like branes in the GL(1|1) WZNW model, so far itould be argued that orrelators ontaining only boundary �elds behave like untwistedsympleti fermions see setion 5.3.4, but it was not possible to handle insertions of bulk�elds. Now, we are in a position to approah the problem of omputing orrelationfuntions involving bulk and boundary �elds. We will refrain from this problem for now,but keep it in mind for future researh. Instead, we onsider the study of boundary statesin setion 5.2. 61



62 CHAPTER 5. THE GL(1|1) WZNW MODEL5.2 BranesThe aim of this setion is to initiate a systemati study of boundary onditions inWZNW models on supergroups based on the example of GL(1|1).1 Let us list the mainresults of this setion in more detail. Reall that maximally symmetri boundary ondi-tions in onformal �eld theories arry two labels. The �rst one refers to the hoie of agluing ondition between left and right moving hiral �elds. The seond label parametrisesdi�erent boundary onditions assoiated with the same gluing ondition. In unompati-�ed free �eld theory, for example, the two labels orrespond to the dimension of the braneand its transverse position. The relation between these labels and the branes' geometrybeomes more intriate when the world-sheet theory is interating.Reall that gl(1|1) possesses two di�erent gluing automorphisms (setion 2.1.1). Thosebranes orresponding to the trivial gluing automorphism will be alled untwisted, whilethe other we all twisted. After a detailed study of the branes' geometry we shall provideexat boundary states for generi and non-generi untwisted branes on GL(1|1) in setion5.2.2. There, we shall also disuss what happens when a generi brane is moved ontoone of the lines y0 = 2πs: It turns out to split into a pair of non-generi branes with atransverse separation that is proportional to the level of the WZNW model. Setion 5.2.3ontains a detailed disussion of the relation between our �ndings for boundary onditionsin a loal logarithmi onformal �eld theory and the usual Cardy ase of unitary rationalmodels [49℄. We shall see that in both ases branes are parameterised by irreduiblerepresentations of the urrent algebra. Furthermore, the spetra between any two branesan be determined by fusion. Similar results for the p = 2 triplet model have beenobtained in [22℄. In the ase of GL(1|1) WZNW model we will establish that most of theboundary spetra are not fully reduible. This applies in partiular to the spetrum ofboundary operators on a single generi brane.5.2.1 Untwisted branes: Geometry and partile limitThis setion is devoted to the geometry of branes assoiated with the trivial gluingautomorphism. We shall show that suh branes are loalised at a point (x0, y0) on thebosoni base of GL(1|1). For generi hoies y0, they streth out along the fermionidiretions, i.e. the fermioni �elds obey Neumann type boundary onditions. When y0 =
2πs, s ∈ Z, on the other hand, the orresponding branes are point-like. These geometriinsights from the �rst part of the setion are then used in the seond part to study branesin the partile limit in whih the level k is sent to in�nity. Most importantly, we shallprovide minisuperspae analogues of the boundary states for both generi and non-generiuntwisted branes, see eqs. (5.2.31) and (5.2.33), respetively.Reall that a boundary ondition is said to be maximally symmetri if left and rightmoving urrents an be identi�ed along the boundary, up to the ation of an automorphism1Spetra of supersymmetri oset models with open boundary onditions were also studied previously,in partiular in [70, 71℄. 62



5.2. BRANES 63
Ω,

Ja(z) = Ω
(
J̄a(z̄)

) for z = z̄ . (5.2.1)where Ja = E,N, ψ± when we deal with the GL(1|1) model. For Ω we an insert any ofthe automorphisms of gl(1|1)(setion 2.1.1).It will be onvenient to rewrite the gluing onditions (5.2.1) in terms of those �elds thatappear in the ation of the GL(1|1) WZNWmodel. In priniple, there exist various hoiesthat ome with di�erent parameterisations of the supergroup GL(1|1). One possible setof oordinate �elds is introdued through
g = eic−ψ

−

eiXE+iY N eic+ψ
+

. (5.2.2)The �elds X and Y are bosoni while c± are fermioni. Inserting our spei� hoie ofthe parameterisation (5.2.2), the urrents take the following form
J̄ = kg−1∂̄g

= kieiY ∂̄c−ψ
− + k

(
i∂̄X − (∂̄c−)c+e

iY
)
E + ki∂̄Y N + k(i∂̄c+ − c+∂̄Y )ψ+

(5.2.3)and
J = −k∂gg−1

= −k(i∂c− − c−∂Y )ψ− − k
(
i∂X − c−(∂c+)eiY

)
E − ki∂Y N − kieiY ∂c+ψ+.

(5.2.4)Geometri interpretation of untwisted branesIn the previous setion we have made a number of general statements onerning thegeometry of maximally symmetri branes on (super-)group target spaes. Here, we wantto step bak a bit and work out the preise form of the boundary onditions for oordinate�elds. We shall ontinue to use the spei� parameterisation (5.2.2) of GL(1|1). Insertionof our expliit formulae (5.2.3) and (5.2.4) for left and right moving urrents into thegluing ondition (5.2.1) with Ω = I gives
∂pY = 0 , ∂pZ = 0 , for z = z̄ ,where Z = X + ic−c+(e−iY − 1)−1

(5.2.5)and ∂p denotes the derivative along the boundary. In other words, both bosoni �elds Yand Z satisfy Dirihlet boundary onditions. Untwisted branes in the GL(1|1) WZNWmodel are therefore parameterised by the onstant values (y0, z0) the two bosoni �elds
Y, Z assume along the boundary. For the two basi fermioni �elds we obtain similarly

± 2 sin2(Y/2)∂nd± = sin(Y ) ∂pd± , for z = z̄ ,where d± = c±e
iY/2 sin−1(Y/2)/2i .

(5.2.6)Thereby, the fermioni diretions are seen to satisfy Neumann boundary onditions witha onstant B-�eld whose strength depends on the position of the brane along the bosoni63



64 CHAPTER 5. THE GL(1|1) WZNW MODELbase. We shall provide expliit formulae below. For the moment let us point out thatthe ondition (5.2.6) degenerates whenever the value y0 of the bosoni �eld Y on theboundary approahes an integer multiple of 2π. In fat, when y0 = 2πs, s ∈ Z we obtainDirihlet boundary onditions in all diretions, bosoni and fermioni ones,
∂pY = ∂pZ = ∂pd± = 0 for z = z̄. (5.2.7)In the following, we shall refer to the branes with parameters (z0, y0 6= 2πs) as generi(untwisted) branes. These branes are loalised at the point (z0, y0) of the bosoni baseand they streth out along the fermioni diretions. A loalisation at points (z0, 2πs), s ∈

Z, implies Dirihlet boundary onditions for the fermioni �elds. We shall refer to theorresponding branes as non-generi (untwisted) branes.We have seen in the desription of our gluing onditions that it was advantageousto introdue �elds Z and d± instead of X and c±. They orrespond to a new hoie ofoordinates on the supergroup GL(1|1)
g = eic−ψ

−

eixE+iyNeic+ψ
+

= eid−ψ
−

e−id+ψ
+

eizE+iyNeid+ψ
+

e−id−ψ
− (5.2.8)that is partiularly adapted to the desription of untwisted branes. In fat, we reallfrom our general disussion that untwisted branes are loalised along onjugay lasses.It is therefore natural to introdue a parameterisation in whih supergroup elements gare obtained by onjugating bosoni elements g0 = exp(iz0E + iy0N) with exponentialsof fermioni generators. From equation (5.2.8) it is also easy to read o� that onjugaylasses ontaining a bosoni group element g0 ontain two fermioni diretions as longas y0 6= 2πs. In ase y0 = 2πs, onjugation of g0 with the fermioni fators is a trivialoperation and hene the onjugay lasses onsist of points only.It is instrutive to work out the form of the bakground metri and B-�eld in our newoordinates. To this end, let us reall that

ds2 = str((g−1dg)2
)

= 2dxdy − 2eiydη−dη+ . (5.2.9)Here, the super-oordinates x, y, η± orrespond to our oordinate �eldsX, Y, c±. Similarly,the Wess-Zumino 3-form on the supergroup GL(1|1) is given by
H =

2

3
str(g−1dg)∧3 = 2ieiydη− ∧ dη+ ∧ dy . (5.2.10)After the appropriate hange of oordinates from (x, y, η±) to (z, y, ζ±), the metri reads

ds2 = 2dzdy + 8 sin2(y/2)dζ−dζ+ (5.2.11)and the H �eld beomes
H = 4i

(
cos(y)− 1

)
dζ− ∧ dζ+ ∧ dy . (5.2.12)It is easy to hek that H = dB possesses a 2-form potential B given by

B = 4i sin(y) dζ− ∧ dζ+ + 2iζ+dζ− ∧ dy − 2iζ−dζ+ ∧ dy . (5.2.13)64



5.2. BRANES 65Upon pull bak to the untwisted branes we an set dy = 0 and the B-�eld beomes
π∗brane B = 4i sin(y) dζ− ∧ dζ+ . (5.2.14)This expression together with our formula (5.2.11) for the metri allow to reast theboundary onditions (5.2.6) for the fermioni �elds in theories with generi untwistedboundary onditions in the familiar form (setion 3.3.2.Boundary states in the minisuperspae theoryAs in the analysis of the bulk GL(1|1) model [27℄ it is very instrutive to study theproperties of untwisted branes in the so-alled partile or minisuperspae limit. Therebywe obtain preditions for several �eld theory quantities in the limit where the level ktends to in�nity. Our �rst aim is to present formulae for the minisuperspae analogue ofIshibashi states. Using our insights from the previous subsetion we shall then proposeandidate boundary states for the partile limit and expand them in terms of Ishibashistates.Let us begin by realling a few basi fats about the supergroup GL(1|1) or ratherthe spae of funtions Fun
(GL(1|1)) it determines, see [27℄. The latter is spanned by theelements

e0(e, n) = eiex+iny , e±(e, n) = η±e0(e, n) e2(e, n) = η−η+e0(e, n) . (5.2.15)where the oordinates are the same as in the previous subsetion. Right and left invariantvetor �elds take the following form
RE = i∂x , RN = i∂y + η−∂− , R+ = −e−iy∂+ − iη−∂x , R− = −∂− , (5.2.16)and
LE = −i∂x , LN = −i∂y − η+∂+ , L− = e−iy∂− − iη+∂x , L+ = ∂+ , (5.2.17)These vetor �elds generate two (anti-)ommuting opies of the underlying Lie superal-gebra gl(1|1). For the reader's onveniene we also wish to reprodue the invariant Haarmeasure on GL(1|1),

dµ = e−iydxdydη+dη− . (5.2.18)The deomposition of Fun
(GL(1|1)) with respet to both left and right regular ationwas analysed in [27℄. Here, we are most interested in properties of the adjoint ationadX = RX +LX sine it is this ombination of the symmetry generators that is preservedby the untwisted D-branes.In the last subsetion we saw that the oordinates (z, y, ζ±) whih desribe onjugaylasses are partiularly adapted to the desription of untwisted branes. When we usethese oordinates the adjoint ation takes the following simple formadE = 0 , adN = ζ−∂− − ζ+∂+ , ad+ = ∂+ , ad− = −∂− . (5.2.19)65



66 CHAPTER 5. THE GL(1|1) WZNW MODELHere ∂− and ∂+ denote the derivatives with respet to ζ− and ζ+. The spae of funtions
Nz0,y0 vanishing along the brane at (z0, y0) is spanned by

eiez+iny − eiez0+iny0 , ζ±(eiez+iny − eiez0+iny0) , ζ−ζ+(eiez+iny − eiez0+iny0) . (5.2.20)Clearly, the adjoint ation may be restrited to the spae Nz0,y0. From now on we shallonsider Nz0,y0 as a gl(1|1) submodule of Fun
(GL(1|1)). The spae of funtions on thebrane may be onstruted as a quotient of the spae of funtions on the supergroup bythe submodule Nz0,y0 of funtions vanishing along the brane. This quotient is representedby the funtions 1, ζ−, ζ+ and ζ−ζ+. Under the adjoint ation, these funtions transformin a 4-dimensional indeomposable representation P0 of gl(1|1). The latter is known asthe projetive over of the trivial representation. Thus, we have shown that the spaeof funtions on a generi brane transforms in a projetive module P0. Aording to theusual rules, funtions on the brane are the minisuperspae model for boundary operatorsin the full �eld theory.The next aim is to onstrut a anonial basis in the spae of (o-)invariants. Byde�nition, a (o-)invariant |ψ〉〉 (〈〈ψ|) is a state (linear funtional) satisfyingadX |ψ〉〉 = (RX + LX)|ψ〉〉 = 0 , 〈〈ψ| adX = 〈〈ψ|(RX + LX) = 0 . (5.2.21)These two linear onditions resemble the so-alled Ishibashi onditions in boundary on-formal �eld theory. In the minisuperspae theory, it is easy to desribe the spae ofsolutions. One may hek by a short omputation that a generi invariant takes the form

|e, n〉〉0 =
1

2π
√
e

(
e0(e, n)− e0(e, n− 1) + ee2(e, n)

)
. (5.2.22)The pre-fator 1/2π

√
e is determined by a normalisation ondition to be spelled out below.We note that the funtion |e, n〉〉0 is obtained by taking the super-trae of supergroupelements in the typial representation 〈e, n〉.2 To eah of the invariants |e, n〉〉0 we anassign a o-invariant 0〈〈e, n| : Fun

(GL(1|1))→ C through
0〈〈e, n| =

∫
dµ

1

2π
√
e

(
e0(−e,−n + 1)− e0(−e,−n)− ee2(−e,−n + 1)

)
. (5.2.23)Our normalisation of both |e, n〉〉0 and the dual invariant 0〈〈e, n| ensures that

0〈〈e, n|(−1)Fu
1
2
(LE−RE)

1 u
1
2
(LN−RN )

2 |e′, n′〉〉0 = δ(n′ − n) δ(e′ − e)χ〈e,n〉(u1, u2)where χ〈e,n〉(u1, u2) = ue1
(
un−1

2 − un2
) is the super-harater of the typial representation

〈e, n〉 of gl(1|1). If we re-sale the invariants |e, n〉〉0 and then send e to zero we obtainanother family of invariants,
|0, n〉〉0 := lim

e→0

√
e |e, n〉〉0 = e0(0, n)− e0(0, n− 1) . (5.2.24)2Our onventions for the representation theory of gl(1|1) are the same as in [72℄. In partiular, 〈e, n〉denotes a 2-dimensional graded representation of gl(1|1). Let us agree to onsider the state with smaller

N -eigenvalue as even (bosoni). The same representation with opposite grading shall reeive an additionalprime, i.e. it is denoted by 〈e, n〉′. 66



5.2. BRANES 67Similarly, we de�ne the dual 0〈〈0, n| as a limit of 0〈〈−e,−n+1|√e. By onstrution, thestates |0, n〉〉0 and the assoiated linear forms possess vanishing overlap with eah otherand with the states |e, n〉〉0,
0〈〈0, n|u

1
2
(LE−RE)

1 u
1
2
(LN−RN )

2 |e′, n′〉〉0 = 0 (5.2.25)for all e′, inluding e′ = 0. This does ertainly not imply that 0〈〈0, n| ats trivially onthe spae of funtions.It is easy to see that the funtions |0, n〉〉0 do not yet span the spae of invariants.What we are missing is a family of additional states |n〉〉0 whih is given by
|n〉〉0 =

1

2π
e0(0, n) for n ∈ [0, 1[ .The orresponding dual o-invariants are given by the presription

0〈〈n| =
1

2π

∫
dµ
∑

m∈Z

e2(0,−n+m+ 1) . (5.2.26)Our normalisation ensures that
0〈〈n|(−1)Fu

1
2
(LE−RE)

1 u
1
2
(LN−RN )

2 |n′〉〉0 = δ(0) δ(n′ − n)χ〈n〉(u1, u2) (5.2.27)where χ〈n〉(u1, u2) = un2 . The divergent fator δ(0) stems from the in�nite volume of ourtarget spae and it ould absorbed into the normalisation of the Ishibashi state. Let usobserve that the o-invariants 0〈〈n| may be obtained by a limiting proedure from 0〈〈e, n|,
0〈〈n| = − lim

e→0

1√
e

∑

m

0〈〈e, n+m| . (5.2.28)A similar onstrution an be performed with the Ishibashi states |e, n〉〉0 to give theformal invariants ∑m e2(0, n + m). They are formally dual to o-invariants given by∫
dµe0(0,−n+1). In our disussion, and in partiular when we wrote eq. (5.2.26), we haveimpliitly equipped Fun

(GL(1|1)) with a topology that exludes to onsider∑m e2(0, n+
m) as a true funtion. While the dual funtional ∫ dµe0(0,−n + 1) does not su�er fromany suh problem, it so happens not to appear in the onstrution of boundary states.This is why we do not bother giving it a proper name.It is our aim now to determine the oupling of bulk modes to branes in the minisu-perspae limit. In the partile limit, the bulk 1-point funtions are linear funtionals
f 7→ 〈f〉 on the spae Fun

(GL(1|1)) of funtions suh that 〈adXf〉 = 0, i.e. they areo-invariants. The �rst family of o-invariants we shall desribe orresponds to branes ingeneri positions (z0, y0). Sine these are loalised at a point (z0, y0) on the bosoni baseand deloalised along the fermioni diretions, their density is given by
ρ(z0,y0) = −2i sin(y0/2) δ(y − y0) δ(z − z0)

= −2i sin(y0/2) δ(y − y0) δ
(
x− iη−η+(1− e−iy)−1 − z0

)
.

(5.2.29)67



68 CHAPTER 5. THE GL(1|1) WZNW MODELThe onstant prefator −2i sin(y0/2) was hosen simply to math the normalisation ofour boundary states below. Obviously, the density ρ(z0,y0) is invariant under the adjointation. It gives rise to a family of o-invariants through the presription
f 7→ 〈f〉ρ :=

∫
dµ ρ(x, y, η±) f(x, y, η±) . (5.2.30)Geometrially, the integral omputes the strength of the oupling of a bulk mode f to abrane with mass density ρ. It is not di�ult to hek that our funtional 〈·〉(z0,y0) admitsan expansion in terms of dual Ishibashi states as follows,

〈 · 〉(z0,y0) ≡ 0〈z0, y0| =

∫
dedn

√
e ei(n−1/2)y0+iz0e

0〈〈e, n|

=

∫

e 6=0

dedn
√
e ei(n−1/2)y0+iz0e

0〈〈e, n|+
∫
dn ei(n−1/2)y0

0〈〈0, n| .
(5.2.31)In the seond line of this formula we have separated typial and atypial ontributions tothe boundary state. Considering that the state 0〈〈0, n| is obtained through the limitingproedure 0〈〈0, n| = lime→0

√
e 0〈〈e, n|, the seond term is the natural ontinuation of the�rst. In this sense, we may drop the ondition e 6= 0 in the �rst integration and ombinetypial and atypial terms into the single integral appearing in the �rst line. We observethat all 〈·〉(z0,y0) vanish on funtions e0(e, n) with e = 0.Let us now turn to the non-generi branes. These are loalised also in the fermionidiretions. Hene, their density takes the form

ρsz0 = (−1)s δ(y − 2πs) δ(x− z0) δ(η+) δ(η−) (5.2.32)where s is an integer. When this density is inserted into the general presription (5.2.30),we obtain another family of o-invariants. Its expansion in terms of Ishibashi states reads
〈 · 〉sz0 = 0〈z0; s| =

∫
dedn

1√
e
e2πi(n−1/2)s+iez0

0〈〈e, n|

=

∫

e 6=0

dedn
1√
e
e2πi(n−1/2)s+iez0

0〈〈e, n| −
∫ 1

0

dn e2πi(n−1/2)s
0〈〈n| .

(5.2.33)One more, the seond line displays typial and atypial ontributions to the boundarystate separately. In passing from the �rst to the seond line, we exploited s ∈ Z alongwith our observation (5.2.28).The two families 〈·〉(z0,y0) with y0 6= 2πs and 〈·〉sz0 are not entirely independent. In fat,we note that boundary states from the generi family may be `re-expanded' in terms ofmembers from the non-generi family when the paremeter y0 tends to 2πs. The preiserelation is
lim

y0→2πs
〈f〉(z0,y0) =

1

i

∂

∂z0
〈f〉sz0 (5.2.34)68



5.2. BRANES 69for all elements f ∈ Fun
(GL(1|1)). We shall �nd that both families of o-invariants anbe lifted to the full �eld theory. An analogue of relation (5.2.34) also holds in the �eldtheory. It tells us that, for speial values of the parameters, branes from the generi familydeompose into a superposition of two branes from the non-generi family. Their distaneis �nite for �nite level but tends to zero as k is sent to in�nity.5.2.2 Untwisted boundary states and their spetraWe are now prepared to spell out the boundary states and boundary spetra formaximally symmetri branes with trivial gluing onditions. As we have argued in theprevious subsetion, they ome in two di�erent families. After a few omments on therelevant Ishibashi states, we onstrut the boundary states for branes in generi positionsin the seond subsetion. Branes in non-generi position are onstruted in the third partof this setion.Charaters and Ishibashi statesIn this subsetion we shall provide a list of untwisted Ishibashi states from whih theboundary states of the GL(1|1) WZNWmodel will be built in onseutive subsetions. Byde�nition, an untwisted Ishibashi state is a solution of the following set of linear relations

(
Xn + X̄−n

)
|Ψ〉〉 = 0 for X = E,N,Ψ± . (5.2.35)These relation lift our invariane onditions (5.2.21) from the partile model to the full�eld theory. It is obvious that solutions must be in one-to-one orrespondene to invariantsin the minisuperspae theory.We now onstrut the Ishibashi states using our sympleti fermion orrespondene.Reall that the urrents take the form (5.1.23)

JE = −k∂Y, JN = −∂Z, J− =
√
keY

L

∂χ1, J+ = −
√
ke−Y

L

∂χ2, (5.2.36)
J̄E = k∂̄Y, J̄N = ∂̄Z, J̄− = −

√
ke−Y

R

∂̄χ1, J̄+ =
√
keY

R

∂̄χ2. (5.2.37)Further, the fermions have mode expansion as in equation (4.3.1) and relations (4.3.2) (orthe twisted versions thereof) while the two salars have expansion
Y L(z) = Y L

0 + pLY ln z −
∑

n 6=0

1

n
Y L
n z

−n,

Y R(z) = Y R
0 + pRY ln z̄ −

∑

n 6=0

1

n
Y R
n z̄−n,

ZL(z) = ZL
0 + pLZ ln z −

∑

n 6=0

1

n
ZL
n z

−n,

ZR(z) = ZR
0 + pRZ ln z̄ −

∑

n 6=0

1

n
ZR
n z̄

−n,

(5.2.38)
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70 CHAPTER 5. THE GL(1|1) WZNW MODELand relations
[Y L,R
n , ZL,R

m ] = −mδn,−m and [ZL,R
0 , pL,RY ] = [Y L,R

0 , pL,RZ ] = −1 . (5.2.39)To ensure loality we have pLY = pRY and also ZL
0 = ZR

0 for the onjugate modes. However,we will not demand pLZ = pRZ and orrespondingly not Y L
0 = Y R

0 sine Z has an additivetwist around our winding states (5.1.44).The energy momentum tensor is
T (z) = ∂Y ∂Z − 1

2
ǫab∂χ

a∂χb and T̄ (z̄) = ∂̄Y ∂̄Z − 1
2
ǫab∂̄χ

a∂̄χb , (5.2.40)and thus the Virasoro modes are
Ln = −

∑

m∈Z

: χ1
n−mχ

2
m : +

∑

m 6=0,n

: Y L
n−mZ

L
m : +

+
∑

m 6=0

( : pLY Z
L
m : + : pLZY

L
m : ) + δn,0 p

L
Y p

L
Z ,

L̄n = −
∑

m∈Z

: χ̄1
n−mχ̄

2
m : +

∑

m 6=0,n

: Y R
n−mZ

R
m : +

+
∑

m 6=0

( : pRY Z
R
m : + : pRZY

R
m : ) + δn,0 p

R
Y p

R
Z .

(5.2.41)
We also need the zero modes of the urrents orresponding to the Cartan generators JEand JN :

E0 = −kpLY , Ē0 = kpRY , N0 = −pLZ , N̄0 = pRZ . (5.2.42)Let us now onsider the Ishibashi states. We start by spelling out the Ishibashi onditionsfor the untwisted ase. As noted above, the gluing ondition J = J̄ means that the bosoni�elds simply satisfy Dirihlet onditions
∂uY = ∂uZ = 0 . (5.2.43)Using these Dirihlet onditions for the �eld Y = Y L + Y R the fermioni ones an bewritten as follows

eY
L
0 ∂χ1 = −e−Y R

0 ∂̄χ1 and e−Y
L
0 ∂χ2 = −eY R

0 ∂̄χ2 . (5.2.44)Then orrespondingly the Ishibashi onditions for the bosoni �elds are
(
Y L
n − Y R

−n
)
| I 〉〉 =

(
ZL
n − ZR

−n
)
| I 〉〉 = 0 n 6= 0(

pLZ − pRZ
)
| I 〉〉 =

(
pLY − pRY

)
| I 〉〉 = 0 ,

(5.2.45)note that there is no onditions on the zero modes Y L
0 and Y R

0 . Further, the onditionsfor the fermioni ones are
(
eY

L
0 χ1

n − e−Y
R
0 χ̄1

−n
)
| I 〉〉 =

(
e−Y

L
0 χ2

n − eY
R
0 χ̄2

−n
)
| I 〉〉 = 0 . (5.2.46)70



5.2. BRANES 71The Ishibashi states learly fatorises into a bosoni and a fermioni part and are easilyonstruted as follows. The typial primary of GL(1|1), 〈e, n〉R, is the representation withground state |n, µλ〉 where λ = e/k satisfying
pLZ |n, µλ〉 = pRZ |n, µλ〉 = n|n, µλ〉 ,
pLY |n, µλ〉 = pRY |n, µλ〉 = λ|n, µλ〉 .

(5.2.47)Further, reall that the fermions have the mode expansion in the presene of the groundstate µλ (4.5.2)
χ1(z, z̄) =

∑

n∈Z+λ

1

n
χ1
n z

−n +
∑

n∈Z+λ∗

1

n
χ̄1
n z̄

−n ,

χ2(z, z̄) =
∑

n∈Z+λ∗

1

n
χ2
n z

−n +
∑

n∈Z+λ

1

n
χ̄2
n z̄

−n ,
(5.2.48)where λ∗ = 1− λ. Then the bosoni Ishibashi state is

|n, e〉〉B = exp
(∑

m>0

1

m

(
Y L
−mZ

R
−m + ZL

−mY
R
−m
))
|n, µλ〉B , (5.2.49)and the fermioni one is omputed as (4.5.5)

|n, e〉〉F = exp
(
−
∑

m> 0

eY
L
0 +Y R

0

m− λ χ
1
−m+λχ̄

2
−m+λ −

e−Y
L
0 −Y R

0

m− λ∗ χ
2
−m+λ∗ χ̄

1
−m+λ∗

)
|n, µλ〉F .(5.2.50)and the Ishibashi state is then the produt of the two. The following simple omputationsare ruial

qL0e±Y
L
0 = e±Y

L
0 qL0∓E0

k , ZN0e±Y
L
0 = e±Y

L
0 ZN0∓1 ,

qL̄0e±Y
R
0 = e±Y

R
0 qL̄0± Ē0

k , ZN̄0e±Y
R
0 = e±Y

R
0 ZN̄0±1 ,

(5.2.51)Introdue Lc0 = 1
2
(L0 + L̄0) and N c

0 = 1
2
(N0 − N̄0) as usual. Then we get the fermioniontribution of the overlap, that is

F 〈〈n, e|qL
c
0+

1
12 zN

c
0 (−1)F

c|n, e〉〉F = zn(1− z−1)q
1
2
(λ− 1

2
)2− 1

24

∏

n>0

(1− z−1qn)(1− zqn) ,(5.2.52)and the bosoni
B〈〈n, e|qL

c
0− 1

12 zN
c
0 (−1)F

c|n, e〉〉B = − qnλ

η(τ)2
, (5.2.53)where we normalised the dual state suh that we get the minus sign. Then in total, wearrive at

〈〈n, e|qLc
0zN

c
0 (−1)F

c|n, e〉〉 = zn−1(1− z)q
nλ+ 1

2
(λ− 1

2
)2− 1

24

η(τ)2

∏

n>0

(1− z−1qn)(1− zqn)

= χ̂<e,n>(z, τ) . (5.2.54)71



72 CHAPTER 5. THE GL(1|1) WZNW MODELSo far we assumed 0 < λ < 1, whenever λ beomes zero our Dirihlet sympleti fermionboundary states ome into the game. There are four of them. Denote by |n, 0〉 the groundstate with N0 eigenvalue n, i.e.
N0|n, 0〉 = n|n, 0〉, E0|n, 0〉 = 0 ,

Ym|n, 0〉 = Zm|n, 0〉 = χam|n, 0〉 = χa0|n, 0〉 = 0, for m > 0. (5.2.55)Then the Ishibashi states are
|n0〉〉 = exp

(∑

m>0

1

m

(
Y L
−mZ

R
−m + ZL

−mY
R
−m − eY

L
0 +Y R

0 χ1
−mχ̄

2
−m + e−Y

L
0 −Y R

0 χ2
−mχ̄

1
−m
))
|n, 0〉

|n±〉〉 = ξ±|n0〉〉 (5.2.56)
|n〉〉 = ξ−ξ+|n0〉〉and we arrive at the following amplitudes

〈〈n0|qL
c
0zN

c
0 (−1)F

c|n〉〉 = χ0(µ, τ),

〈〈n|qLc
0zN

c
0 (−1)F

c|n0〉〉 = −χ0(µ, τ),

〈〈n±|qL
c
0zN

c
0 (−1)F

c|n∓〉〉 = −χ0(µ, τ),

〈〈n|qLc
0zN

c
0 (−1)F

c|n〉〉 = −2πiτχ0(µ, τ),

(5.2.57)where
χ0(µ, τ) = zn−1q

1
12

∏

n>0

(1− z−1qn)(1− zqn)/η(τ)2. (5.2.58)All other amplitudes vanish unless zero modes are inserted.Let us now onsider twist states µλ̃ where λ̃ 6∈ ]0, 1[ . We saw in setion 5.1.4 that suhstates are simply desendants of µλ where λ̃ = λ + m for some integer m and λ ∈ ]0, 1[.The state |n, µλ̃〉 satis�es the following onditions
N0|n, µλ̃〉 = n|n, µλ̃〉 and E0|n, µλ̃〉 = k(λ+m)|n, µλ̃〉 . (5.2.59)The Ishibashi state |e, n〉〉 (with e/k = λ̃ = λ+m) in this representation is obtained fromthe previously onstruted ones as

|n, e〉〉 = em(ZL
0 −ZR

0 )em(Y L
0 +Y R

0 )|n, e−mk〉〉 . (5.2.60)The amplitude is omputed using
qL

c
0em(ZL

0 −ZR
0 ) = em(ZL

0 −ZR
0 )qL

c
0−mNc

0 , (5.2.61)and the spetral �ow formulae provided in appendix B.3
〈〈n, e|qLc

0zN
c
0 (−1)F

c|n, e〉〉 = χ̂<e−mk,n+m>(z −mτ, τ) = (−1)mχ̂<e,n>(z, τ) . (5.2.62)A similar onstrution holds also for the atypial part.72



5.2. BRANES 73The generi boundary stateIn this setion, we propose the boundary state orresponding to a generi brane lo-alised at (z0, y0) with y0 6= 2πs and perform a non-trivial Cardy onsisteny hek [49℄.For this purpose, we need to know the modular properties of the haraters. They areeasily omputed with the help of [73℄ and we list them in appendix B.4.Proposition 5.2.1. (Generi boundary state) The boundary state of branes assoiatedwith generi position parameters z0, y0 is
|z0, y0〉 =

√
2i

k

∫

e 6=mk
m∈Z

dedn exp
(
i(n− 1/2)y0 + iez0

)
sin1/2(πe/k) |n, e〉〉 −

√
2πi

k

∑

m∈Z

∫
dn exp

(
i(n− 1/2)y0 + imkz0

)
|n0〉〉(m) .

(5.2.63)We shall argue below that these boundary states give rise to elementary branes if and onlyif the parameter y0 6∈ 2πZ.Before we show that our Ansatz for the generi boundary states produes the expetedboundary spetrum, let us make a few omments. To begin with, it is instrutive toompare the oe�ients of the Ishibashi states in |z0, y0〉 with the minisuperspae resulteq. (5.2.31). If we send k to in�nity, the fator sin1/2(πe/k) is proportional to the fator√
e that appears in the 1-point oupling of bulk modes in the minisuperspae theory. Thereplaement √e→ sin1/2(πe/k) is neessary to ensure that the �eld theory ouplings areinvariant under spetral �ow (B.3.2).In order to hek the onsisteny of our proposal for the boundary states with world-sheet duality, we ompute the spetrum between a pair of generi branes,
〈z0, y0|(−1)F

c

q̃L
c
0 z̃N

c
0 |z′0, y′0〉 = 2i

k

∫
de′dn′ei(n

′− 1
2
)(y′0−y0)+ie′(z′0−z0) sin(πe′/k)χ̂〈e′,n′〉(µ̃, τ̃)

= χ̂〈e,n〉(µ, τ) − χ̂〈e,n+1〉(µ, τ) (5.2.64)where the momenta e, n are related to the oordinates of the branes aording to
e =

k(y′0 − y0)

2π
, n =

k(z′0 − z0)
2π

− y′0 − y0

2π
.To begin with, the result is a ombination of haraters with integer oe�ients. Hene,it an be onsistently interpreted as the partition funtion for open strings that streth inbetween the two branes. If we put both branes into the same position (z0, y0), then theresult speialises to

〈z0, y0|(−1)F
c

q̃L
c
0 ũN

c
0 |z0, y0〉 = χ̂〈0,0〉(µ, τ) − χ̂〈0,1〉(µ, τ) = χ̂P0(µ, τ). (5.2.65)In the last step we have observed that the super-haraters of the representation spaesover the two atypial Ka modules 〈0, 0〉 and 〈0, 1〉′ ombine into the harater of the73



74 CHAPTER 5. THE GL(1|1) WZNW MODELrepresentation that is generated from the projetive over P0. This outome was expeted:it signals that the state spae of open strings on a generi branes ontains no bosoni zeromodes and two fermioni ones. The latter give rise to the four ground states of theprojetive over. This is in agreement with the fat that generi branes streth out alongthe fermioni diretions.There is one important subtlety in our interpretation of the result (5.2.65) that wedo not want to gloss over. While the harater of the projetive over P̂0 is the sameas that of the two a�ne Ka modules, the orresponding representations are not. Theharaters are blind against the nilpotent parts in L0 and hene they annot distinguishbetween an indeomposable and its omposition series. But for the onformal �eld theory,the di�erene is important. In partiular, the generator L0 is diagonalisable on all Kamodules, atypial or not, but it has a nilpotent ontribution in the ĝl(1|1)-module over P0.Hene, if the boundary spetrum does transform in P̂0, then some boundary orrelatorsare guaranteed to display logarithmi singularities when two boundary oordinates omelose to eah other. The information we obtained from the boundary states using world-sheet duality alone is not su�ient to make any rigorous statements on the existene ofsuh logarithms. But in the minisuperspae limit k → ∞ we have learly identi�ed theprojetive over P0 as the relevant struture. Sine L0 is not diagonalisable in that limit,it annot be so for �nite level k.Non generi point-like branesLet us now turn to the boundary states of non-generi untwisted branes in the GL(1|1)WZNW model. From our disussion of the geometry we expet them to be parameterisedby a single real modulus z0 and to possess a spetrum without any degeneray of groundstates. These expetations will be met. Let us begin by spelling out the formula for thenon-generi boundary states.Proposition 5.2.2. (Non-generi boundary states) The boundary states of elementarybranes assoiated with non-generi position parameters z0 and y0 = 2πs, s ∈ Z, are givenby
|z0; s〉 =

1√
2ki

∫

e 6=mk
dedn exp

(
2πi(n− 1/2)s+ iez0

)
sin−1/2(πe/k) |n, e〉〉

− 1√
2πi

∑

m∈Z

∫
dn exp

(
2πi(n− 1/2)s+ imkz0

)
|n〉〉(m) .

(5.2.66)If we send the level k to in�nity in the boundary states |z0; s〉, then the oe�ient ofthe Ishibashi state |e, s〉〉 gets replaed by 1/
√
e and thereby it reprodues the oupling(5.2.33) of bulk modes in the minisuperspae theory. One more, the replaement 1/

√
e 7→

sin−1/2(πe/k) is neessary to ensure spetral �ow symmetry of the �eld theoreti ouplings.Note that the non-generi boundary states only involve to the speial family |n〉〉(m) ofatypial Ishibashi states. In ase of generi boundary states, we had found non-vanishingouplings to the regular atypial Ishibashi states |n0〉〉(m).74



5.2. BRANES 75Let us verify that the proposed boundary states produe a onsistent open stringspetrum. In order to do so, we investigate the overlap between two non-generi boundarystates |z0; s〉 and |z′0; s′〉,
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0 z̃N

c
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χ̂〈e′,n′〉(µ̃, τ̃ )

= χ̂
(m)
〈n〉 (µ, τ) (5.2.67)where the labels n and m in the harater are related to the branes' parameters through

n =
k(z′0 − z0)

2π
+ s− s′ , m = s′ − s . (5.2.68)

χ̂
(m)
〈n〉 are haraters of atypial irreduible representation of ĝl(1|1). For m = 0 the orre-sponding representations are generated from the 1-dimensional irreduible atypial repre-sentations 〈n〉 of the �nite-dimensional Lie superalgebra gl(1|1) by appliation of urrentalgebra modes. The representations with m 6= 0 are obtained from those with m = 0 byspetral �ow (see Appendix A).The following limit for t any integer shows that in equation (5.2.67) is indeed a hidden
τ -dependene
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〈n〉 (µ̃, τ̃) . (5.2.69)Thus we observe that the Ishibashi state |n〉〉 (5.2.57) with its τ -dependene is the naturalatypial Ishibashi state ontributing to the atypial boundary state.We also want to look at the spetrum of boundary operators that an be insertedon a boundary if we impose non-generi boundary onditions with parameters z0 and s.Speialising eq. (5.2.67) to the ase with z′0 = z0 and s′ = s we �nd
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〈0〉(µ, τ) .Hene, the spetrum onsists of states that are generated from a single invariant groundstate |0〉 by appliation of urrent algebra modes with negative mode indies. In partiular,the zero modes of the fermions at trivially on ground states. This is in agreement withour geometri insights aording to whih non-generi branes are loalised in all diretions,inluding the two fermioni ones.Further, the overlap between a generi and a non-generi state is
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76 CHAPTER 5. THE GL(1|1) WZNW MODELWe may now ask what happens if we send the parameter y0 of the generi brane to
y0 = 2πs. From our formulae for boundary states we dedue that
|z0, 2πs〉 =

∫
dedn√

2ki

eie(z0+
π
k
) − eie(z0−π

k
)

sin1/2(πe/k)
e2πi(n−1/2)s |e, n〉〉 = |z0 +π/k; s〉−|z0−π/k; s〉 .In other words, when a generi brane is moved onto one of the speial lines y0 = 2πs,it deomposes into a brane-anti-brane pair. Its onstituents sit in positions z0 ± π/kand possess the same disrete parameter s. This relation between non-generi branesand generi branes in non-generi positions is a �eld theoreti analogue of the equation(5.2.34) we disovered in the minisuperspae theory.5.2.3 Comparison with Cardy's theoryLet us reall a few rather basis fats onerning branes in rational unitary onformal�eld theory. For simpliity we shall restrit to ases with a harge onjugate modularinvariant and a trivial gluing automorphism Ω (the so-alled `Cardy ase'). This will allowa omparison with the results of the previous subsetions. In the Cardy ase, elementaryboundary onditions turn out to be in one-to-one orrespondene with the irreduiblerepresentations of the hiral algebra [49℄. Let us label these by J , with J = 0 beingreserved for the vauum representation. The boundary ondition with label J = 0 has arather simple spetrum ontaining only the vauum representation H0. More generally, ifwe impose the boundary ondition J = 0 on one side of the strip and any other elementaryboundary ondition on the other, the spetrum onsists of a single irreduibleHJ . Finally,the spetrum between two boundary onditions with label J1 and J2 is determined by thefusion of J1 and J2. We shall now disuss that all these statements arry over to untwistedbranes in the GL(1|1) WZNW model. The fusion proedure, however, an provide spetraontaining indeomposables that are not irreduible.Brane parameters and representationsWe proposed that the GL(1|1) WZNW model possesses two families of elementarybranes. The �rst one is referred to as the generi family and its members are parameterisedby (z0, y0) with y0 6= 2πs, s ∈ Z. Boundary states for the generi branes were providedin subsetion 5.2.2. These are also de�ned for integer y0/2π but we have argued thatthe orresponding branes are not elementary. They rather orrespond to superpositionsof branes from the seond family. This seond family onsists of branes with only oneontinuous modulus z0 and a disrete parameter s. Their boundary states an be foundin subsetion 4.3.There is one distinguished brane in this seond family with z0 = 0 and s = 0. Wepropose that it plays the role of the J = 0 brane in rational onformal �eld theory. Inorder to on�rm this idea, we ompute the spetrum of open strings strething between

z0 = 0, s = 0 and any of the other elementary branes. If the seond brane is non-generi76



5.2. BRANES 77with parameters z0, s, the relative spetrum reads
〈0; 0|(−1)F
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〈n〉 (µ, τ) (5.2.72)where the parameter n on the harater is

n = n(z0; s) =
kz0
2π
− s , m = m(z0; s) = s . (5.2.73)Indeed, we see that the open string spetrum orresponds to a single irreduible atypialmodule of ĝl(1|1), in agreement with the expetations from rational onformal �eld theory.Let us now onsider the ase in whih the seond brane is loated in a generi position

(z0, y0). From the boundary state we �nd
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0 |z0, y0〉 = χ̂〈e,n〉(µ, τ) , (5.2.74)where the parameters of the harater on the right hand side are

e = e(z0, y0) =
ky0

2π
, n = n(z0, y0) =

kz0
2π
− y0

2π
+

1

2
. (5.2.75)As long as y0/2π is not an integer, e is not a multiple of the level and hene, χ̂〈e,n〉 is theharater of a single irreduible representation of ĝl(1|1).At this point we have found that all our elementary branes are labelled by irreduiblerepresentations of ĝl(1|1). In ase of the elementary generi branes, the relation be-tween the position moduli (z0, y0), y0 6= 2πm, and representation labels 〈e, n〉, e 6= mk,is provided by eq. (5.2.75). All typial irreduible representations of ĝl(1|1) appear inthis orrespondene. For the non-generi branes the relation between their parameters

(z0; s) and the representation labels of an atypial irreduible an be found in eq. (5.2.73).One more, all atypial irreduibles appear in this orrespondene. Hene, branes in theGL(1|1) WZNW model are in one-to-one orrespondene with irreduible representationsof the urrent superalgebra ĝl(1|1), just as in rational onformal �eld theory.5.2.4 Brane spetra and fusionLet us now analyse whether we an �nd the spetrum between a pair of elementarybranes through fusion of the orresponding urrent algebra representations. For the onve-niene of the reader we have listed the relevant fusion rules for irreduible representationsof the urrent superalgebra ĝl(1|1) in Appendix B.5.The spetrum between two typial branes with parameters (z0, y0) and (z′0, y
′
0) hasbeen omputed in eq. (5.2.64). We an onvert the brane parameters into representationlabels with the help of eq. (5.2.75) and then exploit the known fusion produt of theorresponding representations. In ase y′0 − y0 6= 2πZ we �nd
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78 CHAPTER 5. THE GL(1|1) WZNW MODELHere, ⊗F denotes the fusion produt and we used the rule 〈e, n〉∗ = 〈−e,−n+ 1〉′ for theonjugation of representations. Then we inserted the known fusion rules while keepingtrak of whether the representation is fermioni or bosoni. The result agrees niely withthe true spetrum we omputed earlier.When the di�erene (y′0 − y0)/2π = m is an integer, the fusion of the two representa-tions on the left hand side of (5.2.76) results in a single indeomposable. It is the imageof the a�ne representation over the projetive over P̂(k(z′0−z0)−(y′0−y0))/2π under m unitsof spetral �ow, i.e.
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)′ (5.2.77)where m = (y′0 − y0)/2π. Our minisuperspae theory along with the boundary stateson�rm this result in the ase y0 = y′0 and z0 = z′0 (see our disussion at the end ofsetion 4.2). For other hoies of the parameters, we only see that the fusion rules providea representation with the orret harater. Whether the true state spae is given bya single indeomposable or by a sum of Ka modules or even irreduibles annot beresolved rigorously with the methods we have at our disposal. Nevertheless, it seems verylikely that the projetive over is what appears sine this is the only result whih is alsoonsistent with spetral �ow symmetry.The fusion between atypial irreduibles is rather simple. It leads to a predition forthe spetrum between two non-generi branes that should be heked against our earlierresult (5.2.67),
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.One more, the �ndings from world-sheet duality are onsistent with the fusion presrip-tion. There is one �nal hek to be performed. It onerns the spetrum between anon-generi brane with parameters (z0; s) and a generi one with moduli (z0, y0). Fromthe fusion we �nd
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.(5.2.78)It may not ome as a big surprise that this fusion rule orretly predits the spetrumbetween a generi and a non-generi brane. In fat, from our formulae for boundary statesand modular transformation we �nd
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(5.2.79)In onlusion we found that the spetra between any pair of elementary branes may bedetermined by the fusion of the orresponding irreduible representations. It is importantto stress that the fusion produt of irreduible representations an produe representationsthat are not fully reduible. 78



5.2. BRANES 795.2.5 Twisted boundary stateThe group of outer automorphisms of the Lie superalgebra gl(1|1) is of order 2. Wealready disussed the boundary states belonging to the trivial one. The non-trivial onede�nes the following gluing onditions on the urrents
JE = −J̄E , JN = −J̄N , J+ = −J̄− , J− = J̄+ for z = z̄ . (5.2.80)This translates into Neumann onditions for the bosoni and the fermioni �elds, that is

∂nY = ∂nZ = 0 for z = z̄ (5.2.81)implying espeially that the left movers of Y oinide with its right movers up to the zeromodes
Y L − Y R = Y L

0 − Y R
0 for z = z̄ . (5.2.82)Thus the gluing onditions for the fermions are
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0 ∂̄χ1 for z = z̄ . (5.2.83)The boundary state |Ω〉〉 is easily onstruted as before. It has to satisfy
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(5.2.84)whih an be omputed to be
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|0, 0 〉 .(5.2.85)Here, |0, 0 〉 denotes the vauum de�ned by χan|0, 0 〉 = 0 for n ≥ 0 and ZL,R

n |0, 0 〉 =
Y L,R
n |0, 0 〉 = pL,RY |0, 0 〉 = pL,RZ |0, 0 〉 = 0 for n > 0. The dual boundary state is onstrutedanalogously.Our main aim now is to ompute some non-vanishing overlap of the twisted boundarystate |Ω〉〉. This requires the insertion of the invariant bulk �eld χ1χ2, i.e.
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. (5.2.86)where Lc0 = (L0 + L̄0)/2 and N c

0 = (N0 + N̄0)/2 are obtained from the zero modes ofthe Virasoro �eld and the urrent N . Here the normalisation in (5.2.85) by √π/i wasimportant. This amplitude will be tested in setion 5.3.4.79



80 CHAPTER 5. THE GL(1|1) WZNW MODEL5.2.6 Mixed amplitudes and their open stringsThe GL(1|1)-sympleti fermion orrespondene allowed us to onstrut boundarystates expliitly. The new expliit formulation also allows us to ompute new quantitiessuh as overlaps for atypials
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(5.2.87)Note the independene on z, no matter whether we take N c
0 as in the previous setion oras in the untwisted ase (N c

0 = (N0 ± N̄0)/2), whih is natural sine there does not exista distinguished hoie for N c
0 for mixed amplitudes.The orresponding open string theory is easily onstruted using our previous experi-ene. That is, we demand untwisted gluing onditions on the negative real line
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(5.2.88)and twisted on the positive one
∂nY = ∂nZ = 0 ,

eY
L
0 ∂χ1 = eY

R
0 ∂̄χ2 ,

e−Y
L
0 ∂χ2 = −e−Y R

0 ∂̄χ1 for z = z̄ and z + z̄ > 0 ,

(5.2.89)Then the fermions have a monodromy of order four around the origin
∂χ1(ze2πi) = i ∂χ1(z) , ∂χ2(ze2πi) = −i ∂χ2(z) , (5.2.90)and the bosons a monodromy of order two
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(5.2.92)80



5.2. BRANES 81and the bosons
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(5.2.93)We de�ne the ground state to be bosoni if s (the position parameter of the non-generibrane) is even and fermioni if it is odd. The partition funtion is thentr(qL0(−1)F ) = (−1)s q
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. (5.2.94)The amplitude involving typial �elds requires as usual zero mode insertions, i.e.
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(5.2.95)
and its open string spetrum an be onstruted as in the sympleti fermion ase.In summary, we have been able to give a omplete disussion of Cardy boundary statesin the GL(1|1) WZNWmodel. This was only possible due to the new formulation in termsof sympleti fermions. As a result, we saw that indeed also for the Lie supergroup GL(1|1)Cardy's ondition holds, i.e. any amplitude of two boundary states indeed desribes anopen string spetrum. Further, we saw that the overlap between two boundary stateswith trivial gluing onditions is given by fusion. The twisted boundary state then gives aone-dimensional extension of the fusion ring.5.2.7 ConlusionsIn this setion we have studied maximally symmetri branes in the WZNW model onthe simplest supergroup GL(1|1). Following previous reasoning for bosoni models [59℄we have shown that suh branes are loalised along (twisted) super-onjugay lasses, aninsight that generalises to other supergroup target spaes (setion 3.3.1). As in the ase ofthe p = 2 triplet theory [22℄, untwisted branes turn out to be in one-to-one orrespondenewith irreduible representations of the urrent algebra. This orrespondene relies onthe existene of an `identity' brane whose spetrum onsists of the irreduible vauumrepresentation only. The spetrum between the identity and any other elementary braneis built from a single irreduible of ĝl(1|1) and any suh irreduible appears in this way.Moreover, one an ompute the spetrum between any two elementary branes by fusion81



82 CHAPTER 5. THE GL(1|1) WZNW MODELof a�ne representations. What we have just listed are harateristi features of Cardy'stheory for rational non-logarithmi onformal �eld theories. Our work proves that theyextend at least to one of the simplest logarithmi �eld theory and it seems very likelythat they hold more generally in all WZNW models on (type I) supergroups, see also [22℄for related �ndings in the p = 2 triplet theory.In spite of these parallels to bosoni WZNW models, branes on supergroups possessa muh riher spetrum of possible geometries. Whereas Dirihlet branes on a purelybosoni torus, for example, are all related by translation, we disovered the existene ofatypial lines on the bosoni base of the GL(1|1)WZNWmodel. The distane between anytwo suh neighboring parallel lines is ontrolled by the level k. When a typial untwistedbrane is moved onto one of these lines, it splits into two atypial ones. Individual atypialbranes possess a single modulus that desribes their disloation along the atypial lines.In order for them to leave an atypial line they must ombine with a seond atypialbrane. Proesses of this kind model the formation of long multiplets from shorts. Hene,on more general group manifolds, more than just two atypial branes may be requiredto form a generi brane. Let us stress, however, that the notions of long (typial) andshort (atypial) multiplets whih are relevant for suh proesses derive diretly from therepresentation theory of the a�ne Lie superalgebra. Thereby, all spetral �ow symmetriesare built into our desription. We also wish to point out the obvious similarities with so-alled frational branes at orbifold singularities, see e.g. the disussions in setion 4.3of [74℄.Another interesting and new feature of branes on GL(1|1) is the ourrene of bound-ary spetra that annot be deomposed into a diret sum of irreduibles. In partiularwe have shown that the spetrum of boundary operators on a single generi brane is de-sribed by the projetive over of the vauum module. For more general group manifolds,we expet the orresponding projetive over to be present as well, though along with ad-ditional stu�. The generator L0 of dilatations is not diagonalisable on projetive overs,see e.g. [27℄. Aording to the usual reasoning, this implies the existene of logarithmisingularities in boundary orrelation funtions on branes in generi positions. As we haveremarked before, the modular bootstrap alone did not allow for suh a strong onlusionas it is blind to all nilpotent ontributions within L0. But in addition to the standardonformal �eld theory analysis, our investigation of the GL(1|1) WZNW model also drawsfrom the existene of the geometri regime at large level k. The presene of projetiveovers is easily understood in the minisuperspae theory and it must persist when �eldtheoreti orretions are taken into aount.We would also like to note, that there is a related paper [75℄ whih disusses branes intriplet models with p ≥ 2. The results of Gaberdiel and Runkel show that branes in tripletmodels share many features with the outome of our analysis. In partiular, for trivialgluing automorphism, branes in both models are labelled by irreduible representationsof the hiral algebra. Also the labels for relevant Ishibashi states follow the same pattern:We have found one `generi' Ishibashi state for eah Ka module and an exeptional familywith members being assoiated to atypial bloks. When the same rules are applied to82



5.3. THE BOUNDARY GL(1|1) WZNW MODEL 83the triplet models, we obtain a set of Ishibashi states that seems losely related to thoseused in [75℄. Furthermore, Gaberdiel and Runkel also �nd that the partition funtion forany pair of boundary onditions may be determined by fusion of representations. Theexistene of a geometri regime for the GL(1|1) WZNW model allows us to go one stepfurther. It gives us full ontrol over the struture of the state spae and thereby alsoover the nilpotent ontributions to L0 whih are not visible in partition funtions. Fusionof ĝl(1|1) representations was shown to orretly reprodue the state spaes of boundarytheories in the GL(1|1) WZNW model. Let us stress, however, that the triplet and theGL(1|1)WZNWmodel are lose ousins (see e.g. the disussion in [29℄). It would thereforebe somewhat premature to laim that all these strutures will be present in more generallogarithmi onformal �eld theories.5.3 The boundary GL(1|1) WZNW modelThis setion gives a omplete disussion of volume �lling branes in the GL(1|1) WZNWmodel. We ompute those orrelation funtions whih speify the boundary theory om-pletely, these are the bulk one-point funtions, the bulk-boundary two-point funtionsand boundary three-point funtions. The results are those of [62℄.5.3.1 Volume �lling brane: The lassial ationOur aim in this setion is to disuss the lassial desription of volume �lling branesin the GL(1|1) WZNW model. To begin with, we spell out the standard ation of theWZNWmodel with so-alled twisted boundary onditions. Their geometri interpretationas volume �lling branes with a non-zero B-�eld is realled brie�y. In order to set up asuessful omputation sheme for the quantum theory later on, we shall need a di�erentformulation of the theory. As in the bulk theory, omputations of orrelations funtionsrequire a Ka-Wakimoto like representation of the model [27℄. Finding suh a �rst orderformalism for the boundary theory is not entirely straightforward. We shall see that itrequires introduing an additional fermioni boundary �eld.The boundary WZNW modelFollowing our earlier work on WZNW models for type I supergroups, we parametrisethe supergroup GL(1|1) through a Gauss-like deomposition of the form
g = eiη−ψ

−

eixE+iyN eiη+ψ
+where E,N and ψ± denote bosoni and fermioni generators of gl(1|1), respetively. Inthe WZNWmodel, the two even oordinates x, y beome bosoni �eldsX, Y and similarly,two fermioni �elds c± ome with the odd oordinates η±. Let us now onsider a boundary83



84 CHAPTER 5. THE GL(1|1) WZNW MODELWZNW model with the ation
SWZNW(X, Y, c±) = − k

4πi

∫

Σ

d2z
(
∂X∂̄Y + ∂Y ∂̄X + 2eiY ∂c+∂̄c−

)
+

+
k

8πi

∫
du eiY (c+ + c−)∂u(c+ + c−) ,

(5.3.1)where u parametrises the boundary of the upper half plane. Variation of the ation leadsto the usual bulk equations of motion along with the following set of boundary onditions
∂vY = 0 , 2∂vX = eiY (c+ + c−) ∂u(c+ + c−) ,

±2∂vc± = 2i∂uc∓ − (c− + c+) ∂uY .
(5.3.2)Here, we have used the derivatives ∂u = ∂ + ∂̄ and ∂v = i(∂ − ∂̄) along and perpendiularto the boundary. The equations (5.3.2) imply Neumann boundary onditions for all four�elds of our theory, i.e. we are dealing with a volume �lling brane. Sine the normalderivatives of the �elds X and c± do not vanish, our brane omes equipped with a B-�eld.A more detailed disussion of the brane's geometry an be found in our reent paper [66℄.In order to see that our boundary onditions preserve the full hiral symmetry, wereall that the holomorphi urrents of the GL(1|1) WZNW model take the form

JE = ik∂Y , JN = ik∂X − kc−∂c+ eiY ,

J− = ikeiY ∂c+ , J+ = ik∂c− − kc−∂Y ,and similarly for the anti-holomorphi urrents,
J̄E = −ik∂̄Y , J̄N = −ik∂̄X + k∂̄c− c+ e

iY ,

J̄+ = ikeiY ∂̄c− , J̄− = ik∂̄c+ − kc+∂̄Y .If we plug the boundary onditions (5.3.2) into these expressions for hiral urrents,we obtain the gluing ondition JX(z) = ΩJ̄X(z̄) for X = E,N,± and all along theboundary at z = z̄. Here, the relevant gluing automorphism Ω is obtained by lifting theautomorphism
Ω(E) = −E, Ω(N) = −N, Ω(ψ+) = −ψ−, Ω(ψ−) = ψ+ (5.3.3)from the �nite dimensional superalgebra gl(1|1) to the full a�ne symmetry. In [66℄ wealled these gluing onditions twisted and showed that there is a unique brane orrespond-ing to this partiular hoie of Ω.First order formulationComputations of bulk and boundary orrelators in the presene of twisted D-branesshall be performed in a �rst order formalism. In the bulk, it is well-known how this84



5.3. THE BOUNDARY GL(1|1) WZNW MODEL 85works [27℄. There, the bulk ation is built of a free �eld theory involving two additionalfermioni auxiliary �elds b± of weight ∆(b±) = 1 along with the original �elds X, Y and
c±,

Sbulk
0;l [X, Y, c±, b±] = − k

4πi

∫

Σ

d2z
(
∂X∂̄Y + ∂Y ∂̄X

)

− 1

2πi

∫

Σ

d2z
(
b+∂c+ + b−∂̄c−

)
.

(5.3.4)
We plaed a subsript `l' on the ation to distinguish it from the ation we shall use inour path integral omputations later on. If the following bulk marginal interation termis added to the free �eld theory,

Sbulkint [X, Y, c±, b±] = − 1

2kπi

∫

Σ

d2z e−iY b−b+ (5.3.5)the equations of motion for b± read b− = k∂c+ exp iY and b+ = −k∂̄c− exp iY so that wereover the bulk WZNW-model upon insertion into the �rst order ation. In extendingthis treatment to the boundary setor, we are tempted to add the �square root� of thebulk interation as a boundary term. This is indeed what happens for the losely related
AdS2 branes in AdS3 [76℄. Here, however, it annot possibly be the right answer, at leastnot without a proper notion of what we mean by taking the square root. In fat, the naivesquare root of b−b+ exp(−iY ) is something like b± exp(−iY/2), i.e. a fermioni operator.It makes no sense to add suh an objet to the bulk theory. In order to take a bosonisquare root of the bulk interation, we introdue a new fermioni boundary �eld C ofweight ∆(C) = 0 and add the following terms to the bulk theory,

Sbdy
0 [X, Y, c±, b±, C] =

1

8πi

∫
du (kC∂uC + 4(c+ + c−)b+) (5.3.6)

Sbdyint [X, Y, c±, b±, C] = − 1

2πi

∫
du e−iY/2b+C . (5.3.7)The idea to involve an additional fermioni boundary �eld in the ation of supersymmetribrane on�gurations is not new. It was initially proposed in [77℄ and has been put touse more reently [78, 79℄ in the ontext of matrix fatorisations. Our boundary ationresembles the one Hosomihi employed to treat branes inN = 2 super Liouville theory [80℄.The full gl(1|1) boundary theory now takes the form

S[X, Y, c±, b±, C] = Sbulk
0,l + Sbdy

0 + Sbulkint + Sbdyint = S0,l + Sint (5.3.8)85



86 CHAPTER 5. THE GL(1|1) WZNW MODELwhere
S0,l = − k

4πi

∫

Σ

d2z
(
∂X∂̄Y + ∂Y ∂̄X

)

− 1

2πi

∫

Σ

d2z
(
c+∂b+ + c−∂̄b−

)
+

1

8πi

∫
du kC∂uC ,

Sint = − 1

2kπi

∫

Σ

d2z e−iY b−b+ −
1

2πi

∫
du e−iY/2b+C .

(5.3.9)
Here, we have performed a partial integration on the kineti term for the b-system,thereby absorbing the ontribution b+(c− + c+) from the boundary ation. This is similarto the ase of AdS2 branes in AdS3 [76℄. In order to omplete the desription of thelassial ation, we add the following Dirihlet boundary ondition for the �elds b±,

b+(z) + b−(z̄) = 0 for z = z̄ . (5.3.10)If the ation is varied with this boundary ondition, we reover the boundary equationsof motion (5.3.2). More preisely, we obtain four equations among boundary �elds. Twoof these an be used to determine the boundary �elds C and b+ = −b− through X, Y and
c±,

C = eiY/2 (c+ + c−) , ±2b± = k eiY/2∂uC . (5.3.11)The four equations among boundary �elds along with the bulk equations motion for b±imply the eqs. (5.3.2). We leave the details of this simple omputation to the reader.We have now set up a �rst order formalism for the twisted brane on GL(1|1). Letus stress again that is was neessary to introdue an additional fermioni �eld C on theboundary of the world-sheet. Above we have motivated this new degree of freedom by ourdesire to take a bosoni square root of the bulk interations. But there is another, moregeometri, way to argue for the additional �eld C. We mentioned before that the �rstorder formalism for the GL(1|1) WZNW model is very similar to that for the Eulidean
AdS3, only that the bosoni oordinates γ, γ̄ of the latter are replaed by fermioni ones.The �rst order formalism for AdS2 branes in AdS3 was set up in [76℄ and it desribes abrane that is loalised along a 1-dimensional subspae of the γγ̄ plane. Correspondingly,only a single γ zero mode remains after imposing the boundary onditions. The brane onGL(1|1) we are attempting to desribe, however, is volume �lling and therefore it extendsin both fermioni diretions. Therefore, we need two independent fermioni zero modes.These are provided by the zero modes of the three �elds c± and C. Note that these �eldsare related by equation (5.3.11).5.3.2 Volume �lling branes: The quantum theoryOur next step is to develop a omputational sheme for orrelation funtions in theboundary WZNW model with twisted boundary onditions. We shall use the �rst orderformulation of setion 2.2 as our starting point and onsider the full WZNW model as a86



5.3. THE BOUNDARY GL(1|1) WZNW MODEL 87deformation of a free �eld theory involving the �elds X, Y, c±, b± and the fermioni bound-ary �eld C. This free �eld theory will be desribed in more detail in the �rst subsetion.The de�nition of vertex operators and their orrelation funtions in the WZNW model isthe subjet of subsetion 3.2.The free theory and its orrelation funtionsOur strategy is to employ the �rst order formulation we set up in the previous setion.In order to do so, we have to add a few omments on the measures we are using in thepath integral treatment. To begin with, the supergroup invariant measure of the WZNWmodel is given by
dµWZNW ∼ DXDYD(eiY/2c−)D(eiY/2c+) . (5.3.12)This gets multiplied with Db+Db−DC when we pass to the �rst order formalism. But inthe following we would like to employ the standard free �eld measure

dµfree ∼ DXDYDc−Dc+ .The two measures are related by a Jaobian of the form (see e.g. [67℄ for similar ompu-tations)
dµWZNW =

(sdet(GabeiY ∂ae
−iY ∂b)

)−1
dµfree

= e
1
8π

R

dudv
√
G(−Gab∂a Y ∂bY+iRY )+ 1

8π

R

du i
√
GKY dµfree. (5.3.13)Here, Gab is the metri on the world-sheet, R = ∂a∂

a logG and K = 1
2i
∂v logG are itsGaussian and geodesi urvature, respetively. These two quantities feature in the Gauss-Bonnet theorem for surfaes with boundary,

1

4π

∫

Σ

dudv
√
GR+

1

4π

∫
du
√
GK = χ(Σ) = 1 , (5.3.14)where χ(Σ) = 1 is the Euler harateristi of the dis. We an now pass to the upper halfplane again where all urvature is onentrated at in�nity. The e�et of the urvatureterms in the WZNW measure is to insert a bakground harge QY = χ(Σ)/2 = 1/2 for the�eld Y at in�nity. In addition, the measure (5.3.13) also ontains a term that is quadratiin Y . We simply add this to the free part of our ation, i.e. we de�ne

S0 = − 1

4πi

∫

Σ

d2z
(
k ∂X∂̄Y + k ∂Y ∂̄X − ∂Y ∂̄Y

)

− 1

2πi

∫

Σ

d2z
(
c+∂b+ + c−∂̄b−

)
+

1

8πi

∫
du kC∂uC ,

(5.3.15)Note, that the new term in the ations modi�es the formula for the urrent JN by addingan additional ∂Y and similarly for the anti-holomorphi partner.87



88 CHAPTER 5. THE GL(1|1) WZNW MODELIn our path integral we now integrate with the free �eld theory measure dµfree over all�elds subjet to the boundary ondition b+ + b− = 0. Con�gurations for the other �eldsare not onstrained in the path integral. In the free quantum �eld theory, they satisfythe linear (�Neumann�) boundary onditions
∂vY = 0 , ∂vX = 0 ,

∂uC = 0 , c+ + c− = 0 .
(5.3.16)These equations are satis�ed in all orrelation funtions or, equivalently, as operatorequations on the state spae of the free �eld theory. Note that, aording to the lastequation, the zero modes of c+ and c− oinide in our free boundary theory. The neessaryseond fermioni zero mode is exatly what is provided by the �eld C.Arbitrary orrelation funtions in the free �eld theory an now easily be omputedwith the help of Wik's theorem. All we need to use is the following list of operatorprodut expansions

X(z, z̄)Y (z, z̄) ∼ 1

k
ln |z − w|2 +

1

k
ln |z − w̄|2

c−(z)b−(w) ∼ 1

w − z c+(z̄)b+(w̄) ∼ 1

w̄ − z̄

c−(z)b+(w̄) ∼ 1

z − w̄ c+(z̄)b−(w) ∼ 1

z̄ − w

C(v)C(u) ∼ 2πi

k
sign(v − u) .

(5.3.17)
Let us remark that a non-vanishing orrelation funtion in the free �eld theory requiresthat the �elds c outnumber the insertions of b by one. Furthermore, C must be insertedan odd number of times. We also reall that there is a non-vanishing bakground harge
QY = 1/2 for the �eld Y . On the disk, the orresponding U(1) harges of all tahyonvertex operators must add up to QY χ(Σ) = 1/2 in order for the orrelator to be non-zero.These rules imply that the 1-point funtion of the bulk identity �eld vanishes. In orderto normalise the vauum expetation value, we require that

〈 (c−(z)− c+(z̄)) C(u) eieX(z,z̄)+inY (z,z̄) 〉0 = δ(e)δ(n− 1/2) . (5.3.18)Note that the produt of �elds in brakets is the simplest expression that meets all ourrequirements: The U(1)Y harge of the tahyon vertex operators is m = 1/2, we insertedone c± and no �eld b± and multiplied with a single C in order to make the total insertionbosoni again.Correlation funtions in boundary WZNW modelNow that we have learnt how to perform omputations in the free �eld theory desribedby the ation (5.3.15), we would like to add our interation term
Sint = − 1

2kπi

∫

Σ

d2z e−iY b−b+ −
1

2πi

∫
du e−iY/2b+C . (5.3.19)88



5.3. THE BOUNDARY GL(1|1) WZNW MODEL 89The idea is to alulate orrelators of the full boundary WZNW model perturbatively,i.e. by expanding the exponential of the interation in a power series. Even though thereis a priori an in�nite number of terms to be onsidered, only �nitely many ontribute toour perturbative expansion. This is very similar to what has been observed in the bulkmodel [27℄.Before we an spell out preise formulae for the quantities we want to ompute, weneed to explain how to assoiate free �eld theory vertex operators to the �elds of theinterating WZNW model. The latter are in one-to-one orrespondene with funtions onthe supergroup GL(1|1) and they may be haraterised by their behaviour with respetto global gl(1|1) transformations. We shall �rst reall from [27℄ how this works for bulk�elds.Let us begin by olleting a few basi fats about the spae of funtions on the su-pergroup GL(1|1) [27℄. As for any other group or supergroup, Fun
(GL(1|1)) arries twograded-ommuting ations of the Lie superalgebra gl(1|1). These are generated by thefollowing right and left invariant vetor �elds

RE = i∂x , RN = i∂y + η−∂− , R+ = −e−iy∂+ − iη−∂x , R− = −∂− ,

LE = −i∂x , LN = −i∂y − η+∂+ , L− = e−iy∂− − iη+∂x , L+ = ∂+ .
(5.3.20)A typial irreduible multiplet for gl(1|1) is 2-dimensional. Hene, typial irreduiblemultiplets of the ombined left and right ation are spanned by four funtions in thesupergroup. As in [27℄ we shall ombine these funtions into a 2× 2 matrix of the form

ϕ〈−e,−n+1〉 = eiex+iny
(

1 η−
η+ e−1e−iy + η+η−

) (5.3.21)The rows span the typial irreduibles 〈−e,−n+ 1〉 of the right regular ation. Columnstransform in the representations 〈e, n〉 of the left regular ation. Note that ϕ〈e,n〉 is onlywell de�ned for e 6= 0, i.e. in the typial setor of the minisuperspae theory.Following [27℄, the bulk vertex operators in the free �eld theory are modelled after thematries ϕ〈e,n〉. More preisely, let us introdue typial bulk operators through
V〈−e,−n+1〉(z, z̄) = eieX+inY

(
1 c−
c+ c+c−

) (5.3.22)Sine the weight of the fermioni �elds c± vanishes, all four �elds in this matrix possessthe same onformal dimension,
∆(e,n) =

e

2k
(2n− 1 +

e

k
) . (5.3.23)Note that one of the terms in the lower left orner of the minisuperspae matrix ϕ〈e,n〉has no analogue on the vertex operator V〈−e,−n+1〉. We onsider this term as `subleading'.It is reonstruted when we build orrelation funtions of the interating WZNW model(see [27℄ and [28℄ for more details). 89



90 CHAPTER 5. THE GL(1|1) WZNW MODELLet us now repeat the previous analysis for the boundary �elds. Sine our twistedbrane is volume �lling, the relevant spae of minisuperspae wave funtions is againthe spae Fun
(GL(1|1)) of all funtions on the supergroup GL(1|1). But this time, itomes equipped with a di�erent ation of the Lie superalgebra gl(1|1). In fat, minisu-perspae wave funtions as well as boundary vertex operators are now distinguished bytheir transformation under a single twisted adjoint ation adΩ

X = RX +LΩ
X of GL(1|1) on

Fun
(GL(1|1)). Expliitly, the generators of gl(1|1) transformations are given byadΩ

E = 2i∂x , adΩ
N = 2i∂y + η+∂+ + η−∂− ,adΩ

− = ∂+ − ∂− , adΩ
+ = −e−iy(∂− + ∂+) + i(η+ − η−)∂x .

(5.3.24)Under the twisted adjoint ation of gl(1|1) on Fun
(GL(1|1)), eah typial multiplet ap-pears with two-fold multipliity [66℄. One more, we propose to assemble the orrespond-ing four funtions into a 2× 2 matrix of the form

ψ〈−2e,−2n+1〉 = eiex+iny
(

1 η+ − η−
η 2e−1e−iy/2 + (η+ − η−)η

) (5.3.25)where we introdued the shorthand η = eiy/2(η−+η+). The reader is invited to hek thatthe two rows of this matrix eah span the 2-dimensional typial irreduible 〈−2e,−2n+1〉under the twisted adjoint ation (5.3.24) of the superalgebra gl(1|1).Boundary vertex operators are modelled after the matries ψ〈−2e,−2n+1〉 more or lessin the same way as in the ase of bulk �elds,
U〈−2e,−2n+1〉(u) = eieX+inY

(
1 c+ − c−
C (c+ − c−)C

)
. (5.3.26)Again, we dropped the y-dependent term in the lower right orner of the matrix (5.3.25).Eventually, we will see how this term is reovered in boundary orrelation funtions. Themain new aspet of the presription (5.3.26), however, onerns the appearane of thefermioni boundary �eld C that we inserted in plae of the funtion η. This substitutionis motivated by the lassial equation of motion (5.3.11).After this preparation we are able to spell out how orrelation funtions of bulk andboundary �elds an be omputed for the interating WZNW model. More preisely, wede�ne,

〈
m∏

ν=1

Φ〈eν ,nν〉(zν , z̄ν)

m′∏

µ=1

Ψ〈eµ,nµ〉(uµ)

〉
=

∞∑

s=0

(−1)s

s!

〈
(Sint)s m∏

ν=1

V〈eν ,nν〉(zν , z̄ν)
m′∏

µ=1

U〈eµ,nµ〉(uµ)

〉

0

.

(5.3.27)
Here, Sint is the interation (5.3.19) and all orrelation funtions on the right side are tobe omputed in the free �eld theory (5.3.15). The relevant vertex operators V and U90



5.3. THE BOUNDARY GL(1|1) WZNW MODEL 91were introdued in equations (5.3.22) and (5.3.26) above. For later use we also note thatbosoni orrelators an be determined by means of the following standard formula,
〈

m∏

ν=1

V(eν ,nν)(zν , z̄ν)

m′∏

λ=1

V(eλ,nλ)(uλ)

〉
= δ(

∑m
ν=1nν +

∑m′

λ=1nλ + 1
2
)δ(
∑m

ν=1eν +
∑m′

λ=1eλ)

×
∏

ν>µ

|zν − zµ|−2ανµ

∏

ν>µ

|zν − z̄µ|−2ανµ

∏

ν,λ

|zν − uλ|−4ανλ

∏

λ>κ

|uλ − uκ|−4ακλ (5.3.28)where ανµ = −nν
eµ
k
− nµ

eν
k
− eνeµ

k2and V(eν ,nν) = exp(ieX + inY ) are bosoni vertex operators. As in the bulk theory itis easy to see that the all expansions (5.3.27) trunate after a �nite number of terms.In fat, the inserted bulk and boundary vertex operators on the right hand side of eq.(5.3.27) ontain at most 2m + m′ fermioni �elds c±. Sine eah interation term from
Sint ontributes at least one insertion of b±, we onlude that terms with s ≥ 2m + m′vanish.5.3.3 Solution of the boundary WZNW modelA boundary onformal �eld theory is uniquely haraterised by the bulk-boundaryand the boundary operator produt expansions. We shall now employ the perturbativealulational sheme we developed in the previous setion in order to determine thesedata. After a short warm-up with the disussion of bulk 1-point funtions, we determinethe bulk-boundary 2-point funtion in the seond subsetion. The 3-point funtion ofboundary �elds is addressed in subsetion 4.3.Bulk 1-point funtionThe bulk 1-point funtion is the simplest non-vanishing quantity in a boundary on-formal �eld theory. It ontains the same information as the boundary state. For volume�lling branes, the boundary state was determined in our previous work [66℄. Our �rst aimnow is to reprodue our old result through our new perturbative expansion.The 1-point funtion of a typial bulk �eld Φ〈e,n〉 is omputed by inserting a singlevertex operator (5.3.22) into the expansion (5.3.27). Sine bulk vertex operators ontainat most two �elds c, the only non-zero terms an ome from s = 0, 1. The term with
s = 0 ontains no insertion of the interation and it vanishes identially. So, let us seewhat happens for s = 1. In this ase, only the insertion of the boundary interation anontribute. The results is

〈Φ〈e,n〉(z, z̄)〉 =
i

2π

∫
du 〈e−iY (u)/2b+(u)C(u)V〈e,n〉(z, z̄)〉

= E1
1δ(e)δ(n− 1)

1

4πi

∫
du

(
1

u− z̄ −
1

u− z

)
=

∫
dµ ϕ〈e,n〉 .91



92 CHAPTER 5. THE GL(1|1) WZNW MODELHere, E1
1 is the elementary matrix whih has zeroes everywhere exept in the lower rightorner. Note that the only �eld with non-vanishing 1-point funtion has onformal weight

∆ = 0. Hene, there is no dependene on the insertion point (z, z̄). In the last line wehave expressed the numerial result as an integral of the matrix valued funtion (5.3.21)over the supergroup GL(1|1). The integration is performed with the Haar measure
dµ = 2−1e−iydxdydη+dη− . (5.3.29)Sine the Haar measure is gl(1|1) invariant, the integral of ϕ〈e,n〉 is an intertwiner from

〈e, n〉 ⊗ 〈e, n〉 to the trivial representation. This proves that the expetation value weomputed has the desired transformation behaviour.Bulk-boundary 2-point funtionNow we want to ompute the full bulk-boundary 2-point funtion. It is quite usefulto determine the general form of this 2-point funtion �rst before we enter the detailedalulations. Let us suppose for a moment that our alulations were guaranteed to givea gl(1|1) ovariant answer. Then it is lear that the bulk-boundary 2-point funtion anbe written as
〈Ψ〈2e′,2n′〉(0) Φ〈−e,−n+1〉(iy,−iy)〉 =

∑

ν=0,1

Cν(e)
〈ψ〈2e′,2n′〉 ϕ〈−e,−n+1〉〉ν

|y|2∆ν
(5.3.30)where ∆0 =

2e

k

(
2n− 1 +

e

k

) and ∆1 =
2e

k

(
2n− 1

2
+
e

k

)
. (5.3.31)The struture onstants Cν(e) are not determined by the gl(1|1) symmetry. We will al-ulate them perturbatively below (see eqs. (5.3.35) and (5.3.37) below). The expressionsin the numerator on the right hand side are ertain gl(1|1) intertwiners whih are de�nedby

〈ψ〈2e′,2n′〉 ϕ〈−e,−n+1〉〉 =

∫
dµψ〈2e′,2n′〉 φ〈−e,−n+1〉 =:

∑

ν=0,1

〈ψ〈2e′,2n′〉 ϕ〈−e,−n+1〉〉ν (5.3.32)where 〈ψ〈2e′,2n′〉 ϕ〈−e,−n+1〉〉ν = δ(e− e′)δ(n− n′ − ν/2) Gν (5.3.33)is the part of the full integral that ontains the fator δ(n − n′ − ν/2). Understandingthe previous formulae requires some input from the representation theory of gl(1|1) (seee.g. [27℄ for all neessary details). Let us start with the matrix ϕ〈−e,−n+1〉. Under thetwisted adjoint ation of gl(1|1) this multiplet transforms in the tensor produt
〈−e,−n + 1〉 ⊗ 〈−e,−n + 1〉 = 〈−2e,−2n+ 2〉 ⊕ 〈−2e,−2n + 1〉 .Hene, there exist only two matries ψ〈2e′,2n′〉 for whih the integral (5.3.32) does notvanish. These are the matries ψ〈2e,2n〉 and ψ〈2e,2n−1〉. The two non-vanishing terms areused to de�ne the the symbols (5.3.33). A similar analysis an now be repeated for the92



5.3. THE BOUNDARY GL(1|1) WZNW MODEL 93�elds in the WZNW model. We onlude immediately, that the 2-point funtion anonly have two ontributions. By gl(1|1) symmetry, these must be proportional to theintertwiners (5.3.33). The gl(1|1) symmetry, however, does not �x an overall onstant Cνthat an depend on the parameters of the �elds. Finally, the exponents ∆ν are simplydetermined by the onformal dimensions of bulk and boundary �elds. Let us point outthat the entire disussion leading to the expression (5.3.30) is based on the global gl(1|1)symmetry. Sine we have not yet shown that our perturbative omputations respet theation of gl(1|1) it will be important to verify that the form of the 2-point funtion omesout right.In our perturbative omputation, there are at most three �elds c± inserted and henewe only have to determine the expansion terms for s = 0, 1, 2. Contributions to the ν = 0term in the 2-point funtion (5.3.30), i.e. to the orrelator with the boundary �eld Ψ〈2e,2n〉,an only ome from s = 0. In fat, insertions of an interation term - bulk or boundary- would violate the onservation of Y -harge. Computation without any insertion of aninteration are easily performed, e.g.
〈U11

〈2e′,2n′〉(0)V 00
〈−e,−n+1〉(iy,−iy)〉 = −δ(n− n′) δ(e− e′)|y|−4e/k(2n−1/2+e/k) (5.3.34)Here, we have introdued the notation U ǫ′ǫ and V ǫ′ǫ for matrix elements. The �eld

U11
〈2e′,2n′〉, for example, denotes the lower right orner et. The omputation of the as-soiated integral (5.3.33) with ν = 0 is equally simple and allows us to read o� that

C0(e, n) = 1 . (5.3.35)Let us note that there are other ombinations of bulk and boundary �elds that an havea non-zero 2-point funtion without any insertion of interations. In all those ases onemay repeat the above alulation to �nd the same oe�ient C0 = 1, in agreement withgl(1|1) symmetry.Next we would like to address the oe�ient C1 in the expression (5.3.30). Y -hargeonservation implies that its only ontributions are assoiated with a single insertion ofthe boundary interation. This time, the omputations are slightly more involved. As anexample we treat the following 2-point funtion
〈U00

〈2e′,2n′〉(0)V 11
〈−e,−n+1〉(iy,−iy)Sbdyint 〉 =

= −δ(n− n
′ − 1

2
)δ(e− e′)

|y|4 e
k
(2n−1+ e

k
)

y

2π

∫
du

|u|2α
|u2 + y2|α+1

= −δ(n− n
′ − 1

2
)δ(e− e′)

|y|4 e
k
(2n−1+ e

k
)

1

2π

∫
du |1 + u2|−α−1

= −δ(n− n
′ − 1

2
)δ(e− e′)

2|y|4 e
k
(2n−1+ e

k
)

2−2αΓ(2 e
k

+ 1)

Γ2( e
k

+ 1)

= −δ(n− n
′ − 1

2
)δ(e− e′)

2|y|4 e
k
(2n−1+ e

k
)

Γ( e
k

+ 1
2
)√

πΓ( e
k

+ 1)

(5.3.36)
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94 CHAPTER 5. THE GL(1|1) WZNW MODELThe seond step is the substitution u→ y/u, then we an apply (C.0.8) whih is a speialase of the integral formula in [76℄. The last step is the Euler doubling formula of theGamma funtion. Comparison with the assoiated ontribution to the minisuperspaeintegral (5.3.32) gives
C1(e) =

Γ(e/k + 1/2)√
πΓ(e/k + 1)

. (5.3.37)One more, one an perform similar omputations with a single insertion of a boundaryinteration for other pairs of bulk and boundary �elds. All these alulations lead to thesame result for C1, as predited by gl(1|1) ovariane.At this point, we have omputed all the data we were interested in. But there aremore ontributions to the perturbative expansion of the bulk-boundary 2-point funtion.As we stated above, non-vanishing ontributions arise from s = 0, s = 1 and s = 2. Wehave ompletely determined the s = 0 term. At s = 1, however, our attention so farwas restrited to the boundary interation. The other term with a single bulk insertionan also ontribute sine it ontains a produt of only two b±. Similarly, at s = 2, twoinsertions of the boundary interation an lead to a non-vanishing result. Produts ofbulk and boundary interations or two bulk interations, on the other hand, involve toomany �elds b± and vanish by simple zero mode ounting. Hene, we are left with two moreterms to alulate, those arising from a produt of two boundary interations Sbdyint andfrom a single bulk interation Sbulkint . Y -harge onservation implies that the additionalterms involve a fator δ(n− n′ − 1). Suh a term, if present, would be inonsistent withthe global gl(1|1) symmetry. Our task therefore is to show that the sum of the twoaforementioned ontributions vanishes.Let us begin with the omputation of the term that arises from a single insertion ofthe bulk interation,
〈U11

〈2e,2n−2〉(0)V 11
〈−e,−n+1〉(iy,−iy) Sbulkint 〉 ∼

∼ y−2 e
k
(4n−3+2 e

k
) y

3

kπ

∫

UHP

d2z |z2 + y2|−2( e
k
+1)|z2|2 e

k
−1(z − z̄)

= − y−2 e
k
(4n−3+2 e

k
) 1

e
√
π

Γ(2e/k + 1/2)

Γ(2 e
k

+ 1)

(5.3.38)
We have been a bit sloppy here by setting the parameters the parameters 2e′ = 2e and
2n′ − 2 to the values at whih the expetation value has a non-vanishing ontribution.Stritly speaking, this quantity is divergent, but the divergene is an overall (volume)fator δ(0) whih we suppressed onsistently. In the �rst equality we simply insertedthe relevant free �eld orrelator. After the substitution z → y/z, the integral over theinsertion point u of the boundary interation an be evaluated using an integral formulafrom [76℄ (see also (C.0.7)). Finally, the answer is simpli�ed by means of Euler's doublingformula for Gamma funtions.Next we turn to the ontributions oming from two boundary interations. Sinethe orresponding free �eld orrelator is slightly more involved in this ase, we state an94



5.3. THE BOUNDARY GL(1|1) WZNW MODEL 95expression for the fermioni ontribution before going into the atual omputation,
〈b+(u1)C(u1)b+(u2)C(u2)(c+ − c−)(0)C(0)c+(−iy)c−(iy)〉F =

=
−4πy3(u2 − u1)

u1u2(u2
1 + y2)(u2

2 + y2)

[sign(u2 − u1)− sign(u2) + sign(u1)
]
.

(5.3.39)This result is inserted to ompute
〈U11

〈2e,2n−2〉(0)V 11
〈−e,−n+1〉(iy,−iy)

(
Sbdyint )2

〉 ∼

= y−2 e
k
(4n−3+2 e

k
) y

3

πk

∫
du1du2 |u2

1 + y2|−e/k−1|u2
2 + y2|− e
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−1|u2
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−1
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(4n−3+2 e

k
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∫
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−1|x1 − x2|
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√
π

Γ(2 e
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2
)

Γ(2 e
k

+ 1)

(5.3.40)
The integral in the fourth line is again evaluated with a speial ase of the integral formulaof Fateev and Ribault (C.0.9). Putting the results of eqs. (5.3.38) and (5.3.40) togetherwe arrive at

〈U11
〈2e′,2n′〉(0)V 11

〈−e,−n+1〉(iy,−iy)
(
Sbulkint +

1

2!

(
Sbdyint )2

)
〉 = 0 , (5.3.41)in agreement with gl(1|1) ovariane of the 2-point funtion. Thereby, we have nowestablished the formula (5.3.30) through our perturbative omputations.Before we leave the subjet of bulk boundary 2-point funtions, we would like to makea few omments on the ases when e/k is an integer multiple of 1/2. Consider insertinga bulk vertex operator with e momentum e = −mk − k/2− kε and sending ε to zero. Inthe limit, the seond term of eq. (5.3.30) develops a logarithmi singularity,

C1(−mk − k/2− kǫ)|y|−∆1 =
(−1)m

m!Γ(−m + 1/2)|y|2∆ (Z + ∆̃ ln |y|+ o(ǫ))where Z =
1

ǫ
+ Ψ(−m)−Ψ(−m+ 1/2) ,

∆ = −(2m+ 1)(2n−m− 1) .

(5.3.42)
and ∆̃ = 4n − 4m − 3. Here, Ψ is the usual Di-gamma funtion. The form of our bulk-boundary 2-point funtion (5.3.42) resembles a similar expression in [22℄. A link betweenboundary orrelation funtions of sympleti fermions and the orresponding orrelatorsin the GL(1|1) WZNW model may be established following ideas in [69℄.95



96 CHAPTER 5. THE GL(1|1) WZNW MODELBoundary 3-point funtionsThe seond objet of interest for us is the boundary 3-point funtion. Before we getthere, we have to turn our attention to an important detail that we glossed over in theprevious subsetion. We reall that our 2× 2 matries Ψ〈e,n〉, e 6= kZ, of boundary �eldsontain two irreduible multiplets 〈e, n〉 under the unbroken global gl(1|1) symmetry.These two multiplets have opposite fermion number, i.e. the state with lower eigenvalueof N is bosoni for one of them and fermioni for the other. In general, the two multipletsare allowed to have di�erent ouplings to the other �elds in the theory. When we studiedbulk-boundary 2-point funtion, only one of the two multiplets from eah of the 2 × 2matries Ψ〈2e,2n〉 and Ψ〈2e,2n−1〉 ould have a non-vanishing overlap with the bulk �eld
Φ〈−e,−n+1〉, simply beause of fermion number onservation. Hene, the bulk-boundary 2-point funtions were parameterised by two non-vanishing struture onstants Cν(e) ratherthan four. For boundary 3-point funtions, however, the distintion beomes important.Consequently, we introdue the symbols

U0
〈−2e,−2n+1〉(u) = eieX+inY ( 1 , c+ − c− )

U1
〈−2e,−2n+1〉(u) = eieX+inY (C, (c+ − c−)C )

(5.3.43)for the �rst and seond row of the matrix (5.3.26). The same notation is used for therows of the matries ψ of funtions and Ψ of boundary �elds.Let us now begin with the 3-point funtion of three �elds from the �rst multiplet Ψ0.These aquire ontributions exlusively from a single insertion of the boundary interation.A non-vanishing orrelator requires that the parameters ei of the three �elds sum up to
ẽ = e1 + e2 + e3 = 0 and similarly that ñ = n1 + n2 + n3 = 1. Using the integral formulaefrom Appendix A, the 3-point funtion of �elds Ψ0 in the regime 0 < x < 1 is found to be
〈Ψ0ǫ1

〈−2e1,−2n1+1〉(0)Ψ0ǫ2
〈−2e2,−2n2+1〉(1)Ψ0ǫ2

〈−2e3,−2n3+1〉(x)〉 = δ(ẽ) δ(ñ− 1) δ(ǫ̃− 2)×

× x2∆13(1− x)2∆23
π

i

s(α1) + s(α2) + s(α3)

s(α1)s(α2)s(α3)Γ(α1 + ǫ1)Γ(α2 + ǫ2)Γ(α3 + ǫ3)

(5.3.44)where we de�ned the parameters αi by αi = 2ei/k and introdued the short-hands s(z)and ǫ̃ for s(z) = sin(πz) and ǫ̃ =
∑
ǫi. The onformal weights are given by

∆ij = (ni − 1/2)αj + (nj − 1/2)αi + αiαj .In the limit k → ∞ the funtion s(αi) an be approximated by s(α) ∼ 2πei/k and theentire 3-point funtion is seen to vanish due to the onservation of e momentum. This isonsistent with the minisuperspae theory. In fat, the orresponding integral of funtionson our brane is easily seen to vanish,
〈ψ0ǫ1

〈−2e1,−2n1+1〉ψ
0ǫ2
〈−2e2,−2n2+1〉ψ

0ǫ2
〈−2e3,−2n3+1〉〉 = 0 .This is so beause integration with the Haar measure needs a produt of two di�erentfermioni zero modes in order to give a non-zero result. Our funtions ψ0, however, onlyontain the zero mode η+ − η−. 96



5.3. THE BOUNDARY GL(1|1) WZNW MODEL 97Let us now move on to disuss the 3-point in the ase where a single �eld from the se-ond multiplet Ψ1 is inserted. Contributions to suh orrelators arise only from the leadingterm s = 0 of the perturbation series (see below). The result is therefore straightforwardto write down
〈Ψ0ǫ1

〈−2e1,−2n1+1〉(0)Ψ0ǫ2
〈−2e2,−2n2+1〉(1)Ψ1ǫ3

〈−2e3,−2n3+1〉(x)〉 =

= δ(ẽ) δ(ñ− 1/2) δ(ǫ̃− 1) x2∆13(1− x)2∆23 .
(5.3.45)This oupling in independent of the level k and it mathes the minisuperspae answerwhih is non-zero beause the multiplet ψ1 ontains both fermioni zero modes.The most interesting 3-point oupling appears when we insert two �elds from theseond multiplet Ψ1. One more, non-vanishing terms an only arise from the insertion ofa single boundary interation. They an be worked out with the help of integral formulaein Appendix A,

〈Ψ0ǫ1
〈−2e1,−2n1+1〉(0)Ψ1ǫ2

〈−2e2,−2n2+1〉(1)Ψ1ǫ3
〈−2e3,−2n3+1〉(x)〉 = δ(ẽ) δ(ñ− 1) δ(ǫ̃− 2) ×

× 2π2i

k
x2∆13(1− x)2∆23

s(α1)− s(α2)− s(α3)

s(α1)s(α2)s(α3)Γ(α1 + ǫ1)Γ(α2 + ǫ2)Γ(α3 + ǫ3)
.(5.3.46)Note that the fator ∼ 1/k in the �rst term of the seond row is neessary in order for thewhole expression to sale to a �nite value as we send the level k to in�nity. The expressionthat arises in this limit an be heked easily in the minisuperspae theory.There remains one more ase to onsider, namely the 3-point funtion for three �eldsfrom the seond multiplet Ψ1. It is given by

〈Ψ1ǫ1
〈−2e1,−2n1+1〉(0)Ψ1ǫ2

〈−2e2,−2n2+1〉(1)Ψ1ǫ3
〈−2e3,−2n3+1〉(x)〉 =

= δ(ẽ) δ(ñ− 1/2) δ(ǫ̃− 1)
2π

k
x2∆13(1− x)2∆23 .

(5.3.47)As in the previous formula (5.3.46), the result ontains a fator 1/k. Consequently, the3-point oupling on the right hand side of eq. (5.3.47) vanishes at k ∼ ∞, in agreementwith the assoiated minisuperspae omputation.The last result (5.3.47) was obtained without any insertion of bulk or boundary in-terations, though naively one might expet to see ontributions from one bulk or twoboundary insertions. A similar omment applies to the seond ase (5.3.45) above. It isindeed true that the insertion of Sbulkint or (Sbdyint )2 both lead to non-vanishing expressions.But, as in the ase of the bulk boundary 2-point funtions, their sum vanishes, i.e.
〈U ǫ′1ǫ1

〈e1,n1〉(0)U
ǫ′2ǫ2
〈e2,n2〉(1)U

ǫ′3ǫ
′

3

〈e3,n3〉(u)

(
Sbulkint +

1

2!

(
Sbdyint )2

)
〉 = 0 .The result is trivially ful�lled for ǫ̃′ = 0, 2. It requires rather elaborate omputations when

ǫ̃′ = 1, 3. These an be performed with the help of the integral formulae (C.0.3-C.0.5) welist in Appendix A. 97



98 CHAPTER 5. THE GL(1|1) WZNW MODELBefore losing this setion we would like to add two more omments. The �rst oneonerns the logarithmi singularities that appear in the 3-point funtions whenever oneof the parameters 2ei is an integer multiple of k. If we onsider joining two open stringswith e momentum e1 = e − ε/2 and e2 = −e − ε/2, for example, and send ε to zero, weobtain
〈Ψ00

〈−2e+ε,−2n1+1〉(0)Ψ11
〈2e+ε,−2n2+1〉(1)Ψ11

〈−2ε,−2n3+1〉(u)〉 ∼

∼ u2∆(1− u)−2∆ δ(ñ− 1)
(
Z +R(α) + A23 ln |1− u|+ A13 ln |u|+ o(ε)

)where Z =
1

ε
+

4εγ

k
, R(α) = −2π

1 + c(α)

ks(α)

A13 =
1

k
(2n1 − n3 − 1/2 + 2α) , A23 =

1

k
(2n2 − n3 − 1/2− 2α)(5.3.48)and ∆ = α(n3 − 1/2). The funtion c(α) stands for c(α) = cos(πα) and γ is the Euler-Masheroni onstant. In the limit ε→ 0, the onstant Z diverges. This divergeny an beregularised by adding to Ψ11 an appropriate �eld from the sole of the involved atypialmultiplet. In the following, we shall assume that Z has been set to zero.Our �nal omment deals with an interesting quantum symmetry of the boundary 3-point funtions. As in the bulk setor [27℄, the boundary 3-point funtion is periodiunder shifts of the e-momentum, in the following sense,

〈Ψǫ1ǫ′1
〈−2e1,−2n1+1〉(0)Ψ

ǫ2ǫ′2
〈−2e2,−2n2+1〉(1)Ψ

ǫ3ǫ′3
〈−2e3,−2n3+1〉(x)〉 =

(1− u)2n3−1u1−2n3〈Ψǫ2ǫ′2
〈−2e1+k,−2n1〉(1)Ψ

ǫ1ǫ′1
〈−2e2−k,−2n2+2〉(0)Ψ

ǫ3ǫ′3
〈−2e3,−2n3+1〉(x)〉 .Further shifts by multiples of ±k an also be onsidered, but neessarily involve insertingdesendants of the tahyon vertex operators. Our observation proves that the boundaryGL(1|1) model for volume �lling branes possesses spetral �ow symmetry. Shifts by integermultiples of the level k are a symmetry of the a�ne representation theory. In priniple, thissymmetry ould be broken by the boundary struture onstants. The previous formulaasserts that, like in the bulk setor, the boundary operator produt expansions preservethe spetral �ow symmetry. The same is true for the bulk-boundary operator produtexpansions.5.3.4 Correlation funtions involving atypial �eldsThroughout the last few setions we have learnt how to ompute orrelation funtionsof bulk and boundary tahyon vertex operators for a volume �lling brane in the GL(1|1)WZNW model. We now want to add a few omments on a partiular set of orrelationfuntions that are essentially not e�eted by the interation and hene an be derived98



5.3. THE BOUNDARY GL(1|1) WZNW MODEL 99without umbersome alulations. These will inlude a non-vanishing annulus amplitude.We shall use the latter to perform a highly non-trivial test on the proposed boundarystate of volume �lling branes [66℄.Correlators for speial atypial �eldsIn the previous setions we developed a �rst order formalism for omputations oforrelation funtions in the GL(1|1) WZNW model. Very speial orrelators, however,an also be omputed in the original formulation. To begin with, let us explain the mainidea at the example of bulk orrelators. We reall that the bulk ation of the GL(1|1)model is given by
Sbulk = − k

4πi

∫

Σ

d2z
(
∂X∂̄Y + ∂Y ∂̄X + 2eiY ∂c+∂̄c−

) (5.3.49)The path integral is evaluated with the gl(1|1) invariant measure (5.3.12) on the spae of�elds. A glane at the interation term of the WZNW model and the measure suggeststo introdue the new oordinates χ± = eiY/2c±. After this substitution, the path integralmeasure is the anonial one,
dµWZW ∼ DXDYDχ−Dχ+ . (5.3.50)Our bulk ation Sbulk = S0 +Q, on the other hand, splits naturally into a free �eld theory

S0 and an interation term Q where
S0 = − k

4πi

∫

Σ

d2z
(
∂X∂̄Y + ∂Y ∂̄X + 2∂χ+∂̄χ−

)

Q =
k

4πi

∫

Σ

d2z
(
iχ+∂̄χ−∂Y + i∂χ+χ−∂̄Y + χ+χ−∂Y ∂̄Y

)
.

(5.3.51)Due to the ompliated form of Q, treating the WZNW model as a perturbation bythe interation terms in Q is not too useful for most pratial omputations. Undervery speial irumstanes, however, the split into S0 and Q allows for a very interestingonlusion. Observe that eah term in the interation Q ontains at least one derivative
∂Y or ∂̄Y . In our free �eld theory S0, the only non-vanishing ontrations involvingderivatives of Y are those with the �eld X. Hene, we an simply ignore the preseneof Q for all orrelation funtions of tahyon vertex operators that do not involve X. Inother words, orrelation funtions of �elds without any X-dependene are given by theirfree �eld theory expressions! This had already been observed in the results of [27℄. Oursplit of the ation in S0 and Q provides a rather simple and general explanation. Let usstress again that this split is not helpful for any other omputation involving more generitypial �elds.It is lear that all this is not restrited to the bulk theory. In fat, we an use thesame substitution for the boundary terms of the ation (5.3.1),

S∂0 =
k

8πi

∫

Σ

du (χ+ + χ−)∂u(χ+ + χ−) . (5.3.52)99



100 CHAPTER 5. THE GL(1|1) WZNW MODELSine S∂0 is quadrati in the �elds χ±, it gets added to the free bulk ation S0, i.e. we nowwork with a free �eld theory on the upper half plane whose ation is given by S0 + S∂0.There is no additional boundary ontribution to the bulk interation Q. In the free theory,the �elds χ± satisfy Neumann gluing onditions of the following simple form,
∂χ±(z, z̄) = ∓∂̄χ∓(z, z̄) for z = z̄ . (5.3.53)The gluing ondition implies that fermions of the free boundary theory are ontrated asfollows,

χ−(z, z̄)χ+(w, w̄) ∼ 1

k
ln |z − w|2 ,

χ±(z, z̄)χ±(w, w̄) ∼ 1

k
ln(z̄ − w)− 1

k
ln(w̄ − z) .

(5.3.54)The bosoni �elds X, Y also obey simple Neumann boundary onditions so that theevaluation of orrelators in the free �eld theory S0 + S∂0 is straightforward. Takingthe interation Q into aount is a di�ult task unless none of the vertex operators in theorrelation funtion ontain the �eld X. If all �eld are X independent, then the orrelatoris simply given by the free �eld theory formula, just as in the bulk theory above.One may apply the observation in the previous paragraph to the evaluation of bound-ary 3-point funtions of three atypial �elds for the volume �lling brane. Note that wedid not spell out a formula for this partiular orrelator before. In priniple, it an beomputed in the �rst order formalism, but the orresponding alulation requires someare. Our new approah allows to write down the result right away. We shall disussanother interesting appliation of our new approah to atypial orrelation funtions inthe next subsetion. Let us mention in passing that we expet similar results to hold forthe ompletely atypial setors in all GL(N |N) and PSL(N |N) WZNW models. Thiswill be disussed in more detail elsewhere.Twisted boundary state and modular bootstrapWe already disussed the twisted boundary state using the sympleti fermion orre-spondene. In this setion, we give an alternative onstrution and relate the amplitudeto a spetral density omputed in the three-point orrelation funtions.In order to onstrut a non-trivial quantity on the annulus, we need to insert somefermioni zero modes, see e.g. [65℄ for similar tests in the simpler bc ghost system. Let usantiipate that only atypial bulk �elds ouple to the volume �lling brane. Hene, if weinsert fermioni zero modes through some atypial bulk �eld, the entire amplitude is builtfrom atypial terms and should be omputable through a simple free �eld formalism, asexplained in the previous subsetion. Let us see now how the details of this alulationwork out.To begin with, let us review the onstrution of the boundary state |Ω〉 for the volume�lling brane. With the help of our free �eld realisation, the formula beomes quite expliit.We shall start from the boundary state |Ω〉0 of the free theory. This state learly fatorises100



5.3. THE BOUNDARY GL(1|1) WZNW MODEL 101into a produt of a bosoni |Ω, B〉0 and a fermioni |Ω, F 〉0 ontribution. The latter twoobey the following gluing onditions
(Xn + X̄−n) |Ω, B〉0 = (Yn + Ȳ−n) |Ω, B〉0 = 0 (5.3.55)and

(χ±
n ∓ χ̄∓

−n) |Ω, F 〉0 = 0 . (5.3.56)Here, Xn and X̄n are the modes of the urrents i√k∂X and i√k∂̄X et. Up to normali-sation, there exists a unique solution for these linear onstraints. For the bosoni and thefermioni setor, they are given by the following oherent states,
|Ω, B〉0 = exp

(
−

∞∑

n=1

1

n
(Y−nX̄−n +X−nȲ−n

)
|0, 0〉B (5.3.57)

|Ω, F 〉0 = exp

(
−

∞∑

n=1

1

n
(χ+

−nχ̄
+
−n − χ−

−nχ̄
−
−n

)
|0, 0〉F . (5.3.58)Here, |0, 0〉 denote the vaua in the bosoni and the fermioni theory. The produt of thetwo omponents is the boundary state of the free �eld theory, before the interation istaken into aount. We now inlude the e�ets of the interation by multiplying the freeboundary state with the exponential of the interation Q,

|Ω〉 = N eQ |Ω〉0 = N
( ∞∑

n=0

Qn

n!

)
|Ω, B〉0 × |Ω, F 〉0 , (5.3.59)where N =

√
π/i is a normalisation onstant. The operator Q is de�ned as in eq.(5.3.51), but with the integration restrited to the interior of the unit dis. It is possibleto hek that expQ rotates the gluing onditions from the free �eld theory relations(5.3.55) and (5.3.56) to their interating ounterparts (see (5.3.2)). The dual boundarystate is onstruted analogously.Our main aim now is to ompute some non-vanishing overlap of the twisted boundarystate |Ω〉. This requires the insertion of the invariant bulk �eld Φ11

〈0,0〉 = χ−χ+, i.e. we aregoing to study
ZΩ(q, z) := 〈Ω | q̃Lc

0(−1)F
c

z̃N
c
0 Φ11

〈0,0〉 |Ω〉 , (5.3.60)where Lc0 = (L0 + L̄0)/2 and N c
0 = (N0 − N̄0)/2 are obtained from the zero modes ofthe Virasoro �eld and the urrent N . The orresponding expressions are standard, seee.g. [27℄. Our parameters q̃ and z̃ are de�ned in terms of µ, τ through q̃ = exp(−2πi/τ)and z̃ = exp(2πiµ/τ). We are now going to argue that the omputation of ZΩ an beredued to a simple alulation in free �eld theory, i.e.

〈Ω | q̃Lc
0(−1)F

c

z̃N
c
0 Φ11

〈0,0〉 |Ω〉 = N 2
0〈Ω | q̃L

c
0(−1)F

c

z̃N
c
0 Φ11

〈0,0〉 |Ω〉0 . (5.3.61)101



102 CHAPTER 5. THE GL(1|1) WZNW MODELThe reasoning goes as follows. In a �rst step we write the interating boundary state as aprodut of the interation term expQ and the free boundary state |Ω〉0. Next we observethat all bosoni operators in between the two boundary states involve derivatives suhas ∂X et. Hene, we an use the gluing onditions (5.3.55) to express all these termsthrough Yn andXn. The modes Ȳn and X̄n of the anti-holomorphi derivatives only appearin the onstrution (5.3.57) of the free bosoni boundary state |Ω, B〉0. A non-vanishingterm requires that the number of X̄n equals the number of Ȳ−n. But sine the X̄−n and
Ȳ−n ome paired with their holomorphi partners Y−n and X−n in the boundary state,the operator in between 0〈Ω| and |Ω〉0 must have equal numbers for Xn and Yn modesin order for the orresponding term not to vanish. In Q, all terms have an exess of Ymodes. Sine no term in Lc0 or N c

0 an ompensate this through an exess of X-modes,we an safely replae expQ by its zeroth order term, i.e. expQ ∼ 1.The omputation of the overlap (5.3.61) in free �eld theory is straightforward. Ina �rst step, the amplitude is split into a produt of bosoni and fermioni terms. Thebosoni ontribution is the same as for extended branes in �at 2-dimensional spae. Thefermioni fator involves an insertion. Its evaluation is reminisent of a similar alulationin [65℄. We an express the result through a single harater of the a�ne gl(1|1) algebra,
ZΩ(q, z) = N 2 χ̂P0(−1/τ, µ/τ) =

2π

k

∫
dedn

χ̂〈e,n〉(τ, µ)

sin(πe/k)
. (5.3.62)The a�ne haraters χ̂ along with their behaviour under modular transformations anbe found in the Appendix B. In order to ahieve proper normalisation (see below) wehave set N 2 = π/i. Sine the spetrum of boundary operators on the volume �lling braneis ontinuous, the result involves some open string spetral density funtion. From theresult, this is read o� as

ρ(e, n) = ρ(e) =
2π

k sin(πe/k)
. (5.3.63)We would expet ρ to be enoded in the boundary 3-point funtion of Ψ〈e,n〉, Ψ〈−e,−n〉with the speial boundary �eld Ψ11

〈0,0〉. One possible 3-point funtion that ontains therequired information is a partiular ase of our more general formula (5.3.48), i.e.
〈Ψ00

〈e,n〉(0)Ψ11
〈−e,−n〉(1)Ψ11

〈0,0〉〉 ∼

∼ u2∆(1− u)−2∆
(
Z +R(−πe/k) + A23 ln |1− u|+ A13 ln |u|

)
.(5.3.64)All quantities that appear on the right hand side were introdued in equation (5.3.48).The additive onstant Z is not universal. It is naively in�nite, but an be made �niteby a proper regularisation presription. We use the universal term R to determine thespetral density

d

de
lnR(−2e/k) =

2π

k

d

dα
ln

1 + c(α)

s(−α)
=

2π

k sin(πe/k)
= ρ(e) . (5.3.65)102



5.3. THE BOUNDARY GL(1|1) WZNW MODEL 103Here, we have used that α = e/k, as before. The result agrees with the expression (5.3.63)that was obtained through modular transformation of the overlap (5.3.61). Thereby, wehave now been able to subjet our formula (5.3.59) for the boundary state of the volume�lling brane to a strong onsisteny hek.There is another somewhat weaker but still non-trivial test for the boundary statethat arises from the minisuperspae limit of the boundary WZNW model. In fat, in thepartile limit we �nd thattr(zadΩ
N (−1)Fψ11

〈0,0〉) =

∫
dedn

χ〈e,n〉(z)

e
= lim

k→∞
ZΩ(q, z) . (5.3.66)In the �rst step we simply evaluated the trae diretly in the minisuperspae theory. Wethen observed in the seond equality that the result oinides with the modular transformof the overlap (5.3.61) in the appropriate limit k →∞.5.3.5 Conlusions and open problemsIn this setion we have solved the boundary theory for the volume �lling brane onGL(1|1). We ahieved this with the help of a Ka-Wakimoto-like representation of theboundary theory. The �rst order formalism we developed in setion 2 is similar to theone used in [76℄ for AdS2 branes in the Eulidean AdS3. The main di�erene is that wewere fored to introdue an additional fermion on the boundary. Suh auxiliary boundaryfermions are quite ommon in fermioni theories (see e.g. [77,80℄ and referenes therein).With the help of our �rst order formalism we were then able to set up a perturbativealulational sheme for orrelation funtions of bulk and boundary �elds. The mainfeatures of this sheme are similar to the pure bulk ase [27℄. In partiular, for anygiven orrelator, only a �nite number of terms from the expansion an ontribute. Weomputed the exat bulk-boundary 2-point funtions and the boundary 3-point funtions,thereby solving the boundary onformal �eld theory of volume �lling branes on GL(1|1)expliitly. Finally, we proposed a seond approah to orrelation funtions of atypial�elds. It singles out a partiular subsetor of the bulk and boundary GL(1|1) WZNWmodel that is not a�eted at all by the interation. Hene, within this subsetor, allquantities agree with their free �eld theory ounterparts. The insight was then put to usefor a alulation of a partiular non-vanishing annulus amplitude in setion 5.2. Togetherwith our previous results on boundary 3-point funtions, we obtained a strong test forthe boundary state of the volume �lling brane in the GL(1|1) WZNW model.There are several obvious extensions that should be worked out. To begin with, itwould be interesting to set up an equally e�ient framework to alulate orrelationfuntions for the boundary theories of point-like loalised branes. Unfortunately, we havenot sueeded to alulate orrelators from a �nite number of ontributions, as in the aseof the volume �lling brane. It is possible to develop a Ka-Wakimoto-like presentationfor point-like branes using the boundary onditions of [65℄ for the bc system. But sinethe gluing onditions of [65℄ identify derivatives of c with b̄ et., zero mode ountingdoes not furnish simple vanishing results. Therefore, an in�nite number of terms an103



104 CHAPTER 5. THE GL(1|1) WZNW MODELontribute to any given orrelation funtion. On the other hand, the approah of setion5.3.4 does generalise to point-like branes. Sine the boundary spetrum on a single point-like brane is purely atypial, some interesting quantities an be omputed. This appliesin partiular to the boundary 3-point funtions on a single point-like brane. Correlationfuntions involving boundary ondition hanging �elds or typial bulk �elds, however, arenot aessible along these lines. The sympleti fermion orrespondene seems to be abetter andidate to address these questions.It is ertainly interesting to investigate how muh of our program extends to highersupergroups. Enouraged by the reent developments on the bulk setor [29℄, it seemslikely that most of our onstrutions may be generalised, at least to supergroups of typeI. This inludes the superonformal algebras psl(N|N) and many other interesting Liesuperalgebras (see e.g. [34℄ for a omplete list). We believe that in all these ases thereexists one lass of branes whih an be solved through some appropriate square root ofthe bulk formalism. Taking the proper square root will ertainly involve a larger numberof fermioni boundary �elds. Our seond approah to atypial orrelation funtions mayalso be extended to higher supergroups and it provides interesting insights on the atypialsubsetor of the WZNW models.
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Chapter 6N=2 superonformal �eld theoriesIn this hapter, we introdue a new lass of onformal �eld theories with even moresymmetry. We investigate world-sheet and target spae supersymmetri onformal �eldtheories. The main result is that many Lie supergroup and superoset N = 1 world-sheetsupersymmetri WZNW models possess an additional hidden N = 2 superonformal sym-metry. In superstring theory, N = 2 superonformal symmetry is a valueable ingredientfor many reasons. The supersymmetry puts strong onstraints on the dynamis of thestring theory. One an twist the superonformal algebra to obtain a topologial onfor-mal �eld theory. The twisting promotes one of the two super-urrents to a BRST-urrentwhih de�nes a ohomology theory. Correlation funtions involving only �elds in theohomology are independent of their world-sheet positions.We start this hapter by introduing topologial CFT and the gauged N = 1 su-persymmetri WZNW model of a Lie supergroup. Then we turn to the mathematiallyonepts, most importantly Manin triples. The main result is: If a Lie superalgebra gpossesses a Manin deomposition then the gauged N = 1 world-sheet supersymmetriWZNW model possesses a hidden N = 2 superonformal symmetry. Our �ndings are inthe spirit of the work of Kazama and Suzuki on osets of ompat Lie groups [81℄. It isremarkable that the generalisation to superspae not only inludes many superosets butalso supergroups. This is due to the inde�nite metri of the supergroup. This hapter isbased on [82℄.6.1 Topologial onformal �eld theoryIn this setion, we follow [83℄. A topologial onformal �eld theory is usually a subse-tor of a larger CFT. Consider a onformal �eld theory with a BRST-operator Q satisfying
Q2 = 0 and a BRST invariant ation S. Physial observables are �elds that ommutewith Q, i.e.

[Q, φ] = 0 . (6.1.1)Further these states are de�ned up to a Q-exat term
φ ≡ φ+ [Q, φ̃] . (6.1.2)This means that the spae of physial states is the ohomology of Q
Hphys =

kernel(Q)image(Q)
. (6.1.3)105



106 CHAPTER 6. N=2 SUPERCONFORMAL FIELD THEORIESBRST invariane ensures that orrelation funtions of only physial �elds are independentof the hoie of representative for eah φ. The BRST-operator Q de�nes a topologialonformal �eld theory if there exists a holomorphi �eld G(z) of dimension (2, 0) and alsoan anti-holomorphi �eld Ḡ(z̄) of dimension (0, 2) satisfying
T (z) = [Q,G(z)] and T̄ (z̄) = [Q, Ḡ(z̄)] . (6.1.4)This ondition implies that physial orrelation funtions

〈φ1(z1, z̄1) . . . φn(zn, z̄n)〉Σ (6.1.5)depend only on the inserted �elds φi and the topology of the world-sheet Σ. But they areindependent of the world-sheet positions (zi, z̄i) of the �elds φi. The topologial CFT isthen haraterised by the ohomology ring Hphys. The ring multipliation is given by theoperator produt expansion of physial �elds
φiφj ∼ cij

kφk . (6.1.6)A lass of topologial CFTs is obtained by twisting N = 2 superonformal �eld theo-ries. These are de�ned as follows.De�nition 6.1.1. The N = 2 superonformal algebra of onformal entral harge c on-sists of the energy-stress tensor T (z), a U(1)-urrent U(z) of onformal dimension 1 andtwo fermioni dimension 3/2 super-urrents G± subjet to the operator produt expansions
T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)

G+(z)G−(w) ∼ c/3

(z − w)3
+

U(w)

(z − w)2
+
T (w) + 1

2
∂U(w)

(z − w)

G±(z)G±(w) ∼ 0

U(z)G±(w) ∼ ±G±(w)

(z − w)

U(z)U(w) ∼ c/3

(z − w)2
.

(6.1.7)
The anti-holomorphi partners T̄ (z̄), Ḡ±(z̄) and Ū(z̄) satisfy the analogous relations.One distinguishes two kinds of twisted topologial CFTs, the A-twists and the B-twists. The twisted CFTs are obtained by de�ning the twisted energy-momentum tensoras follows

T±twisted(z) = T (z)± 1

2
∂U(z) ,

T̄±twisted(z̄) = T̄ (z̄)± 1

2
∂̄Ū(z̄) .

(6.1.8)106



6.2. THE GAUGED N = 1 WZNW MODEL 107Their OPEs
T±twisted(z)T±twisted(w) ∼ 2T±twisted(w)

(z − w)2
+
∂T±twisted(w)

(z − w)
and

T̄±twisted(z̄)T̄±twisted(w̄) ∼ 2T̄±twisted(w̄)

(z̄ − w̄)2
+
∂̄T̄±twisted(w̄)

(z̄ − w̄)

(6.1.9)de�ne a CFT of entral harge c = 0.Consider the twisted theory given by (T−twisted, T̄−twisted). Then the onformal dimensionof G+(z) is (2, 0), the dimension of G−(z) is (1, 0) and similarly those of Ḡ+(z̄) and Ḡ−(z̄)are (0, 2) and (0, 1). The operator G−
0 + Ḡ−

0 satis�es
(G−

0 + Ḡ−
0 )2 = 0 ,

[G−
0 + Ḡ−

0 , G
+(z)] = T−twisted(z) and

[G−
0 + Ḡ−

0 , Ḡ
+(z̄)] = T̄−twisted(z̄) . (6.1.10)Hene, we have obtained a topologial CFT with BRST-operator G−

0 + Ḡ−
0 . This is anexample of a B-twist. B-twists are those twists where T and T̄ are twisted in the sameway, i.e.

(T±twisted(z), T̄±twisted(z̄)) QBRST = G±
0 + Ḡ±

0 . (6.1.11)If T and T̄ are twisted di�erently then one obtains an A-twisted topologial CFT, i.e.
(T±twisted(z), T̄∓twisted(z̄)) QBRST = G±

0 + Ḡ∓
0 . (6.1.12)In the following, we want to look for N = 2 superonformal �eld theories. We start witha presentation of the relevant models.6.2 The gauged N = 1 WZNW modelThe N = 1 world-sheet supersymmetri WZNW model of a ompat Lie group is ex-plained in [84℄. The generalisation to supergroups is straight forward and will be desribedin this setion. Let G be a Lie supergroup and g its Lie superalgebra.We start with some world-sheet supersymmetry onsiderations. The world-sheet isgiven by the usual bosoni world-sheet Σ, loally parameterised by oordinates τ, σ. Inaddition there are two fermioni dimensions parameterised by θ and θ̄. Our notationfollows [85℄.The ovariant derivatives are

D = −i ∂
∂θ
− 2θ∂ and D̄ = −i ∂

∂θ̄
− 2θ̄∂̄ (6.2.1)and the superharges

Q = −i ∂
∂θ

+ 2θ∂ and Q̄ = −i ∂
∂θ̄

+ 2θ̄∂̄ . (6.2.2)107



108 CHAPTER 6. N=2 SUPERCONFORMAL FIELD THEORIESThe superharges ommute with the derivatives, and hene an ation onstruted justout of super�elds and its derivatives is lassial supersymmetri by onstrution. Thesuper�eld has the following form
G = exp(iθχ) g exp(−iθ̄χ̄) . (6.2.3)Here g is a Lie supergroup valued �eld and the �elds χ = χata and χ̄ = χ̄ata transform inthe adjoint representation of g (the {ta} denote a basis of g). The omponents of χ and

χ̄ orresponding to the even diretions of the Lie superalgebra are fermioni while thoseorresponding to the odd diretions are bosoni. Denote by str a nonzero metri of theLie superalgebra g. We inluded the level k in the metri. The kineti term of the ationis
Skin[G] =

1

2π

∫
dτdσd2θ str(G−1DG G

−1D̄G) (6.2.4)and the Wess-Zumino term is [56℄
SWZ[G̃] =

1

6π

∫

B

dτdσdtd2θ str(G̃−1∂tG̃ G̃
−1DG̃ G̃

−1D̄G̃) . (6.2.5)where G̃ is an extension to B as usual. We ompute the Polyakov-Wiegmann identity forthe kineti term, the WZ term and the WZNW ation,
Skin[GH] =Skin[G] + Skin[H] +

1

2π

∫

Σ

dτdσd2θ str(DHH
−1

G
−1D̄G) + str(G−1DG D̄HH

−1)

SWZ[G̃H̃] =SWZ[G̃] + SWZ[H̃] +
1

2π

∫

Σ

dτdσd2θ str(DHH
−1

G
−1D̄G)− str(G−1DG D̄HH

−1)

S[G̃H̃] =S[G̃] + S[H̃] +
1

π

∫

Σ

dτdσd2θ str(DHH
−1

G
−1D̄G) .Further it is easy to see that

SWZ[exp(iθχ)] = SWZ[exp(−iθ̄χ̄)] = 0 . (6.2.6)The next omputation is
g−1Dg = −2θg−1∂g , g−1D̄g = −2θ̄g−1∂̄g

exp−iθχD exp iθχ = χ− iθχχ , exp−iθχD̄ exp iθχ = 2iθθ̄∂̄χ

exp−iθ̄χ̄D exp iθ̄χ̄ = −2iθθ̄∂χ̄ , exp−iθχD̄ exp iθχ = χ̄− iθ̄χ̄χ̄ .
(6.2.7)Then we read o�

S[G] = S[g] + S[exp(iθχ)] + S[exp(−iθ̄χ̄)]

= S[g] +
1

2π

∫
dτdσd2θ

(str(χ∂̄χ) + str(χ̄∂χ̄)
)
,

(6.2.8)108



6.2. THE GAUGED N = 1 WZNW MODEL 109where we have integrated out the world-sheet fermions with measure
∫
d2θ θθ̄ =

1

4
. (6.2.9)Thus the �eld ontent of the N = 1 WZNW model is that of the ordinary WZNWmodel times free hiral and anti-hiral fermions and bosons transforming in the adjointrepresentation of the Lie superalgebra. Finally let us mention that in hanging the pathintegral measure to the invariant path integral measure of the Lie supergroup times thefree measure of the fermions and bosons the WZNW part of the ation gets shifted byhalf the dual Coxeter number [86℄, i.e. the �nal form of the ation is

S[G] =
(
1 +

h∨

k

)
S[g] +

1

2π

∫
dτdσ str(χ∂̄χ) + str(χ̄∂χ̄) (6.2.10)with measure

Dµ(g)
∏

a,b

DχaDχ̄b . (6.2.11)The model is lassially supersymmetri by onstrution, i.e. the ation is invariantunder the supersymmetry variation
δ = ǫQ+ ǭQ̄

δg = 2ǫχg − 2ǭgχ̄

δχ = ǫ(−i∂gg−1 − {χ, χ})
δχ̄ = ǭ(ig−1∂̄g + {χ̄, χ̄}) .

(6.2.12)The gauged WZNW model of Lie groups has been desribed in e.g. [86�92℄. Theformulation extends immediately to Lie supergroups. Let k be a Lie subsuperalgebra ofthe Lie superalgebra g, {sb} a basis of k and K the orresponding Lie subsupergroup.Further let A(τ, σ, θ, θ̄) = Absb and Ā(τ, σ, θ, θ̄) = Ābsb be two Lie subsuperalgebra valuedgauge �elds. Then the gauged N = 1 WZNW ation is
S[G, A, Ā] = S[G] +

1

π

∫
dτdσd2θ str(AG

−1D̄G−DGG
−1 + AĀ−Ad(G)(A)Ā

)
.This ation is invariant under the following gauge transformation

G → HGH
−1 ,

A → Ad(H)A− H
−1DH ,

Ā → Ad(H)Ā− H
−1D̄H

(6.2.13)for H in K. Thus the above ation desribes an N = 1 world-sheet supersymmetri G/Ksuperoset. If we hange �elds aording to
A = DH̃H̃

−1 , Ā = D̄ ˜̄
H

˜̄
H

−1 ,

G̃ = ˜̄
H

−1
GH̃ and H = ˜̄

H
−1

H̃

(6.2.14)109



110 CHAPTER 6. N=2 SUPERCONFORMAL FIELD THEORIESthe gauged ation beomes
S[G̃]− S[H] . (6.2.15)Further the Jaobian of the hange of �elds (6.2.14) is �eld independent, i.e.

∫
DGDADĀ e−S[G,A,Ā] = J

∫
DG̃DH e−S[G̃]+S[H] (6.2.16)for some onstant J as explained in [86℄. The gauge �xing proedure requires to introdueadditional ghost �elds. They ome in four di�erent kinds. There are dim k0̄ fermionighosts and dim k1̄ bosoni ones, eah ontributing a entral harge c = −2 and c = +2,respetively. These all have N = 1 superpartners, i.e. there are dim k0̄ bosoni ghostswith entral harge c = −1 and dim k1̄ fermioni ones with entral harge c = 1. Takingall these into aount, the ghost setor ontributes cghosts = −3sdimk so that the totalentral harge is

c(G/K) =

=

(
3

2
− h∨g

k

) sdimg +

(
3

2
+
h∨k
k

) sdimk− 3 sdimk

=

(
3

2
− h∨g

k

) sdimg−
(

3

2
− h∨k

k

) sdimk .The total Virasoro �eld Ttotal = Tg×k + Tghost possesses an N = 1 superpartner Gtotal.Both these �elds desend to the state spae of the oset model. The latter is obtained byomputing the ohomology of the BRST operator Q. One may show that Ttotal and Gtotalare in the same ohomology lass as the Virasoro element TG/K and its superpartner GG/Kin the oset onformal �eld theory. Details on how this works in N = 1 WZNW osets
G/K of bosoni groups an be found in [93,94℄. The generalization of these onstrutionsto supergroups is entirely straightforward. In the ase of Lie groups, Kazama and Suzukiused the urrent symmetry to show that some of the N = 1 WZNW osets admit an
N = 2 superonformal algebra [81℄. Their onstrution may also be embedded into theprodut theory. In fat, it su�es to show that the N = 1 superonformal algebra of theWZNW model on S ×K admits an extension to N = 2. The orresponding �elds of the
N = 2 superonformal algebra reeive additional ontributions from the ghost setor toform a total N = 2 algebra whose basi G±total and Utotal reside in the same ohomologylass as the assoiated �elds in the oset model. Our goal is to extend the analysis ofKazama and Suzuki to the ase in whih G and K are Lie supergroups. Aording tothe remarks we have just made, all we need to do is to exhibit an N = 2 superonformalalgebra in the N = 1 WZNW model on the produt G×K.6.3 Manin triples of Lie superalgebrasWe follow very losely the reasoning of [95℄. Let us reall that artile. The mainstatement is: Given a Lie algebra g whih allows for a Manin triple, then the N = 1110



6.3. MANIN TRIPLES OF LIE SUPERALGEBRAS 111superonformal urrent algebra extends to an N = 2 superonformal symmetry. Theseare exatly those models onsidered by Kazama and Suzuki [81℄.Inspired by these results, we will de�ne a Manin triple for a Lie superalgebra, andderive the Kazama-Suzuki onstrution à la Getzler.De�nition 6.3.1. A Manin triple (g, a+, a−) onsists of a Lie superalgebra g possessinga onsistent non-degenerate supersymmetri invariant bilinear form ( · , · ) and isotropiLie subalgebras a± suh that
g = a+ ⊕ a− . (6.3.1)Further denote the subspae of g orthogonal to the diret sum of the derived subalgebrasof a± by a0, i.e.

a0 := { x ∈ g | (x, y) = 0 ∀ y ∈ [a+, a+] ∪ [a−, a−] } . (6.3.2)The nie property of Lie superalgebras is, that many of them already allow for a Manintriple.Example 6.3.2. The most important Manin triples we shall exploit arise from Lie su-peralgebras g = g, i.e. K = {e} . Let us suppose that the even part g0̄ of g splits intotwo bosoni subalgebras g0̄ = g0̄
a ⊕ g0̄

b of equal rank. This ondition applies to the Liesuperalgebras g = gl(n|n), psl(n|n), sl(n|n ± 1) and g = osp(2n + 1|2n), osp(2n|2n). Inall these examples, the bilinear form of the Cartan subalgebra of one of these subalgebrasis positive de�nite while the other one is negative de�nite (with a proper hoie of realform). Consequently, we an perform an isotropi deomposition of the Cartan subalgebra
h = h+ ⊕ h− . (6.3.3)In order to extend the deomposition of h to an isotropi deomposition of g we reall thatany Lie superalgebra admits a triangular deomposition into the Cartan subalgebra h, thesubalgebra of the positive root spaes n+ and the subalgebra of negative root spaes n−:

g = n− ⊕ h⊕ n+ . (6.3.4)Hene the triple (g, a+ = h+⊕n+, a− = h−⊕n−) is a Manin triple. We also note that thederived subalgebras [a±, a±] of a± are ontained in n± and onsequently,
a0 ⊇ h . (6.3.5)There exist many other Manin triples, in partiular when the Lie superalgebra g is notsimple.Before we an turn to the N = 2 superonformal algebra we need a variety of identities.Denote by xi a basis of a+ then this hoie determines a dual basis xi of a− with respet111



112 CHAPTER 6. N=2 SUPERCONFORMAL FIELD THEORIESto the metri of the N = 1 WZNW model. Reall that the metri already ontains thelevel k of the WZNW model. The struture onstants are de�ned as
[xi, xj ] = cij

kxk

[xi, xj ] = f ijkx
k

[xi, x
j ] = cki

jxk + f jkixk

(6.3.6)where the last equation follows from the �rst two. The Jaobi identity for a± in terms ofstruture onstants is
0 = (−1)|ik|cil

mcjk
l + (−1)|ij|cjl

mcki
l + (−1)|jk|ckl

mcij
l and

0 = (−1)|ik|f ilmf
jk
l + (−1)|ij|f jlmf

ki
l + (−1)|jk|fklmf

ij
l .

(6.3.7)Further the Jaobi identity of g implies the following oyle formula
ckl

mf ijm = −(−1)|ij|f jmlckm
i − (−1)|ij|fmikcml

j + f imlckm
j + fmjkcml

i . (6.3.8)We de�ne
ρ̃ : = −[xi, xi] = (−1)icki

ixk + (−1)if ikixk ,

ρ̃+ : = (−1)if ikixk and
ρ̃− : = (−1)icki

ixk .

(6.3.9)The Jaobi identities of a± imply
(−1)mfmlmf

jk
l = (−1)mcml

mcjk
l = 0 . (6.3.10)Then it follows that

ρ̃ ∈ a0 and [ρ̃+, ρ̃−] = 0 . (6.3.11)Taking the supertrae over i = l in the oyle formula yields
Dxi := −[ρ̃, xi]+ = (−1)k(cjk

kf jli + cji
lf jkk)xl

= (−1)mncmn
lfmnixl andstr(D) = −(ρ̃, ρ̃) .

(6.3.12)Further we need the Killing form in terms of the struture onstants, in general that is
〈Xa, Xb〉 = −(−1)nCna

mC
mb

n . (6.3.13)More preisely, we need the speial values of the Killing form
〈xi, xj〉 = 2(−1)mncni

mfnjm + (−1)mncmn
jfmni = 2Aji +Dj

i where
Aji = (−1)mncni

mfnjm and
Dj
i = (−1)mncmn

jfmni .

(6.3.14)This terminates our preparations. 112



6.4. N = 2 SUPERCONFORMAL FIELD THEORIES 1136.4 N = 2 superonformal �eld theoriesWe are prepared to show that a Manin triple (g, a+, a−) of a Lie superalgebra g givesrise to an N = 2 superonformal symmetry in the spirit of Kazama and Suzuki.Denote by Ji(z) and J i(z) the hiral a�ne urrents orresponding to the generators
xi and xi, then their OPEs are [84℄

Ji(z)Jj(w) ∼
1
2
〈xi, xj〉

(z − w)2
+
cij

kJk(w)

(z − w)

J i(z)J j(w) ∼
1
2
〈xi, xj〉

(z − w)2
+
f ijkJk(w)

(z − w)

Ji(z)J
j(w) ∼ δi

j + 1
2
〈xi, xj〉

(z − w)2
+
f jkiJk(w) + cki

jJk(w)

(z − w)

(6.4.1)
where 〈 , 〉 is the Killing form and this shift by the Killing form in the metri is dueto our parameterisation and its measure (6.2.10). The fermions we denote by ai(z) and
ai(z) and their OPE is

ai(z)a
j(w) ∼ δi

j

(z − w)

ai(z)aj(w) ∼ 0

ai(z)aj(w) ∼ 0 .

(6.4.2)
Their onformal dimension is 1/2. We want to show that the following dimension 3/2urrents generate an N = 2 superonformal algebra

G+(z) = Ji(z)a
i(z)− 1

2
(−1)ikcij

k : ai(z)aj(z)ak(z) :

G−(z) = J i(z)ai(z)−
1

2
(−1)jkf ijk : ai(z)aj(z)a

k(z) : .
(6.4.3)We ompute

G±(z)G±(w) ∼ 0 . (6.4.4)The next task is to ompute the OPE of G+ and G−. We split that into several steps.First we introdue the notation
J = Jkx

k + (−1)kJkxk , (6.4.5)113



114 CHAPTER 6. N=2 SUPERCONFORMAL FIELD THEORIESthen
Ji(z)a

i(z)J j(w)aj(w) ∼ A3

(z − w)3
+

A2

(z − w)2
+
A1 +B1

(z − w)

A3 =
1

2
sdimg +

1

2
〈xi, xi〉

A2 = : ai(w)ai(w) : +
1

2
〈xi, xj〉 : ai(w)aj(w) : +(ρ̃, J(w))

A1 = (−1)iJi(w)J i(w)+ : ∂ai(w)ai(w) : +
1

2
〈xi, xj〉 : ∂ai(w)aj(w) :

B1 = f jki(−1)|jk|Jk(w) : ai(w)aj(w) : +cki
j(−1)|jk|Jk(w) : ai(w)aj(w) : .

(6.4.6)
The last term gets anelled by

(−1

2
(−1)ikcil

k : ai(z)al(z)ak(z) :)J j(w)aj(w) ∼ −cki
j(−1)|jk|Jk(w) : ai(w)aj(w) :

(z − w)

Ji(z)a
i(z)(−1

2
(−1)jkf ljk : al(w)aj(w)ak(w) :) ∼ −f

jk
i(−1)|jk|Jk(w) : ai(w)aj(w) :

(z − w)
.(6.4.7)The next one is

1

4
(−1)ik+mncij

kf lmn : ai(z)aj(z)ak(z) :: al(w)am(w)an(w) : ∼

∼ C3

(z − w)3
+

C2

(z − w)2
+

C1

(z − w)

C3 = −1

2
str(D)

C2 = −Amj : aj(w)am(w) : +
1

2
Dm
j : aj(w)am(w) :

C1 = −Amj : ∂aj(w)am(w) : +
1

2
Dm
j : aj(w)∂am(w) : .

(6.4.8)
A and D where introdued in (6.3.14). Using (6.4.5) we have

(−1)iJiJ
i =

1

2
((: J, J :) + (ρ̃, ∂J)) . (6.4.9)The element ρ̃ was de�ned in (6.3.9). Then putting all together and using (6.3.14) wearrive at

G+(z)G−(w) ∼
1
2
sdim g + strD

(z − w)3
+

U(w)

(z − w)2
+
T (w) + 1

2
∂U(w)

(z − w)
, (6.4.10)where T (z) is the Sugawara energy-stress tensor

T (z) =
1

2
((: J, J :)+ : ∂aiai : − : ai∂ai :) . (6.4.11)114



6.4. N = 2 SUPERCONFORMAL FIELD THEORIES 115And U(z) has the form
U(z) = : aiai : +(ρ̃, J) +Di

j : ajai : . (6.4.12)It remains to hek that G± are orretly harged under U . This is rather tedious, wearrive at
: ai(z)ai(z) : G+(w) ∼ G+(w)

(z − w)
− (ρ̃−, a(w))

(z − w)2

((ρ̃, J(z)) +Di
j : aj(z)ai(z) :)G+(w) ∼ (ρ̃−, a(w))

(z − w)2
.

(6.4.13)For the omputation of the seond line we use the Jaobi identity as well as the oyleformula to show that the �rst order term vanishes, while for the omputation of the seondorder term we use (6.3.12). Analogously, we ompute
: ai(z)ai(z) : G−(w) ∼ − G−(w)

(z − w)
+

(ρ̃+, a(w))

(z − w)2

((ρ̃, J(z)) +Di
j : aj(z)ai(z) :)G−(w) ∼ −(ρ̃+, a(w))

(z − w)2
.

(6.4.14)In summary we have obtained the following resultProposition 6.4.1. Let (g, a+, a−) be a Manin triple of a Lie superalgebra g. Then the
U(1)-urrent

U(z) = : aiai : +(ρ̃, J) +Di
j : ajai : , (6.4.15)the energy-momentum tensor

T (z) =
1

2
((: J, J :)+ : ∂aiai : − : ai∂ai :) (6.4.16)and the two super-urrents

G+(z) = Ji(z)a
i(z)− 1

2
(−1)ikcij

k : ai(z)aj(z)ak(z) :

G−(z) = J i(z)ai(z)−
1

2
(−1)jkf ijk : ai(z)aj(z)a

k(z) :
(6.4.17)form an N = 2 superonformal algebra of entral harge

c =
3

2
sdim g + 3strD . (6.4.18)Note that if we take a type I Lie superalgebra (i.e. g ∈ {gl(n|n), psl(n|n), sl(n±1|n)}),then the entral harge is 3

2
sdimg, beause strD = 0 in these ases (D is introdued in(6.3.12)). Let us also list some superosets in table 6.1 to whih above onditions apply.115



116 CHAPTER 6. N=2 SUPERCONFORMAL FIELD THEORIES
G H c

(
G/H

)GL(n|n) GL(n−m|n−m) n > m ≥ 0 0GL(n|n) SL(n−m|n−m± 1) n > m > 0 0PSL(n|n) PSL(n−m|n−m) n > m ≥ 0 0PSL(n|n) SL(n−m|n−m± 1) n > m > 0 -3SL(n|ñ) n 6= ñ SL(n−m|ñ−m) min{n, ñ} ≥ m ≥ 0 0Table 6.1: Inomplete list of N = 2 superonformal superosets G/H with entral harge
c
(
G/H

)6.4.1 DeformationsThere exist moreN = 2 superonformal algebras, whih are obtained from the previousones by a deformation by an element α in a0. Reall that a0 is the subspae orthogonalto the diret sum of the derived subalgebras of a+ and a−.Consider an element α = pixi + qix
i in a0, this means that

cij
kqk = f ijkp

k = 0 . (6.4.19)We deform the superurrents as follows
G+
α = G+ + qi∂a

i

G−
α = G− + pi∂ai

(6.4.20)and sine we want the superurrents to be fermioni, we require α to be bosoni. Due to(6.4.19) we get
G±
α (z)G±

α (w) ∼ 0 . (6.4.21)We want to show that this deformation is still an N = 2 superonformal algebra. Firstintrodue
Ii = Ji − (−1)ikcij

k : aiak : −1

2
(−1)ikf jkiajak

I i = J i − (−1)jkf ijk : aja
k : −1

2
(−1)ijcjk

iajak
(6.4.22)Then we ompute

G+(z)pi∂ai(w) ∼ piIi(w)

(z − w)2
+
pi∂Ii(w)

(z − w)

qi∂a
i(z)G−(w) ∼ − qiI

i(w)

(z − w)2

qi∂a
i(z)pi∂ai(w) ∼ − 2qip

i

(z − w)3

(6.4.23)
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6.4. N = 2 SUPERCONFORMAL FIELD THEORIES 117This de�nes us our deformed U(1)-urrent and energy-stress tensor
Uα(z) = U(z) + piIi(z)− qiI i(z)

Tα(z) = T (z) +
1

2
(pi∂Ii(z) + qi∂I

i(z))
(6.4.24)It remains to hek that Jα is indeed a U(1)-urrent, for this purpose we again use theoyle formula as well as α being in a0 and we get

Uα(z)G
±
α (w) ∼ ± G±

α (w)

(z − w)
. (6.4.25)In summary, we have shown the following.Proposition 6.4.2. Let α = pixi + qix

i in a0, then the urrents
Uα(z) = U(z) + piIi(z)− qiI i(z)

Tα(z) = T (z) +
1

2
(pi∂Ii(z) + qi∂I

i(z))

G+
α = G+ + qi∂a

i

G−
α = G− + pi∂ai

(6.4.26)form an N = 2 superonformal algebra of entral harge
c =

3

2
sdimg + 3strD − 6qip

i. (6.4.27)6.4.2 Spetral �owThe physial state spae of topologial CFTs resulting from twisting the deformed N =
2 superonformal �eld theories onsidered in the previous setion in some ases oinideswith the physial state spae of topologial CFTs obtained by twisting the undeformed
N = 2 superonformal �eld theories and ating by a spetral �ow automorphism. Thetopologial CFT is desribed by the ohomology of the BRST-operator Q. This operatoris omposed of the zero modes of the urrents G± and Ḡ±. In this setion, we show thatthe zero modes of some deformed super-urrents G±

α , Ḡ
±
α agree with the ation of thespetral �ow γα, γ̄α on the zero modes of the undeformed super-urrents, i.e.

G±
α,0 = γα(G

±
0 ) and Ḡ±

α,0 = γ̄α(Ḡ
±
0 ) . (6.4.28)This implies that for every twist the two BRST-operators oinide and hene their oho-mologies as well.We restrit to type I Lie superalgebras g that allow for a Manin deomposition asdesribed in example (6.3.2). Reall that a0 ontains the Cartan subalgebra h in thisexample (6.3.5). Denote by xi a basis of a+ and by xi the dual basis of a− with respet tothe bilinear form ( · , · ). Then the generators of the a�ne Lie superalgebra ĝ are denoted117



118 CHAPTER 6. N=2 SUPERCONFORMAL FIELD THEORIESby xi,n, xin, in addition the level is �xed to be k and the derivation d is identi�ed withthe Virasoro zero mode L0. We restrit our attention to the holomorphi urrents. Theanti-holomorphi part is treated analogously.Reall the mode expansion of the a�ne urrents
J i(z) =

∑

n∈Z

xinz
−n−1

Ji(z) =
∑

n∈Z

xi,nz
−n−1

ai(z) =
∑

n∈Z

ainz
−n−1/2

ai(z) =
∑

n∈Z

ai,nz
−n−1/2

(6.4.29)
Then G± have the following mode expansions

G+(z) =
∑

n∈Z

G+
n z

−n−3/2

=
∑

n,m∈Z

xi,n−ma
i
mz

−n−3/2 − 1

2
(−1)icij

k
∑

n,m,r∈Z

: ain−m−ra
j
mak,r : z−n−3/2 ,

G−(z) =
∑

n∈Z

G−
n z

−n−3/2

=
∑

n,m∈Z

xin−mai,mz
−n−3/2 − 1

2
(−1)jf ijk

∑

n,m,r∈Z

: ai,n−m−raj,ma
k
r : z−n−3/2 .Here the normal ordering sign means that positive mode operators are to the right ofnegative mode operators. Further reall the ation of spetral �ow. Let ( · | · ) be thebilinear form on h⋆ indued by ( · , · ). Reall that the bilinear form ontains the level k.Let β be a oroot, further denote by αi the root orresponding to xi, then −αi orrespondsto xi. Note that when xi is in the Cartan subalgebra this means that αi = 0. Then theation of a spetral �ow automorphism is (2.3.15) and [36℄,

T̃β : xi,n 7→ xi,n−(β|αi) + β(xi)δαi,0δn,0

xin 7→ xin+(β|αi)
+ β(xi)δαi,0δn,0

ai,n 7→ ai,n+(β|αi)

ain 7→ ain−(β|αi)
.

(6.4.30)This indues an ation on G±

T̃β : G+(z) 7→ G+(z) +
∑

xi ∈h+
n∈Z

(
β(xi) +

∑

αj ∈∆+

αj(xi)(β|αj)
)
ainz

−n−3/2 ,

T̃β : G−(z) 7→ G−(z) +
∑

xi ∈h−
n∈Z

(
β(xi) +

∑

αj ∈∆−

(−1)jαj(xi)(β|αj)
)
ai,nz

−n−3/2 .
(6.4.31)
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6.4. N = 2 SUPERCONFORMAL FIELD THEORIES 119Hene the zero modes get shifted by
T̃β : G+

0 7→ G+
0 +

∑

xi ∈h+

(
β(xi) +

∑

αj ∈∆+

αj(xi)(β|αj)
)
ai0

T̃β : G−
0 7→ G−

0 +
∑

xi ∈h−

(
β(xi) +

∑

αj ∈∆−

(−1)jαj(xi)(β|αj)
)
ai,0 .

(6.4.32)But this is the same shift as the one indued by a deformation with an appropriate Cartansubalgebra element γ
T̃β(G

±
0 ) = G±

αβ ,0
, (6.4.33)where

αβ = − 2
∑

xi ∈h+

(
β(xi) +

∑

αj ∈∆+

αj(xi)(β|αj)
)
xi +

− 2
∑

xi ∈h−

(
β(xi) +

∑

αj ∈∆−

(−1)jαj(xi)(β|αj)
)
xi .

(6.4.34)In summary, we have shown that the zero modes of the superurrents of the deformed
N = 2 superonformal �eld theory (deformed by αβ) oinide with the image of thespetral �ow automorphism T̃β on the zero modes of the undeformed superurrents. Itfollows that the BRST operators of the twisted topologial CFTs also oinide and henetheir ohomology groups.Note that one ould also onsider spetral �ow indued by elements in h⋆ that are notoroots. Then the a�ne Lie superalgebra is mapped to a twisted a�ne Lie superalgebra.The orrespondene to deformation still holds.6.4.3 Example GL(1|1)In this setion we want to ompute the spae of physial observables in a B-twist of the
N = 1 GL(1|1) WZNW model. Let ψ±, E,N be the generators of GL(1|1), and introdue
Ñ = N + E

2k
. Then the N = 2 superonformal urrents are given by

G+ =
1√
k
(JEξ + J+γ)

G− =
1√
k
(JÑη + J−β + η : γβ :)

U = : ξη : + : βγ : −JE
k

(6.4.35)and their anti-holomorphi ounterparts read
Ḡ+ =

1√
k
(J̄E ξ̄ + J̄+γ̄)

Ḡ− =
1√
k
(J̄Ñ η̄ + J̄−β̄ + η̄ : γ̄β̄ :)

Ū = : ξ̄η̄ : + : β̄γ̄ : − J̄E
k
.

(6.4.36)
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120 CHAPTER 6. N=2 SUPERCONFORMAL FIELD THEORIESHere η(z), ξ(z), η̄(z̄), ξ̄(z̄) are fermioni hiral �elds and γ(z), β(z), γ̄(z̄), β̄(z̄) are bosonihiral �elds with OPEs
η(z)ξ(w) ∼ 1

(z − w)
, β(z)γ(w) ∼ 1

(z − w)
,

η̄(z̄)ξ̄(w̄) ∼ 1

(z̄ − w̄)
, β̄(z̄)γ̄(w̄) ∼ 1

(z̄ − w̄)
.

(6.4.37)Consider the B-twisted topologial CFT de�ned by
T+twisted(z) = T (z) +

1

2
∂U(z) and T̄+twisted(z̄) = T̄ (z̄) +

1

2
∂̄Ū(z̄) . (6.4.38)Then the onformal dimensions in the twisted theory are as follows

∆(ξ) = ∆(γ) = (0, 0) ,

∆(η) = ∆(β) = (1, 0) ,

∆(ξ̄) = ∆(γ̄) = (0, 0) ,

∆(η̄) = ∆(β̄) = (0, 1) .

(6.4.39)Further the BRST-operator is
QBRST = G+

0 + Ḡ+
0

=
1√
k
(JEc + J+γ)0 +

1√
k
(J̄E c̄+ J̄+γ̄)0 .

(6.4.40)A representative of a physial observable an always be hosen to have onformal dimen-sion (0, 0) due to (6.1.4). Thus we an restrit our attention to �elds of zero onformaldimension. Consider a family of automorphisms τα,ᾱ of ĝl(1|1)× ĝl(1|1) indued by (2.1.7).They are de�ned as follows
τα,ᾱ(N0) = N0 + αE0 , τα,ᾱ(N̄0) = N̄0 + ᾱĒ0 (6.4.41)and leaving all other operators invariant. These automorphisms leave the BRST-operatorinvariant. Reall the bulk �elds of GL(1|1) (5.1.27)

V〈−e,−n+1〉 = : eeX+nY :

(
1 c−
c+ c−c+

)
, (6.4.42)and their onformal dimension in the twisted theory is (ompare with (5.1.28))

∆(V〈−e,−n+1〉) =
( e

2k
(2n− 2 +

e

k
),
e

2k
(2n+

e

k
)
)
. (6.4.43)Thus, when e 6= 0 the above automorphisms (6.4.41) ensure that every primary and everydesendant of V〈−e,−n+1〉 is isomorphi to a �eld of non-integer onformal dimension andhene annot ontribute to the physial observables.120



6.5. BRANES 121Hene we restrit our attention to �elds with e = 0. The onformal dimension zero�elds are
Φ(n,m, m̄, λ, λ̄) := V〈0,−n+1〉γ

mγ̄m̄ξλξ̄λ̄ (6.4.44)for non-negative integers m, m̄ and λ, λ̄ ∈ {0, 1}. In [27℄ it is shown that the vertexoperator V〈0,−n+1〉 transforms as follows
J+(z)V 1a

〈0,−n+1〉(w, w̄) ∼ ka
V 0a
〈0,−n+1〉(w, w̄)

(z − w)

J+(z)V 0a
〈0,−n+1〉(w, w̄) ∼ 0

J̄+(z̄)V 1a
〈0,−n+1〉(w, w̄) ∼ k̄a

V 0a
〈0,−n〉(w, w̄)

(z̄ − w̄)

J̄+(z)V 0a
〈0,−n+1〉(w, w̄) ∼ 0

(6.4.45)
for some non-zero onstants ka, k̄a. Thus the image of QBRST for these �elds is

[
QBRST,Φ1,a(n,m, m̄, λ, λ̄)

]
= kaΦ

0,a(n,m+ 1, m̄, λ, λ̄)+

k̄1aΦ
0,a(n− 1, m, m̄+ 1, λ, λ̄) .

(6.4.46)On the other hand the kernel is
[
QBRST,Φ0,a(n,m, m̄, λ, λ̄)

]
= 0 . (6.4.47)Thus a basis of representatives of the spae of physial observables is

{Φ0,a(n,m, 0, λ, λ̄) |m ≥ 0 and a, λ, λ̄ ∈ {0, 1}} . (6.4.48)Their OPEs are
Φ0,a(n1, m1, 0, λ1, λ̄1)Φ

0,b(n2,m2, 0, λ2, λ̄2) ∼ (1− ab)(1− α1α2)(1− ᾱ1ᾱ2) ×

× Φ0,a+b(n1 + n2, m1 +m2, 0, λ1 + λ2, λ̄1 + λ̄2) .
(6.4.49)We onlude that the spae of physial observables of the N = 1 GL(1|1) WZNW modelfor the twist (6.4.38) is

Hphys = R× Z≥0 × Z2 × Z2 × Z2 . (6.4.50)In the GL(1|1) WZNW model the V 0a
〈0,−n+1〉(z, z̄) span a maximal set of �elds whose OPEsare independent of their world-sheet positions.6.5 BranesFrom now on, we restrit our attention to type I Lie supergroups and the Manindeomposition of example 6.3.2. For branes in N = 2 superonformal osets of Lie groupssee e.g. [96℄. 121



122 CHAPTER 6. N=2 SUPERCONFORMAL FIELD THEORIESWe want to investigate branes that preserve the N = 2 superonformal symmetrybut also the a�ne Lie superalgebra symmetry. The N = 2 superonformal algebra ispreserved if we require the following gluing onditions
G±(z) = ηḠ∓(z̄) ,

U(z) = −Ū(z̄) ,

T (z) = T̄ (z̄) for z = z̄ .

(6.5.1)Here, η = ±1. These gluing onditions preserve the A-twist
T (z)± 1

2
∂U(z) = T̄ (z̄)∓ 1

2
∂̄Ū(z̄) for z = z̄ . (6.5.2)Another hoie for gluing onditions is

G±(z) = ηḠ±(z̄) ,

U(z) = Ū(z̄) ,

T (z) = T̄ (z̄) for z = z̄ .

(6.5.3)In this ase the B-twist is preserved
T (z)± 1

2
∂U(z) = T̄ (z̄)± 1

2
∂̄Ū(z̄) for z = z̄ . (6.5.4)Preserving a�ne Lie superalgebra symmetry means that the gluing onditions of theurrents are given by a metri preserving automorphism Ω

J(z) = Ω(J̄(z̄)) for z = z̄ . (6.5.5)Let g be the Lie superalgebra of type I allowing a Manin triple, i.e. g ∈ {gl(n|n), psl(n|n),
sl(n± 1|n)}, and g = a+ ⊕ a− the Manin deomposition of example 6.3.2. Then in orderto preserve the B-twist Ω has to be a Lie superalgebra automorphism of a+ and also of
a−. A natural andidate is the identity automorphism.6.5.1 B-branesWe start with the gluing onditions for the urrents J and a, we take

J(z) = J̄(z̄) , a(z) = ηā(z̄) for z = z̄ (6.5.6)where η = ±1. Inserting these onditions in the N = 2 urrents gives
G±(z) = ηḠ±(z̄) ,

G±
b (z) = ηḠ±

b (z̄) ,

U(z) = Ū(z̄) ,

T (z) = T̄ (z̄) for z = z̄ .

(6.5.7)Thus, these onditions preserve the B-twist
T (z)± 1

2
∂U(z) = T̄ (z̄)± 1

2
∂̄Ū(z̄)) for z = z̄ . (6.5.8)122



6.5. BRANES 1236.5.2 A-branesThe ase of A-branes is more subtle and the gluing onditions on the superurrentswill di�er from (6.5.1). We employ the automorphism Ω = (−st) (2.2.26). Its ation onthe generators of the a�ne urrents is as follows
Ω(Ji(z)) =

{ −J i(z) if xi in n+

−Ji(z) if xi in h+

Ω(J i) =
{ −(−1)iJi(z) if xi in n−

−J i(z) if xi in h−
.

(6.5.9)Further for the �elds a(z) we hoose the following automorphism
ω(ai(z)) = ai(z) and ω(ai(z)) = (−1)iai(z) . (6.5.10)These two automorphisms indue an isomorphism Ω̃ on N = 2 superonformal algebras

Ω̃(G+) = G̃+ = −J iai −
1

2
(−1)jcij

k : aiaja
k :

Ω̃(G−) = G̃− = −Jiai −
1

2
(−1)if ijk : aiajak :

Ω̃(U) = −U
Ω̃(T ) = T .

(6.5.11)Thus we obtained a seond opy of an N = 2 superonformal algebra. Note that the
U(1)-urrents only di�er by a sign. Analgously we de�ne anti-holomorphi superurrents

Ω̃(G+) = ˜̄G+ = −J̄ iāi −
1

2
(−1)jcij

k : āiāj ā
k :

Ω̃(G−) = ˜̄G− = −J̄iāi −
1

2
(−1)if ijk : āiājāk :

Ω̃(U) = −Ū
Ω̃(T ) = T̄ .

(6.5.12)After this preparation, we use the automorphisms onsidered above as gluing auto-morphisms, i.e. we demand the following boundary onditions
J(z) = Ω(J̄(z̄)) and a(z) = ω(ā(z̄)) for z = z̄ . (6.5.13)These imply the boundary onditions for the N = 2 superonformal algebra

G+(z) = ˜̄G+(z̄)

G−(z) = ˜̄G−(z̄)

U(z) = −Ū(z̄)

T (z) = T̄ (z̄) for z = z̄ .

(6.5.14)Thus the A-twist is preserved
T (z)± 1

2
∂U(z) = T̄ (z̄)∓ 1

2
∂̄Ū(z̄)) for z = z̄ . (6.5.15)123



124 CHAPTER 6. N=2 SUPERCONFORMAL FIELD THEORIES6.6 ConlusionIn this hapter, we have introdued a new family of N = 2 superonformal �eld theo-ries. The onstrution is an extension of the �ndings of Kazama and Suzuki, who onsid-ered the Lie group ase. While only osets of ompat Lie groups allow for an N = 2 su-peronformal algebra, Lie supergroups provide a riher variety of realizations of superon-formal algebras. E.g. even the Lie supergroups gl(n|n), psl(n|n), sl(n± 1|n), osp(2n|2n)and osp(2n+ 1|2n) allow for the onstrution of an N = 2 superonformal algebra. Alsosolvable Lie (super)groups like Heisenberg supergroups and even Heisenberg groups allowfor the onstrution. These ases are very interesting as they are the Penrose limit ofmodels with AdS target spae.Moreover, we onsidered deformations of N = 2 superonformal algebras. Then weexplained that the physial state spae of topologial CFTs resulting from twisting the de-formed N = 2 superonformal �eld theories in some ases oinides with the physial statespae of topologial CFTs obtained by twisting the undeformed N = 2 superonformal�eld theories and ating by a spetral �ow automorphism.In the example of a B-twist of the GL(1|1) model we omputed the ohomology ring.Finally, we onsidered branes in the N = 2 superonformal Lie supergroup models. Wefound gluing onditions that preserve the A-twist and we also found gluing onditionsthat preserve the B-twist.
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Chapter 7Outlook7.1 ResultsThe aim of this thesis was to initiate a systemati study of Lie supergroup boundaryWZNW models. We started with sympleti fermions. We showed that they possessan SL(2) family of boundary onditions. We onstruted their boundary states in thetwisted and also in the untwisted setors. Furthermore, amplitudes were omputed. Inorder to obtain a non-trivial amplitude it was sometimes neessary to insert additionalfermioni �elds.As a simple prototypial example of a boundary supergroup WZNW model we hosethe GL(1|1) model. This model possesses two families of urrent algebra preserving gluingonditions. For both of them, we onstruted the boundary states and omputed overlaps.The results agree with fusion, similar to the ase of WZNWmodels on ompat Lie groups.We also found typial features of logarithmi CFT as the appearane of indeomposablebut reduible spetra, overlaps of Ishibashi states with log q dependene and Ishibashistates with zero norm. In order to get a non-vanishing amplitude we again sometimeshad to insert additional �elds.For the twisted boundary onditions, we set up a �rst order formulation to solve themodel. The novel feature in this set-up was the introdution of an additional fermioniboundary degree of freedom. We then solved the model, that is we omputed bulkone-point funtions, bulk-boundary two-point funtions and boundary three-point fun-tions. Logarithmi singularities appeared in ertain bulk-boundary two-point funtionsand boundary three-point funtions.Previously, the bulk GL(1|1) WZNW model was solved using the �rst order formula-tion. We showed that this model is equivalent to a pair of salars plus sympleti fermions.The non-triviality of this model lies in the twisted sympleti fermion setors. Thus, wegave a di�erent approah to the bulk model.For general Lie supergroups, we showed that geometrially a branes' worldvolume isa twisted superonjugay lasses and we onstruted their ations. Further, we identi�edsuperonjugay lasses with representations of the a�ne Lie superalgebra. Whenever thesuperonjugay lass is loalised in some fermioni diretion the assoiated representationis atypial. Moreover there are regions in the supergroup, whih are not overed by anysuperonjugay lass. We suspet that there exist also branes overing these regions. Inthe ase of GL(1|1) appropriate gluing onditions and ations for these new atypial branesexist [36℄. This again involved the additional introdution of extra boundary degrees offreedom. 125



126 CHAPTER 7. OUTLOOKFinally, we turned to world-sheet and target spae supersymmetri theories. The el-ebrated Kazama-Suzuki osets are N = 1 world-sheet supersymmetri osets of ompatLie groups and they possess a hidden N = 2 superonformal symmetry. We show thatthis result does not only extend to many osets of Lie supergroups, but also to someLie supergroups as GL(n|n), PSL(n|n), SL(n ± 1|n), OSP (2n|2n), OSP (2n+ 1|2n) andHeisenberg (super)groups. Moreover, there exist deformations of these models and weshow that in some ases these deformations oinide with spetral �ow on the level of thetwisted topologial �eld theory. Finally, we explain that eah supergroup possesses twofamilies of branes, one that preserves the A-twist and one that preserves the B-twist.7.2 Open problemsOur �ndings leave a variety of interesting diretions for future researh.In the GL(1|1) WZNW model it would be interesting to solve the boundary theoryof point-like branes. For this purpose the omputation of bulk-boundary two-point fun-tions is missing. This is di�ult, beause a �rst order formulation gives a perturbativedesription whih does not terminate after a �nite number of steps. On the other handwe an employ the sympleti fermion orrespondene to this problem. We believe thatthis is doable.The methods we developed in this thesis should be applied to more sophistiatedsupergroups. The apparent open problem is the extension of the �rst order formalism toany type I Lie supergroup and appropriate gluing automorphism, i.e. Ω = (−st). Thiswill require the additional introdution of fermioni boundary degrees of freedom and aboundary sreening harge whih looks like a square root of the bulk sreening harge.This problem resembles matrix fatorisation in open string Landau Ginzburg models.Landau Ginzburg models possess an N = 2 superonformal symmetry. Warner showedthat it is neessary to introdue additional fermioni boundary degrees of freedom in orderto preserve the superonformal symmetry at the boundary [77℄. Further the bulk superpotential fatorises into the boundary super potentials.One question is to understand the onnetion between world-sheet and target spaesupersymmetri theories.An important goal is to understand the newly introdued N = 2 superonformal �eldtheories. Let us list some questions.
• What is the hiral ring of suh a model? 1
• Can we use mirror symmetry to understand orrespondenes and dualities?
• Are there models with even more supersymmetry like N = 4?
• Are there deformations of the N = 1 PSL(n|n) WZNW model that preserve the
N = 2 (or N = 4) superonformal symmetry?Some of these questions are already under investigation.1Very reently an example has been investigated [97℄.126



7.3. APPLICATIONS BEYOND WZNW MODELS 1277.3 Appliations beyond WZNW modelsLet us onlude with two problems that go beyond WZNW models and a�ne Liesuperalgebras.Due to its underlying a�ne Lie superalgebra symmetry the WZNW model on a su-pergroup is well treatable. But for some Lie supergroups there exist many more CFTswith less symmetry. If the Killing form of a supergroup vanishes then there exists anadditional one-parameter family of onformally invariant sigma models on this super-group [23℄. These additional CFTs an be desribed as an exatly marginal perturbationof the WZNW model. In view of the AdS/CFT orrespondene the PSU(1,1|2) sigmamodels play an important role. Computations in these sigma models are not easy. Thestrategy is to restrit attention to some quantities that are proteted by symmetry. In se-tion 5.1 and also in setion 5.3.4 we found that in the GL(1|1) WZNW model orrelatorsonsisting only of atypial �elds are proteted, i.e. they ould be omputed in free �eldtheory. Also in the PSU(1,1|2) sigma models we sueeded to ompute boundary spetraof branes that are loalised in the bosoni diretions while extending ompletely into thefermioni ones [30℄. The perturbative omputation of these spetra ould be performedbeause of many anellations due to the symmetry of the model.The goal is to extend this analysis and to �nd other quantities that are also protetedby symmetry. The idea is to use a fermioni symmetry Q of the supergroup sigma modelthat squares to zero, Q2 = 0, and thus de�nes a ohomology. We then want to employsuh a symmetry to argue that the ohomology is proteted, i.e. it is not or only partiallyin�uened by a perturbation [98℄.The seond interesting area we would like to mention is logarithmi CFT in the on-text of three-dimensional gravity. One believes that three-dimensional pure gravity hasa dual onformal �eld theory desription [99℄. The relevant CFTs are extremal of entralharge an integer multiple of 24. Moreover it was reently observed that the CFT shouldbe logarithmi [100℄. An important question in onjuntion with gravity is to �nd loga-rithmi extensions of extremal CFTs. More general one would like to understand how toextend a hiral onformal �eld theory to a logarithmi CFT. The searh might pro�t fromLie supergroup sigma models where the origin of the logarithmi singularities is under-stood. Espeially a Lie supergroup WZNW model an be treated as an exatly marginalperturbation of a Lie group WZNW model plus some fermioni ghost systems [29℄. Theunperturbed model is not logarithmi and the perturbation generates the logarithmi be-haviour. Moreover, in appendix A we onsider a CFT that is non-logarithmi in the bulk,but the boundary theory possesses logarithmi singularities.Furthermore, the extremal CFT of entral harge 24 is the monster CFT [101℄. It isfamous for its relevane in the proof of moonshine by Rihard Borherds [102℄. Anotherkey ingredient in the proof is that the monster CFT has an underlying in�nite dimensionalLie algebra whose denominator identity is an automorphi produt. It turns out that onlyten Lie algebras of a similar kind exist [103℄. Espeially the denominator identities of thesein�nite dimensional Lie algebras are also automorphi produts. Four out of these ten Liealgebras an be onstruted from a onformal �eld theory [104, 105℄. For the remaining127



128 CHAPTER 7. OUTLOOKones it is onjetured. Further some Lie superalgebras are also known [106℄. Thus thereexists another lass of onformal �eld theories, besides WZNW models, with an under-lying in�nite dimensional Lie (super)algebra. Moreover, not only the monster CFT hasappeared in relation to gravity, but also in�nite dimensional Lie algebras whose denomi-nator identity is an automorphi produt desribe Dyon spetra in CHL ompati�ationsand degeneraies of orresponding blak holes [107℄.
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Appendix AThe bc-ghost systemWe shortly present the bulk model. The bc-ghost system involves two sets of hiralbulk �elds c, c̄ and b, b̄ of onformal dimension hc = 0 and hb = 1, respetively. The ationof the bulk model is
S =

1

2π

∫
d2z
[
b ∂̄c+ b̄ ∂c̄

]
. (A.0.1)The energy-momentum tensor is

T (z) = −b∂c , T̄ (z̄) = −b̄∂̄c̄ (A.0.2)and the operator produt expansion is
b(z)c(w) ∼ 1

(z − w)
and b̄(z̄)c̄(w̄) ∼ 1

(z̄ − w̄)
. (A.0.3)The world-sheet is again the omplex plane. On the omplex plane, orrelation funtionsto be non-zero require the insertion of a zero-mode of the �elds c and c̄. We normalisethem as follows

〈c(z)c̄(w̄)〉 = 1 . (A.0.4)Arbitrary orrelation funtions are omputed using the above ontration (A.0.3). Wenow turn to the desription of the boundary theory.A.1 Twisted boundary onditions in the bc c = −2 ghostsystemThis setion is the ontent of [65℄. In this setion we study a new boundary onditionfor the bc system with entral harge c = −2. In the onventional setup, we would glue cto c̄ and b to b̄ along the boundary [108℄. But there exists another possibility: namely, toglue b to a derivative of c̄ and vie versa. More preisely, we an demand that
b(z) = µ∂̄c̄(z̄) , b̄(z̄) = −µ∂c(z) for z = z̄ . (A.1.1)These relations guarantee trivial gluing onditions for the energy momentum tensor T =

−b∂c. It is not di�ult to hek that the ation of the bc system is invariant undervariations respeting (A.1.1) provided we add an appropriate boundary boundary term,
S =

1

2π

∫
d2z
[
b ∂̄c + b̄ ∂c̄

]
− iµ

4π

∫
du c ∂uc̄ . (A.1.2)129



130 APPENDIX A. THE BC-GHOST SYSTEMOur aim here is to solve the theory that is de�ned by the ation (A.1.2) and the boundaryondition (A.1.1). We shall set µ = 1 throughout our disussion. Formulae for the generalase are easily obtained from the ones we display below.In order to onstrut the state spae and the �elds expliitly, we introdue an algebrathat is generated by the modes cn, bn and two additional zero modes ξb0, ξc0 subjet to theonditions
{cn, bm} = n δn,−m , (A.1.3)

{ξc0, b0} = 1 , {ξb0, c0} = 1 . (A.1.4)All other anti-ommutators in the theory are assumed to vanish. The state spae of ourboundary theory is generated from a ground state with the properties
cn|0〉 = bn|0〉 = 0 for n ≥ 0 (A.1.5)by appliation of `raising operators', inluding the zero modes ξb0 and ξc0. On this spaewe an introdue the loal �elds c, c̄, b, b̄ through the presription
b(z) =

∑

n∈Z
bnz

−n−1 (A.1.6)
c(z) =

∑

n 6=0

cn
n
z−n + c0 ln z + ξc0 (A.1.7)

b̄(z̄) =
∑

n 6=0

cnz̄
−n−1 − c0z̄−1 (A.1.8)

c̄(z̄) = −
∑

n 6=0

bn
n
z̄−n + b0 ln z̄ − ξb0 (A.1.9)It is not di�ult to hek with the help of eqs. (A.1.3) that these �elds satisfy the orretloal anti-ommutation relations

{
b(z), c(w)

}
= δ(z − w) ,

{
b̄(z̄), c̄(w̄)

}
= δ(z̄ − w̄)in the interior of the upper half plane. Needless to stress that they also ful�l our boundaryonditions (A.1.1) with µ = 1.For later use let us also spell out the onstrution of the Virasoro generators in termsof fermioni modes,

Ln =
∑

m6=0

− : bn−mcm : −bnc0 .It is important to stress that - due to the term c0b0 � the element L0 satis�es L0ξ
c
0ξ
b
0|0〉 =

|0〉. Sine L0 vanishes on all other ground states, it is non-diagonalisable. In other words,our boundary theory is an example of a logarithmi onformal �eld theory. The logarithms130



A.1. TWISTED BOUNDARY CONDITIONS IN THE BC C = −2 GHOST SYSTEM131in this model, however, are restrited to the boundary setor sine the Hamiltonian of thebulk theory is diagonalisable (see below).Before we an alulate orrelation funtions in our boundary theory, we need tointrodue a dual vauum with the properties
〈0|cn = 〈0|bn = 0 for n ≤ 0 (A.1.10)
〈0|ξc0ξb0|0〉 = (2π)−1 and 〈0|0〉 = 0 . (A.1.11)Our partiular normalisation of the dual vauum 〈0| will turn out to be onvenient below.With the help of our formulae (A.1.6)-(A.1.9), we an ompute arbitrary orrelators. Aslong as there are no insertions of c̄, orrelators take the following simple form

〈0|
nc∏

µ

c(wµ)

nb̄∏

ν̄

b̄(z̄ν̄)

nb∏

ν

b(zν)|0〉 =
∏

ν̄

(−∂ν̄)
∏

ν<ν′ xνν′
∏

µ<µ′ xµµ′
∏

ν̄<ν̄′ xν̄ν̄′∏
ν̄,µ x

−1
ν̄µ

∏
ν,µ xνµ

∏
ν,ν̄ xνν̄

, (A.1.12)where xνµ = zν − zµ, xνµ̄ = zν − z̄µ̄ et and ∂ν̄ denote derivatives with respet to z̄ν̄ .Insertions of the �eld c̄ may be removed one after the other using the following rules forontrations
c̄(z̄)c(w) ∼ ln(z̄ − w) , c̄(z̄)b̄(w̄) ∼ (z̄ − w̄)−1that an be derived from our expliit operator realisation of the basi �elds. The othertwo types of ontrations with �elds c̄ or b vanish identially.Next we would like to display the boundary state |N〉 for our new boundary ondition.Before we provide expliit formulae let us brie�y reall that the bulk �elds are obtainedas
c(z) = ξc0 +

∑

n 6=0

cn
n
z−n , b(z) =

∑

n∈Z
bn z

−n−1and similarly for their anti-holomorphi ounterparts. Note that there are no modes c0, c̄0and ξb0, ξ̄
b
0 in the bulk of our bc ghost system. This feature distinguishes the c = −2ghosts from the losely related sympleti fermions. Aording to the standard rules, theboundary state for our boundary theory must satisfy the following Ishibashi onditions [54℄

(bn − c̄−n)|N〉 = 0 , (cn + b̄−n)|N〉 = 0 (A.1.13)for n 6= 0 and b0|N〉 = b̄0|N〉 = 0. As one may easily hek, the unique solution to theseonditions is given by
|N〉 = exp

(
−

∞∑

m=1

(
c−mc̄−m
m

+
b−mb̄−m
m

)

)
|0〉 (A.1.14)where |0〉 is a state in the bulk theory that satis�es onditions of the form (A.1.5) forboth hiral and anti-hiral modes. There also exists a dual boundary state 〈N |, satisfyingthe onditions

〈N |(bn + c̄−n) = 0 , 〈N |(cn − b̄−n) = 0 (A.1.15)131



132 APPENDIX A. THE BC-GHOST SYSTEMfor n 6= 0 and 〈N |b0 = 〈N |b̄0 = 0. These linear relations are related to eqs. (A.1.13) byonjugation using that c∗n = −c−n and b∗n = b−n et. The dual boundary state is given bythe following expliit formula
〈N | = 〈0| exp

( ∞∑

m=1

1

m
(cmc̄m + bmb̄m)

) (A.1.16)involving a dual losed string ground state 〈0| that obeys onditions of the form (A.1.10)for modes of hiral and anti-hiral �elds and that is normalised by 〈0|ξc0ξ̄c0|0〉 = 1 1As a �rst non-trivial test for our theory, we would like to verify that it satis�es worldsheet duality. Let us stress that in this note we onsider a theory in whih bulk andboundary theory onsist of Ramond setors only, a hoie that we shall omment in moredetail below. In suh a model, world-sheet duality relates quantities that are periodiin both world-sheet spae and time. The simplest suh quantity in our boundary theorywould be tr[qL0+1/12(−1)F ] whih vanishes sine bosoni and fermioni states ome in pairson eah level of the state spae. The same is ertainly true for 〈N |qL0+1/12(−1)F |N〉, inagreement with world-sheet duality. In order to probe �ner details of the theory, we needto onsider quantities with additional insertions of �elds or zero modes. Here, we shallestablish the relationtr (qHo

(−1)F c(z)c̄(z̄)
)

= 〈N |q̃ 1
2
Hc

(−1)
1
2
F c

c(ξ)c̄(ξ̄)|N〉 , (A.1.17)where Ho = L0 + 1/12, q = exp(2πiτ), ξ = exp(− 1
τ

ln z) and F c = F + F̄ , as usual. Thelosed string Hamiltonian is given by
Hc =

∑

m∈Z
−
[
: b−mcm : + : b̄−mc̄m :

]
+ 1/6 .Validity of eq. (A.1.17) is required by the de�nition of boundary states (see e.g. [52℄).Starting with the left hand side, it is rather easy to see thattr (qL0+1/12(−1)F c(z)c̄(z̄)

)
= tr (qL0+1/12(−1)F ξc0ξ

b
0

)

= −iτη(q)2 = η(q̃)2 . (A.1.18)In the omputation we split o� the term c0b0 from Ho and use it to saturate the fermionizero modes. The rest is then straightforward. We an reprodue the same result if weinsert our expliit formulae for the boundary states |N〉 and 〈N | into the right hand sideof eq. (A.1.17).It is possible to perform another similar test of our boundary theory using the usualtrivial boundary onditions of the ghost system. In this ase, the �eld c(z) is identi�ed1In order to have SL(2, C) invariant vaua |0〉 and 〈0|, they have to be annihilated by the zero modes
b0, b̄0 (resp. by b0, c0 for our boundary theory). This implies 〈0|0〉 = 〈0|{b0, ξ

c
0}|0〉 = 0. The �rst non-vanishing expressions are 〈0|ξc

0ξ
b
0|0〉 for our boundary theory, and 〈0|ξc

0ξ̄
c
0|0〉 in the bulk. This is desribedin detail in [109℄. 132



A.1. TWISTED BOUNDARY CONDITIONS IN THE BC C = −2 GHOST SYSTEM133with its own anti-holomorphi partner c̄(z̄) along the boundary and likewise for the pair
b and b̄. Let us reall that the boundary state |id〉 and its dual 〈id| take the form [108℄

|id〉 = exp( ∞∑

m=1

(c−mb̄−m
m

+
c̄−mb−m
m

))
(ξc0 − ξ̄c0)|0〉

〈id| = i〈0|(ξc0 − ξ̄c0) exp( ∞∑

m=1

1

m

(
b̄mcm + bmc̄m

)) (A.1.19)where we use the same notations as before. For the exhange of losed string modesbetween |N〉 and 〈id| the above formulae imply
〈id| q̃ 1

2
Hc

(−1)
1
2
F c

c(ξ) |N〉 = 〈id| q̃ 1
2
Hc

(−1)
1
2
F c

ξc0 |N〉

= q̃
1
12

∞∏

n=1

(
1 + q̃2n

)
=

√
θ2(2τ̃)

2η(2τ̃)
. (A.1.20)One more we had to insert the �eld c(z) in order to get a non-vanishing result. Foromparison with a world-sheet dual, we need to quantise the ghost system on a strip or,equivalently, on the upper half plane with trivial boundary onditions on the positive realaxis and our non-trivial ones on the other half. A moment of re�etion reveals that thefollowing ombinations χ+(z) = 2−1/2(b(z)+i∂c(z)) and χ−(z) = 2−1/2(ib(z)+∂c(z)) obeythe simple periodiity relations χ±(e2πiz) = ±iχ±(z). Hene, they may be onstrutedthrough fermioni h = 1 twist �elds [64℄

χ±(z) =
∑

r∈Z∓ 1
4

χ±
r z

−r−1 .The modes χ±
r obey the same anonial ommutation relations, {χ+

r , χ
−
s } = rδr,−s, asbefore. Formulae for the Virasoro generators an easily be worked out. For us, it su�esto display the zero mode L̃0,

L̃0 = −
∑

r∈Z− 1
4

: χ+
r χ

−
−r : − 3

32
. (A.1.21)The onstant shift by 3/32 is needed in order to obtain standard Virasoro relations withthe other generators (see also [2℄ for a losely related analysis of twisted setors in thebulk theory). The state spae of our boundary theory ontains two ground states |Ω±〉whih are related to eah other by the ation of a zero mode ξc. On this spae we anintrodue the �eld c through

c(z) = ξc +
i√
2

∑

r∈Z− 1
4

χ+
r

r
z−r − 1√

2

∑

r∈Z+ 1
4

χ−
r

r
z−r .133



134 APPENDIX A. THE BC-GHOST SYSTEM�>From the onstrution of the state spae and our formula for H̃o = L̃0 + 1/12 we inferthe following expression for the mixed open string amplitude,tr(qH̃o

(−1)F c(z)
)

= q−
1
96

∞∏

n=0

(
1− q 1

2
(n+1/2)

)
=

√
θ4(τ/2)

η(τ/2)
, (A.1.22)whih reprodues exatly the previous result (A.1.20) upon modular transformation andonludes our investigation of the new boundary theory.The hoie of our new gluing ondition for the bc system was motivated by the interestin branes on supergroups. As we shall disuss in the next hapter, maximally symmetribranes in a WZNW model on a supergroup turn generially out to satisfy Neumann-typeboundary onditions in the fermioni oordinates. This implies that all fermioni zeromodes must at non-trivially on the spae of open string states. In our toy model, therole of the fermioni oordinates is played by c and c̄. Hene, we needed to �nd boundaryonditions with a four-fold degeneray of ground states. For the standard boundaryonditions of the bc system, c = c̄ along the boundary and hene only one fermionizero mode survives, giving rise to a 2-dimensional spae of ground states. In this sense,the usual boundary onditions of the bc systems are loalised in one of the fermionidiretions. Our boundary onditions ome with two non-vanishing zero modes ξb0 and

ξc0 (and their dual momenta c0 and b0). This property makes them a good model formaximally symmetri branes on supergroups.There exist various extensions of our theory that we want to brie�y omment about.In our analysis we foused on the RR setor of the bc ghost system in the bulk. Itis ertainly straightforward to inlude an NSNS setor in ase this is required by theappliation. Furthermore, we an also replae the bulk theory by its logarithmi ousin,the sympleti fermion model, we will do that in the next setion.In the ase of the bc ghost system, the boundary state |N〉 has a rather novel feature:it desribes a logarithmi boundary theory in a non-logarithmi bulk. Put di�erently,the bc ghost system possesses a diagonalisable bulk Hamiltonian Hc. Nevertheless, theHamiltonian Ho of our new boundary theory is non-diagonalisable. Hene, logarithmisingularities an appear, but only when two boundary �elds approah eah other. To thebest of our knowledge, suh a behaviour has never been enountered before.
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Appendix BThe Representation Theory of ĝl(1|1)B.1 Spetral �ow automorphismsA useful tool for the investigation of the urrent algebra ĝl(1|1) and its representationsare spetral �ow automorphisms. The �rst one, γm, leaves the modes Nn invariant andats on the remaining ones as
γm(En) = En + kmδn0 , γm(Ψ±

n ) = Ψ±
n±m . (B.1.1)The previous transformation also indues a modi�ation of the energy momentum tensorwhih is determined by

γm(Ln) = Ln +mNn . (B.1.2)Sine the rank of GL(1|1) is two, there is a seond one parameter family of spetral �owautomorphisms γ̃ζ whih is parameterised by a ontinuous number ζ . It is rather trivialin the sense that its ation does not at on the mode numbers,
γ̃ζ(Nn) = Nn + k ζ δn0 and γ̃ζ(Ln) = Ln + ζ En . (B.1.3)All other modes of the urrents are left invariant.The two spetral �ow symmetries above indue a map on the set of representations ofĝl(1|1). Given any representation ρ we obtain two new ones by de�ning ρm = ρ ◦ γm and

ρ̃ζ = ρ ◦ γ̃ζ. The latter is not very exiting but the former will play a ruial role below.Let us thus state in passing that the super-haraters of these representations are relatedby
χρm

(µ, τ) = χρ(µ+mτ, τ) . (B.1.4)This formula gives severe restritions on the nature of the representations ρm.135



136 APPENDIX B. THE REPRESENTATION THEORY OF ĜL(1|1)B.2 Some formulae onerning Theta funtionsLet us reall some fats about the theta funtion in one variable, the referene isMumford's �rst book [73℄. θ(µ, τ) is the unique holomorphi funtion on C×H, suh that
θ(µ+ 1, τ) = θ(µ, τ),

θ(µ+ τ, τ) = e−πiτe−2πiµθ(µ, τ),

θ(µ+
1

2
, τ + 1) = θ(µ, τ),

θ(µ/τ,−1/τ) =
√
−iτeπiµ2/τθ(µ, τ)

limIm(τ)→∞
θ(µ, τ) = 1 .

(B.2.1)
The theta funtions has a simple expansion as an in�nite produt,

θ(µ, τ) =
∞∏

m=0

(
1− qm

) ∞∏

n=0

(
1 + u−1qn+1/2

)(
1 + uqn+1/2

)
, (B.2.2)where q = e2πiτ and u = e2πiµ. The ĝl(1|1) haraters in the RR setor we shall presentin the next setion have a simple expression in terms of the variant

θ
(
µ− 1

2
(τ + 1), τ

)
= (1− u)

∞∏

n=1

(
1− qn

)(
1− uqn

)(
1− u−1qn

)
. (B.2.3)Its behaviour under modular S transformations whih send the arguments of the thetafuntion to τ̃ = −1/τ and µ̃ = µ/τ an be dedued from the properties above. One simply�nds

θ
(
µ̃− 1

2
(τ̃ + 1), τ̃

)
= i
√
−iτ̃ eπiµ̃2/τ̃ u1/2ũ−1/2 q−1/8q̃1/8 θ

(
µ− 1

2
(τ + 1), τ

)
. (B.2.4)B.3 Representations and their haratersIn this appendix we review the representations of the urrent superalgebra ĝl(1|1)that are relevant for our disussion in the main text. We shall slightly deviate fromthe presentation in [27℄ in putting even more emphasis on the role of the spetral �owautomorphism (B.1.1). The latter is the only onstituent whih leads to a substantialdi�erene between the representation theory of the �nite dimensional subalgebra gl(1|1)and that of its a�nization ĝl(1|1).All irreduible representations of ĝl(1|1) are quotients of Ka modules. Just as forgl(1|1), we distinguish between Ka modules 〈e, n〉 and anti Ka modules 〈e, n〉. These136



B.3. REPRESENTATIONS AND THEIR CHARACTERS 137symbols have been hosen sine the ground states transform in the orresponding repre-sentations of the horizontal subalgebra gl(1|1).1 For e 6∈ kZ both types of representationswill be alled typial, otherwise atypial. Typial representations are irreduible and onehas the equivalene 〈e, n〉 ∼= 〈e, n〉. The super-harater of (anti) Ka modules an easilybe found to be
χ̂〈e,n〉(µ, τ) = χ̂〈e,n〉(µ, τ) = un−1q

e
2k

(2n−1+e/k)+1/8θ
(
µ− 1

2
(τ + 1), τ

)/
η(τ)3 . (B.3.1)When writing down this expression we assumed the ground state with quantum numbers

(E0, N0) = (e, n) to be fermioni. The spetral �ow γm transforms the haraters of Kamodules aording to
γm : χ〈e,n〉(µ, τ) 7→ (−1)mχ〈e+mk,n−m〉(µ, τ) . (B.3.2)This equation should be interpreted as de�ning a map between representations. Wereognise that 〈e, n〉 is transformed into 〈e+mk, n−m〉 under γm and that the parity ofthe module is hanged if m is odd. A hange of parity ours if the interpretation of whatare bosoni and what are fermioni states is altered ompared to the standard hoie.The equivalene between Ka modules and anti Ka modules is destroyed for e ∈ kZ.For these values the representations 〈mk, n〉 and 〈mk, n〉 degenerate and exhibit a singlesingular vetor whih an be found on energy level |m|, see [27℄ for details.2 This statementis partiularly lear for m = 0 when the singular vetor is a ground state. In view ofeq. (B.3.2) the attentive reader will have antiipated that the residual ases e = mksimply arise by applying the spetral �ow automorphism γm.The struture of the Ka modules may be inferred from their omposition series.Aording to our previous statements the Ka module 〈mk, n〉 ontains preisely oneirreduible submodule denoted by 〈n− 1〉(m). The quotient of 〈mk, n〉 by the submodule

〈n−1〉(m) turns out to be the irreduible representation (〈n〉(m)
)′. Hene, one an desribethe representation using the omposition series

〈mk, n〉 :
(
〈n〉(m)

)′ −→ 〈n− 1〉(m) . (B.3.3)Again, all this an be understood best for m = 0 where the statement redues to well-known fats about Ka modules of the �nite dimensional subalgebra gl(1|1). This remarkespeially implies that the atypial irreduible representations 〈n〉(0) are built over the one-dimensional gl(1|1)-module 〈n〉. They are transformed into the remaining representations
〈n〉(m) under the spetral �ow automorphism γm. For m 6= 0, the ground states of 〈n〉(m)an easily be seen to form the gl(1|1)-module 〈mk, n − m〉. The information ontained1We would like to stress that the representations 〈mk, n〉 and 〈mk, n〉 are inequivalent for m ∈ Z eventhough their ground states transform identially as long as m 6= 0. The reason beomes lear below.2In order to avoid onfusion we would like to emphasise that the onstrution in [27℄ gives rise to Kamodules for m < 0 and anti Ka modules for m > 0. The remaining modules annot be obtained throughVerma modules of the sort onsidered there. 137



138 APPENDIX B. THE REPRESENTATION THEORY OF ĜL(1|1)in the omposition series (B.3.3) may be used to alulate the super-haraters of theatypial irreduible representations 〈n〉(m). Following the ideas of [24℄ one simply �nds
χ̂

(m)
〈n〉 (µ, τ) =

∞∑

l=0

χ̂〈mk,n+l+1〉(µ, τ)

=
un

1− uqm
q

m
2

(2n+m+1)+1/8θ
(
µ− 1

2
(τ + 1), τ

)

η(τ)3
.

(B.3.4)Analogous results hold for anti Ka modules.Finally we need to disuss the projetive overs of irreduible representations. Thetypial representations 〈e, n〉 with e 6∈ kZ are projetive themselves. But the atypialrepresentations 〈n〉(m) have more ompliated projetive overs whose omposition seriesreads
P(m)
n :

(
〈n〉(m)

)′ −→ 〈n+ 1〉(m) ⊕ 〈n− 1〉(m) −→
(
〈n〉(m)

)′
. (B.3.5)An alternative desription of the projetive overs is in terms of their Ka ompositionseries P(m)

n : 〈mk, n〉 → 〈mk, n + 1〉′. Consequently, the haraters of projetive oversare given by
χ̂P(m)

n
(µ, τ) = χ̂〈mk,n〉(µ, τ)− χ̂〈mk,n+1〉(µ, τ) . (B.3.6)These statements an one again be heked expliitly for m = 0 and then generalised toarbitrary values ofm by means of the spetral �ow transformation. For future onvenienewe shall silently omit the supersript (m) in the ase that m = 0.B.4 Some modular transformationsIn this setion we list the modular transformations of all the a�ne haraters appearingin the previous setion. Sine all these representations may be expressed in terms of Kamodules it is su�ient to know the transformation

χ̂〈e′,n′〉(µ, τ) = −1

k

∫
dedn exp

2πi

k

[
e′(n−1/2)+e(n′−1/2)+e′e/k

]
χ̂〈e,n〉(µ̃, τ̃) . (B.4.1)to derive the remaining ones. Using the series representation (B.3.4) one, e.g., obtainsthe following behaviour for haraters of atypial representations,

χ̂
(m)
〈n′〉(µ, τ) =

1

2ki

∫
dedn

exp 2πi
[
e/k(n′ +m) +m(n− 1/2)

]

sin(πe/k)
χ̂〈e,n〉(µ̃, τ̃) . (B.4.2)Similarly, using the Ka omposition series for projetive overs we dedue

χ̂P(m)

n′

(µ, τ) = χ̂〈mk,n′〉(µ, τ)− χ̂〈mk,n′+1〉(µ, τ)

=
2i(−1)m

k

∫
dedn exp 2πi

[
e/k(n′ +mk) +mn

]
sin(πe/k) χ̂〈e,n〉(µ̃, τ̃) .

(B.4.3)The alternating signs in these formulae arise sine the spetral �ow hanges the parity ofrepresentations for odd values of m. 138



B.5. FUSION RULES OF THE ĜL(1|1) CURRENT ALGEBRA 139B.5 Fusion rules of the ĝl(1|1) urrent algebraUp to the need to inorporate the spetral �ow automorphism and the additionalatypial representations indued from it, the fusion rules of ĝl(1|1) agree preisely withthe tensor produt deomposition of gl(1|1)-modules, see e.g. [72℄. Given any two integers,
m1, m2 ∈ Z, we thus �nd
〈e1, n1〉 ⊗ 〈e2, n2〉 ∼=




〈e1 + e2, n1 + n2〉′ ⊕ 〈e1 + e2, n1 + n2 − 1〉 , e1+e2 6∈ kZ

P(m)
n1+n2−1 , e1+e2 = mk

〈n1〉(m1) ⊗ 〈n2〉(m2) ∼= 〈n1 + n2〉(m1+m2)

〈n1〉(m1) ⊗ 〈e2, n2〉 ∼= 〈m1k + e2, n1 + n2〉 . (B.5.1)The prime ′ in the �rst line indiates that the representation has the opposite parityompared to our standard hoie.
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140 APPENDIX B. THE REPRESENTATION THEORY OF ĜL(1|1)
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Appendix CSome integral formulaeIn this setion, we provide a omplete list of integral formulae needed for the ompu-tation of the orrelation funtions. As referene we use [110℄.We start with the formulae needed in the omputation of boundary three-point fun-tions. First reall the integral representations of the hypergeometri funtion F (α, β; γ|x)

∫ ∞

1

du |u|−α|u− 1|−β|u− x|−γ =

Γ(α + β + γ − 1)Γ(1− β)

Γ(α+ γ)
F (γ, α+ β + γ − 1;α + γ | x)

∫ x

0

du |u|−α|u− 1|−β|u− x|−γ =

x1−α−γ Γ(1− α)Γ(1− γ)
Γ(2− α− γ) F (β, 1− α; 2− α− γ | x)

∫ 0

−∞
du |u|−α|u− 1|−β|u− x|−γ =

Γ(α + β + γ − 1)Γ(1− α)

Γ(β + γ)
F (γ, α+ β + γ − 1; β + γ | 1− x)

∫ 1

x

du |u|−α|u− 1|−β|u− x|−γ =

(1− x)1−β−γ Γ(1− β)Γ(1− γ)
Γ(2− β − γ) F (α, 1− β; 2− β − γ | 1− x)

(C.0.1)

these integrals onverge for |x| < 1.If only the �rst order boundary interation ontributes, we need the speial ase α +141



142 APPENDIX C. SOME INTEGRAL FORMULAE
β + γ = 2 of the above integrals whih an be expressed as
∫

[−∞,0] ∪ [1,∞]

du |u|−α|u− 1|−β|u− x|−γ = (1− x)α−1xβ−1Γ(1− α)Γ(1− β)

Γ(γ)

∫

[0,x]

du |u|−α|u− 1|−β|u− x|−γ = (1− x)α−1xβ−1Γ(1− α)Γ(1− γ)
Γ(β)

∫

[x,1]

du |u|−α|u− 1|−β|u− x|−γ = (1− x)α−1xβ−1Γ(1− β)Γ(1− γ)
Γ(α)

.

(C.0.2)
If the bulk interation term ontributes, we have to evaluate the following integral for

α + β + γ = 0

∫
d2z

(z − z̄)
|z|2α+2|z − 1|2β+2|z − x|2γ+2

=

=
1

γx+ β

∫
d2z ∂̄

( z̄(z̄ − 1)(z̄ − x)
|z|2α+2|z − 1|2β+2|z − x|2γ+2

)
+

− 1

γx+ β

∫
d2z ∂

( z(z − 1)(z − x)
|z|2α+2|z − 1|2β+2|z − x|2γ+2

)

= − 2

γx+ β

∫
du

u(u− 1)(u− x)
|u|2α+2|u− 1|2β+2|u− x|2γ+2

= − 1

γ(γx+ β)

d

dx

( ∫

[−∞,0] ∪ [1,∞]

du
1

|u|2α+1|u− 1|2β+1|u− x|2γ +

−
∫ 1

0

du
1

|u|2α+1|u− 1|2β+1|u− x|2γ
)

= −4(1− x)2α−1x2β−1
(Γ(−2α)Γ(−2β)

Γ(2γ + 1)
+

Γ(−2α)Γ(−2γ)

Γ(2β + 1)
+

Γ(−2β)Γ(−2γ)

Γ(2α+ 1)

)(C.0.3)and if two boundary interations ontribute, we need (again α + β + γ = 0)
∫ b1

a1

du1

∫ b2

a2

du2
|u1 − u2|

|u1u2|α+1|(u1 − 1)(u2 − 1)|β+1|(u1 − x)(u2 − x)|γ+1
=

= x2β−1(1− x)2α−1

∫ d1

c1

du1

∫ d2

c2

du2
|u1 − u2|

|(u1 − 1)(u2 − 1)|β+1|u1u2|γ+1
,(C.0.4)142



143where ci =
b−1
i −x−1

1−x−1 and di =
a−1

i −x−1

1−x−1 . For these integrals one has to evaluate
∫ ∞

1

du1

∫ u1

1

du2
(u1 − u2)

|(u1 − 1)(u2 − 1)|β+1|u1u2|γ+1
= 4

Γ(−2α)Γ(−2β)

Γ(2γ + 1)
∫ 1

0

du1

∫ u1

0

du2
(u1 − u2)

|(u1 − 1)(u2 − 1)|β+1|u1u2|γ+1
= 4

Γ(−2γ)Γ(−2β)

Γ(2α + 1)
∫ 0

−∞
du1

∫ u1

−∞
du2

(u1 − u2)

|(u1 − 1)(u2 − 1)|β+1|u1u2|γ+1
= 4

Γ(−2γ)Γ(−2α)

Γ(2β + 1)

(C.0.5)
where we used the following speial form of the Gamma doubling formula

Γ(1/2− α)Γ(−α)Γ(1/2− β)Γ(−β)

Γ(1/2)Γ(γ + 1/2)Γ(γ + 1)
= 4

Γ(−2α)Γ(−2β)

Γ(2γ + 1)
. (C.0.6)For the omputation of bulk-boundary 2-point funtions we use some speial ases ofan integral formula that an be found in the reent work of Fateev and Ribault [76℄. Inase of a single insertion of the bulk interation we need

∫
d2z

|z − z̄|
|1 + z2|2(α+1)

= − 2iπ3/22−4α Γ(2α+ 1/2)Γ(2α)

Γ2(α + 1)Γ2(α+ 1/2)
. (C.0.7)To treat the insertion of one boundary interation we employ

∫
du |1 + u2|−(α+1) = π2−2αΓ(2α + 1)

Γ2(α + 1)
. (C.0.8)The insertion of boundary interations may be evaluated by means of the following formula

∫
du1du2

|u1 − u2|
|1 + u2

1|1+α|1 + u2
2|1+α

= 4π3/22−4α Γ(2α+ 1/2)Γ(2α)

Γ2(α + 1)Γ2(α + 1/2)
. (C.0.9)
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