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Natï¿1
2rliche Konstruktionen verallgemeinerter

Kac-Moody Algebren als bosonische Strings
Zusammenfassung

Wir konstruieren die Zustandsrï¿ 1
2ume einiger bosonischer Strings als BRST-

Kohomologiegruppe. Diese besitzen die Struktur einer verallgemeinerten Kac-
Moody Algebra.
Dazu betrachten wir meromorphe konforme Feldtheorien von zentraler Ladung
24 mit lediglich einem Primï¿ 1

2 rfeld. Dies sind mit einfachen Strï¿ 1
2men erweiter-

te Wess-Zumino-Witten Theorien, genauer sind es Hï¿ 1
2chstgewichtsdarstellungen

von affinen Lie Algebren vom Typ Âp−1,p, wobei p = 2, 3, 5 bzw. 7 ist. Wir neh-
men die Existenz der Struktur einer konformen Feldtheorie auf den zugrunde
liegenden Vektorrï¿ 1

2umen an, im Fall p = 2 wurde sie bereits gezeigt. Es gibt
Beweisideen fï¿ 1

2 r die ï¿ 1
2brigen Fï¿1

2 lle. Das Tensorprodukt von jeder dieser
Theorien mit derjenigen der hyperbolischen Ebene (zentrale Ladung 2) hat zen-
trale Ladung 26. Daher ist der BRST-Formalismus anomaliefrei und liefert eine
verallgemeinerte Kac-Moody Algebra als BRST-Kohomologiegruppe vom Grad
eins. Diese Algebra interpretiert man als Zustandsraum anomaliefreier bosoni-
scher Strings auf einem Orbifold kompaktifiziert, dessen Impulse auf einem Git-
ter liegen. Damit wir den BRST-Formalismus anwenden kï¿ 1

2nnen, mï¿ 1
2 ssen

wir die Zustandssumme, welche durch Wess-Zumino-Witten Energiespektren
gegeben ist, als Summe ï¿ 1

2ber das Kompaktifizierungsgitter schreiben. Unser
Hauptresultat ist eine Methode, die alle vier Fï¿ 1

2 lle auf analoge Art und Weise
beschreibt.

Natural constructions of some generalised Kac-Moody
algebras as bosonic strings

Abstract

We construct the spaces of states of certain bosonic strings as the BRST-
cohomology group. These have the structure of a generalised Kac-Moody al-
gebra.
For this we consider meromorphic conformal field theories of central charge 24
with just one primary field. These theories are Wess-Zumino-Witten models
extended by simple currents, strictly speaking they are highest weight repres-
entations of affine Lie algebras of type Âp−1,p, where p = 2, 3, 5, 7. We assume
that the underlying vector spaces have the structure of a conformal field theory.
Proofs are partially done and conjectured for the remaining cases. The tensor
product of these theories with the conformal field theory of the hyperbolic plane
has central charge 26. This allows the application of the BRST-formalism and
yields a generalised Kac-Moody algebra as the degree one BRST-cohomology
group. This algebra can be interpreted as the space of states of an anomaly



free bosonic string which is compactified on an orbifold whose momenta lie on a
lattice. The application of the BRST-formalism requires the partition function,
which is given by the Wess-Zumino-Witten energy spectra, to be rewritten as a
sum over the compactification lattice. Our main result is a method describing
the four cases analogously.
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Chapter 1

Introduction

The goal of this diploma thesis is to construct anomaly free bosonic strings
moving on orbifolds of dimensions 18, 14, 10 and 8.

String theory is a quantum theory of a one-dimensional object, called a
string. These theories became popular because string theory predicts a massless
spin 2 particle which can be interpreted as the graviton. Since it also contains
the gauge bosons of the other fundamental interactions one hopes that string
theory could be a theory of all fundamental interactions.

As the string propagates in space-time, it sweeps out a world sheet that is the
generalisation of a world line of a point particle. A key property of string theory
is the invariance of the two-dimensional world sheet metric of the string under
conformal transformations. Hence it can be described by a two-dimensional
conformal field theory. Two dimensional conformal field theory is special, since
its symmetry group is infinite and the generators of the symmetry group have
the structure of a Virasoro algebra. The central element of the Virasoro algebra
acts as a number and is called the central charge.

In this thesis we apply the BRST-formalism (Becchi-Rouet-Stora-Tyutin) to
certain meromorphic conformal field theories of central charge 24. The BRST-
cohomology group of degree one has the structure of a generalised Kac-Moody
algebra and can be interpreted as the space of physical states of a bosonic string.
These theories are anomaly free and the string moves in 18 (respectively 14, 10,
8) dimensional space-time.

The BRST-method is a general method for the quantisation of the fields
in gauge theory. For the quantisation procedure one considers the symmetries
of the Lagrangian. One requires that the Lagrangian is invariant under the
symmetry group. The BRST-transformation acts on the classical Lagrangian
as the gauge transformation and leaves the total Lagrangian unchanged. Then
one applies the canonical quantisation procedure. By Noether’s theorem any
symmetry gives a conserved current and the symmetry is generated by the
corresponding charge Q. The BRST-formalism requires Q2 = 0, and the charge
Q allows a cohomology decomposition of the space of states. It turns out that
the space of physical states is the space of those states |ψ〉 which are annihilated
by Q modulo the states Q |ψ′〉.

One can apply the BRST-formalism to string theory. It turns out that the
procedure is only anomaly free if the central charge of the Virasoro algebra is
26 because the central charge of the conformal field theory of the ghosts is −26.
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4 CHAPTER 1. INTRODUCTION

Otherwise Q 1
2 6= 0 and the BRST-formalism breaks down. In flat Minkowski

space-time central charge c = 26 means that the dimension of space-time is 26.
In spaces with arbitrary metric the dimension is less or equal 26. We construct
18, 14, 10 and 8 dimensional string theories.

We are interested in the anomaly free construction of a bosonic string theory
out of the underlying conformal field theory. Candidates for the conformal field
theories are given in [S3]. All but one of the suggested theories listed there have
the extended symmetry of certain Kac-Moody algebras. Conformal field the-
ories with such a symmetry are called Wess-Zumino-Witten theories. We take
four candidates listed in [S3] which are Wess-Zumino-Witten theories of type
Â and construct the bosonic strings. The strings are compactified on an orbi-
fold. Before we can apply the BRST-formalism we have to rewrite the partition
function of the conformal field theories which are given by Wess-Zumino-Witten
energy spectra as a sum over the compactification lattice.

From a mathematical point of view the procedure is interesting because the
space of physical states has the structure of a generalised Kac-Moody algebra.

Schellekens lists meromorphic conformal field theories of central charge 24
generated by just one primary field in [S3]. We will consider the cases of the list
which are highest weight representations of highest weights of affine Lie algebras
of type Âp−1 of level p, where p is a prime number. There are two problems to
be solved before applying the BRST-construction. First, the partition functions
are computed in terms of Wess-Zumino-Witten characters extended by simple
currents. In this formulation the compactification lattice is not obvious. This
problem will be solved in this thesis. For two of the four problems under con-
sideration this has already be done in [HSch] and [Kl]. We provide a general
method, using results from the theory of modular forms, which covers all the
four theories. This method can be used to construct all bosonic string theories
listed in [S3]. The second problem is that only in one case it is proven that the
highest weight representations suggested by Schellekens can be provided with
the structure of a conformal field theory [DGM]. Proofs for the remaining cases
are conjectured in [M2]. We will assume this to be true.

The main result of this thesis is that the character (partition function) of
the highest weight representation of type Â48/(p2−1)

p−1,p , p = 2, 3, 5 or 7 can be
rewritten as a sum

χV =
∑

λ∈N ′/N

fλ(τ)ϑλ(τ, z)

over the grading lattice N of genus

II 2m,0(pεp(m+2)), εp = + for p = 2, 5, 7 and εp = − for p = 3,

and minimal norm 4, except for p = 7 it is 6. The lattice N is the unique
lattice in its genus of maximal minimal norm. The ϑλ are theta functions of the
lattice N and the coefficients fλ which give the degeneracy of the spectrum of
the string are

fλ =

{
h(τ) + g0(τ) if λ = 0
gk(τ) if λ 6= 0 and −λ2/2 ≡ k/p mod Z (1.0.1)

where
h(τ) = 1/(η(τ)η(pτ))m = q−1 +m+ . . .
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and the gk(τ) are the T-invariant parts of h(τ/p) and η(τ) is the Dedekind
eta-function. We found three different methods for the proof of (1.0.1). The
fλ are polynomials in certain modular functions called string functions. The
first method requires the knowledge of these functions. They were only known
for the cases p = 2 and p = 3. We calculate them for p = 5. The number of
distinct string functions of type Âp−1,p is of order pp−1, hence the problem is
not tractable for p = 7. Thus we need a different method. We find two more
methods using the theory of modular forms. The calculation of the coefficients
of the string functions is laborious. For the new methods we only need to know
the first coefficient. We shortly explain the most general method. We show that
the fλ, as well as h(τ) and its T-invariant parts, transform under the same Weil
representation. Then we use the fact that a modular form of negative weight for
a Weil representation, which is holomorphic at the cusps, must be zero. Hence,
we only have to verify that the fλ transform under a certain Weil representation
and we have to calculate its expansion at the cusps. This procedure can also be
applied to the remaining cases of Schellekens list.

We apply the BRST-formalism to the conformal field theory V ⊗VII1,1 ⊗VG.
V is the conformal field theory in [S3] with spin-1 algebra Â

48/(p2−1)
p−1,p where

p = 2, 3, 5, 7, VII1,1 is the conformal field theory of the hyperbolic plane and VG
is the conformal field theory of the ghosts which has central charge −26. Hence
the total central charge is zero and the theory is anomaly free. The space of
physical states of the bosonic strings is the cohomology group of degree one.
The hyperbolic extension of the grading lattice is the momentum lattice of the
string. It has rank 48/(p + 1) + 2 and its physical states have the structure of
a generalised Kac-Moody algebra. By the above results on the character of V
the number of states of a certain energy is given by the coefficients of the fλ.

A Lie algebra can sometimes be identified by its denominator identity. So
we show that the denominator identity is

eρ
∏
α∈L+

(1− eα)[h](−α2/2)
∏

α∈L′+
(1− eα)[h](−pα2/2)

=
∑
w∈W

det (w)w

(
eρ
∏
n>0

(1− enρ)m
∏
n>0

(1− epnρ)m
)
.

One might ask the question of the physical relevance of the string theories
found. The bosonic string theories found are important tools as models of
theories of nature, though they only describe half of the nature, because they
contain no fermions. Also, the string theories are not in four-dimensional space-
time and the string is compactified on an orbifold. However, we live in four-
dimensional space-time, hence we are interested in a four-dimensional theory.
We saw that the space of physical states has the structure of a generalised Kac-
Moody algebra. There is a candidate for a four-dimensional theory constructed
by the automorphism g of the Mathieu group with eta product ηg = η(τ)η(23τ).
The problem is to find the underlying conformal field theory, since it is most
likely generated by more than one primary field. This problem could be covered
in a subsequent PhD-thesis.

We describe the chapters of this thesis.
In chapter 2 we introduce string theory and conformal field theory and its

relation.
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In chapter 3 we give a short overview of the results on lattices and modular
forms necessary for this thesis.

The purpose of chapter 4 and 5 is to recall some facts of affine Lie algebras
and its representation theory.

Chapter 6 is the heart of the diploma thesis. There we rewrite the charac-
ters of the conformal field theories, calculate the corresponding lattices and the
coefficients fλ. We give three different proofs of the identity (1.0.1).

In chapter 7 we use the results of chapter 6 to construct some generalised
Kac-Moody algebras in a natural way as bosonic strings.

Chapter 8 summarises the new results obtained in this thesis.
The appendix lists transformation properties of string functions, fλ and eta

products. We also describe some proofs in more detail.
The main results of this thesis which are described in chapter 6 and 7 are

summarised in the preprint [CKS] which we intend to submit soon.
I would like to express my gratitude to Nils R. Scheithauer for ideas and

helpful regular discussions. I also would like to thank Michael G. Schmidt, who
made this diploma thesis possible. Finally, I thank my family for supporting
me over all these years, I also thank you Katharina for everything.



Chapter 2

Conformal field theory

In this thesis we are interested in bosonic string theories. It turns out (see section
2.1) that conformal field theories are therefore of particular interest. Thus this
chapter gives an overview on conformal field theory. Further we consider its
relationship to vertex algebras, in particular to those giving us bosonic string
theories via the BRST-method.

Before we explain conformal field theory in general we start with an intro-
duction of bosonic string theory, since this is the topic of our main interest.
Then we give another example of conformal field theory, the Ising model.

2.1 Bosonic string theory

The simplest string theory is the bosonic string. Since it does not contain space-
time fermions but contains a particle with imaginary mass, the bosonic string
is not a candidate for a theory of nature. Still it is useful. There are many
references, a short introduction is [S1] and a standard textbook is [P].

This section is organised as follows. We are interested in a quantum string
theory. So we first look how we can describe a string classical. Then one
quantises the theory and by considering all gauge symmetries there should be
a theory without unphysical states. It turns out that the physical states of a
bosonic string theory are the BRST-invariant states of a conformal field theory
with Virasoro algebra of central charge 26.

As common practise we use the Einstein convention. First we consider a
classical zero-dimensional object, a point particle. The particle moves in D flat
space-time dimensions, the metric is

ηµν = diag(−1, 1, . . . , 1).

The motion of such a particle can be described by giving its position at any time.
The problem is that this does not allow a covariant description of the particle.
Therefore one introduces a separate variable τ parametrising its world line. The
parametrisation is arbitrary and a different parametrisation of the same path
is physically equivalent, i.e. any physical quantity should be invariant under
the parametrisation. In order to describe the motion of the particle we want an
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8 CHAPTER 2. CONFORMAL FIELD THEORY

action which is Poincarï¿ 1
2 invariant, e.g. the length of the world line

SPP = −m
∫

dτ

√
−ẊµẊµ.

The dot denotes a τ -derivative.
The same idea can be applied to string theory. Instead of lines we con-

sider surfaces, called world sheets, and the embedding in space-time is given
by Xµ(τ, σ). The purpose of σ is the description of the direction of the string
and τ parametrises the time-like direction. Now the action is proportional to
the surface area of the world sheet. In order to express this action in terms
of Xµ(τ, σ), define the induced metric hab = ∂aX

µ∂bXµ where indices a, b run
over values (τ, σ). Then the Nambu-Goto action is

SNG = − 1

2πα′

∫
world sheet

dτdσ
√
−det hab.

This action has the unpleasant property that it contains a square root. By intro-
ducing an independent world sheet metric γαβ(τ, σ) with Lorentzian signature
(−,+) we get a different but classical equivalent action, the Polyakov action (γ
denotes the determinant of the world sheet metric)

SP = − 1

2πα′

∫
world sheet

dτdσ
√
−γγab∂aXµ∂bXµ. (2.1.1)

This action has three symmetries.

• Poincarï¿ 1
2 invariance in D dimensions

• Reparametrisation invariance in 2 dimensions. It is also sometimes called
diffeomorphism invariance and in fact it is a general coordinate transform-
ation in two dimensions:

∂σ′κ

∂σ′α
∂σ′δ

∂σ′β
γ′κδ(τ

′(τ, σ), σ′(τ, σ)) = γαβ(τ, σ). (2.1.2)

• Weyl invariance. The Polyakov action is invariant under local rescalings
of γαβ

γ′αβ = e2ω(τ,σ)γαβ (2.1.3)

for an arbitrary function ω(τ, σ) without changing Xµ.

The last two symmetries are redundancies of the two-dimensional theory on
the world sheet. This means that the two-dimensional action has less degrees
of freedom then it seems to have. This is analogous to gauge symmetry in
quantum field theory. One may fix these redundancies by a suitable gauge.
We consider the conformal gauge, this means we fix the two-dimensional metric
γαβ . Reparametrisation invariance allows us to put 2 components of the metric
to zero. Using Weyl invariance another degree of freedom can be removed,
so that finally none is left. We use this freedom to transform the metric to
the flat Minkowski metric ηαβ = diag(−1, 1). This is called conformal gauge.
Two-dimensional conformal gauge is special, since only for a two-dimensional
world sheet metric all degrees of freedom can be removed by reparametrisation
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invariance and Weyl invariance. This is a reason why string theory is easier
than theories of membranes. The action is now

S = − 1

4πα′

∫
world sheet

dτdσηαβ∂αX
µ∂βX

ν . (2.1.4)

This is the action of D free bosons. Varying the action with respect to Xµ

yields the equation of motion in conformal gauge to be[ ∂

∂τ2
− ∂

∂σ2

]
Xµ = 0 (2.1.5)

with the general solution

Xµ(σ, τ) = Xµ
L(τ + σ) +Xµ

R(τ − σ). (2.1.6)

Recall that in classical electrodynamics some symmetries are left even though
the gauge was fixed. For example, if we fix the Lorentz gauge, ∂µAµ = 0,
then we still have not fixed the gauge transformation Aµ → Aµ + ∂µΛ, with
∂µ∂µΛ = 0. The same occurs here. Consider a special coordinate transformation
that changes the metric by an overall factor:

∂σ′κ

∂σ′α
∂σ′δ

∂σ′β
γ′κδ(τ

′(τ, σ), σ′(τ, σ)) = Λ(σ, τ)γαβ(τ, σ). (2.1.7)

Then one can remove Λ(σ, τ) using a Weyl transformation and the consequence
is that the metric has not changed at all. The transformation of this kind are
called conformal, since they preserve angles but not length. The transformations
satisfying (2.1.7) form a group called the conformal group. In p space and q
time dimensions it turns out to be the group SO(p+ 1, q + 1) if p+ q is larger
than 2. If p+ q = 2 it is the group of all transformations of the form

τ ′ = f(τ + σ) + g(τ − σ)

σ′ = f(τ + σ)− g(τ − σ)

with arbitrary continuous functions f and g.
Now we consider the spectrum of a string. The string has a centre of mass

motion and vibration. The vibration can be decomposed in normal modes. Is
the string in one of these modes then the energy of the mode can be viewed as
the mass of the string.

First we consider closed strings. Then the world sheet of the string is a
cylinder, i.e. we have periodic boundary conditions

Xµ(0, τ) = Xµ(2π, τ).

We can write Xµ in a Fourier series

Xµ(σ, τ) =
∑
n∈Z

einσfµn (τ).

(2.1.5) implies
∂2
τf

µ
n (τ) = −n2fµn (τ)

with the solution

fµn (τ) = aµne
inτ + bµne

−inτ for n 6= 0 and fµ0 (τ) = pµτ + qµ.
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So the final result with some convenient factors is

Xµ(σ, τ) = qµ + α′pµτ + i

√
α′

2

∑
n6=0

1

n
(αµne

−in(τ+σ) + ᾱµne
−in(τ−σ)). (2.1.8)

Xµ should be real which implies

(αµn)∗ = αµ−n. (2.1.9)

The discussion of the open string with boundaries 0 and π is slightly more
laborious. The variation of the action (2.1.4) is

δXS =
1

2πα′

∫
dτ

∫ π

0

dσ(δXµ)∂a∂
aXµ − 1

2πα′

∫
dτδXµ∂σX

µ
∣∣∣σ=π

σ=0
. (2.1.10)

The first term vanishing requires the equations of motion ∂a∂
aXµ = 0. The

second term vanishes by imposing the Neumann boundary conditions ∂σXµ = 0
at the boundaries. The same procedure as above yields

Xµ(σ, τ) = qµ + 2α′pµτ + i
√

2α′
∑
n 6=0

1

n
(αµne

−inτ cosnσ). (2.1.11)

Now we quantise the theory. The Lagrangian is

L = − 1

4πα′

∫ ρπ

0

dσ∂aX
µ∂aXµ

so that S =
∫
dτL. The number ρ is one for open strings and two for closed

strings. Then the canonical momentum is

Πµ =
1

2πα′
∂τXµ.

The substitution of Poisson brackets and commutators gives the relations of the
quantised theory:

[Xµ(σ, τ),Πν(σ′, τ)] = iηµνδ(σ − σ′) and
[Xµ(σ, τ), Xν(σ′, τ)] = [Πµ(σ, τ),Πν(σ′, τ)] = 0

(2.1.12)

Then the relations for the modes are

[αµk , α
ν
l ] = [ᾱµk , ᾱ

ν
l ] = kηµνδk+l,0

[αµk , ᾱ
ν
l ] = 0 and [qµ, pν ] = iηµν .

(2.1.13)

This justifies the interpretation of qµ and pµ as centre-of-mass coordinate and
momentum. From (2.1.9) we get

(αµn)† = αµ−n. (2.1.14)

So the modes become rescaled harmonic oscillators.
Since the metric ηµν is not positive definite there are states with negative

norm, called tachyons. The reason for this is that we have not considered the
second equation of motion obtained by the variation of the free boson action
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(2.1.4) with respect to ηαβ . It is Tab = 0 with the energy-momentum tensor T
with components

T00 = T11 = Ẋ2 +X ′2 and T01 = T10 = Ẋ ·X ′.

Now let us see what this means for the quantised theory. First choose more
convenient coordinates σ± = τ±σ. Then the derivatives are ∂± = 1/2(∂τ±∂σ).
In these coordinates the components of the energy-momentum tensor are

T++ =
1

2
(T00 + T01) = ∂+X · ∂+X

T−− =
1

2
(T00 − T01) = ∂−X · ∂−X

The definition of the modes for closed strings is

Ln =
1

2πα′

∫ 2π

0

dσeinσT++

L̄n =
1

2πα′

∫ 2π

0

dσe−inσT−−

Substitution of the mode expansion of the modes of X yields

Ln =
1

2

∑
m

: αn−m · αm : and L̄n =
1

2

∑
m

: ᾱn−m · ᾱm :

with αµ0 = ᾱµ0 =
√

1
2α
′pµ and : : denotes normal ordering. Similarly one has

for open strings

Ln =
1

2πα′

∫ π

0

dσe−inσT−− + einσT++ =
1

2

∑
m

: αn−m · αm :

with αµ0 =
√

2α′pµ. One calculates the commutators of the modes Ln to be

[Ln, Lm] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0. (2.1.15)

c operates as a number and is called the central or conformal charge. The
algebra consisting out of the modes Ln and the central charge c is called a
Virasoro algebra. Often c is also called conformal anomaly.

It remains the problem of the unphysical negative norm states. There are
some methods to get rid of them: the light-cone gauge, the covariant operator
method, the covariant path integral method and the BRST-quantisation.

We will apply the BRST-method in this thesis. It is a more general way of
quantising gauge theories than the other three methods mentioned above. In
section 2.9 we explain it in a more technical way.

The total Lagrangian consists out of the classical Lagrangian, the gauge fix-
ing Lagrangian and the ghost Lagrangian. The BRST-transformation acts on
the classical Lagrangian as a gauge transformation and leaves the total Lag-
rangian invariant. Then the fields are quantised by turning Dirac brackets into
commutators. By Noether’s theorem, any symmetry yields a conserved current
and a charge Q. In turn the charge Q generates the symmetry transformation.
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The BRST-formalism requires the corresponding charge to be nilpotent, strictly
speaking Q2 = 0. The central charge of the ghost Virasoro algebra is −26. Q2

can only be zero if the total central charge is zero, hence the BRST-formalism
requires the central charge of the Virasoro algebra of the underlying conformal
field theory to be 26. Otherwise the BRST-method breaks down and there are
anomalies. Now one considers the physical space H of states. quires Q2 = 0,
and the charge Q allows a cohomology decomposition of the space of states.
It turns out that the space of physical states is the space of those states |ψ〉
which are annihilated by Q modulo the states Q |ψ′〉. Furthermore, they have
the properties:

• b0 |Ψ〉 = 0 for a certain ghost operator b0 (without a shift by the conformal
weight the ghost operator is b1).

• L0 |Ψ〉 = 0 and L0 determines the mass of the string.

We remark that for a string theory in flat Minkowski space central charge
equals 26 means that the dimension of the space must be 26 and in a space
with arbitrary metric this requires the dimension to be less or equal 26. In this
thesis applying the BRST-method (see for chapter 7) we obtain bosonic string
theories of dimension 18, 14, 10 resp. 8.

In order to find a bosonic string theory we must find conformal field theories
with a representation of a Virasoro algebra of central charge 26.

2.2 The Ising model
Before we explain what a conformal field theory is we give an example of their
appearance in physics, the critical Ising model on the lattice (see [Ru]).

The Ising model is an example of a critical system in statistical mechanics.
Statistical systems that are close to second order phase transition are character-
ised by long range phase transition of order parameters. They lead to singularit-
ies in the thermodynamic functions. This can be described by two-dimensional
Euclidean field theory. At the critical point the correlation length diverges and
hence the effective field theory becomes scale invariant. This together with the
assumption that the interaction is local implies conformal invariance.

A QFT is considered to be the continuum limit of a lattice model with the
sum over the states on the lattice a discrete version of the path integral.

Let LN be a square lattice of N × N sites. The configuration of spins is a
function s : LN → {±1} which assigns each lattice site a spin. The energy of a
configuration is then

E[s] = −
∑
<x,y>

sxsy

where the sum is only over neighbouring sites on LN . The partition function is
the sum over all possible states

ZLN =
∑

all configurations s

e−βE[s]

where β > 0 is the inverse of the temperature. In general a field φ(x) is a map
s 7→ φ(x)[s] ∈ C which depends only on spines at sites in a certain neighbour-
hood of x. An example of a field is the spin field σ(x)[s] = sx. The correlation
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function of spin fields on an infinite lattice is〈
σ(x1) . . . σ(xm)

〉
β

= lim
N→∞

1

ZLN

∑
all configurations s

sx1
. . . sxme

−βE[s].

For a generic choice of the inverse temperature β, the correlators will either go to
constants or decay exponentially. Also, there exists a phase transition between
the ordered, low temperature phase and the disordered, high temperature phase
at the critical temperature 1/βc. At this point the correlators display a power
law behaviour. The continuum limit of a correlator for points p1, . . . , pm in R2

is 〈
σ̂(p1), . . . , σ̂(pm)

〉
= lim
r→∞

rα
〈
σ(rp1), . . . , σ(rpm)

〉
βc
. (2.2.1)

The constant α is the largest number such that the limit is finite. In the present
case it turns out to be α = m/8. The hat distinguishes between continuum
fields and lattice fields. Note that the continuum correlators are scale invariant
by definition〈

σ̂(λp1), . . . , σ̂(λpm)
〉
= lim
r→∞

rα
〈
σ(rλp1), . . . , σ(rλpm)

〉
βc

=

lim
λr→∞

rα
〈
σ(rλp1), . . . , σ(rλpm)

〉
βc

= λ−1
〈
σ̂(p1), . . . , σ̂(pm)

〉
.

A scale invariant theory with a local interaction is conformal invariant. We re-
mark that the continuum limit describes the long-range behaviour of the lattice
model at a critical point.

2.3 Classical conformal field theory
Conformal field theory is a tool in theoretical physics. In the last two sections we
have seen its appearance in statistical mechanics and in string theory. Recently
it also became important in the AdS/CFT-correspondence.

There are many introductions to this topic. For our purpose [S2] and [Ke]
are suitable. A standard textbook is [DMS].

First we consider classical conformal invariance. Recall the conformal trans-
formation in section 2.1 which were essentially general coordinate invariance

∂σ′κ

∂σ′α
∂σ′δ

∂σ′β
γ′κδ(τ

′(τ, σ), σ′(τ, σ)) = γαβ(τ, σ). (2.3.1)

and Weyl invariance
γ′αβ = e2ω(τ,σ)γαβ . (2.3.2)

We consider a flat space, i.e. a space with metric gµν = ηµν = diag(−1,
. . . ,−1, 1, . . . , 1) with q-times the eigenvalue −1 and p-times the eigenvalue 1.
The dimension of the space is then d = p+ q.

The energy-momentum tensor is defined in terms of the variation of the
action S under changes of the space-time metric

gµν → gµν + δgµν .

Then the definition is
δS =

1

2

∫
ddx
√
gTµνδgµν . (2.3.3)
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General coordinate invariance in flat coordinates implies

∂νT
νµ = 0

and Weyl invariance implies the tensor to be traceless

Tµµ = 0.

A conformal transformation can now be defined as a coordinate transformation
which acts on the metric as a Weyl transformation. Consider a general coordin-
ate transformation x → x′ such that xµ = fµ(x′ν) with the following effect on
the metric

gµν(x)→ g′µν(x′) =
∂fρ

∂x′µ
∂fσ

∂x′ν
gρσ(f(x′)) ∝ gµν(x′). (2.3.4)

A tensor φ of rank n is called a conformal field if it transforms as

φ′µ1,...,µn(x′) =
∂fν1

∂x′µ1
· · · ∂f

νn

∂x′µn
φ′ν1,...,νn(f(x′)). (2.3.5)

We want to know which transformations have the property (2.3.4). Let
x′µ = xµ + εµ(x) be an infinitesimal transformation. Its inverse is then xµ =
x′µ − εµ(x′) + O(ε2). Then we have from (2.3.4) δgµν = −∂µεν − ∂νεµ = ωgµν
and hence

∂µεν + ∂νεµ =
2

d
∂κεκgµν . (2.3.6)

The solutions of this equation are (for d > 2)

• Translations: xµ → xµ + αµ

• (Lorentz) Rotations: xµ → xµ + ωµνx
ν

• Scale transformations: xµ → xµ + σxµ

• Special conformal transformations: xµ → xµ + bµx2 − 2mµb · x.

The generators of these transformation form the algebra SO(p+ 1, q + 1).
The conserved current of the conformal symmetry is

Jµ(ε) = Tµνε
ν

since ∂µJµ(ε) = (∂µTµν)εν + Tµν(∂µεν) vanishes because of (2.3.6) and because
the energy momentum tensor is conserved, symmetric and traceless.

From now on we will only consider conformal field theory in two dimensions.
The case of two dimensions in Euclidean space is special. We remark that a Wick
rotation of the Euclidean formulation on a cylinder yields the Minkowski space-
time formulation of a field theory. The conditions for an infinitesimal conformal
transformation are Cauchy-Riemann equations ∂1ε1 = ∂2ε2 and ∂1ε2 = −∂2ε1.
In complex variables ε = ε1 − iε2, ε̄ = ε1 + iε2 and z = x1 − ix2, z̄ = x1 + ix2

the condition becomes ∂z ε̄(z, z̄) = ∂z̄ε(z, z̄) = 0. Therefore, the conformal
transformations can be identified with the analytic coordinate transformation

z → f(z), z̄ → f̄(z̄), f ′(z) 6= 0.
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These transformations are generated by Ln = −zn+1 d
dz and the corresponding

barred quantity. These operators satisfy the relations

[Ln, Lm] = (n−m)Ln+m, [L̄n, L̄m] = (n−m)L̄n+m and [Ln, L̄m] = 0. (2.3.7)

The two commuting parts {Ln} and {L̄n} of this algebra are known as the two-
dimensional local conformal algebra or Witt algebra. The independence of the
algebras {Ln} and {L̄n} justifies the use of z and z̄ as independent coordinates.

The energy momentum tensor can be transformed into complex coordinates.
The result is using that the tensor Tµν is conserved and traceless

Tzz̄ = Tz̄z = 0, Tzz ≡ T (z) and Tz̄z̄ ≡ T̄ (z̄) (2.3.8)

T (z) and T̄ (z̄) are the holomorphic and antiholomorphic parts. The conserved
current is then

Jµ(ε) = Tµνε
ν → Jz = T (z)ε(z), Jz̄ = T̄ (z̄)ε̄(z̄). (2.3.9)

The components of a tensor φ of rank n are of the form φz...z,z̄...z̄(z, z̄).
Under a conformal transformation this transforms into(∂f(z)

∂z

)p(∂f̄(z̄)

∂z̄

)q
φz...z,z̄...z̄(f(z), f̄(z̄)). (2.3.10)

2.4 Quantum conformal field theory
Now we want to quantise the theory. Therefore the transformation to complex
coordinates is convenient. Further we make the space direction finite by impos-
ing periodic boundary conditions. Scale invariance allows us to set the length of
one period to 2π. The Euclidean coordinates (x1, x2) = (x1, ix0) can be thought
of coordinates on a cylinder. The charge is defined as

Q =
1

2π

∫ 2π

0

dx1J0 =
1

2π

∫ 2π

0

dx1(−iJ2).

Using (2.3.9) this equals

− 1

2π

{∮
dzJcylz (z, z̄)−

∮
dz̄Jcylz̄ (z, z̄)

}
.

The integration is along a closed contour that encircles the cylinder. The orient-
ation is such that

∮
dz =

∮
dz̄ = 2π. For convenience we perform a conformal

transformation w = eiz. This transformation maps the cylinder on a plane with
the time coordinate mapped to the radial coordinate. Under this transformation
the charge becomes

− 1

2π

{∮
dw(iw)h−1Jplanew (w, w̄) +

∮
dw(−iw̄)h̄−1Jplanew̄ (w, w̄)

}
.

In classical theories the ordering of fields is irrelevant. In the quantum theory
they become operators, so we have to specify the ordering of products. In order
to have well defined expectation values one imposes time ordering:

TA(ta)B(tb) =

{
A(ta)B(tb) for ta > tb
B(tb)A(ta) for tb > ta
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After mapping from the cylinder to the plane, the Euclidean time coordinate is
mapped to the radial coordinate, and time ordering becomes radial ordering

RA(z, z̄)B(w, w̄) =

{
A(z, z̄)B(w, w̄) for |z| > |w|
B(w, w̄)A(z, z̄) for |w| > |z| .

A correlation function in field theory on the cylinder has the form

〈0|T (A1(t1) . . . An(tn)) |0〉

where |0〉 and 〈0| are in and out states at t = −∞ and t =∞ respectively. After
the conformal mapping, the correlation functions are

〈0|R(A1(z1, z̄1) . . . An(zn, z̄n)) |0〉

where |0〉 and 〈0| are states at z = 0 and z =∞ respectively. The current for an
infinitesimal conformal transformation is T (z)ε(z) (2.3.9). The corresponding
charge is

Qε =
1

2πi

∮
dzε(z)T (z).

By Noether‘s theorem Qε should generate the conformal transformation with
the global form

φ(w, w̄)→ φ′(w, w̄) =
(∂f(w)

∂w

)h
φ(f(w), w̄),

with f(w) = w+ε(w) and h the conformal weight of the field φ. The infinitesimal
form of this transformation is

δεφ(w, w̄) = h∂wε(w)φ(w, w̄) + ε(w)∂wφ(w, w̄).

The desired commutation relation is

δεφ(w, w̄) = [Qε, φ(w, w̄)]. (2.4.1)

Considering radial ordering the commutator is

[Qε, φ(w, w̄)] =
1

2πi

∮
dzε(z)R(T (z)φ(w, w̄)).

The integration makes only sense if the radially ordered product is analytic in
some neighbourhood of the point w. Therefore it can be expanded in a Laurent
series. The contour integral will give the desired result (2.4.1) if the Laurent
series takes the form

R(T (z)φ(w, w̄)) =
h

(z − w)2
φ(w, w̄) +

1

z − w
∂wφ(w, w̄) + . . . . (2.4.2)

This property plus the corresponding property for the anti-holomorphic quant-
ities defines a conformal field.
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2.5 The Virasoro algebra

The operator product of the energy momentum tensor is

R(T (z)T (w)) =
c/2

(z − w)4
+

2

(z − w)2
T (w) +

1

z − w
∂wT (w) + . . . . (2.5.1)

If the first term were absent (c = 0) then T (z) would be a conformal field of
weight 2, which would be expected classical. Quantum effects yield this extra
term, called conformal anomaly (we will call it also central charge).

Consider the transformations z → z′ = z − zn+1, the corresponding current
is Jn(z) = T (z)zn+1 and the normalised operators are

Ln =
1

2πi

∮
dzzn+1T (z).

The inverse of this relation is

T (z) =
∑
n

z−n−2Ln.

The commutators of the Ln are calculated using contour integrals, they give the
commutation relations of the Virasoro algebra

[Ln, Lm] = (n−m)Lm+n +
c

12
(m3 −m)δm+n,0. (2.1.15)

Since the Virasoro algebra arises naturally in a conformal field theory we
are interested in its representations. A lowest weight representation is a rep-
resentation containing a state with a smallest eigenvalue of L0. It is reason-
able that a physical theory has this property, since L0 + L̄0 is the Hamilto-
nian, which is usually bounded from below. Let |h〉 be such a state, then
L0Ln |h〉 = [L0, Ln] |h〉+ LnL0 |h〉 = (h− n)Ln |h〉, hence

Ln |h〉 = 0, for n ≥ 1.

This allows us to interpret the Ln, n ≥ 1 as annihilators. The states Ln, n ≤ −1
generate new states called descendants.

The vacuum of the theory is defined by the condition that it respects the
maximum number of symmetries. The maximal symmetry is

Ln |0〉 = 0, for n ≥ −1.

This state is the vacuum and it will always be assumed that it is the unique
state with this property.

The connection between lowest weight states and conformal fields is∣∣h, h̄〉 = φ(0, 0) |0〉 (2.5.2)

for a conformal field φ(z, z̄) of weights h and h̄. This state is a lowest weight
state with L0-eigenvalue h and L̄0-eigenvalue h̄. The conformal fields are also
often called (Virasoro) primary fields.
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2.6 Wess-Zumino-Witten theories
Often one deals with theories that have more symmetries than just the Virasoro
algebra. These theories have a larger symmetry algebra which contains the
Virasoro algebra as a subalgebra. These generalised algebras are often called
chiral algebras, since they are generated by currents that are holomorphic or
anti-holomorphic. One advantage of a larger symmetry algebra is that less
primary fields are required. The conformal spin of a current is the difference
between the holomorphic and anti-holomorphic conformal weights h − h. In
terms of the conformal spin a classification of extensions of the Virasoro algebra
is

1
2 Free fermions

1 Affine Lie algebras
3
2 Superconformal algebras

2 Virasoro tensor products

> 2 W-algebras.

We are interested in conformal field theories with the extended symmetry of an
affine Lie algebra.

In section 2.8 we will describe vertex algebras. A vertex algebra has the
structure of the chiral part of a conformal field theory. Vertex algebras can be
constructed from affine Lie algebras [FZ] and they have the additional symmetry
of the affine Lie algebra. Then the conformal fields correspond to the highest
weights of a highest weight representation of an affine Lie algebra in the same
way as in (2.5.2) for Virasoro highest weights. In physics these conformal field
theories are called Wess-Zumino-Witten theories. A nice reference is [F1] and a
summary is given in [Schw].

Wess-Zumino-Witten theories are defined as those conformal field theories
whose chiral symmetry algebra is generated by at least the energy-momentum
tensor T (z) and the currents

Ja(z) =
∑
m

z−m−1T̂ am

whose modes satisfy the commutation relations of the Virasoro algebra and
[Ln, T̂

a
m] = −mT̂ an+m. One also requires the Virasoro generators Ln to be of the

Sugawara form, i.e.

Ln =
1

2(k∨ + g∨)

∑
m

κ̄(T̄ a, T̄ b) : T̂ an+mT̂
b
−m :,

where the T̂ an+m generate the centrally extended loop algebra ĝ of a certain Lie
algebra ḡ (Adding a derivation to ĝ gives the affinisation g of ḡ (4.2.2)). The
level k∨ of the relevant g-modules, the dual Coxeter number g∨ and the killing
form κ̄ are introduced in chapter 4. The sum makes only sense if one introduces
normal ordering : :. A possible normal ordering prescription is

: ambn :=

{
ambn for m ≤ 0
bnam for m > 0

.
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To get a consistent theory the factor (k∨ + g∨)−1 and hence the level k∨ must
be a constant. Therefore it is necessary that all representations appearing in a
Wess-Zumino-Witten theory have the same level. Many quantities of interest
can be studied in terms of the finite-dimensional simple Lie algebra ḡ and of the
level k∨. For example the Virasoro central charge is

c(g, k∨) =
k∨ dim ḡ

k∨ + g∨
.

2.7 Fusion rules and simple currents
The three point function 〈0|φi(z1)φj(z2)φk(z3) |0〉 of conformal fields φi, φj , φk
of conformal weight h1, h2, h3, equals

Cijk(z1 − z2)h3−h1−h2(z2 − z3)h1−h2−h3(z3 − z1)h2−h3−h1 .

The operator product of two operators φi, φj can be expanded in a complete set
of operators. Taking the limit z1 → z2 one can show that the operator product
expansion has the form

φi(z, z)φj(w,w) = Cijk(z − w)hk−hi−hj (z − w)hk−hi−hjφk(w,w).

The coefficients Cijk satisfy certain selection rules called fusion rules which can
be written as follows

φi × φj =
∑
k

Nk
ijφk.

The value of Nk
ij indicates the number of distinct ways of coupling the fields.

The fusion rules are related to the modular transformation properties of the
partition function of the theory. The partition function can be written as

P (τ, τ) =
∑
ij

Mijχi(τ)χj(τ). (2.7.1)

Here i and j label certain highest weight states, i standing for the holomorphic
part and j for the anti-holomorphic part, Mij its multiplicity. The functions χ
are the characters of the representations (see chapter 6). The transformation
properties of χi under τ 7→ − 1

τ is given by the symmetric matrix S

χi(−1/τ) =

N−1∑
j=0

Sijχj(τ).

The fusion rule coefficients are determined by S:

Nij
k =

N−1∑
n=0

SinSjnS
†
kn

S0n
.

This is the Verlinde formula, it implies that the fusion algebra is both associative
and commutative.

If a primary field φi has the following simple fusion rules

φi × φj = φi′
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for all fields φj , then φi is called a simple current. Simple currents organise the
fields in a conformal field theory into orbits of order dividing N . They form an
abelian group called the centre of the conformal field theory. One can regard
the action of the centre on the primary fields as an extension of the conformal
field theory. Then the fields are given by a set of orbit representatives and the
centre. In this case the centre is also called glue group.

In this thesis we are interested in simple currents of certain Wess-Zumino-
Witten theories. Therefore we need the following result of [F2]: Except for
the trivial simple current, a primary field φΛ is a simple current of the Wess-
Zumino-Witten theory with underlying affine Lie algebra g (except for g = E8

level 2) at level k if and only if Λ is a k-multiple of a cominimal fundamental
weight.

2.8 Vertex algebras

A nice reference for this section is [K2] and a compact overview is [Sch3].
A chiral algebra is the algebra of all holomorphic fields of a conformal field

theory. Chiral algebras and vertex algebras are essentially the same, we state
the definition of [K2] of a vertex algebra. Let V = V0̄ ⊕ V1̄ be a direct sum of
two vector spaces. 0̄ and 1̄ stand for the cosets in Z/2Z of 0 and 1. An element
a in V has parity p(a) in Z/2Z if a in Vp(a). A field is a series of the form a(z) =∑
n∈Z anz

−n−1 where an in End(V ) and for each v in V one has anv = 0 for n
sufficiently large. The vector space V together with a vacuum vector |0〉 in V0̄

and a parity preserving state-field correspondence a 7→ a(z) =
∑
n∈Z anz

−n−1

(parity preserving means p(anb) = p(a)+p(b)) is a vertex algebra if the following
axioms are satisfied:

The operator T on V defined by Ta = a−2 |0〉 satisfies

[T, a(z)] = ∂a(z);

(translation covariance)

|0〉 (z)a = a and a(z) |0〉 |z=0 = a; (vacuum)

(z − w)na(z)b(z) = (−1)p(a)p(b)(z − w)nb(z)a(z) holds for n sufficiently large.
(locality)

A vertex algebra containing a Virasoro element ω in V0̄ satisfying

1. The operators Lm = ωm+1 give a representation of the Virasoro algebra
of central charge c, i.e.

[Lm, Ln] = (m− n)Lm+n +
m3 −m

12
δm+n,0c;

2. L0 is diagonalisable on V ;

3. T = L−1;

is called a conformal vertex algebra of central charge c.
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We are interested in vertex algebras associated to representations of affine
Lie algebras. Frenkel and Zhu showed in [FZ] that one can provide certain
representations of affine Lie algebras with the structure of a vertex algebra.

We are also interested in vertex algebras associated to a lattice L of finite
rank d, since it can be thought of as a bosonic string theory with d space-
time dimensions compactified on a torus. L represents the allowed momentum
vectors of the theory.

We summarise the construction of a vertex algebra to a given integral lattice
L with bilinear form (·, ·). First we decompose the integral lattice L = L0̄ ∪ L1̄

with L0̄ = {α ∈ L|α2 = 0 mod 2} and L1̄ = {α ∈ L|α2 = 1 mod 2}. Define
h = L⊗Z R and the bosonic Heisenberg algebra

ĥ = h⊗ R[t, t−1]⊕ Rc

with central element c and commutation relation

[h1(m), h2(n)] = mδm+n,0(h1, h2)c.

Here h1(m) denotes h1⊗tm. Then ĥ− = h⊗t−1R[t−1] is an abelian subalgebra of
ĥ and by S(ĥ−) we mean the symmetric algebra of polynomials in ĥ−. Physically
the elements of S(ĥ−) can be interpreted as oscillators. Further we need a 2-
cocycle ε : L× L→ {±1} with the properties:

ε(α, 0) = ε(0, α) = 1

ε(α, β) = (−1)(α,β)+α2β2

ε(β, α)

ε(α, β + γ)ε(β, γ) = ε(α, β)ε(α+ β, γ)

This gives us the twisted group algebra R[L]ε with basis eα, α in L and products

eαeβ = ε(α, β)eα+β .

Now we have the vector space

V = S(ĥ−)⊗ R[L]ε

which can be provided with the structure of a vertex algebra.
V decomposes into a direct sum V = V0̄ ⊕ V1̄ with Vī = S(ĥ−)⊗ R[Lī]ε.
The Heisenberg algebra ĥ has a natural action on V with h(−n) acting

multiplicatively for n > 0, h(0)eα = (h, α)eα and h(n)eα = 0 for n > 0.
Therefore we call the h(−n), n > 0 creation operators and the h(n), n > 0
annihilation operators.

A vertex algebra structure is obtained by defining:

eα(z) = eα(z)+eα(z)−

with eα(z)+ = eα exp{
∑
m>0

α(−m)
zm

m
}

eα(z)− = zα(0) exp{−
∑
m>0

α(m)
z−m

m
}

and with h(z) =
∑
n∈Z h(n)z−n−1 we set

h(−n− 1)(z) = ∂(n)
z h(z) for n ≥ 0.
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The bosonic normal ordering is defined by putting all creation operators to the
left of all annihilation operators. Then with

(h1(−n1 − 1) · · ·hk(−nk − 1)eα)(z) =

eα(z)+ : h1(−n1 − 1)(z) · · ·hk(−nk − 1)(z) : eα(z)−

extended linearly to V it becomes a vertex algebra with vacuum 1⊗ e0.

2.9 The BRST-construction
The BRST-construction (Becchi-Rouet-Stora-Tyutin) is a formalism to obtain
a Lie algebra g out of a vertex algebra V . Since V describes the chiral states of
a conformal field theory, g can be interpreted as a Lie algebra of chiral physical
states. The BRST-construction can be applied to a Z graded differential algebra
A =

⊕
n∈Z

An with an additional Z2-grading A = A0̄⊕A1̄ the elements of A0̄ being

the bosonic states and those of A1̄ the fermionic states plus the ghosts. Since we
are interested in a bosonic string theory we don’t need fermions, so A1̄ contains
only ghosts. We assume that there is a fermionic operator Q satisfying Q2 = 0
and QAp ⊆ Ap+1. Then we have the following chain

· · · Q−→ Ap−1
Q−→ Ap

Q−→ Ap+1
Q−→ · · ·

with ImQ|Ap−1
⊆ KerQ|Ap . This allows us to define the cohomology groups

Hp = KerQ|Ap/ImQ|Ap−1
whose elements can be interpreted as physical states.

We will apply the construction explicitly in chapter 7. We are interested in an
anomaly free bosonic string theory. Therefore let V be a conformal vertex al-
gebra whose Virasoro algebra has central charge 24 and VII1,1 the vertex algebra
of the unique even unimodular Lorentzian lattice II1,1. Then V ⊗ VII1,1 repres-
ents the Fock space of a bosonic string. The ghost system is the lattice vertex
algebra of the one dimensional standard lattice Z. It has central charge −26,
hence the central charge of V ⊗ VII1,1 ⊗ VZ vanishes, which makes the theory
anomaly free.

2.10 Meromorphic c = 24 conformal field theories
This thesis bases on the list of possible meromorphic conformal field theories of
central charge 24 in [S3]. We already noted that such conformal field theories are
of particular interest, since they allow us to construct bosonic string theories.

In [S3] conformal field theories with the simplest kind of fusion rules are
considered. These are those theories with one primary field 1 and fusion rule
1× 1 = 1. The modular transformation properties of these theories are simple.
In particular if the central charge is a multiple of 24 the partition function
is modular invariant, and one can consider a corresponding purely chiral con-
formal field theory. In such a theory all correlation functions are meromorphic,
therefore we call these theories meromorphic conformal field theories.

The aim of [S3] is to obtain a list of all possible meromorphic conformal field
theories of central charge 24. Therefore some trace-identities and the fact that
the character must be modular invariant are considered. It is shown that if the
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number of spin-1 currents does not equal 0, then the chiral algebra contains a
spin-1 algebra with total charge 24. Hence the partition function of any such
theory must be a modular invariant combination of affine Lie algebra characters.
The trace identities hold only for 69 distinct combinations of affine Lie algebra
highest weight representations. The modular transformation properties of the
characters are well known (chapter 13 in [K1]). So one calculates exactly one
modular invariant partition function for each of the 69 cases. The results are
listed at the end of [S3]. In this thesis we consider conformal field theories V
with spin-1 algebra Ârp−1,p where r = 48/(p2 − 1) and p = 2, 3, 5 or 7.

So far it is a problem to construct all these theories. There are 24 conformal
field theories associated to the Niemeier lattices. Applying Z2 orbifold twists
yield 15 more theories (see [DGM]). Proofs for most of the remaining cases are
conjectured using Z3 orbifold twists or applying Z2 orbifold twists to the twisted
theories (see [M1] and [M2]).



Chapter 3

Modular forms and lattices

In this chapter some aspects of modular forms and lattices are briefly introduced,
since they are necessary to proof the main results of this thesis. Introductions
to modular forms are found in [KK] and [FB]. Introductions to lattices are
found in [CS] and [E]. For a complete overview we refer to [CS], except for
the part about the Weil representation which can be found in [Bu].

3.1 The modular group

The modular group SL(2,Z) = Γ is the group consisting of all 2×2 - matrices
with determinant 1. It acts on the upper half plane H = {τ ∈ C |Im τ > 0} via

τ 7→Mτ =
aτ + b

cτ + d
,

with M =
(
a b
c d

)
∈ SL(2,Z). SL(2,Z) is generated by T =

(
1 1
0 1

)
and S =

(
0 1
−1 0

)
,

which will be proven later. One defines the exact fundamental domain of Γ as

F(Γ) := {τ ∈ H | −1

2
< Re τ ≤ 1

2
, |τ | ≥ 1 and |τ | > 1 for − 1

2
< Re τ ≤ 0}

The name is justified by the following facts:
• for every τ in H exists an M in Γ such that Mτ in F(Γ)
• τ and Mτ in F(Γ), M in Γ, iff

1) τ = Mτ and τ = i , M = ±S or
2) τ = Mτ and τ = e2πi/6 , M = ±TS or ±(TS)2

Now we consider a subgroup Λ of Γ. A fundamental domain of Λ is a subset F
of H with the following properties:
• F is closed in H.
• for every τ in H exists a M in Λ with Mτ in F .
• If τ and Mτ , M in Λ, are in the open kernel of F , then M = ±Id.
Let Λ′ be the subgroup of Γ generated by Λ and −Id and

Γ =
⋃

1≤ν≤[Γ:Λ′]

Λ′Mν

24
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a disjoint union of Γ in right congruence classes of Λ′, where the Mν are not
unique. One can show that

F(Λ) =
⋃

1≤ν≤[Γ:Λ′]

MνF

is a fundamental domain of Λ [KK]. The cusps of F(Λ) are the images of
Λ′Mν ı̇∞ of ı̇∞.
The principal congruence group (mod N) is defined as follows:

Γ(N) = {M in Γ | M ≡ Id mod N}.

Another important class of subgroups of Γ is

Γ0(N) =

{ (
a b
c d

)
in Γ | c ≡ 0 mod N

}
. (3.1.1)

The index of Γ0(N) in Γ is given by N
∏
p|N (1 + 1

p ). Therefore the number of
cusps of Γ0(N) is finite, a complete set of representatives for the cusps is given by
a
c for c|N , c > 0, 0 < a ≤ (c, Nc ) and (a, c) = 1. Γ0(p), for p prime, is generated
by T and

(
a b
p k

)
∈ Γ , 0 < k < p, a and b such that the matrix is in Γ. This fact

is proven by induction to |c|: For c = 0 it is true, since Tm =
(

1 m
0 1

)
. Now let

|c| > 0,
(
a b
c d

)
in Γ0(p) arbitrary, then

(
? ?
p k

)
Tm
(
a b
c d

)
=
(
? ?
c′ ?

)
, c′ = p(a+mc) + kc.

Choose m such that −|c| < (a+mc) < 0, then |c′| = |p(a+mc) + kc| < |c| for
one k, 0 < k < p.

3.2 Modular forms
Let f be a meromorphic function on H, then forM in SL(2,R) the meromorphic
function on H f |kM is defined by

(f |kM)(τ) = (cτ + d)−kf(Mτ), k in Z.

The function f is called modular of weight k, if f is meromorphic on H and
f |kM = f for every M in Γ. A function f is called a modular form of weight k,
if f is modular of weight k and f has at most one pole at i∞, or equivalently if
f has a Fourier-expansion of the form

f(τ) =
∑
m≥m0

αf (m) e2πimτ ,

which for suitable γ > 0 for Im τ ≥ γ absolute and compact-uniform converges.
The modular forms of weight k form a vector space over C. The modular forms
of weight 0 form a field. A modular form f of weight k is called integral, if f
is holomorphic on H and if there is no pole at i∞, or equivalently if f has a
Fourier-expansion of the form

f(τ) =
∑
m≥0

αf (m) e2πimτ ,

which for suitable γ > 0 for Im τ ≥ γ absolute and compact-uniform converges.
The space of integral modular forms of weight 0 is C.
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Now we consider modular forms of a congruence group. A subgroup Λ of Γ is
called a congruence group, if there exists a positive n, such that Γ(n) ⊂ Λ. The
index in Γ of a congruence group is finite. A group homomorphism

χ : Λ −→ {z ∈ C | |z| = 1}

is called an abelian character of Λ. The trivial character, which maps every
element of Λ onto 1, will be denoted by 1.
A function f : H → C is called an integral modular form of weight k for the
congruence group Λ and the abelian character χ, if
• f is holomorphic on H
• f |kL = χ(L)f for every L in Λ.
• f |kM is holomorphic at ı̇∞ for every M in Γ.
The set Mk(Λ, χ) of all integral modular forms of weight k to Λ and χ is a vector
space over C. One can show ( [KK] p.172) that

M0(Λ, 1) = C. (3.2.1)

3.3 The Dedekind η-function

The Dedekind η-function is a holomorphic function η : H→ C defined by

η(τ) = eπı̇τ/12 ·
∞∏
m=1

(1 − e2πı̇mτ )

The T transformation is η(τ + 1) = eπı̇/12 · η(τ), and the S transformation is
η(−1/τ) =

√
τ/ı̇ · η(τ)( [KK] p.168). Since the product

∏∞
m=1(1 − e2πı̇mτ ) is

absolute convergent one has η(τ) 6= 0 for every τ in H (cf. [FB] p.196). The
general transformation properties are the following (cf. [R] p.163):

for M =
(
a b
c d

)
∈ Γ with c > 0

η(Mτ) = ε(M) ·
√
cτ + d/i · η(τ)

ε(M) :=

{ (
d
c

)
ı̇

1−c
2 e

πı̇
12 (bd(1−c2)+c(a+d)) , c odd(

c
d

)
e
π ˙ıd
4 e

πı̇
12 (ac(1−d2)+d(b−c)) , d odd(d

c

)
is the Legendre-Jacobi symbol

(3.3.1)

this yields [Sch1],

η((kSτ + j)/m) = ε(A)
√
mτ/m′i η((k′τ + j′)/m′)

A =

(
j/k′ −(jj′ + kk′)/km
m/k′ −j′/k

) (3.3.2)

with j, k,m and j′, k′ and m′ integers such that A in SL(2,Z), km = k′m′ and
m/k′ > 0. Some examples are calculated in appendix C since they are necessary
for our purpose.
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3.4 Lattices
A lattice L is a finitely generated free Z-module with a Q-valued quadratic
form q : L → Q, such that the associated bilinear form (·|·), ((a, b) 7→ (a|b) :=
q(a+b)−q(a)−q(b)) is non degenerate. Note that q(a) = a2/2. Two lattices L1

and L2 are isomorphic (isometric) if there exists an isomorphism of Z-modules
ν : L1 → L2 which preserves the bilinear form.

A lattice (L, q) is called integral if the bilinear form takes only integral values
on L. Further, we say that L is an even lattice if the quadratic form q is integral.
The vector space V := L ⊗Z R arises in a natural way from the lattice L. A
quadratic form on L can be uniquely continued to a quadratic form of V . Then
there exists a basis B = {e1, . . . , er} of V with L =

∑r
i=1 Zei. B is called a

basis of the lattice L, r the dimension of the lattice and the signature of L is
the signature of the space (V, q). The matrix

A := A(L,B) := ((ei|ej))i,j=1,...,r

is called the Gram matrix of the lattice L relative to the basis B. Two lattices
L and M of the same dimension r are isomorphic if and only if there exist two
basis B and C and a T in GLr(Z) such that

A(M, C) = T tA(L,B)T.

The discriminant disc(L) of a lattice L is the absolute value of the determinant
of the Gram matrix, (note that the determinant is independent of the choice of
the basis). An unimodular lattice is a lattice with discriminant 1.

The dual lattice L′ of an integral lattice L is the module

L′ = {v ∈ L⊗Z R : (v|L) ⊆ Z}.

with the quadratic form q. The Gram matrix of L′ is the inverse of the Gram
matrix of L. Since L is integral L ⊂ L′, the factor group L′/L is called the
discriminant group of L, it is of the order disc(L). The level of an even lattice
is the smallest natural number N such that Nq(γ) is integral for every γ in
L′. For a positive definite lattice the minimal norm is the smallest norm of the
nonzero lattice vectors.

Two integral quadratic forms are said to be in the same genus if they are
equivalent over R and the p-adic integers for all prime numbers p. For our
purposes it is sufficient to consider genera of even lattices whose discriminant
group is Zkp, where p is prime and k ∈ Z>0. Such genera are uniquely determined
by the signature (r, s), p, k and a generalised version of the Jacobi-Legendre
symbol which can take the values + and −. It is symbolised by

IIr,s(p
±k).

Unless k = r+s and p 6= 2, the sign can be determined by the equation (cf. [CS,
p. 386, Th. 13])

r − s ≡ ±2− 2− (p− 1)k mod 8 (3.4.1)

For p = 2 the sign is listed in table 15.5 on page 387 of [CS]. Two lattices of
the same genus are not necessarily isometric, but lattices of the same isometry
class are in the same genus.
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It is often necessary to rescale a lattice, changing L to L̃ = kL = {kx :
x ∈ L}, k in R. The parameters of L and L̃ are related as follows: Ã = k2A,
disc(L̃) = k2n disc(L) (n is the rank of L) and minimal norm of L̃ = k2 minimal
norm of L. We denote

√
kL by L(k). Obviously, kL ∼= L(k2). If L is even and

k in Z>0 then the map

L′/kL→ (
√
kL)′/(

√
kL) = 1/

√
kL′/

√
kL

with
x+ kL =

√
k(x/

√
k +
√
kL) 7→ x/

√
k +
√
kL

is an isomorphism of groups.

3.5 Gluing Theory

We want to describe the general n-dimensional integral lattice L that has a
sublattice which is a direct orthogonal sum L1 ⊕L2 ⊕ · · · ⊕Lk of given integral
lattices L1, . . . , Lk of total dimension n. Any vector of L can be written

y = y1 + y2 + · · ·+ yk (3.5.1)

where each component yi is in the subspace spanned by Li. Since the inner
product of yi with any vector of Li is the same as the inner product of y with
that vector it is an integer and hence yi must be in the dual lattice L′i.

Any yi can be altered by adding a vector of Li, so yi is a representative of a
system of representatives for the cosets of Li in L′i. They are called glue vectors.
The quotient group L′i/Li is called the glue group for Li. So L is generated by
L1 ⊕ L2 ⊕ · · · ⊕ Lk and certain glue vectors yi (3.5.1).

3.6 The Lattice An and the hyperbolic plane

In this thesis Euclidean lattices (s = 0) (especially An) and Lorentzian lattices
(s = 1) are considered. An important Lorentzian lattice is the hyperbolic plane,
which is the unique even unimodular two dimensional lattice II1,1 with Gram
matrix

A =

(
0 1
1 0

)
.

The lattice An, n ≥ 1 is defined by

An = {(x0, x1, . . . , xn) ∈ Zn+1 | x0 + . . .+ xn = 0}, (3.6.1)

with basis B = {(−1, 1, 0, . . . , 0), (0,−1, 1, 0, . . . , 0), . . . , (0, . . . ,−1, 1)} and Gram
matrix

A =



2 −1 0 . . . 0 0
−1 2 −1 . . . 0 0

0 −1 2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 2 −1
0 0 0 . . . −1 2


. (3.6.2)
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The minimal norm is 2, the discriminant is n+ 1, the glue group is Z/(n+ 1)Z
and the glue vectors are

[i] =
( i

n+ 1
, . . . ,

i

n+ 1︸ ︷︷ ︸
(i−n−1)−times

,
i− n− 1

n+ 1
, . . . ,

i− n− 1

n+ 1︸ ︷︷ ︸
i−times

)
i = 0, . . . , n (3.6.3)

This yields

A′n =

n⋃
i=0

([i] +An),

the discriminant of A′n is 1/(n+ 1) and the minimal norm is n/(n+ 1).

3.7 The Weil representation

Of primary importance for our considerations are modular forms for the Weil
representation of SL(2,Z).

Let L be an even lattice of even dimension, L′/L its discriminant group.
The set of formal linear combinations

∑
γ∈L′/L xγe

γ , xγ in C, can be extended
to a C-algebra by defining eγeδ := eγ+δ. This algebra is the group ring C[L′/L]
of the discriminant group. It has a hermitian bilinear form
(
∑
γ xγe

γ ,
∑
δ yγe

δ) :=
∑
γ xγ ȳγ .

The Weil representation of SL2(Z) on C[L′/L] is defined by

ρL(T )eγ = e(−γ2/2) eγ

ρL(S)eγ =
e(sign(L)/8)√
|L′/L|

∑
β∈L′/L

e((γ, β)) eβ .

where S =
(

0 −1
1 0

)
and T = ( 1 1

0 1 ) are the standard generators of SL2(Z).
A modular form for the Weil representation ρL of weight k, k in Z, is a

holomorphic map F from the upper half plane H to C[L′/L] which transforms
as

F
(aτ + b

cτ + d

)
= (cτ + d)kρL

((
a b
c d

))
F (τ).

F (τ) can be written as
F (τ)

∑
γ∈L′/L

fγ(τ)eγ .

The transformation properties of the components fγ are (e(a) = e2πia):

fγ(τ + 1) = e(−γ2/2) fγ(τ)

fγ(−1/τ) =
e(sign(L)/8)√
|L′/L|

τk
∑

β∈L′/L

e((γ, β)) fβ(τ)

Such modular forms can be constructed by lifting scalar valued modular
functions for Γ0(N) [Sch1]. Suppose that the level of L′/L divides N . Let f be
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a scalar valued modular function for Γ0(N) of integral weight k and character
χL. Then

F (τ) =
∑

M∈Γ0(N)\Γ

f |M (τ) ρL(M−1)e0

is a vector valued modular form for ρL of weight k which is invariant under the
automorphisms of the discriminant group.

Now we consider the following cases. Let p be a prime such that p2 − 1
divides 48, i.e. p = 2, 3, 5 or 7. Then there is an automorphism of the Leech
lattice of cycle shape 1mpm with m = 24/p+ 1. The fix-point lattice Λp is the
unique lattice its genus without roots. Let

L = Λp ⊕ II1,1(p)⊕ II1,1 .

Then L has level p and genus

II2m+2,2(pεp(m+2))

with εp = +,−,+,+ for p = 2, 3, 5, 7. The eta product

h(τ) =
1

η(τ)mη(pτ)m
= q−1 +m+

1

2
. . . (3.7.1)

is a modular function for Γ0(p) of weight −m with poles at the cusps 0 and
i∞. Note that for p = 7 the function f has character χ(j) =

(
j
7

)
. We define

functions gk by
h(τ/p) = g0(τ) + g1(τ) + · · ·+ gp−1(τ) (3.7.2)

with gj |T (τ) = e(j/p)gj(τ), i.e.

gj(τ) =
1

p

p−1∑
k=0

e(−kj/p)h
(
(τ + k)/p

)
. (3.7.3)

We can lift the function h to a modular form F =
∑
Fγe

γ on the discriminant
of L. Then F has components

Fγ(τ) = f(τ) + g0(τ) if γ = 0 (3.7.4)

= gj(τ) if γ 6= 0 and γ2/2 = −j/p mod 1 . (3.7.5)

The components Fγ with γ2/2 = 0 mod 1 are modular for Γ0(p) of weight −m
and with nontrivial quadratic character in the case p = 7.

This result will become important in chapter 6, where we calculate the coef-
ficients of the partition function.

3.8 Theta Functions
The theta functions of a lattice transform under the dual Weil representation.

Let L ⊂ Rn, n even, be a lattice, z in Rn and τ in H then the theta function
ϑz+L(τ) is defined as:

ϑz+L(τ) =
∑
x∈L

eπı̇τ(x+z)2

(3.8.1)
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One can also show that the theta functions are invariant under the action of the
principal congruence subgroup of N , where N is the level of L [E]

(ϑρ+L|n2 A)(τ) = ϑρ+L(τ) for A =

(
a b
c d

)
in Γ(N) and ρ in L′

and also

(ϑL|n2 A)(τ) =

(
∆

d

)
ϑL(τ) for A =

(
a b
c d

)
in Γ0(N)

holds (∆ = (−1)
n
2 disc(L) and

(
∆
d

)
is the Jacobi-Legendre symbol).



Chapter 4

Lie algebras

In this chapter Lie algebras are considered, in particular affine Lie algebras and
generalised Kac-Moody algebras. A complete introduction from a physical point
of view is given in [KMPS] and [F1]. For mathematicians the standard reference
is [K1]. [H] and [FH] introduce finite dimensional Lie algebras.

We first recall how Lie algebras typically appear in quantum mechanics.
A quantum field theory is usually formulated in terms of the Lagrangian. Of
major importance is the symmetry group of the Lagrangian, which is the group
of those transformations of the fields that leaves the Lagrangian unchanged. The
continuous part of this group is the Lie group G of the Lagrangian. The set of
infinitesimal transformations of G form a Lie algebra, which is often viewed as a
linear approximation of the group. For many purposes, e.g. if one is interested
in local symmetries, the Lie algebra is more convenient than the Lie group G.

In quantum mechanics one has a Hilbert space of physical states on which the
observables act as linear operators. The Hilbert space carries representations of
G and its Lie algebra, a knowledge of the representation theory is of primary
importance in finding a solution to a quantum mechanical problem. Symmetry
properties of the problem can be related to known properties of Lie groups and
Lie algebras.

4.1 Finite dimensional Lie algebras

A Lie group is a set endowed simultaneously with the compatible structure of
a group and a C∞ manifold. Compatible means that multiplication and inverse
operation are differential maps. A Lie algebra g is a vector space together with
a skew-symmetric bilinear map, the Lie bracket,

[ , ] : g × g −→ g

satisfying the Jacobi identity

[[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ] = 0 for X,Y, Z in g.

Lie algebras are related to Lie groups. The tangent space on the neutral
element of a Lie group G is a Lie algebra g. This can be seen as follows: let x

32
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and y be smooth curves in G containing the unit element, say x(0) = y(0) = 1,
then the tangent vectors of x and y on 1 are

X =
d

dt
x(t)|t=0 and Y =

d

dt
y(t)|t=0.

The Lie algebra g is the real span of all such tangent vectors. We have the scalar
multiplication

λX =
d

dt
x(λt)|t=0,

the addition
X + Y =

d

dt
x(t)y(t)|t=0

and the Lie bracket

[X,Y ] =
1

2

d2

dt2
[x(t), y(t)]|t=0,

where [x(t), y(t)] is the group commutator. Then skew-symmetry and Jacobi
identity are satisfied. Of primary importance is the exponential map, exp : g→
G which maps some neighbourhood of 0 in g to some neighbourhood of 1 in G.
For any X = d

dtx(t)|t=0 in g we obtain the adjoint representation Ad(g), g in
G, by conjugating x with g:

Ad(g)(X) =
d

dt
gx(t)g−1|t=0

If g = exp(Y ) then the adjoint representation ad of the Lie algebra g is

(adY )(X) = [y, x], X, Y ∈ g,

its relation to Ad is (Ad(expY ))(X) = (exp(adY ))X, via the Baker-Campbell-
Hausdorff formula.

Denote by T the maximal abelian connected subgroup of G, and by g′0
its Lie algebra. Set g0 = ig′0, then we have the modified exponential map
exp(2πi(·)) : g0 −→ T,X −→ exp(2πiX). The kernel of exp(2πi(·)) in g0 is a
lattice L (the bilinear form is the killing form (4.1.3)).

Suppose that G acts as unitary linear operators on some complex finite
dimensional vector space V . Since T is abelian its operators can be simultan-
eously diagonalised (which means in physics that the corresponding observables
can be measured simultaneously). Then there exists a basis {vj} of V such that
tvj = cj(t)vj , t in T and cj(t) in the unit circle. For X in g0, we then have
a map µj : g0 → R with exp(2πi(X))vj = e2πiµj(X)vj . In particular, for X in
L, exp(2πi(X)) = 1 ∈ t ,thus µj : L→ Z. The µj are the weights of the module
V , they lie in the dual lattice L′. V decomposes into a direct sum of weight
subspaces

V =
⊕
µ∈L′

V µ,

V µ = {v ∈ V | exp(2πi(X))v = e2πiµj(X)v, for all X in g0},
(4.1.1)

the dimension of the weight subspaces is called the multiplicity of the weight.
The set of weights will be denoted by P (V ). Via the adjoint representation we
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obtain the root space decomposition g =
⊕
µ∈L′

gµ. Let ∆ = P (g) \ {0}, then the

root space decomposition is

g = h⊕
⊕
α∈∆

gα (4.1.2)

with ∆ = −∆ and h := g0 is a Cartan subalgebra. The elements in ∆ are called
roots. For finite dimensional g, all roots have multiplicity one, in general this is
not true. The sublattice of L′ generated by ∆ is the root lattice Q. L′/Q is the
congruence group and its elements are the congruence classes.

Up to now the lattices have no geometric structure, therefore we introduce
a bilinear form, called the killing form.

(X|Y ) = Tr ad(X) ad(Y ), X, Y ∈ g (4.1.3)

which is invariant

([X,Y ]|Z) = (X|[Y,Z]) for X,Y, Z ∈ g

For semisimple Lie algebras it is non degenerate. L is integral, so we have
L ⊆ L′. The isomorphism

ν : h −→ h∗ h 7→ (h|·) (4.1.4)

allows the weight lattice and the root lattice to be considered as subsets of the
Cartan subalgebra h. For each root α ∈ ∆ define the Weyl reflection

rα : h∗R → h∗R, µ 7→ µ− 2
(µ|α)

(α|α)
α.

The group W generated by all rα is the Weyl group. Each generator rα has a
set of fixed points

Pα = {µ ∈ hR : (µ|α) = 0}

which is a hyper plane in hR. They divide hR into disjoint open sets, which are
cones. These cones are called Weyl chambers and W acts simply transitively
on them. If we choose one such chamber C, and a set of roots bounding it, we
obtain a basis α1, . . . , αn of Q. Since Pα = P−α, we may choose the basis in
such a way that C is the positive cone

C = {µ ∈ hR : (µ|αi) ≥ 0 for i = 1, . . . , n}.

The roots α1, . . . αn are called simple roots. Note that, since ∆ is stable under
the action of W , the simple roots are a set of orbit representatives in ∆ of W .

Each root can be expressed as a sum of simple roots with entirely non-
negative or non-positive coefficients. This gives a partition

∆ = ∆+ ·∪∆−

where ∆+ refers to non-negative coefficient roots and ∆− to non-positive coef-
ficient roots. For α ∈ ∆+ we simply write α > 0. With n± :=

⊕
α∈∆±

gα (4.1.2)

implies
g = n+ ⊕ h⊕ n−.
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We later identify n± with sets of annihilation and creation operators acting on
highest weight representations of g.
{α∨j } with α∨i = 2 ( · |αi)

(αi|αi) is a basis of L, the coroot basis. Together, the αi
and α∨i define the Cartan matrix

A = (aij)
n
i,j=1 :=

(
2

(αi|αj)
(αi|αi)

)n
i,j=1

.

Any simple Lie algebra is completely characterised by the indecomposable
Cartan matrix, requiring that

(C1) aii = 2,

(C2) aij ≤ 0 for i 6= j,

(C3) aij = 0⇔ aji = 0,

(C4) aij ∈ Z and

(C5) detA > 0

It is possible to recover the Lie algebra corresponding to the Cartan matrix
up to isomorphism from the Cartan matrix A:

Define the Cartan subalgebra as h := C2n−r, r the rank of A, with standard
scalar product

〈
·|·
〉
and orthonormal basis {hi}. Choose simple roots αi, i =

1, . . . , n, such that αi(hj) = δij , and simple coroots satisfying αi(α∨j ) = aij .
Then one obtains the Lie algebra corresponding to the Cartan matrix via

the Chevalley-Serre construction: let the Lie algebra g be generated by h ∈ h
and elements e1, . . . , en, f1, . . . , fn such that the relations

[h, h′] = 0 for h, h′ ∈ h,

[ei, fj ] = δijα
∨
i ,

[h, ei] = αi(h)ei,

[h, fi] = −αi(h)fi for h ∈ h,

(ad ei)
1−aijej = (ad fi)

1−aijfj = 0 for i 6= j

(4.1.5)

hold.

4.2 Kac-Moody algebras
Lie algebras arise in the description of symmetries, since many systems possess
infinitely many independent symmetries, infinite dimensional Lie algebras are
also important to physics. In particular Kac-Moody algebras are of importance,
we already mentioned its applications in two-dimensional conformal field theory.
They are also closely related to the symmetries of integrable quantum systems
(often called quantum groups).

A Kac-Moody algebra is a generalisation of the simple Lie algebras. A matrix
A = (aij)

n
i,j=1 obeying (C1–C4) is called a generalised Cartan Matrix. Further,

if all proper principal minors of a matrix are positive,

det A{i} > 0 ∀i = 0, . . . , r (4.2.1)
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we call this matrix degenerate positive semidefinite. A Kac-Moody algebra is
obtained from a generalised Cartan matrix. An affine Lie algebra corresponds to
a degenerate positive semidefinite generalised Cartan matrix with determinant
0. The simple Lie algebras are those with Cartan matrix A with det A > 0.
Instead of (4.2.1) the requirement that there exists a diagonal matrix D such
that DA is symmetric and positive semidefinite and that rank A = r is also
sufficient. Since the rank of an affine Cartan matrix is r, it has one right (ai)

r
i=0

and one left (a∨i )ri=0 eigenvector with eigenvalue zero. The ai (a∨i ) are called
Coxeter labels (dual Coxeter labels). Their sums are called Coxeter number h
(dual Coxeter number h∨). This allows us to fix D in such a way that

(αi|αj) =
a∨i
ai
aij .

The affine Lie algebras can be classified completely. By deleting the zeroth
column and row of an affine generalised Cartan Matrix one obtains its simple
counterpart. In the non twisted case one can also do the converse, this is called
affinisation. Given a simple Lie algebra g with Cartan subalgebra h and Killing
form (·|·) the affinisation of g is the vector space

ĝ := g⊗ C[t, t−1]⊕ CK ⊕ CD (4.2.2)

provided with (for x, y ∈ g, n,m ∈ Z and λ, µ ∈ C) the Lie bracket

[x⊗ tm + λD, y ⊗ tn + µD] :=

[x, y]⊗ tm+n + λntn ⊗ y − µmtm ⊗ x+mδm+n (x|y)K.

CK is the centre of ĝ and K = α∨0 + . . .+α∨p−1 is the canonical central element.
ĝ is isomorphic to the non twisted simple affine Lie algebra of the same type
and rank as g. The Cartan subalgebra ĥ of ĝ is h⊕ CK ⊕ CD. The element D
acts as a derivation t d

dt on g ⊗ C[t, t−1]. Setting λ(K) = λ(D) = 0 extends a
linear functional on h to ĥ. Then ĥ∗ can be defined as

ĥ∗ = h∗ ⊕ CΛ0 ⊕ Cδ

with linear functionals Λ0 and δ defined by

Λ0(h⊕ Cd) = 0 Λ0(K) = 1

δ(h⊕ CK) = 0 δ(d) = 1 .

This gives a natural projection · : ĥ→ h with Λ0 = δ = 0.
A set of simple roots {α1, . . . , αl} of g can be extended to a set of simple

roots {α0, . . . , αl} of ĝ with α0 = δ − θ and θ = a1α1 + · · ·+ anαn the highest
root.

4.3 Generalised Kac-Moody algebras
The fake monster Lie algebra led Borcherds to the definition of generalised
Kac-Moody algebras. Therefore these algebras are sometimes called Borcherds
algebras. A generalised Kac-Moody algebra is defined as follows. Let A = (aij)
be a real quadratic matrix satisfying
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aij = aji

aij ≤ 0 for i 6= j

2aij/aii ∈ Z if aii > 0.

Then the universal generalised Kac-Moody algebra Ĝ is the Lie algebra with
generators {ei, fi, hij} defined by the relations

[ei, fj ] = hij

[hij , ej ] = δijaikek

[hij , fj ] = −δijaikfk
(ad ei)

1−aij/aiiej = (ad fi)
1−aij/aiifj = 0 if aii > 0, i 6= j

[ei, ej ] = [fi, fj ] = 0 if aij = 0.

(4.3.1)

A generalised Kac-Moody algebra G is obtained from a universal generalised
Kac-Moody algebra Ĝ by factoring out a subspace of the centre and adding a
commuting algebra of outer derivations.



Chapter 5

Highest weight modules over
Kac-Moody algebras

In this chapter we state results of the representation theory of Kac-Moody al-
gebras, in particular the notion of a highest weight representation. Recall the
lowest weight representation of the Virasoro algebra on the space of conformal
fields (2.5.2). We are particularly interested in the character of such a represent-
ation. One of the main tasks of this thesis is to rewrite the characters of some
conformal field theories in a suitable manner. These theories are representations
of affine Lie algebras and hence its characters are composed of affine Lie algebra
characters.

The standard textbook about affine Lie algebras and its representation is
[K1].

5.1 Highest weight representations
A representation φ of the Lie algebra g is a homomorphism of g into End V , V
a vector space, i.e.

φ([X,Y ]) = φ(X) ◦ φ(Y )− φ(Y ) ◦ φ(X).

V is often called a g-module, and accordingly one writesX(v) instead of φ(X)(v)
for v ∈ V . While for g there is no definition of a product other than the Lie
bracket, for the representation φ one has the composition of maps. With the
help of this products one can define arbitrary power series. This is the concept
of the universal enveloping algebra U(g) which consists of all finite formal power
series in the elements of g (actually the definition of the universal enveloping
algebra is different but the equivalence to finite formal power series is shown
with the help of the Poincaré-Birkhoff-Witt-theorem). Each representation of g
uniquely induces a representation of the universal enveloping algebra U(g).

Recall the triangular decomposition

g = n+ ⊕ h⊕ n−

and the corresponding decomposition of the universal enveloping algebra

U(g) = U(n+)⊗ U(h)⊗ U(n−).

38
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A g-module V is called a highest weight module with highest weight Λ in h∗

if there exists a nonzero vector vΛ in V , the highest weight vector, such that h
acts diagonally, n+ annihilates vΛ and V is the orbit of vΛ under the action of
U(n−):

h(vΛ) = Λ(h)vΛ for h in h,

n+(vΛ) = 0 and
U(g)(vΛ) = V

(5.1.1)

There exists a unique up to isomorphism g-moduleM(Λ) with highest weight Λ
with the property that every g-moduleM(Λ) with highest weight Λ is a quotient
of M(Λ). This module is called a Verma module. It is a free U(n−)-module
of rank one generated by a highest weight vector and M(Λ) contains a unique
proper maximal submodule M ′(Λ). The quotient L(Λ) = M(Λ)/M ′(Λ) is the
unique irreducible highest weight module with highest weight Λ. Any highest
weight module V can be decomposed into a direct sum of weight spaces

Vλ = {v ∈ V |h(v) = λ(h)v for h ∈ h}.

The dimension of Vλ is called multiplicity of λ and is denoted by multV λ.
Having an irreducible highest weight representation L(Λ) one defines the

character chΛ to be the formal eλ expression

chΛ =
∑

λ∈P (V )

multΛ(λ)eλ. (5.1.2)

P (Λ) is the set of weights of L(Λ). The character of affine Lie algebras can be
identified with modular functions by setting eλ = q = e2πiτ , τ ∈ H. For the
character of a Kac-Moody algebra there exists a so called Weyl-Kac character
formula

chΛ =

∑
w∈W det (w)ew(Λ+ρ)∑
w∈W det (w)ew(ρ)

(5.1.3)

with the Weyl vector ρ which has the property (ρ|α) = −α2/2 for all simple
roots α. det (w) is one for w a product of an even number of simple Weyl
reflections and minus one otherwise. For the denominator the identity

eρ
∏
α∈∆+

(1− eα)mult(α) =
∑
w∈W

det (w)w(eρ)

holds.
For generalised Kac-Moody algebras, the imaginary simple roots affect the

right hand side, so that one gets a correction term S

eρ
∏
α∈∆+

(1− eα)mult(α) =
∑
w∈W

det (w)w (eρS) . (5.1.4)

S takes into account all roots composed of the imaginary simple roots, that is

S =
∑

α∈∆∪{0}

ε(α)eα (5.1.5)

where ε(α) is (−1)n if α is the sum of a set of n pairwise orthogonal imaginary
simple roots, and 0 otherwise (cf. [B3]). Identities of this form can be used to
construct generalised Kac-Moody algebras.
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5.2 Integrable highest weight representations of
affine Lie algebras

We are interested in integrable highest weight representations.
The weight lattice P is the set

P = {λ ∈ h∗|λ(α∨i ) ∈ Z i = 1, . . . , n}. (5.2.1)

Elements from P are called integral weights, P contains the root lattice Q.
The set of dominant weights P+ is the set of those elements of P with λ(α∨i )
nonnegative. A highest weight representation is called integrable if all ei and fi
are locally nilpotent on V . This condition is equivalent to

ei(vΛ) = 0, f
Λ(α∨i )+1
i (vΛ) = 0 for all 1 ≤ i ≤ n

Now we consider integrable highest weight representations of affine Lie al-
gebras. Let K be the canonical central element and define the level k of Λ in h∗

to be Λ(K). Denote by P k (respectively P k+) the set of (dominant) weights of
level k. The dual element of the canonical central element K is the null-root δ.
A weight λ is called maximal if λ+ δ is not a weight, the set of those weights is
denoted by max(Λ). The null-root yields a decomposition of the set of weights
into weight strings

P (V ) =
⋃
•

λ∈ max(Λ)

{λ− nδ : n ∈ Z≥0}. (5.2.2)

The aim of this section is to simplify the character, therefore we define the
modular anomaly of any dominant weight Λ:

mΛ =
|Λ + ρ|2

2(h∨ + k)
− |ρ|

2

2h∨
(5.2.3)

and introduce the normalised character

χΛ = e−mΛδ ch(V ). (5.2.4)

Further we define for any weight λ in P (V ) the rational number

mΛ,λ = mΛ −
|λ|2

2k

and the string function

cΛλ = e−mΛ,λδ
∑
n∈Z

multL(Λ)(λ− nδ)e−nδ (5.2.5)

(and cΛλ = 0 if λ not in P (V )).
For any Λ ∈ P k+, the character of Λ can be written as ([K1] chapter 12) (the

coefficients cΛλ , called string functions, will be introduced in the next section)

χΛ =
∑

λ∈Pk/(kM+Cδ)

cΛλ θ̃λ.
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M is the root lattice of Ân ([K1] chapter 6). Introduce the orthogonal projection
· from ĥ∗ toM⊗ZC (with δ = 0). The condition

〈
λ,K

〉
= k allows us to express

the sum in terms of P :
χΛ =

∑
λ∈P/kM

cΛ
λ
θ̃λ

P is the weight lattice of Ân, hence

χΛ =
∑

λ∈M∗/kM

cΛλθλ =
∑

λ∈M∗(1/k)/M(k)

cΛλθλ =
∑

λ∈M(k)∗/M(k)

cΛλθλ (5.2.6)

where
θλ =

∑
s∈λ+M(k)

q
1
2 s

2

e
√
ks.

θλ is a modular function on H×C` by mapping s→ (s, z) and setting q = e2πiτ .

5.3 String functions
Now only the explicit calculation of the string functions is missing. This is done
for some examples in [KP]. In this thesis the string functions of Â4-characters
are calculated in section 6.3.

A string function is holomorphic on the upper half plane and for a given
module L(Λ) there are only a finite number of distinct string functions, since

cΛw(λ)+mγ+aδ = cΛλ for w ∈ W, γ ∈ M and a ∈ C.

The coefficients of the Fourier expansion at i∞ of the string function cΛλ are the
weight multiplicities multΛ(λ−nδ). They can be calculated with the Freudenthal
recursion formula

(|Λ + ρ|2 − |λ+ ρ|2) multΛ(λ) = 2
∑
α∈∆+

mult(α)
∑
k≥1

(α|λ+ kα) multΛ(λ+ kα).

(5.3.1)
It is a consequence of the denominator identity ([KMPS]). Further we describe
the transformation properties of the string functions (for type A,B,E) under
the modular group Γ which is a result of [KP]

cΛλ (−1

τ
) = |M ′/kM |−1/2(−iτ)−l/2

∑
Λ′∈Pk+ mod Cδ

λ′∈Pk mod (kM ′+Cδ)

SΛ,Λ′e((λ̄, λ̄
′)/k) cΛ

′

λ′ (τ)

SΛ,Λ′ = i|∆̄+||M ′/(k + h∨)M |−1/2
∑
w∈W̄

ε(w)e(−(Λ̄ + ρ̄, w(λ̄′ + ρ̄))/(k + h∨))

cΛλ (τ + 1) = e(mΛ,λ)cΛλ (τ)

(5.3.2)

where e(a) = e2πia. These are our main tools in finding the results of the
following chapter. The Freudenthal formula gives us the first coefficients of
the Fourier expansion of the string functions. This suggests some identities
with products of the Dedekind eta-function. These identities are proven by
comparing their transformation properties.



Chapter 6

Characters of some conformal
field theories

In this chapter we consider some irreducible highest weight representations of
the list from Schellekens [S3] and suppose that they can be provided with the
structure of a conformal field theory.

The most laborious task of this diploma thesis is to rewrite the character as
a sum over the discriminant group over certain lattices N

χV =
∑

λ∈N ′/N

fλ ϑλ(τ, z)

and to calculate the coefficients fλ. This will be done in this chapter.
The important new results are indicated by a box.

6.1 The characters

In this chapter we consider the theories in [S3] with spin-1 algebra Ârp−1,p with
r = 48/(p2 − 1) and p = 2, 3, 5 or 7. We will rewrite their characters in a very
simple form which is convenient for our purposes and also shows that they are
invariant under SL(2,Z).

Therefore we note some useful facts.
Let p = 2, 3, 5 or 7. The central element of the affine Kac-Moody algebra

Âp−1 is given by K = α∨0 + . . . + α∨p−1 and the weight λ = (n0, . . . , np−1) =

n0α
∨
0 + . . .+np−1α

∨
p−1 has level λ(K) = n0 + . . .+np−1. The weights of Âp−1 of

level p can be identified with the weights of Ap−1. We call A′p−1/Ap−1
∼= Z/pZ

congruence group and its elements congruence classes. We define the class of
λ as n0 + 2n1 + . . . + pnp−1 mod p. The group of simple currents of Âp−1 is
isomorphic to Z/pZ and acts on the weight λ = (n0, . . . , np−1) by cyclic shifting
of the coefficients ni. The class of λ is invariant under the simple currents.

The string functions of Âp−1 of level p are invariant under the following
action of a simple current s:

cΛλ = cs.Λs.λ (6.1.1)

This can be shown using Freudenthal’s formula (5.3.1).
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The discriminant of √pAp−1 is isomorphic to

(Z/pZ)p−2 × (Z/p2Z) .

There is also a natural isomorphism from the discriminant to A′p−1/pAp−1 (cf.
p.29).

Let λ be in A′p−1. Write λ = n1α
∨
1 + . . . + np−1α

∨
p−1. We identify λ with

the weight n0α
∨
0 + n1α

∨
1 + . . .+ np−1α

∨
p−1 where n0 = p− (n1 + . . .+ np−1) of

Âp−1 of level p. Then we map n0α
∨
0 + n1α

∨
1 + . . .+ np−1α

∨
p−1 to (n0, . . . , np−2)

with nj = nj mod p and np−2 = n0 + 2n1 + . . .+ pnp−1 mod p2. This gives us
a map

π : A′p−1 → (Z/pZ)p−2 × (Z/p2Z)

which induces an isomorphism A′p−1/pAp−1 → (Z/pZ)p−2 × (Z/p2Z).
If λ is a weight of Âp−1 of level p and class i then π(λ) = (∗, . . . , ∗, j) with

j = i mod p.
There is a one-to-one correspondence between congruence classes and simple

currents such that for any weight µ of congruence class i and the corresponding
simple current s the identity

cΛλ+pµ = cΛs.λ

holds for all Λ in P k+ and λ in P k.Let λ = (n0, . . . , np−1) ∈ P k.
This can be seen as follows. Let s be the simple current which shifts every

entry of a weight one to the right and µ an element of congruence class 1. Then
π(λ + pµ) = π(ν) with ν = (n0, . . . , np−3, np−2 − p, np−1 + p). Applying the
Weyl reflection w = wα0

. . . wαn−1
to ν gives w(ν) = (np−1, n0, . . . , np−2) = s.λ

so that by the invariance of the string functions under the Weyl group cΛλ+pµ =

cΛw(λ+pµ) = cΛs.λ. The general case now follows by induction on the congruence
class because every element of congruence class i+ 1 can be written as the sum
of an element in class 1 and an element in class i.

Let V be the conformal field theory with spin-1 algebra Ârp−1,p where r =
48/(p2−1) and p = 2, 3, 5 or 7. Then V is the sum of irreducible highest weight
modules of Ârp−1 the weight of each factor Âp−1 having level p. The highest
weights are obtained by acting with a subgroup G of the group of simple currents
of Ârp−1 on orbit representatives. We denote by M the set of highest weights.
We consider the group G also as a linear code in Frp.

We describe this in more detail (cf. [S3]).
In the case p = 2 the glue code G is the binary Hamming code of order 16

generated by the rows of the matrix

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
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and the orbit representatives are

• (2, 0)16.

• 8× (1, 1)16.

• The remaining orbit representatives can be described as follows. In the
dual binary Hamming code of length 16, for every codeword of weight
8, identify the 1-components with the highest weight (1, 1) and for the
0-components allow all combinations of (2, 0) and (0, 2) such that both of
these highest weights appear an odd number of times.

In the case p = 3 the glue code G is the ternary zero-sum code of length 6
generated by the rows of the matrix

2 1 0 0 0 0
2 0 1 0 0 0
2 0 0 1 0 0
2 0 0 0 1 0
2 0 0 0 0 1


and the orbit representatives are

• (3, 0, 0)6.

• (1, 1, 1)4(3, 0, 0)2 and all permutations.

• (2, 0, 1)5(0, 1, 2) and (2, 1, 0)5(0, 2, 1).

• 6× (1, 1, 1)6.

In the case p = 5 the glue code is F2
5 and the orbit representatives are

• (5, 0, 0, 0, 0)2.

• (2, 0, 1, 0, 2)2.

• (2, 0, 0, 2, 1)(3, 0, 1, 1, 0) and (3, 0, 1, 1, 0)(2, 0, 0, 2, 1).

• (1, 1, 1, 1, 1)(1, 0, 0, 1, 3) and (1, 0, 0, 1, 3)(1, 1, 1, 1, 1).

• 4× (1, 1, 1, 1, 1)2.

In the case p = 7 the glue code is F7 and the orbit representatives are

• (7, 0, 0, 0, 0, 0, 0).

• (2, 0, 0, 1, 3, 0, 1) and (2, 1, 0, 3, 1, 0, 0).

• (2, 0, 0, 2, 0, 3, 0).

• (1, 0, 1, 0, 1, 2, 2).

• 3× (1, 1, 1, 1, 1, 1, 1)
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The elements of the code G and the dual code G⊥ are in (Z/pZ)r so they
can be identified naturally with the discriminant of Arp−1. Then G⊥ is the
orthogonal complement of G. We denote by Arp−1 × G the lattice obtained by
gluing the elements of G to Arp−1.

Case-by-case the congruence classes are calculated. The result is that M ⊂
Arp−1 ×G⊥. Two elements are in the same congruence class if and only if they
differ by a root lattice vector. This means cΛλ 6= 0 only if Λ and λ are in the
same congruence class. Therefore any nonzero contribution to the character of
V comes from a weight λ in Arp−1 ×G⊥.

Now we are ready to rewrite the character.

χV =
∑

Λ∈M
mult Λ χΛ

=
∑

Λ∈M
mult Λ

r∏
i=1

∑
λ∈A′p−1/pAp−1

cΛiλ (τ) θλ(τ, zi)

=
∑

λ∈DualArp−1/pA
r
p−1

∑
Γ∈M/G

∑
Λ∈G.Γ

mult Λ

r∏
i=1

cΛiλi (τ) θλi(τ, zi)

=
∑

λ∈Arp−1×G⊥/pArp−1

∑
Λ∈M/G

∑
g∈G

(mult Λ)/|GΛ|
r∏
i=1

cgi.Λiλi
(τ) θλi(τ, zi)

Since any nonzero contribution to the character of V comes from a weight λ in
Arp−1 ×G⊥.

χV =
∑

λ∈Arp−1×G⊥/pArp−1

∑
Λ∈M/G

∑
g∈G

(mult Λ)/|GΛ|
r∏
i=1

cΛigi.λi(τ) θλi(τ, zi)

Using cΛλ = cs.Λs.λ for any simple current s in G.

χV =
∑

λ∈Arp−1×G⊥/pArp−1

r∏
i=1

θλi(τ, zi)
∑

Λ∈M/G

∑
g∈G

(mult Λ)/|GΛ|
r∏
i=1

cΛigi.λi(τ) .

Using the one-to-one correspondence between congruence classes and simple
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currents we get

χV =
∑

λ∈Arp−1×G⊥/p(Arp−1×G)

∑
µ∈p(Arp−1×G)/pArp−1

r∏
i=1

θλi+µi(τ, zi)

∑
Λ∈M/G

∑
g∈G

(mult Λ)/|GΛ|
r∏
i=1

cΛigi.λi+µi(τ)

=
∑

λ∈Arp−1×G⊥/p(Arp−1×G)

∑
µ∈p(Arp−1×G)/pArp−1

r∏
i=1

θλi+µi(τ, zi)

∑
Λ∈M/G

∑
g∈G

(mult Λ)/|GΛ|
r∏
i=1

cΛigµi .gi.λi
(τ)

=
∑

λ∈Arp−1×G⊥/p(Arp−1×G)

∑
µ∈p(Arp−1×G)/pArp−1

r∏
i=1

θλi+µi(τ, zi)

∑
Λ∈M/G

∑
g∈G

(mult Λ)/|GΛ|
r∏
i=1

cΛigi.λi(τ) .

Now

∑
µ∈p(Arp−1×G)/pArp−1

r∏
i=1

θλi+µi(τ, zi) =

∑
µ∈p(Arp−1×G)/pArp−1

r∏
i=1

∑
ν∈pAp−1

e(τ(λi + µi + ν)2/2p+ (λi + µi + ν, zi)) =

∑
µ∈p(Arp−1×G)/pArp−1

∑
ν∈pArp−1

r∏
i=1

e(τ(λi + µi + νi)
2/2p+ (λi + µi + νi, zi)) =

∑
µ∈p(Arp−1×G)

r∏
i=1

e(τ(λi + µi)
2/2p+ (λi + µi, zi)) =

∑
µ∈√p(Arp−1×G)

r∏
i=1

e(τ(λi + µi)
2/2 +

√
p(λi + µi, zi)) =: ϑλ(τ, z),

where ϑλ(τ, z) are the theta functions of the lattice N =
√
p(Arp−1×G). Finally

the character is

χV =
∑

λ∈(1/
√
p)(Arp−1×G⊥)/

√
p(Arp−1×G)

ϑλ(τ, z)

∑
Λ∈M/G

∑
g∈G

(mult Λ)/|GΛ|
r∏
i=1

cΛigi.
√
pλi

(τ)

=
∑

λ∈(1/
√
p)(Arp−1×G⊥)/

√
p(Arp−1×G)

fλ(τ)ϑλ(τ, z)

(6.1.2)
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with

fλ(τ) =
∑

Λ∈M/G

∑
g∈G

(mult Λ)/|GΛ|
r∏
i=1

cΛigi.
√
pλi

(τ).

6.2 The grading lattice
Consider the lattice N =

√
p(Arp−1 × G). First observe that the dual lattice

N ′ is (1/
√
p)(Arp−1 × G⊥). In the cases p = 5 and p = 7 this is obvious, since

N =
√
pA′

r
p−1 and N ′ = (1/

√
p)Arp−1. For the other two cases we calculate

this explicitly. First one computes that the product of two weights λ, µ in A′p−1

depends only on the congruence class, i.e.

(λi, λj) = −ij/p mod 1

for λi in congruence class i and λj in congruence class j. Recall that the product
of two elements x = (i1, . . . , ir) and y = (j1, . . . , jr) of two codes is i1j1 + . . . irjr
mod p. This means (λ, µ) in Z if and only if the code word corresponding to
the congruence class of λ is orthogonal to the code word corresponding to the
congruence class of µ. G⊥ is the orthogonal complement of G, hence N ′ is the
dual lattice of N .

We want to know the genus of the lattices N . Recall the generators of G
as the rows of the matrices listed in the last section. Denote the i-th row by
bi. Then in the case p = 2 the code G⊥ is generated by b1 + · · ·+ b7, b1 + b2 +
b3, b1 + b4 + b5, b2 + b4 + b6, b8 + b9 + b10 and in the case p = 3 the code G⊥ is
generated by b1 + · · · + b5. Hence in all four cases we have G⊥ ⊂ G. But this
means pN ′ ⊂ N . Therefore the discriminant of N is

disc(N) = disc(
√
p(Arp−1 ×G))

= pp−1disc(Arp−1 ×G)

= pp−1disc(Arp−1)/|G|2

= pp/|G|2

= 232/222 = 210 for p = 2,

= 318/310 = 38 for p = 3,

= 510/54 = 56 for p = 5,

= 77/72 = 75 for p = 7.

The signum is + except for the case p = 3 it is − ((3.4.1) and ([CS, p. 387,
Th. 13]). The minimal norm of √pA′p−1 is p − 1. Hence the minimal norm of
N is (p − 1) times the minimal distance of G, where the distance of a nonzero
codeword (a1, . . . , ap) is the number of nonzero entries ai 6= 0. The minimal
distances are 4 for p = 2, 2 for p = 3 and 1 otherwise. Hence the minimal norm
is 4 except for p = 7 it is 6.

We conclude: the grading lattice N is of genus

II 2m,0(pεp(m+2)), (6.2.1)

with εp = + for p = 2, 5, 7 and εp = − for p = 3, m = 24/(p + 1) and minimal
norm 4, except for p = 7 it is 6.

N is the unique lattice in its genus of maximal minimal norm.
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6.3 The coefficients fλ
The result of the last two sections was that the character of the conformal field
theories V can be written as

χV (τ, z) =
∑

λ∈N ′/N

fλ(τ)ϑλ(τ, z) (6.3.1)

over the grading lattice N of genus

II 2m,0(pεp(m+2)), εp = + for p = 2, 5, 7 and εp = − for p = 3,

and minimal norm 4, except for p = 7 where it is 6.
The coefficients fλ have the form

fλ(τ) =
∑

Λ∈M/G

∑
g∈G

(mult Λ)/|GΛ|
r∏
i=1

cΛigi.
√
pλi

(τ).

for λ in N ′ = (1/
√
p)(Arp−1 × G⊥). From now on we will naturally identify

(1/
√
p)(Arp−1 ×G⊥) with Arp−1 ×G⊥ to get rid of the factor √p.

Recall the eta product

h(τ) =
1

η(τ)mη(pτ)m
= q−1 +m+

1

2
. . .

and the T -invariant parts of h(τ/p)

gj(τ) =
1

p

p−1∑
k=0

e(−kj/p)h
(
(τ + k)/p

)
introduced in section 3.7. Then the fλ have the following form:

fγ =

{
h(τ) + g0(τ) if γ = 0
gk(τ) if γ 6= 0 and −γ2/2 ≡ k/p mod Z (6.3.2)

There are three methods to prove the identities (6.3.2). We will explain
them, since this has been most of the work and the first proofs led us to the
final one.

In the cases of Â1,2 and Â2,3 the string functions are explicitly known. They
are modular forms for the modular group Γ̃(16) of weight −1/2, respectively
Γ(18) of weight −1. Hence the fλ are modular functions for ˜Γ(16) of weight −8,
respectively of Γ(18) of weight −6. The space of modular forms for a congruence
group of given weight is finite dimensional, its dimension can be calculated with
the theorem of Riemann and Roch, but this is difficult. We found another way
to calculate an upper bound of the dimension.

Denote by Vk(Γ(N)) the space of modular forms of the principal congruence
group Γ(N) with poles of order one. Consider the map

m∆ : Vk(Γ(N)) −→ Vk+12(Γ(N))

fλ(τ) 7→ ∆(τ) · fλ(τ)
(6.3.3)
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with the Delta function ∆(τ) = (
√

2πη(τ))12. The kernel of this map is trivial
since η(τ) and hence also ∆(τ) have nonzero values on the entire upper half
plane H. This means that the dimension of Vk(Γ(N)) is at most Vk+12(Γ(N)).
The order of the poles of the fλ(τ) is one, hence ∆(τ) · fλ(τ) has no poles at
the cusps, which means it is holomorphic at the cusps. So the ∆(τ) · fλ(τ) are
integral modular forms. Example 3 on page 26 of [G] gives a formula for the
dimension of integral modular forms of given weight k

dim(Mk(Γ(N))) =
(2k − 1)N + 6)

24
N2

∏
p|N

p prime

(1− 1

p2
).

Hence we have

dim(V−8(Γ(16))) ≤ 944,

dim(V−6(Γ(18))) ≤ 1836 and
dim(V−4(Γ(10))) ≤ 468.

So in order to prove (6.3.2) we only have to compare sufficiently many coef-
ficients.

For the two remaining cases the string functions are not explicitly known.
So we calculate them for Â4,5. Using the Freudenthal formula, one gets the
first coefficients, comparing them with the first coefficients of the Dedekind
η-function suggests the following identities. We use the short hand notation
cΛs.λ(τ) for the sum over all simple currents s. This list of string functions is one
of the main new results.

c12002
s.31001(τ) = c30110

s.12002(τ) = c10220
s.11111(τ)− c50000

s.11111(τ)

c12002
s.12002(τ) = c30110

s.30110(τ) = c10220
s.10220(τ)− c50000

s.10220(τ)

c12002
s.10220(τ) = c30110

s.31001(τ) = c10220
s.30110(τ)− c50000

s.30110(τ)

c12002
s.30110(τ) = c30110

s.50000(τ) = c10220
s.31001(τ)− c50000

s.31001(τ) = c30110
s.11111(τ)

c12002
s.50000(τ) = c30110

s.10220(τ) = c10220
s.12002(τ)− c50000

s.12002(τ) = c12002
s.11111(τ)

(6.3.4)

c11111
10220(τ) = c31001

s.10220(τ)

c11111
30110(τ) = c31001

s.30110(τ)

4 c11111
11111(τ) + c11111

50000(τ) = 4 c31001
s.11111(τ) + c31001

s.50000(τ)

(6.3.5)

[c11111
11111(τ)− c31001

s.11111(τ)] =

1
4 [c31001

s.50000(τ)− c11111
50000(τ)] =

η(5τ)

η(τ)5

(6.3.6)

c50000
s.50000(τ)− c10220

s.50000(τ) + 1
2 [c30110

s.12002(τ) + c12002
s.31001(τ)] =

c50000
s.50000(τ)− c10220

s.50000(τ) + [c10220
s.11111(τ)− c50000

s.11111(τ)] =
1

(η(τ)η(5τ))2

(6.3.7)
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c50000
s.50000(τ) + c10220

s.50000(τ) + c11111
50000(τ) + c31001

s.50000(τ)−
c50000
s.11111(τ)− c10220

s.11111(τ)− c11111
11111(τ)− c31001

s.11111(τ) =

η(τ)3η(5τ)

η(τ/2)3η(2τ)3η(5τ/2)η(10τ)

(6.3.8)

c11111
11111(τ)− c11111

50000(τ) =
η(10τ)η(2τ)3

η(5τ)2η(τ)6
(6.3.9)

c11111
11111(τ) + 4c11111

50000(τ)− 5c31001
s.11111(τ) =

η(10τ)2

η(5τ)3η(2τ)2η(τ)
(6.3.10)

6
5 [c31001

s.11111(τ)− c11111
11111(τ)] + 1

20 [c31001
s.50000(τ)− c11111

50000(τ)]+

c31001
s.31001(τ)− c11111

31001(τ) + c31001
s.12002(τ)− c11111

12002(τ)+
3
2 [c31001

s.30110(τ)− c11111
30110(τ) + c31001

s.10220(τ)− c11111
10220(τ)] =

1
5 [c31001

s.11111(τ)− c11111
11111(τ)]− 1

5 [c31001
s.50000(τ)− c11111

50000(τ)]+

c31001
s.31001(τ)− c11111

31001(τ) + c31001
s.12002(τ)− c11111

12002(τ)+

−[c31001
s.30110(τ)− c11111

30110(τ) + c31001
s.10220(τ)− c11111

10220(τ)] =
η(τ/5)

η(τ)5

(6.3.11)

2 c12002
s.31001(τ) + 2 c30110

s.12002(τ) + [c10220
s.11111(τ)− c50000

s.11111(τ)]+

2 c12002
s.12002(τ) + 2 c30110

s.30110(τ) + [c10220
s.10220(τ)− c50000

s.10220(τ)]+

2 c12002
s.10220(τ) + 2 c30110

s.31001(τ) + [c10220
s.30110(τ)− c50000

s.30110(τ)]+

2 c12002
s.30110(τ) + 2 c30110

s.11111(τ) + [c10220
s.31001(τ)− c50000

s.31001(τ)]+

2 c30110
s.10220(τ) + 2 c12002

s.11111(τ) + [c10220
s.12002(τ)− c50000

s.12002(τ)] =
19
10 c

12002
s.31001(τ) + 19

10 c
30110
s.12002(τ) + 12

10 [c10220
s.11111(τ)− c50000

s.11111(τ)]+
14
10 c

12002
s.12002(τ) + 24

10 c
30110
s.30110(τ) + 12

10 [c10220
s.10220(τ)− c50000

s.10220(τ)]+
24
10 c

12002
s.10220(τ) + 14

10 c
30110
s.31001(τ) + 12

10 [c10220
s.30110(τ)− c50000

s.30110(τ)]+
24
10 c

12002
s.30110(τ) + 1

10 c
30110
s.50000(τ) + 18

10 c
30110
s.11111(τ)+

7
10 [c10220

s.31001(τ)− c50000
s.31001(τ)]+

1
10 c

12002
s.50000(τ) + 24

10 c
30110
s.10220(τ) + 18

10 c
12002
s.11111(τ)+

7
10 [c10220

s.12002(τ)− c50000
s.12002(τ)] =

1

(η(τ)η(τ/5))2

(6.3.12)

∑
λ ∈ M

[c31001
s.λ (τ) + c11111

λ (τ) + c50000
s.λ (τ) + c10220

s.λ (τ)] =

η(τ)3η(τ/5)

η(τ/2)3η(2τ)3η(2τ/5)η(τ/10)

(6.3.13)
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∑
λ ∈ M

[c31001
s.λ (τ)+c11111

λ (τ)−c50000
s.λ (τ)−c10220

s.λ (τ)] =
η(τ/10)η(τ/2)3

η(τ/5)2η(τ)6
(6.3.14)

∑
λ ∈ M

[c50000
s.λ (τ) + c10220

s.λ (τ)− 2c11111
λ (τ)] =

η(τ/10)2

η(τ/5)3η(τ/2)2η(τ)
(6.3.15)

M = { 11111 , 10220 , 12002 , 30110 , 31001 }

The identities (6.3.11) - (6.3.15) are the S transformations of (6.3.6) - (6.3.10).
(6.3.5) follows directly from (6.3.6), the string function identities in (6.3.4) hold
because of (6.3.6) and the S transformation, i.e. the identities, which are not
obtained by (6.3.6), one gets from the S transformation (appendix B) of the
identities already obtained. So we have to prove (6.3.6) - (6.3.10). The proof
is as follows: we consider the quotient of the left hand side and right hand side
of an identity and call it A(τ). We show, that A(τ) is an integral modular
form for a certain congruence group of weight zero and hence constant (3.2.1).
Comparing the first coefficient yields the constant.

Consider (6.3.6), then

A(τ) = (c11111
11111(τ)− c31001

s.11111)(τ)/(η(5τ)/η(τ)5).

Γ0(5) is generated by T, ST 5S, ST 3ST 2S, which are easily calculated for the
string functions using the transformation matrices in appendix B. One gets:

((c11111
11111(τ)− c31001

s.11111(τ))|T ) = c11111
11111(τ)− c31001

s.11111(τ)

((c11111
11111(τ)− c31001

s.11111(τ))|ST 5S) =
1

(5τ − 1)2
(c11111

11111(τ)− c31001
s.11111)(τ)

((c11111
11111(τ)− c31001

s.11111(τ))|ST 3ST 2S) =
1

(5τ − 2)2
(c11111

11111(τ)− c31001
s.11111(τ))

The transformations of η(5τ)/η(τ)5 are obtained using (3.3.2) and (C.0.4):

(η(5τ)/η(τ)5|T ) = η(5τ)/η(τ)5

(η(5τ)/η(τ)5|ST 5S) = (
1√
5τ2

(η(τ/5)/η(τ)5)|ST 5)

= (e−25πi/12 1√
5(τ + 5)2

(η((τ + 5)/5)/η(τ)5)|S)

=
1

(5τ − 1)2
η(5τ)/η(τ)5
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(η(5τ)/η(τ)5|ST 3ST 2S) =

(
1√
5τ2

(η(τ/5)/η(τ)5)|ST 3ST 2) =

(e−10πi/12 1√
5(τ + 2)2

(η((τ + 2)/5)/η(τ)5)|ST 3S) =

(e−10πi/12 1√
5(− 1

τ + 2)2

1

τ2
(η((τ + 2)/5)/η(τ)5)|ST 3) =

(e−25πi/12 1√
5(− 1

τ+3 + 2)2

1

(τ + 3)2
(η((τ + 5)/5)/η(τ)5)|S) =

(
1√

5(2τ + 5)2
(η(τ/5)/η(τ)5)|S) =

1

(5τ − 2)2
η(5τ)/η(τ)5

We have shown that A(τ) is invariant under the action of Γ0(5). Since every
string function and η(τ) are holomorphic on H and η(τ) 6= 0 for every τ in H,
A(τ) is also holomorphic on H. Comparing the first coefficients of the Fourier
expansion of c11111

11111(τ) − c31001
s.11111(τ) and η(5τ)/η(τ)5 yields, that A(τ) has no

pole at i∞. There is neither a pole at 0, since the first coefficient of the S-
transformations of c11111

11111(τ)− c31001
s.11111(τ) and η(5τ)/η(τ)5 are also equal. 0 and

ı̇∞ are the only cusps of Γ0(5), therefore A(τ) is an integral modular form for
Γ0(5) of weight zero with trivial character, hence A(τ) is constant. Comparing
the first coefficient shows that the constant must be 1.

The other identity of (6.3.6) as well as (6.3.7) are proven exactly in the same
way. (6.3.9) and (6.3.10) are a little more laborious, since the eta products and
the string functions c11111

11111(τ)−c11111
50000(τ) and c11111

11111(τ)+4c11111
50000(τ)−5c31001

s.11111(τ)
are modular forms for Γ0(10). Γ0(10) is generated by T, ST−3ST 3S, ST−2ST 5S
T 2S, ST 9ST−1S and ST−1ST 2ST−3S, the cusps of Γ0(10) are 1/1, 1/2, 1/5 and
1/10.

The proof of equation (6.3.8) is the hardest one, because right-hand side and
left-hand side of (6.3.8) are not T-invariant. Consider the quotient of left-hand
side and right-hand side

A(τ) = (c50000
s.50000(τ) + c10220

s.50000(τ)− c50000
s.11111(τ)− c10220

s.11111(τ)+

c11111
50000(τ) + c31001

s.50000(τ)− c11111
11111(τ)− c31001

s.11111(τ))/

η(τ)3η(5τ)

η(τ/2)3η(2τ)3η(5τ/2)η(10τ)

(6.3.16)

We show that A(τ) is in M0(Γ0(10) ∩ Γ(2), 1). Γ0(10) ∩ Γ(2) is generated by
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(calculated with magma)

ST
1

2
ST

1

2
ST 4S,

ST−7ST−2STS,

TST−3ST 3S,

ST−3ST−6STS,

ST−3ST 3STST 2ST 6ST
1

2
S,

ST−3ST 3STST 4ST 2ST 2S and

ST−3ST−4ST−3ST−1ST−2ST−6ST−2ST−1.

Using appendix B and appendix C we calculate that A(τ) is invariant under the
action of Γ0(10)∩ Γ(2). The cusps of Γ0(10)∩ Γ(2) are 0, 1/3, 1/4, 1/5, 2/5 and
i∞. We check that A(τ) has no poles at these cusps. Since A(τ) is holomorphic
on the upper half plane H it is in M0(Γ0(10) ∩ Γ(2), 1) and hence constant, the
constant is one. This proves (6.3.8).

Using these identities we can prove (6.3.2) for Â2
4,5 by comparing sufficiently

many coefficients.
Having computed the S and T transformation of the string functions we

immediately get the transformation of the fλ because they are polynomials in
the string functions. Also the first coefficient of the string functions gives us the
first coefficient of the fλ. So we can apply the method used above to prove the
string function identities in order to prove the identities (6.3.2). We consider
Aλ0

(τ) = (f0(τ) − fλ0
(τ))/h(τ) for every isotropic element λ0 and show that

Aλ0
(τ) is an integral modular form of weight zero of trivial character, hence

constant. Comparing coefficients yields the constant to be one. Applying the S
transformation to all of these identities yields the remaining identities.

In the appendix we list the known string functions, the S and T matrices
and the first coefficients of the fλ and we describe the proofs in more detail.

There is a third method of proof. Regarding the transformation properties
of the coefficients fλ in the case Â6,7 (A.4.1), we immediately observe that
the fλ transform under the Weil representation ρN of the grading lattice N .
Computer calculations show that this is also true for the other three cases. An
immediate consequence is that the character χV is modular invariant, since the
theta functions transform under the corresponding dual Weil representation.
Another immediate consequence is that equation (6.3.2) is true. This can be
seen as follows: Recall the modular form F (τ) for the Weil representation ρN
of section 3.7

F (τ) =
∑

γ∈N ′/N

Fγ(τ)eγ

with
Fγ(τ) = h(τ) + g0(τ) if γ = 0

= gk(τ) if − γ2/2 ≡ k/p mod 1

with
h(τ) =

1

(η(τ)η(pτ))m
= q−1 +m+ . . .
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and the gk the T-invariant parts of h(τ/p) = g0(τ) + g1(τ) + . . .+ gp−1(τ).
Further define

F̃ (τ) =
∑

γ∈N ′/N

fγ(τ)eγ

and consider F (τ)− F̃ (τ). This is a modular form for SL(2,Z) (since F (τ) and
F̃ (τ) are modular forms) of negative weight. We calculated the first coefficients
of the fγ and observed in the previous proof that the first coefficient of fλ equals
the first coefficient of Fλ for every λ in N ′/N . Furthermore F (τ)− F̃ (τ) has no
singular terms so that F (τ)− F̃ (τ) is a holomorphic modular form of negative
weight which is also holomorphic at the cusp i∞. A well known result of the
theory of modular forms is that a modular form for SL(2,Z) of negative weight
without singularities at the cusp i∞ is zero. Therefore F (τ) = F̃ (τ) and since
the eγ are linear independent (6.3.2) must be true.



Chapter 7

Construction of some bosonic
string theories

This chapter corresponds to chapter 4 of [Sch3] where the physical states of a
bosonic string corresponding to the fake monster algebra are constructed. Let
V be the vector spaces defined in the previous chapter. We assume that these
vector spaces can be provided with the structure of a conformal vertex algebra
of central charge 24. This has been conjectured in [M2]. We further have to
assume that V has a positive definite bilinear (·, ·) form with the property that
the adjoint of the Virasoro generator Lm is L−m.

7.1 The Lie algebra of physical states
Recall the grading lattices N = II 2m,0(pεp(m+2)), where p = 2, 3, 5, 7 and m =
24/(p + 1), associated to the spaces V . As in section 2.9 we define the vertex
superalgebras

V = V ⊗ VII1,1 ⊗ Vσ.
Vσ is the vertex superalgebra associated to the one-dimensional lattice Zσ with
σ2 = 1. We define the ghosts b = e−σ and c = eσ and the ghost current
jG = σ(−1). The ghost number operator is jG0 = σ(0), the ghost number of b
is −1 and of c it is 1. A Virasoro element of Vσ of central charge −26 is

ωG :=
1

2
σ(−1)σ(−1) +

3

2
σ(−2).

Suppose that ωM is an Virasoro element of V ⊕VII1,1 then ωG+ωM is a Virasoro
element of central charge 0 ofV. The BRST-current is jBRST = c−1(ωM+ 1

2ω
G)

and the BRST-operator is Q = jBRST0 . Q satisfies the relations

Q2 = 0, [jN0 , Q] = Q, {Q, bn+1} = Ln and [Q,Ln] = 0.

Then the vector space
C = V ∩Ker b1 ∩KerL0

is invariant under Q and graded by the ghost number

C =
⊕
α∈L′
m∈Z

Cmα ,
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where L = N ⊕ II1,1. Since [jN0 , Q] = Q we have the sequence

· · · Q−→ Cm−1
α

Q−→ Cmα
Q−→ Cm+1

α
Q−→ · · ·

with cohomology groups Hm
α . Let

H =
⊕
α∈L′
m∈Z

Hm
α

then
H1 =

⊕
α∈L′

H1
α

is the space of physical states of the compactified bosonic string. The product
on C defined by

[u, v] = (b0u)0v

projects down to H. It has the property deg[u, v] = deg u + deg v − 1 hence it
also projects down to H1, with this product H1 becomes a Lie algebra.

V = ⊕m∈ZVm is Z-graded by the eigenvalues of the Virasoro generator L0.
There is an action of the Lie algebra of type Arp−1. For s in the weight lattice
A′
r
p−1, we denote by Vn(s) the subspace of Vn on which the action of the Cartan

subalgebra of A′rp−1 has weight s. Applying the no-ghost theorem (Theorem 5.1
of [B3]) we get

H1
α
∼=

{
V1−α2

II1,1
/2(αN ′) if α 6= 0

V1(0)⊕ R1,1 if α = 0
(7.1.1)

where αII1,1 and αN ′ denote the projections to the respective lattices. With the
Z-grading of [B3] we see that H1 is a generalised Kac-Moody algebra.

The Cartan algebra H1
0 of H1 has dimension 2m + 2 by (7.1.1). The di-

mensions of the other pieces H1
α, α 6= 0, can also be expressed in terms of

Fourier coefficients of fγ with γ ≡ αN ′ mod N . Let [fγ ](n) be the n-th Fourier
coefficient of fγ for n in Q, then the dimension of H1

α is the Fourier coefficient
corresponding to the the L0-eigenvalue of V1−α2

II1,1
/2(αN ′)e

−αN′ .

dimH1
α = [fγ ](1− α2

N ′/2− (1− α2
II1,1/2)) = [fγ ](−α2/2) (7.1.2)

(the number 1 appears here because the energy levels are counted from −1 due
to modular normalisation).

We summarise the results of this section. The BRST-operator Q with Q 1
2 =

0 acts on the vertex superalgebra V = V ⊗VII1,1⊗Vσ. The cohomology group of
degree one, H1

α, is the space of physical states of a bosonic string. It carries the
structure of a generalised Kac-Moody algebra and it is graded by the rational
lattice N ′ ⊕ II1,1. The no-ghost theorem implies that the graded dimensions
are dimH1

α = 2m + 2 if α = 0 and dimH1
α = [fγ ](−α2/2) if α 6= 0 (with

γ ≡ αN ′ mod N).

7.2 Multiplicities and the denominator identity
It remains to determine the denominator identity for H1. For the case p = 2
this is done in [HSch] and for the case p = 3 it is done in [Kl]. The arguments
for the other two cases are exactly the same.



7.2. MULTIPLICITIES AND THE DENOMINATOR IDENTITY 57

Let Λ be the Leech lattice and Λp the sublattice fixed by an automorphism
of cycle shape 1mpm. For p = 2 this is the Barnes–Wall lattice, for p = 3 this
is the Coxeter–Todd lattice, for p = 5 this is the Maass lattice and for p = 7
it is the Barnes–Craig lattice. The lattices L = N ⊕ II1,1 and Λp ⊕ II1,1(p) are
of the same genus. Since there is only one class in this genus the lattices are
isomorphic by Corollary 22 in chapter 15 of [CS].

Consider the lattice L = Λp ⊕ II1,1(p) with elements (s,m, n), s in Λp, m,n
in Z and norm (s,m, n)2 = s2 − 2pmn. The lattice L has a Weyl vector ρ of
norm 0 since the lattices L are the unique lattices of its genus and it is known
that these lattices contain such a vector. We choose ρ = (0, 0, 1/p). Recall that
a Weyl vector has the property (ρ, α) = −α2/2 for all simple roots α. Now for
any root α = (s,m, n) is (ρ, α) = −m. Then the simple roots of the reflection
group of L′ are the norm 2/p vectors of the form (s, 1/p, (s2 − 2/p)/2), s ∈ N ′
and the norm 2 vectors (s, 1, (s2−2)/(2p)) in N , (s ∈ N with 2p|(s2−2)). Now
fix a Weyl vector ρ and the Weyl chamber containing ρ. The roots nρ, n ∈ N>0

are imaginary. In a Lorentzian space the inner product of two imaginary roots
in the same cone is zero only if both vectors are proportional to the same
norm zero vector. Hence writing nρ as a sum of simple roots with positive
coefficients, the only summands appearing in the sum are positive multiples of
ρ. All the nρ are disconnected, this implies that they are all simple roots. Their
multiplicities are given in (7.1.2). If p|n the multiplicity is 2m and m otherwise
(where m = 24/(p + 1) as always in the last chapter). We have already found
all the simple roots. This can be verified as follows. Let k be the generalised
Kac-Moody algebra with root lattice L′, Cartan subalgebra L′ ⊗ R and simple
roots as stated above. The denominator identity of k is calculated in Theorem
3.2 of [Sch1]

eρ
∏
α∈L+

(1− eα)[h](−α2/2)
∏

α∈L′+
(1− eα)[h](−pα2/2)

=
∑
w∈W

det (w)w

(
eρ
∏
n>0

(1− enρ)m
∏
n>0

(1− epnρ)m
)
.

(7.2.1)

W is the reflection group generated by the norm 2/p vectors of L′ and the norm
2 vectors of L ⊂ L′. Using (7.1.2) and the definition of the fγ we see that
H1 and k have the same root multiplicities. We fixed the Cartan subalgebra
and the fundamental Weyl chamber, therefore the product in the denominator
identity determines the simple roots of H1. H1 and k have the same simple
roots and are thus isomorphic.



Chapter 8

Summary

We summarise the new results obtained in this thesis. They are also summarised
in the preprint [CKS] which we intend to submit soon.

In this thesis we consider the theories in [S3] with spin-1 algebra Ârp−1,p with
r = 48/(p2 − 1) and p = 2, 3, 5 or 7. We rewrite the character as

χV =
∑

λ∈N ′/N

fλ(τ)ϑλ(τ, z)

over the grading lattice N of genus

II 2m,0(pεp(m+2)), m = 24/(p+1), εp = + for p = 2, 5, 7 and εp = − for p = 3,

and minimal norm 4, except for p = 7 it is 6. The lattices are the unique lattices
of maximal minimal norm in its genus. The ϑλ are theta functions of the lattice
N and the coefficients fλ, which give the degeneracy of the spectrum of the
string, are of the form

fλ =

{
h(τ) + g0(τ) if λ = 0
gk(τ) if λ 6= 0 and −λ2/2 ≡ k/p mod Z . (8.0.1)

The h(τ) are modular for Γ0(p) of weight −m = −24/(p+1), they are expressed
in terms of the Dedekind eta-function:

h(τ) = (η(τ)η(pτ))−m = q−1 +m+ . . . , q = e2πiτ

The gk are the T-invariant parts of h(τ/p) = g0(τ) + . . . + gp−1(τ) with T-
eigenvalue e−2πik/p.

The most laborious part of this thesis is the proof of (8.0.1). We find three
methods of proof. In the cases p = 2 and 3 the string functions are known. The
fλ(τ), h(τ) and its T-invariant parts are modular forms for certain principal con-
gruence groups Γ(N) of some weight k. The vector space of modular forms for
a principal congruence groups Γ(N) of weight k is finite dimensional. So (8.0.1)
can be verified by comparing sufficiently many coefficients. For the remaining
cases there were not any string function identities known so far. Therefore, we
calculate the string function identities of Â4,5 ((6.3.4)-(6.3.15)). The proof of
the string function identities uses the fact that an integral modular form for a
congruence group of weight zero and trivial character is constant. In order to
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prove an identity we take the quotient of the left-hand side and the right-hand
side and show that this is an integral modular form for a congruence group of
weight zero and trivial character. Hence it must be constant, the first coefficient
of the Fourier expansion yields the constant to be one. This method requires
the knowledge of the transformation properties of the string functions under
the modular group. Since the fλ(τ) are polynomials in the string functions we
could also calculate the transformation properties of the fλ(τ) and apply the
same method of proof as in the case of the string functions. This is the second
method of proof. Regarding the transformation properties of the fλ(τ) of Â6,7

we observe that they transform under the Weil representation of type ρN , where
N is the corresponding grading lattice. Computer calculations show that this is
also true for the other cases. The fact that the fλ(τ) transform under a certain
Weil representation gives us an appealing third proof. We consider the modular
form F (τ) for the Weil representation ρN of section 3.7

F (τ) =
∑

γ∈N ′/N

Fγ(τ)eγ

with
Fγ(τ) = h(τ) + g0(τ) if γ = 0

= gk(τ) if − γ2/2 ≡ k/p mod 1

Further we define
F̃ (τ) =

∑
γ∈N ′/N

fγ(τ)eγ

and consider F (τ) − F̃ (τ). This is a modular form of negative weight. We
calculate the first coefficients of the fγ and observed in the previous proof that
the first coefficient of fλ equals the first coefficient of Fλ for every λ in N ′/N .
Furthermore F (τ)− F̃ (τ) has no singular terms so that F (τ)− F̃ (τ) is a holo-
morphic modular form of negative weight which is also holomorphic at the cusp
i∞. A well known result of the theory of modular forms is that a modular form
for SL(2,Z) of negative weight without singularities at the cusp i∞ is zero.
Therefore F (τ) = F̃ (τ) and since the eγ are linear independent (8.0.1) must be
true.

Hence we finally obtain a general method which should allow the treatment
of all cases of Schellekens list.

We use all these results for the construction of the space of physical states
of some bosonic strings. Therefore we assume that the vector space V defined
as a direct sum over the set M of highest weights given by the list of [S3] of
irreducible highest weight representations of type Ârp−1,p with r = 48/(p2 − 1)
and p = 2, 3, 5 or 7 has the structure of a vertex algebra of central charge 24
whose Virasoro generators satisfy Ln = L†−n with respect to a positive definite
bilinear form. The assumption is very likely, in the case p = 2 it is already
proven [DGM] and in most of the remaining cases proofs are conjectured [M2].
Let VII1,1 be the vertex algebra of the unique even unimodular Lorentzian lattice
in two dimensions II1,1. Then the tensor product with the vertex algebra V has
central charge 26, so we can apply the BRST-formalism. The space of physical
states g is the BRST-cohomology group of degree one

g := H1
BRST (V ⊗ VII1,1).
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g describes the states of a (48/(p+ 1) + 2)-dimensional bosonic string compac-
tified on an orbifold. It has the structure of a generalised Kac-Moody algebra.
Its denominator identity is

eρ
∏
α∈L+

(1− eα)[h](−α2/2)
∏

α∈L′+
(1− eα)[h](−pα2/2)

=
∑
w∈W

det (w)w

(
eρ
∏
n>0

(1− enρ)m
∏
n>0

(1− epnρ)m
)
,

where L′ = N ′ ⊕ II1,1 is the strings momentum lattice and [h](n) is the n-th
Fourier coefficient of h(τ).

Finally, we describe the relation between the grading lattice N , the eta
product h(τ) and a generalised Kac-Moody algebra (see also [Sch2]). The Leech
lattice Λ is the unique self-dual even 24-dimensional lattice. The Mathieu group
M23 acts on the Leech lattice. Let g be an element of square-free order n such
that σ1(n)|24 (σ1(n) =

∑
d|n d). As an automorphism of the Leech lattice, g has

a characteristic polynomial
∏
d|n(xd−1)24/σ1(n). The corresponding eta product

is ηg =
∏
d|n η(dτ)24/σ1(n). The fix point lattice Λg is the unique lattice in its

genus without roots. We can lift 1/ηg to a vector valued modular form Fg on the
lattice L = Λg⊕II1,1⊕II1,1(n) and apply the singular theta correspondence to Fg
to obtain an automorphic form Ψg of singular weight. This can be summarised
by the diagram

g → 1/ηg → Fg → Ψg.

The expansion of Ψg in any cusp is

eρ
∏
α∈L+

(1− eα)[h](−α2/2)
∏

α∈L′+
(1− eα)[h](−pα2/2)

=
∑
w∈W

det (w)w

(
eρ
∏
n>0

(1− enρ)m
∏
n>0

(1− epnρ)m
)
.

This is the denominator identity of a generalised Kac-Moody algebra.
In our cases the fix-point lattice Λg is related to the grading lattice in such

a way that L = N ⊕ II1,1 and Λg ⊕ II1,1(p) are isomorphic and the eta product
associated to the cycle shape is 1/h(τ).

Elements of the Mathieu group yield ten distinct generalised Kac-Moody
algebras. We have constructed four of them. A fifth candidate is the number 8
of Schellekens list. This is a highest weight representation of type Â5,6Ĉ2,3Â1,2.
We expect the eta product to be h(τ) = 1/(η(τ)η(2τ)η(3τ)η(6τ))2 and the
grading lattice N to be the unique lattice of genus II8,0(2+6

II 3−6) and maximal
minimal norm. The method of proof should be exactly the same, since it is not
necessary for our procedure that the highest weight representation is of type Â.

It remains the question about the physical relevance of the procedure. The
theories are bosonic string theories, i.e. there are no fermions. Furthermore our
space of states is not four dimensional, but larger (the dimensions obtained are
18, 14, 10 and 8). The space of states of a four-dimensional bosonic string theory
might be given by the generalised Kac-Moody algebra of the fix-point lattice
II2,0(23+1) with eta product η(τ)η(23τ). So far, there exists no candidate of a
corresponding vertex algebra, but there are promising ideas of construction.



Appendix A

String functions

In this chapter we describe the second method of proof in more detail, in par-
ticular we state the transformation properties of the string functions and the
coefficients fλ. The transformation properties of the string functions under the
modular group are (5.3.2):

cΛλ (−1/τ) = |M ′/kM |−1/2(−iτ)−l/2
∑

Λ′∈Pk+ mod Cδ
λ′∈Pk mod (kM ′+Cδ)

SΛ,Λ′e((λ̄, λ̄
′)/k) cΛ

′

λ′ (τ)

SΛ,Λ′ = i|∆̄+||M ′/(k + h∨)M |−1/2
∑
w∈W̄

ε(w)e(−(Λ̄ + ρ̄, w(λ̄′ + ρ̄))/(k + h∨))

cΛλ (τ + 1) = e(mΛ,λ)cΛλ (τ).

This allows us to calculate the transformation properties by computer. We will
use the following notation. Let B =< c1(τ), . . . , cn(τ) > be a basis of string
functions, then we define the S- and T-matrices by

ci(τ)|S = (−iτ)−l/2
∑
j

Sijcj(τ)

ci(τ)|T =
∑
j

Tijcj(τ).

The definition of the S- and T-matrices of the fλ is completely analogous. They
are obtained from the matrices of the string functions, since the fλ are polyno-
mials in the string functions.

A.1 Â16
1,2

The string functions of Â1,2 and Â2,3 are determined in [KP]. They are for Â1,2

c20
20(τ) = c0(τ) = c̃0(τ) + c̃1(τ),

c20
02(τ) = c1(τ) = c̃0(τ)− c̃1(τ),

c11
11(τ) = c2(τ) =

η(2τ)

η(τ)2
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with

c̃0(τ) =
η(τ/2)

η(τ)2
and c̃1(τ) =

1

2

η(τ)

η(2τ)η(τ/2)
.

We choose the following two bases of string functions. This has technical
reasons and the results are conciser.

B̃ =< c̃0(τ), c̃1(τ), c2(τ) >

B =< c0(τ), c1(τ), c2(τ) >

The S- and T-matrices are (ξ16 = e2πi/16 a 16-th root of unity):

S̃ =

 1 0 0

0 0
√

2
0 1√

2
0

 , T̃ =

 0 ξ−1
16 0

ξ−1
16 0
0 0 1

 , (A.1.1)

S =
1

2

 1 1 2
√

2

1 1 −2
√

2√
2 −

√
2 0

 and T =

 ξ−1
16 0 0
0 ξ−9

16 0
0 0 1

 . (A.1.2)

This yields the identity

24c̃0(τ)
8

= 24c̃1(τ)
8

+ c2(τ)8,

which is true because the difference 24c̃0(τ)
8−24c̃1(τ)

8
+c2(τ)8 is invariant under

SL(2,Z) (using A.1.1 and A.1.2) and it has no singularity at i∞ (comparing
coefficients). Hence it is zero.

Now, we consider the fγ(τ). [HSch] shows, that they can be written in the
form:

fγ(τ) =

 f0(τ) if γ = 0
f1(τ) if γ 6= 0 and γ 1

2/2 = 0 mod 1
f2(τ) if γ 1

2/2 = 1/2 mod 1
(A.1.3)

with

f0(τ) : = c0(τ)16 + c1(τ)16 + 140(c0(τ)4c1(τ)12 + c0(τ)12c1(τ)4)+

448(c0(τ)6c1(τ)10 + c0(τ)10c1(τ)6) + 870c0(τ)8c1(τ)8

= 211(c̃0(τ)
16

+ c̃1(τ)
16

) + 15 · 212c̃0(τ)
8
c̃1(τ)

8

f1(τ) : = 27(c̃0(τ)
8 − c̃1(τ)

8
)c2(τ)8 = 23c2(τ)16

= 211(c̃0(τ)
16

+ c̃1(τ)
16

)− 212c̃0(τ)
8
c̃1(τ)

8

f2(τ) : = 27(c̃0(τ)
8

+ c̃1(τ)
8
)c82

= 211(c̃0(τ)
16 − c̃1(τ)

16
)

Using the matrices A.1.1 and A.1.2, we obtain the transformation properties
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of the fγ(τ):

S =
1

25

 1 1 1
527 15 −17
496 −16 16



T =

 1 0 0
0 1 0
0 0 −1


(A.1.4)

Now we are ready to prove (6.3.2). Using (C.0.1) we observe, that h(τ) is a
modular form of weight −8 and trivial character of the congruence group Γ0(2),
which is generated by T and ST 2S. The same holds for the fγ(τ) with norm
0, since T 2 =Id. The cusps of Γ0(2) are 0 and i∞. The Fourier expansions of
h(τ) and (f0(τ)− f1(τ)) at i∞ are

h(τ) = q−1 + 8 + . . .

f0(τ)− f1(τ) = q−1 + 8 + . . .

and at 0

h(−1/τ) = 16q−1/2 + 128 + . . .

f0(−1/τ)− f1(−1/τ) = 16q−1/2 + 128 + . . . .

Hence A(τ) = (f0(τ) − f1(τ))/h(τ) has no poles at the cusps 0 and i∞. Fur-
thermore A(τ) is holomorphic on the upper half plane H, since this is true for
the string functions and for the eta-function and η(τ) 6= 0 ∀ τ ∈ H. This means
(f0(τ)−f1(τ))/h(τ) is in M0(Γ0(2), 1), hence constant, and the constant is one.
The S transformation of f0(τ)− f1(τ) (A.1.4) and h(τ) is

h(−1/τ) = 24(g0(τ) + g1(τ)) and

f0(−1/τ)− f1(−1/τ) = 24(f1(τ) + f2(τ)).

This completes the proof of (6.3.2).
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A.2 Â6
2,3

The string functions in the notation of [Kl] are

c12(τ) :=
1

η(6τ)η(18τ)
= q−1 + q5 + 2q11 + 4q17 + . . . ,

c12345(τ) :=
η(3τ)3η(2τ)2

η(6τ)6η(τ)
= q−1 + 1− 2q2 − 3q3 + . . . ,

c5(τ) :=
η(2τ)3η(3τ)2

η(τ)6η(6τ)
= 1 + 6q + 24q2 + 78q3 + . . . ,

c678(τ) :=
1

η(18τ)η(6τ)
,

c234(τ) := c12345(τ)− c12(τ)− c5(6τ),

c2(τ) :=
1

18

5∑
n=0

ζn6 c234

(τ + n

6

)
= q5/6(1 + 6q + 20q2 + 61q3 + . . . ),

c1(τ) := c12(τ/6) + c2(τ) = q−1/6(1 + 2q + 8q2 + 24q3 + . . . ),

c3(τ) :=
1

18

5∑
n=0

(−1)n+1c234

(τ + n

6

)
= q1/2(1 + 4q + 15q2 + 44q3 + . . . ),

c4(τ) := −1

6

5∑
n=0

ζ2n
3 c234

(τ + n

6

)
= q1/3(2 + 10q + 36q2 + 112q3 + . . . ),

c6(τ) :=
1

18

17∑
n=0

ζn18c678

(τ + n

18

)
= q−1/18(1 + 4q + 16q2 + 59q3 + . . . ),

c7(τ) :=
1

18

17∑
n=0

ζ13n
18 c678

(τ + n

18

)
= q5/18(1 + 6q + 22q2 + 70q3 + . . . ),

c8(τ) :=
1

18

17∑
n=0

ζ7n
18 c678

(τ + n

18

)
= q11/18(2 + 9q + 33q2 + 98q3 + . . . )

(A.2.1)

where ξ` := exp(2πi/`). The point of these roots of unity is simply to extract
every `-th Fourier coefficient. The string functions c1(τ), c2(τ) . . . , c8(τ) occur
now according to Table A.1 (class 0) and Table A.2 (class 1). The class 2 string
functions can be obtained from Table A.2 via the diagram automorphism. These
results are obtained from [KP] and [Kl].

Two bases of string functions are

B =< c1(τ), c2(τ), c3(τ), c4(τ), c5(τ), c6(τ), c7(τ), c8(τ) >

B̃ =< c1(τ), c2(τ), c3(τ), c4(τ), c5(τ), c̃6(τ), c̃7(τ), c̃8(τ) >,

where c̃6(τ) := 1√
3
(c6(τ)+c7(τ)+c8(τ)), c̃7(τ) := 1√

3
(c6(τ)+ξ3c7(τ)+ξ2

3c8(τ)), c̃8(τ) :=
1√
3
(c6(τ) + ξ2

3c7(τ) + ξ3c8(τ)). The ci(τ) are expressed in terms of η-products
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Λ
(0,0,3) (0,3,0) (3,0,0) (1,1,1)

(0,0,3) c1 c2 c2 c4

λ
(0, 3, 0) c2 c1 c2 c4
(3,0,0) c2 c2 c1 c4
(1,1,1) c3 c3 c3 c5

Table A.1: String functions for class 0

Λ
(0,1,2) (1,2,0) (2,0,1)

(0,1,2) c6 c8 c7
λ (1,2,0) c7 c6 c8

(2,0,1) c8 c7 c6

Table A.2: String functions for class 1

in (A.2.1). The S- and T-matrices are (ξl = e2πi/l a l-th root of unity):

S̃ =
1

3
3
2



1
2

1
2

1
2

3
2

3
2

√
3 0 0

1 1 1 3 3 −
√

3 0 0
3 3 − 3

2 9 − 9
2 0 0 0

3
2

3
2

3
2 − 3

2 − 3
2 0 0 0

3 3 − 3
2 −3 3

2 0 0 0

2 · 3 3
2 −3

3
2 0 0 0 0 0 0

0 0 0 0 0 0 3
3
2 ξ36 0

0 0 0 0 0 0 0 3
3
2 ξ−1

36


(A.2.2)

T =



ξ5
6 0 0 0 0 0 0 0
0 ξ5

6 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 ξ3 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 ξ17

18 0 0
0 0 0 0 0 0 ξ5

18 0
0 0 0 0 0 0 0 ξ11

18


(A.2.3)

Considering all known symmetries, i.e. the fγ(τ) are invariant under the
Weyl group, the diagram automorphism and automorphisms of the glue group,
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then all pairwise distinct coefficients fγ(τ) are:

f0,0 = c61 + 30c41c
2
2 + 40c31c

3
2 + 90c21c

4
2 + 60c1c

5
2 + 22c62 + 15c21c

4
4+

60c22c
4
4 + 60c1c2c

4
4 + 6c64,

f0,1 = 6c51c2 + 15c41c
2
2 + 60c31c

3
2 + 75c21c

4
2 + 66c1c

5
2 + 21c62+

60c1c2c
4
4 + 15c21c

4
4 + 60c22c

4
4 + 6c64,

f1,1 = c51c3 + 10c41c2c3 + 40c31c
2
2c3 + 80c21c

3
2c3

+ 10c21c
3
4c5 + 80c1c

4
2c3 + 40c1c2c

3
4c5 + 15c1c3c

4
4

+ 32c52c3 + 40c22c
3
4c5 + 30c2c3c

4
4 + 6c54c5,

f2,1 = 3c41c
2
3 + 24c31c2c

2
3 + 72c21c

2
2c

2
3 + 6c21c

2
4c

2
5

+ 96c1c
3
2c

2
3 + 24c1c2c

2
4c

2
5 + 24c1c3c

3
4c5 + 48c42c

2
3

+ 24c22c
2
4c

2
5 + 48c2c3c

3
4c5 + 9c23c

4
4 + 6c44c

2
5,

f0,2 = 9c31c
3
3 + 54c21c2c

3
3 + 3c21c4c

3
5

+ 108c1c
2
2c

3
3 + 12c1c2c4c

3
5 + 27c1c3c

2
4c

2
5

+ 72c32c
3
3 + 12c22c4c

3
5 + 54c2c3c

2
4c

2
5 + 27c23c

3
4c5 + 6c34c

3
5,

f1,2 = 27c21c
4
3 + c21c

4
5 + 108c1c2c

4
3 + 4c1c2c

4
5 + 24c1c3c4c

3
5

+ 108c22c
4
3 + 4c22c

4
5 + 48c2c3c4c

3
5 + 54c23c

2
4c

2
5 + 6c24c

4
5,

f2,2 = 81c1c
5
3 + 15c1c3c

4
5 + 162c2c

5
3

+ 30c2c3c
4
5 + 90c23c4c

3
5 + 6c4c

5
5,

f0,3 = 243c63 + 135c23c
4
5 + 6c65,

f2,3 = 6c56c8 + 15c46c
2
7 + 60c36c7c

2
8 + 60c26c

3
7c8 + 15c26c

4
8

+ 6c6c
5
7 + 60c6c

2
7c

3
8 + 15c47c

2
8 + 6c7c

5
8,

f1,3 = c66 + 30c46c7c8 + 20c36c
3
7 + 20c36c

3
8 + 90c26c

2
7c

2
8

+ 30c6c
4
7c8 + 30c6c7c

4
8 + c67 + 20c37c

3
8 + c68,

f0,4 = 6c56c7 + 15c46c
2
8 + 60c36c

2
7c8 + 15c26c

4
7 + 60c26c7c

3
8

+ 60c6c
3
7c

2
8 + 6c6c

5
8 + 6c57c8 + 15c27c

4
8.

(A.2.4)

f0,0(τ) corresponds to γ = 0.
We choose B =< f0,0(τ), f0,1(τ), f0,2(τ), f0,3(τ), f0,4(τ), f1,1(τ), f1,2(τ),

f1,3(τ), f2,1(τ), f2,2(τ), f2,3(τ) > as a basis, then the T matrix is



1
1

1
1

1
ξ3

ξ3
ξ3

ξ−1
3

ξ−1
3

ξ−1
3


(A.2.5)
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We consider the fγ(τ), which are listed in (A.2.4). The S-transformation for

{f0,0(τ)− f0,1(τ), f0,0(τ)− f0,2(τ), f0,0(τ)− f0,3(τ), f0,0(τ)− f0,4(τ)} −→
{f0,0(τ), f0,1(τ), f0,2(τ), f0,3(τ), f0,4(τ), f1,1(τ), f1,2(τ), f1,3(τ), f2,1(τ), f2,2(τ), f2,3(τ)}

is (using (A.2.2))

S =
1

33



0 0 0 0
0 0 0 1
0 171 180 160
0 72 63 64

729 486 486 504
0 9 18 12
0 234 225 120

729 486 486 477
0 63 45 60
0 180 198 192

729 486 486 477


. (A.2.6)

Now we are ready to prove (6.3.2). Using (C.0.2) we observe, that h(τ)
is a modular form of weight −6 and trivial character of the congruence group
Γ0(3), which is generated by T and ST 3S. The same holds for the fγ(τ) with
norm 0, since T 3 = Id (A.2.5). Comparing the cusps of h(τ) and fγ(τ) yields
(f0,0(τ)− f0,n(τ))/h(τ), n = 1, ..., 4 is in M0(Γ0(3), 1), hence constant, and the
constant is one. The S transformation of f0,0(τ)−f0,n(τ) (A.2.6) completes the
proof.

A.3 Â2
4,5

Using (C.0.4) we observe, that h(τ) is a modular form of weight −4 and trivial
character for the congruence group Γ0(5). The same holds for the fγ(τ) with
norm 0. Comparing the cusps of h(τ) and fγ(τ) yields (A.3.1) (fγ(τ)−fγ′(τ))/h(τ)

(γ = 0, γ′ 6= 0, γ′
2
/2 = 0 mod 1) is in M0(Γ0(5), 1), hence constant, and the

constant is one. The S transformation of fγ(τ)-fγ′(τ) (A.3.2) gives us again
(6.3.2).

f(50000,50000)(τ)− f(11111,11111)(τ) =

f(50000,50000)(τ)− f(50000,11111)(τ) =

f(50000,50000)(τ)− f(30110,10220)(τ) =

f(50000,50000)(τ)− f(31001,12002)(τ) =
1

(η(τ)η(5τ))4

(A.3.1)
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S =
1

52


350 115 10 150 190 250 175 10 290 10
300 120 5 200 220 250 150 5 270 5
345 112 8 160 192 240 185 8 292 13
360 108 12 145 198 240 180 7 288 12

250 75 250 290 10 75 175 190 250 10
250 100 250 270 5 100 150 220 250 5
240 80 240 292 13 80 185 192 240 8
240 85 240 288 12 85 180 198 240 7


S-transformation of A −→ C ,where
A = {f(50000,50000) − f(11111,11111), f(50000,50000) − f(50000,11111),

f(50000,50000) − f(30110,10220), f(50000,50000) − f(31001,12002)}

C = {f(10220,30110), f(11111,11111), f(11111,50000), f(12002,31001),

f(11111,12002), f(31001,10220), f(30110,30110), f(12002,50000),

f(10220,11111), f(10220,50000), f(31001,30110), f(12002,12002),

f(10220,12002), f(11111,30110), f(50000,30110), f(31001,31001),

f(10220,10220), f(31001,11111), f(30110,12002), f(31001,50000) }

(A.3.2)

A.4 Â6,7

In this case it is more difficult to compare sufficiently many coefficients, since the
string functions of Â6,7 are not known and obtaining the weight multiplicities
via the Freudenthal formula is laborious. But S- and T-matrices are easily
calculated. Since every λ in M is a weight of congruence class 0 (cf. section
6.1), we only have to consider fγ(τ) for γ in class 0. Further we know that
the fλ are invariant under the affine Weyl group and diagram automorphisms.
Hence we only have to consider a set P of pairwise distinct fλ and define

R = {γ̄ ∈ N ′/N |fγ̄ ∈ P}.

Then the transformations are:

S = (Sγ̄,δ̄)γ̄,δ̄∈R where Sγ̄,δ̄ =
−i
75

∑
δ∈δ̄

δ∈N ′/N

e((γ̄|δ)/7)

T = (e(−(γ̄|γ̄)/2)δγ̄,δ̄)γ̄,δ̄∈R

(A.4.1)
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Hence we can write the transformation of the fγ(τ) as

fγ(τ + 1) = e(−(γ|γ)/2fγ(τ)

fγ(−1/τ) = τ−m
∑
δ̄∈R

Sγ̄,δ̄fδ̄(τ)

= τ−m
∑
δ̄∈R

−i
75

∑
δ∈δ̄

δ∈N ′/N

e((γ̄|δ)/7)fδ̄(τ)

=
e(sign(N)/8)√
|N ′/N |

τ−m
∑

δ∈N ′/N

e((γ, δ)) fδ(τ)

(A.4.2)

This is exactly the way like elements of a Weil representation of type ρN , N
the grading lattice of genus II 6,0(7+5), transform (cf. section 3.7). This fact
simplifies the proof of (6.3.2).

(A.4.3) is a list of the fγ with the corresponding norm and first coefficients
calculated with the Freudenthal formula.

Norm 0 mod 7 : f1000321 = 3 + ... , f0102031 = 3 + ... ,

f1111111 = 3 + ... , f7000000 = q−1 + ...

Norm 1 mod 7 : f3020020 = 9q
1
7 + ... , f1301200 = 9q

1
7 + ... ,

f2101012 = 9q
1
7 + ... , f5100001 = 9q

1
7 + ...

Norm 2 mod 7 : f3011110 = 22q
2
7 + ... , f2202001 = 22q

2
7 + ... ,

f5010010 = 22q
2
7 + ... , f1300003 = 22q

2
7 + ...

Norm 3 mod 7 : f1005001 = 51q
3
7 + ... , f0104200 = 51q

3
7 + ... ,

f1210012 = 51q
3
7 + ... , f2011102 = 51q

3
7 + ...

Norm 4 mod 7 : f1400101 = 108q
4
7 + ... , f1030030 = 108q

4
7 + ... ,

f1021201 = 108q
4
7 + ... , f3200002 = 108q

4
7 + ...

Norm 5 mod 7 : f3110011 = 221q
5
7 + ... , f4102000 = 221q

5
7 + ... ,

f1201021 = 221q
5
7 + ... , f3002200 = 221q

5
7 + ...

Norm 6 mod 7 : f0400012 = q−
1
7 + ... , f1003300 = q−

1
7 + ... ,

f1120021 = q−
1
7 + ... , f3101101 = q−

1
7 + ...

(A.4.3)

Recall the modular form F (τ) for the Weil representation ρN of section 3.7

F (τ) =
∑

γ∈N ′/N

Fγ(τ)eγ

with
Fγ(τ) = h(τ) + g0(τ) if γ = 0

= gk(τ) if − γ2/2 ≡ k/p mod 1

with

h(τ) :=
1

(η(τ)η(7τ))3
= q−1 +3+9q+22q2 +51q3 +108q4 +221q5 + . . . (A.4.4)
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and the gk the T-invariant parts of h(τ/p) = g0(τ) + g1(τ) + . . .+ gp−1(τ).
Further define

F̃ (τ) :=
∑

γ∈N ′/N

fγ(τ)eγ

and consider F (τ)− F̃ (τ). This is a modular form for SL(2,Z) (since F (τ) and
F̃ (τ) are modular forms) of negative weight. Regarding (A.4.3) and (A.4.4) we
observe that the first coefficient of fλ equals the first coefficient of Fλ for every λ
in N ′/N . Furthermore F (τ)− F̃ (τ) has no singular terms so that F (τ)− F̃ (τ) is
a holomorphic modular form of negative weight which is also holomorphic at the
cusp i∞. A modular form for SL(2,Z) of negative weight without singularities
at the cusp i∞ is zero. Therefore F (τ) = F̃ (τ) and since the eγ are linear
independent (6.3.2) must be true.
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S- and T-matrices of Â4,5

We note the S- and T-matrices of the string functions of class 0 of type Â4,5.
They are the main tool in proving the string function identities listed in section
6.3.

We use the convenient basis B := B1 ∪ B2

B1 := { c11111
30110 − c31001

s.30110 , c
11111
10220 − c31001

s.10220 , c
11111
12002 − c31001

s.12002,

c11111
31001 − c31001

s.31001 , c
11111
11111 − c31001

s.11111 , c
11111
50000 − c31001

s.50000,

c11111
30110 + c31001

s.30110 , c
11111
10220 + c31001

s.10220 , c
11111
12002 + c31001

s.12002,

c11111
31001 + c31001

s.31001 , c
11111
11111 + c31001

s.11111 , c
11111
50000 + c31001

s.50000,

c50000
s.11111 + c10220

s.11111 , c
50000
s.10220 + c10220

s.10220 , c
50000
s.30110 + c10220

s.30110,

c50000
s.31001 + c10220

s.31001 , c
50000
s.12002 + c10220

s.12002 , c
50000
s.50000 + c10220

s.50000}

B2 := {c12002
s.31001 , c

12002
s.12002 , c

12002
s.10220 , c

12002
s.30110 , c

12002
s.50000,

c50000
s.11111 − c10220

s.11111 , c
50000
s.10220 − c10220

s.10220 , c
50000
s.30110 − c10220

s.30110,

c50000
s.31001 − c10220

s.31001 , c
50000
s.12002 − c10220

s.12002 , c
30110
s.11111 , c

12002
s.11111,

c30110
s.12002 , c

30110
s.30110 , c

30110
s.31001 , c

30110
s.50000 , c

30110
s.10220 ,

c50000
s.50000 − c10220

s.50000},

(B.0.1)

since the representation of the string functions of A4,5 of SL(2,Z) decomposes
into the two irreducible representations corresponding to the basis B1, respect-
ively B2. Denote by ξ := e2πi/10 a 10-th root of unity and a = (ξ + ξ−1)/2,

71
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b = (ξ2 + ξ−2)/2 its real parts.

S1 =
1

5
3
2



10b −10a 0 0 5 30 −10b 10a 0
−10a 10b 0 0 5 30 10a −10b 0

0 0 10a −10b −5 20 0 0 −10a
0 0 −10b 10a −5 20 0 0 10b
4 4 −6 −6 −1 24 −4 −4 6
1 1 1 1 1 1 −1 −1 −1
0 0 0 0 0 0 −5b 5a 0
0 0 0 0 0 0 5a −5b 0
0 0 0 0 0 0 0 0 −5a
0 0 0 0 0 0 0 0 5b
0 0 0 0 0 0 −2 −2 3
0 0 0 0 0 0 −1/2 −1/2 −1/2
0 0 0 0 0 0 2 2 −3
0 0 0 0 0 0 −5a 5b 0
0 0 0 0 0 0 5b −5a 0
0 0 0 0 0 0 0 0 −5b
0 0 0 0 0 0 0 0 5a
0 0 0 0 0 0 1/2 1/2 1/2

0 −5 −30 5 −10a 10b 0 0 30
0 −5 −30 5 10b −10a 0 0 30

10b 5 −20 −5 0 0 −10b 10a 20
−10a 5 −20 −5 0 0 10a −10b 20

6 1 −24 −1 4 4 −6 −6 24
−1 −1 −1 1 1 1 1 1 1

0 −5/2 −15 15/2 −15a 15b 0 0 45
0 −5/2 −15 15/2 15b −15a 0 0 45

5b 5/2 −10 −15/2 0 0 −15b 15a 30
−5a 5/2 −10 −15/2 0 0 15a −15b 30

3 1/2 −12 −1.5 6 6 −9 −9 36
−1/2 −1/2 −1/2 3/2 3/2 3/2 3/2 3/2 3/2
−3 −1/2 12 −1/2 2 2 −3 −3 12

0 5/2 15 5/2 5b −5a 0 0 15
0 5/2 15 5/2 −5a 5b 0 0 15

5a −5/2 10 −5/2 0 0 5a −5b 10
−5b −5/2 10 −5/2 0 0 −5b 5a 10
1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2



(B.0.2)
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B1 =


ξ6

ξ4

ξ2

ξ8

1
1



B2 =


−1

ξ9

ξ1

ξ3

ξ7



T1 =


B1

B1

B2

−1



(B.0.3)

S2 =
1

52



5 + 5b −5/2 0 0 20a −5 0 0 10a
−5/2 5 + 5b 0 0 20a −5 0 0 −10b

0 0 5/2 −5− 5b 30a 5 10b −10a 0
0 0 −5− 5b 5/2 30a 5 −10a 10b 0
a a a a a 1 1 1 1
−6 −6 4 4 24 1 −4 −4 6

0 0 10b −10a 30 −5 −10b 10a 0
0 0 −10a 10b 30 −5 10a −10b 0

10a −10b 0 0 20 5 0 0 −10a
−10b 10a 0 0 20 5 0 0 10b

6a 6a −4b −4b −24b −1 4 4 −6
−6a −6a 4a 4a 24a −1 4 4 −6

5− 5a −5/2 0 0 −20b −5 0 0 −10b
0 0 5/2 5a− 5 −30b 5 −10a 10b 0

−5/2 5− 5a 0 0 −20b −5 0 0 10a
−b −b −b −b −b 1 1 1 1

0 0 5a− 5 5/2 −30b 5 10b −10a 0
1 1 1 1 1 −1 −1 −1 −1
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−10b 5b −5a 5− 5a 0 −5/2 −20b 0 20
10a 5b −5a −5/2 0 5− 5a −20b 0 20

0 −5b 5a 0 5/2 0 −30b 5a− 5 30
0 −5b 5a 0 5a− a 0 −30b 5/2 30
1 −b a −b −b −b −b −b 1
6 −1 −1 −6 4 −6 24 4 −24
0 5 5 0 −10a 0 30 10b −30
0 5 5 0 10b 0 30 −10a −30

10b −5 −5 −10b 0 10a 20 0 −20
−10a −5 −5 10a 0 −10b 20 0 −20
−6 −a b −6a 4a −6a 24a 4a 24
−6 b −a 6a −4b 6a −24b −4b 24
10a −5a 5b 5 + 5b 0 −5/2 20a 0 20

0 5a −5b 0 5/2 0 30a 5b− 5 30
−10b −5a 5b −5/2 0 5 + 5b 20a 0 20

1 a −b a a a a a 1
0 5a −5b 0 −5− 5b 0 30a 5/2 30
−1 1 1 1 1 1 1 1 −1


(B.0.4)

B2 :=


−1

ξ9

ξ1

ξ3

ξ7



T2 :=


B2

B2

ξ3

ξ7

B2



(B.0.5)



Appendix C

S-transformation of
η((kτ + j)/m)

Formula (3.3.2) allows us to calculate the S-transformation of η((kτ + j)/m).
For our proofs we have to verify that certain eta products transform exactly
in the same way under certain congruence groups as the corresponding string
functions (resp. fλ).

We list all the transformations necessary for our purpose.

η((τ + 1)/2)|S =
√
τ/i η((τ + 1)/2) (C.0.1)

η((τ + 1(/3)|S = e11πi/12
√
τ/i η((τ + 2)/3) (C.0.2)

η((τ + 1)/4)|S = e−2πi/12
√
τ/i η((τ + 3)/4)

η((τ + 2)/4)|S =
√

2τ/i η((2τ + 1)/2)
(C.0.3)

η((τ + 1)/5)|S = e−3πi/12
√
τ/i η((τ + 4)/5)

η((τ + 2)/5)|S =
√
τ/i η((τ + 2)/5)

η((τ + 3)/5)|S =
√
τ/i η((τ + 3)/5)

(C.0.4)

η((τ + 1)/7)|S = e7πi/12
√
τ/i η((τ + 6)/7)

η((τ + 2)/7)|S = e−11πi/12
√
τ/i η((τ + 3)/7)

η((τ + 4)/7)|S = e−11πi/12
√
τ/i η((τ + 5)/7)

(C.0.5)

75
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η((τ + 1)/10)|S = −
√
τ/i η((τ + 9)/10)

η((τ + 2)/10)|S = e−3πi/12
√

2τ/i η((2τ + 4)/5)

η((τ + 3)/10)|S =
√
τ/i η((τ + 3)/10)

η((τ + 4)/10)|S = −
√

2τ/i η((2τ + 2)/5)

η((τ + 5)/10)|S =
√

5τ/i η((5τ + 1)/2)

η((τ + 6)/10)|S =
√

2τ/i η((2τ + 3)/5)

η((τ + 7)/10)|S = e−πi/12
√
τ/i η((τ + 7)/10)

η((τ + 8)/10)|S = e3πi/12
√

2τ/i η((2τ + 1)/5)

(C.0.6)

η((τ + 1)/20)|S = e−2πi/12
√
τ/i η((τ + 19)/20)

η((τ + 2)/20)|S = e8πi/12
√

2τ/i η((2τ + 9)/10)

η((τ + 3)/20)|S = e−5πi/12
√
τ/i η((τ + 13)/20)

η((τ + 4)/20)|S = e−8πi/12
√

4τ/i η((4τ + 4)/5)

η((τ + 5)/20)|S = e−2πi/12
√

5τ/i η((5τ + 3)/4)

η((τ + 6)/20)|S =
√

2τi η((2τ + 3)/10)

η((τ + 7)/20)|S = e−5πi/12
√
τ/i η((τ + 17)/20)

η((τ + 8)/20)|S =
√

4τi η((4τ + 2)/5)

η((τ + 9)/20)|S = e2πi/12
√
τ/i η((τ + 11)/20)

η((τ + 10)/20)|S =
√

10τ/i η((10τ + 1)/2)

η((τ + 12)/20)|S =
√

4τ/i η((4τ + 3)/5)

η((τ + 14)/20)|S =
√

2τ/i η((2τ + 7)/10)

η((τ + 15)/20)|S = e2πi/12
√

5τ/i η((5τ + 1)/4)

η((τ + 16)/20)|S = e3πi/12
√

4τ/i η((4τ + 1)/5)

η((τ + 18)/20)|S = e8πi/12
√

2τ/i η((2τ + 1)/10)

(C.0.7)
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