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Introduction 
 The Closed-loop Valve Stiction Detection and Quantification toolbox is developed by the 

Computer Process Control Group at the University of Alberta as a tool to detect and characterise 

the stiction phenomenon in pneumatic control valves. 

 A “Quick Start” approach to use this toolbox will be presented, along with a detailed 

section containing step-by-step guide for users to benefit from different features of the toolbox 

the best. 

System Requirements 
 In order to run this toolbox properly, the following programmes are required: 

1) MATLAB 2006a (MATLAB 7.1) or better. It should be noted that the newest version of 

MATLAB (MATLAB 2008a) makes the toolbox run slower. 

2) The SYSTEM IDENTIFICATION TOOLBOX from MATLAB is required. 

Quick Start 
 For quick use the toolbox, the following steps should be followed: 

1) Unzip the files to the desired location. 

2) Start MATLAB, and point the current directory to the location of the unzipped files. 

3) At the command prompt, type “>> UA_stiction_online” to start the toolbox. The 

GUI shown in Figure 1 should appear. 
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1. Main Menu 

2. Control Loop 

Data Information

3. OP, PV Data 

Analysis 

4. Process Model 

Structure
5. Solver 

Specifications 

 

Figure 1: The main GUI for this toolbox, with the main regions highlighted 

4) For the purpose of this quick start, we will be using the sample data provided in the zip 

format. Go to File Open located in the Main Menu area, which is denoted as 1 in Figure 

1. Select the “UA_cmpct_Data_stiction.mat” file. Be patient as the file is loaded. This 

file contains the closed-loop data for the process. Go to the drop box labelled “Loop No:” 

in Section 2 of Figure 1. Select any of the control loops in order to display the data. For 

this example, “Loop 4” will be selected. 

5) After a few seconds, graphs of the loaded data will appear in region 3 of Figure 1. The 

resulting screenshot is shown in Figure 2. 

7. Results

6. User Inputs
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Figure 2: Screen shot after loading the data 

6) The defaults chosen by the programme will be used for the analysis. Thus, press the “Run” 

button located in region 6 of Figure 1. 

7) Be patient as the programme determines the answer. This can take some time in order for 

the programme to obtain the results. After a few seconds, the screen should become 

similar to that shown in Figure 3. 
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Figure 3: Screen shot after clicking "Run" 

8)  Figure 3 shows that there is stick and slip behaviour in this particular control loop. 

9) To exit the toolbox, click the “Exit” Menu.  

Detailed Instructions  

Theory 

 Valve stiction can be defined as the presence of nonlinear behaviour in a valve (Shoukat 

Choudhury, Thornhill, & Shah, 2005). According to Shoukat Choudhury et al. (2005), this 

nonlinear behaviour can be attributed to static friction in the valve, which impedes the motion of 

the valve until a sufficiently large force can overcome the static friction. The typical behaviour of 

a valve suffering from stiction can be seen in Figure 5. It can be noted that the regions denoted 
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by A and B are together referred to by the symbol fS. It should be noted that slip jump behaviour 

can also occur in the moving phase, if the force applied to the valve is less than that required due 

to static friction. This minimal value is commonly given in terms of percentage of valve travel 

area, that is, the amount that the valve must be changed before any noticeable change occurs. 
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Valve input (controller output) 

 

 The diagram shown in Figure 5 can be constructed by plotting the valve position or 

manipulated variable as a function of the controller output. Furthermore, the actual curve will 

display a wide range of different behaviours depending on the magnitude, type, and location of 

stiction in the given valve, as well as the variables used as proxies for the manipulated variables 

and controller outputs. 

Figure 4: Phase plot for the typical behaviour of valve with stiction (after (Shoukat Choudhury, Thornhill, & Shah, 2005)) 

 The stiction model proposed by (He, Wang, Pottmann, & Qin, 2005) is used in this 

toolbox, in order to estimate the “best” possible values for the stiction parameters (fS and fD).  

 The algorithm used in this toolbox is based on nonlinear-systems identification as 

presented in (Lee, Ren, & Huang, 2008). In this algorithm, the primary graph used to analyze the 

data is a plot of fD as a function of fS. A typical plot with the crucial regions labelled is shown in 

Figure 6. Since the following relationship holds (Lee, Ren, & Huang, 2008), 

  0D Sf f S+ ≤  (1) 
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where S0 is approximately given by the span of the controller output data, the bounds for the 

optimisation constraints can be determined using this relationship. Often, in order to determine 

the appropriate type of stiction for a given valve, a contour map of the mean square error (MSE) 

as a function of both fD and fS is plotted. The region with the smallest MSE represents the most 

probable values of fD and fS for the valve. Thus, this region determines what type of valve 

nonlinearity is most probably causing the observed oscillations. 

 
S0  fS 

fD 

C: stick and slip 

D: deadband combined 

with stick and slip 

½S0  

A 

B C 

D

B: deadband 

A: weak stiction 

Legend: 

 

  
Figure 5: fD as a function of fS. The crucial regions are also highlighted (after (Lee, Ren, & Huang, 2008)). 

 A generalised model of stiction fitting can be summarised in the following 6 steps (Lee, 

Ren, & Huang, 2008): 

1) Data Selection: In this step, the user makes sure that the data has at least 50 data 

points per period.  

2) Data Processing: In this step, the data is detrended, that is, the mean of the data 

samples is subtracted out from the data set, in order to set the mean of the data to zero. 

3) Stiction Model Structure: In this step, the appropriate model for a sticky valve, or 

valve with stiction, is selected. For the purposes of this toolbox, the model proposed 

by (He, Wang, Pottmann, & Qin, 2005) is used. 
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4) Search the Stiction Model Space: In this step, the appropriate bounds for the 

optimisation search are determined based on the controller output data. 

5) Process Model Identification: For this step, the user is presented with two choices: 

either a first- or a second-order plus time delay model. The time delay can either be 

known or it can be determined using the method presented in (Lee, Ren, & Huang, 

2008). The decision process used to pick the model is shown in Figure 6 . 

6) Quantification of Valve Stiction: Using a specified optimisation technique, the 

optimal values for the parameters is determined. A coarse search is first performed. 

This is followed by a fine local search to determine the actual optimal points.  

Contours show 
clear local minima?

Yes

No 
Try second order model 

Yes 

First order model 
suffices 

Contours show 
clear local minima? 

Second order model suffices

No No model 
works

Try first order model 

 

Figure 6: Decision chart for determining the appropriate model (after (Lee, Ren, & Huang, 2008)) 

Data Storage 

 The data required for this program is stored in a single file. For a quick generation of the 

compact data storage objects, the file “gen_cmpct_Data_stiction.p” can be used. 

 The data for this process is stored as follows: 

1) int_LoopNumber: This is an integer that stores the number of loops present in the 

file. 

2) str_Compact: This is an object that stores all the data for a given loop. The data for 

the ith loop is stored in the field called “loop#”, where # represents the number of the 

ith loop. Inside each of the fields, “loop#”, the following fields are found: 
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a. dbl_Compact_Data: This is an N-by-2 double matrix that contains in the first 

column the controller output (OP) data, while the second column contains the 

controlled variable (PV) data. There are a total of N sample data points. 

b. dbl_SamplingTime: This is a double value that contains the sampling time 

for the process. 

c. cell_char_TagList: This is a 2-by-1 cell array that contains the tag list for the 

controller output and controlled variable. 

d. cell_char_TimeStamp: This is an N-by-1 cell array that contains the time 

stamp for each of the N sample data points. 

e. cell_Comment: A cell array that contains any user specified comments about 

the given loop. 

Data Generation 

 The data storage files for multivariate analysis can be generated using the p-file 

“gen_cmpct_Data_stiction.p”. The following steps should be followed to create a compact data 

set for a process with 3 sample points and 2 control loops with a sampling time of 3 s. 

1) Start MATLAB and point the directory to the location of the above binary file. 

2) At the command prompt create the following 2 data matrices for the first loop, which 

contains the 3 sample values of the process for the controller output and controlled 

variable “>> OP1=[1;3;5]” and ““>> PV1=[2;4;6]”.  For the second loop, create 

“>> OP2=[3;7;9]” and ““>> PV2=[2;6;8]”.  

3) Type at the command prompt: ““>> gen_cmpct_Data_stiction”. The following 

should appear 
Consider a control-loop with control valve 

1. Input data (OP): N x 1 matrix 

2. Output data (PV): N x 1 matrix 

3. Sampling time (sec) 

4. Comment on the control loop 

How many control loops? 

4) Type “2”, since there are 2 control loops. Press “Enter” 

5) Now, the programme will prompt for the data for the first loop. Thus, type “OP1” and 

press enter. This is the sampled controller output matrix. Next, type “PV1” and press 
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enter. This is the sampled controlled variable data. Finally, type “3” and press enter. This 

is the time delay. Press enter again, since we do not wish to enter any comment for the 

loop. 

6) Repeat Step 5 for the second control loop, replacing OP1 with OP2 and PV1 with PV2. 

7) Enter a name for the data storage file, say, for example, “test_data.mat” and press enter. 

It should be noted that files that have the same name as those currently present in 

the directory will be overwritten without any warning. 

In order to view the results, type “>>load test_model.mat” followed by  

“>>int_LoopNumber” to view the number of loops, which should be 2. In order to view the 

results for the first loop, type “>>str_Compact.loop1”, which will display all the fields for 

the given loop. In order to view the results in the individual loops, type the above followed by 

the desired string, for example, “>>str_Compact.loop1.dbl_Compact_Data”. The 

results should be identical to that displayed in Table 1 for the first loop and in Table 2 for the 

second loop. 

Table 1: Summary of the parameters generated using the "gen_cmpct_Data_Stiction" command for the first loop 

Entry Value 

dbl_Compact_Data  
     [1     2 
     3     4 
     5     6] 

dbl_SamplingTime 3 
cell_char_TagList {'loop1.OP'  'loop1.PV'} 

cell_char_TimeStamp 
It should give the current time incremented by 

1, 2, and 3 
char_Comment ‘’ 

Table 2: Summary of the parameters generated using the "gen_cmpct_Data_Stiction" command for the second loop 

Entry Value 

dbl_Compact_Data  
     [3     2 
     7     6 
     9     8] 

dbl_SamplingTime 3 
cell_char_TagList {'loop2.OP'  'loop2.PV'} 

cell_char_TimeStamp 
It should give the current time incremented by 

1, 2, and 3 
char_Comment ‘’ 
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Optimisation Subroutine 

 The optimisation routines presented in this toolbox are self-contained that is they can be 

run without the need for the installation of any additional MATLAB programmes. However, this 

toolbox provides users with the ability to provide their own optimisation functions. In order to do 

this, it is necessary to modify the file “conopt.m”. 

 The file that comes with the toolbox has been modified to run with the optimisation 

software provided by TOMLAB (http://tomopt.com/tomlab/), which is called “lgo”. It should be 

noted that this software is not free and a license must be obtained in order to use it. A free, 21-

day trial for the software is available 

 The general format for the file consists of the header file and a global declaration of the 

variables that are required for optimisation. For example, the following would be the start of the 

file: 

 
function [fs fd runtime] = conopt(option) 
 % optimization for valve stiction quantification 
 global model d N u y u_v y_h fs_max a b V 

% The required code to run the programme would then be entered. 

 

% end conopt 

 For example, the conopt.m file for the TOMLAB optimisation software would be given 

as (comments have been added to explain what is required): 
function [fs fd runtime] = conopt(option) 
 % optimization for valve stiction quantification 
 global model d N u y u_v y_h fs_max a b V 
% TOMLAB lgo (http://www.tomopt.com 

%Initialisation of the required variables for the programme 

%x_L is the lower bound for the 2 parameters that are being 

optimised. 

%x_U is the upper bound. 

%All the variables initialled as ‘[]’ are empty. 
x_L = [0 0]; 
x_U = [fs_max fs_max/2]; 
name = []; 
A = [-1 1;1 1]; 
b_L = [-fs_max 0]; 

  

http://tomopt.com/tomlab/
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b_U = [0 fs_max]; 
c = []; 
c_L = []; 
c_U = []; 
x_0 = []; 
% Note that 'objfun' includes the penalty functions for constraints 
% so it can also be handled as an unconstrained problem 

%The next few steps create the handles to allow the optimisation to 

be run. 
Prob = glcAssign('objfun',x_L,x_U,name,A,b_L,b_U,c,c_L,c_U,x_0);  

% Set the maximum number of iterations 

Prob.LGO.options.G_maxfct = 10000; 

% Select the appropriate optimisation mode based on the user’s 

selections. 
if option == 1     % Multi-start adaptive random search  
    Prob.LGO.options.opmode = 3; 
elseif option == 2 % Adaptive random search 
    Prob.LGO.options.opmode = 2; 
elseif option == 3 % Branch and bound search 
    Prob.LGO.options.opmode = 1; 
end 

% Run the optimisation programme to obtain the results. 
Result = tomRun('lgo',Prob,1); 

% Postprocessing of the results, so that the Stiction toolbox can 

understand what has been done. 

%Thus, it is required to store final values for fs, fd, and runtime, 

which is the amount of time required to complete the optimisation. 
x_opt = Result.x_k; 
fs = x_opt(1); 
fd = x_opt(2); 
runtime = Result.REALtime; 
% END of conopt.m 

Using the Toolbox 

Installation 

 The toolbox can be installed by simply unzipping the files to any desired location. In 

order for the toolbox to function properly, the System Identification Toolbox should be installed. 
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Starting the Toolbox 

 The toolbox can be accessed from MATLAB using the following sequence of commands. 

First MATLAB itself should be started and the directory pointed to the folder containing the files 

for this toolbox. Then, at the command prompt type “>>UA_stiction_online”. The GUI 

shown in Figure 8 should appear. In Figure 8, the main parts of the GUI are highlighted and will 

be discussed separately. 

In-depth Discussion of the Toolbox 

Section 1: Main Menu 

 A close-up of the Main Menu section is given in Figure 7. The Main Menu consists of the 

following 7 areas: 

1) Open: Allows the user to load the desired data into the toolbox. 

2) Exit: Causes the toolbox to close. 

3) Undo: Cancels the last actions done by user. 

4) Full Screen/ Window View: Switches between window and full screen views. 

5) Help: Contains links to the manual, updates and general information about the software. 

 

Figure 7: Close-up of the main menu 
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1. Main Menu 

2. Control Loop 

Data Information

3. OP, PV Data 

Analysis 

4. Process Model 

Structure
5. Solver 

Specifications 

 

Figure 8: The main GUI for this toolbox, with the main regions highlighted 

Section 2: Control Loop Data Information 

 In this section, information about the process is presented. Going from left to right, the 

following features can be seen: 

1) Process Diagram: This is a diagram that explains the meaning of the symbols used. The 

following abbreviations are used: 

a. SP: The setpoint 

b. OP: The controller output 

c. MV: The manipulated variable 

d. PV: The controlled variable, or the output. 

7. Results

6. User Inputs
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2) Loop Selection Dropdown box: This dropdown box allows the user to select which loop, 

if more than one loop is present in the data file, to be used in the analysis of the process. 

3) Process Information: The last section, which consists of three drop-down boxes, 

displays the names assigned to the variables, as well as the sampling time (Ts).  

Section 3: OP, PV Data Analysis 

 In this area, the graphs display the data that has been loaded into the toolbox. There are 

two separate plots of the data. The first plot is a simple time-series plot of the data, while the 

second plot is similar to the phase plots given in Figure 5. The first data shows the results for the 

unadulterated data, while the second set of graphs shows the results after changing the 

downsampling value. 

 In between the two graphs, there are three fields that can be used to change the values. 

The first area, called “Selection of samples,” allows the user to select what time sections are used 

in the analysis. The format for this entry is “[start sample value, end sample value]”. A comma 

must separate the two values and the end value must be greater than the start value. As well, 

there must exist a sufficient number of data samples in order for the computer to estimate a 

model. Thus, for example, to display only the data between sample times 20 and 400, the entry 

would be “[20,400]”. Multiple time sections are not supported. Once a value has been entered, 

the “enter” button should be pressed to register the changes. 

 The second area, called “Downsampling”, allows the user to reduce the number of data 

points used in the analysis. It should be noted that downsampling can result in a frequency that 

leads to aliasing. The value can be any real number greater than 1, but less than the number of 

data samples present in the process. Once a value has been entered, the “enter” button should be 

pressed to register the changes. 

 The third area is a dropdown box that allows the user to select whether the data is 

displayed on a single or double (separate) axis. The double axis should be used if the process 

data used contains two widely different values and ranges.  

Section 4: Process Model Selection 

 In this section, the user can pick between a first-order plus dead time model (FOPDT) or 

a second-order plus dead time model (SOPDT). If the sampling time for the process has been 
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specified, then it is possible to manually select a time delay for the process. Otherwise, the time 

delay is calculated as described in (Lee, Ren, & Huang, 2008).  

Section 5: Solver Specifications 

 In this section, the user can select which global solver is used for coarse process 

optimisation, which can be selected by clicking the radio button beside the desired option. There 

are 2 main choices:  

1) Contour: This option allows the user to select what contour fineness is used in the coarse 

search to determine the location for a finer, local search. The percentages represent what 

fraction of the range of the controlled variable is used. The smaller the percentage the 

more contours that are calculated and the longer the programme will take to determine 

the answer. 

2) Global: This option allows the user the option to select any optimisation method. The 

method used to implement this is described in the section “Optimisation Subroutine.” 

After the programme has been run, the values for fS, fD, and the runtime are displayed in the same 

section. 

Section 6: User Inputs 

 In this section, the user can select the method used to solve the problem from the 

dropdown box, or click the “Run” button to run the programme and obtain the desired results.  

Section 7: Results 

 In this section, the three graphs show the results of the optimisation routine. The first two 

graphs show the contour plots as a function of fS and fD. The colours used are explained in Figure 

9. 

 

Low MSE High MSE

Figure 9: Colour scheme used in the MSE plot 

The suggested optimal region is shown by a rectangular box. The smallest mean square error 

(MSE) is shown, while the corresponding values of fS and fD are given in brackets in the axes 
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labelling. It should be noted that the first graph is only used for the first-order plus time delay 

model, while the second graph is used for the second-order plus time delay model. The third 

graph is a histogram that shows the value of the optimal values for fS and fD. 

Examples 

Part I: Using the Programme to Obtain Results 

 The first step is to load the programme, “>>UA_stiction_online”. 

 Next, go to File Open and select the file “UA_cmpct_Data_stiction.mat”. Finally, click 

on “Open” to load the file. Next, go the section 2 and select the fourth loop (loop4). The GUI 

should look like that shown in Figure 10. All other defaults will be used. 

 Once it has been verified that Figure 10 matches the screen that was obtained, click on 

the “Run” Button and patiently wait until the results are displayed. The results take about 30 

seconds to display. The screen should then resemble Figure 11. 

 From Figure 11, it can be seen that using a first order model, there seems to be strong 

deadband with stick and slip behaviour (see Figure 6). Adopting a second-order model, where 

the results are shown in Figure 12, does not change the results. Basically, the same parameters 

are obtained. 
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Figure 10: Screen shot 1 for the example 
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Figure 11: Screen shot 2 for the example 
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Figure 12: Second-order model results 

Part II: Some Other Issues Using the Toolbox: Time Sections and Downsampling 

 Assume that the same dataset is being used and a FOPTD model. Now, enter a time 

section as “[50, 500]”, which will allow the parameter estimates to be made for the 50th to the 

500th samples. As well, a downsampling value of 2 will be entered. Remember to press enter 

after entering all of the values. The correct screen should look like Figure 13. 

 Figure 13 shows the results. On the whole, the parameter values are different, but they 

still allow the same conclusion: deadband with stick and slip behaviour. 
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Figure 13: Results of using a range of time sections 
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