

University of Alberta Computer Process Control Group

Subspace Closed-loop

Identification
Limited Trial Version

Written by: CPC Control Group, University of Alberta

Version 2.0

ii

Table of Contents

Introduction 1

System Requirements 1

Quick Start 1

Detailed Instructions 6

Theory 6

Subspace Identification 6

Subspace identification of a closed-loop system 8

Data Storage 10

Data Storage Format 10

Data Generation 11

Using the Toolbox 11

Installation 11

Starting the Toolbox 11

In-depth Discussion of the Toolbox 13

Example 1 19

Example 2 22

References 25

iii

List of Figures
Figure 1: The first GUI that appears 1

Figure 2: The main GUI 2

Figure 3: Main GUI with the closed-loop data loaded 3

Figure 4: The estimated state-space model and fit analysis 4

Figure 5: Residue test results 5

Figure 6: Step response model results 5

Figure 7: Closed-loop system 9

Figure 8: The first GUI that appears 12

Figure 9: Data Information Window 14

Figure 10: Data View and Selection Panel 15

Figure 11: Run Panel 15

Figure 12: Data Plot Axes 16

Figure 13: Validation Panel 17

Figure 14: Residual Test Window 18

Figure 15: Estimated Step Response Coefficients 18

Figure 16: Window for Entering the Continuous-Time Model Orders 19

Figure 17: Estimated Continuous-Time Models 19

Figure 18: Simulink Model for Collecting the Data 20

Figure 19: Results of Using the Given Data 21

Figure 20: Residual Test Results for Example 1 21

Figure 21: Results of Closed-Loop Identification for Example 2 23

Figure 22: Residual Test Results for Example 2 24

1

Introduction
 The “Subspace Closed-loop Identification” toolbox was developed by the Computer

Process Control Group at the University of Alberta to allow closed-loop identification to be

performed in MATLAB using the subspace approach.

 A “Quick Start” approach to using this algorithm is presented, along with a detailed

section containing full explanations and examples for using this algorithm.

System Requirements
 In order to run this program properly, the following programmes are required:

1) MATLAB 2006a (MATLAB 7.1) or better. It should be noted that the newest version of

MATLAB (MATLAB 2008a) makes the toolbox run slower.

2) The SYSTEM IDENTIFICATION TOOLBOX from MATLAB is required.

Quick Start
 For quickly using the toolbox, the following steps should be followed:

1) Unzip the files to the desired location.

2) Start MATLAB, and point the current directory to the location of the unzipped files.

3) At the command prompt, type >>main_CLsysID to start the toolbox. The GUI shown

in Figure 1 should appear.

Figure 1: The first GUI that appears

2

Figure 2: The main GUI

4) Press the Run button in the Start menu. A new GUI will appear that is shown in Figure

2.

5) This GUI tool provides closed-loop subspace identification using the joint-output

identification method.

6) You have to load a set of closed-loop experiment data in Compact format (to be

explained shortly) using the Data submenu in the File menu.

3

7) For the purpose of this quick start, we will use the sample data provided from a MIMO

example.

8) When the data is loaded, the corresponding information about it can be obtained by

pressing the Data Information button. After loading the data, the GUI should

resemble Figure 3.

Figure 3: Main GUI with the closed-loop data loaded

9) Use the Run button to estimate the process model from closed-loop data. Depending on

the type of process dynamics, the number of inputs and outputs, and the number of data

4

points, it may take between a few seconds to couple of minutes to obtain a model. The

results of pressing this button are shown in Figure 4.

Figure 4: The estimated state-space model and fit analysis

10) The results of model validation are provided in the Validation panel including the

prediction fit and residual test results. Further information about the residuals can be

found by pressing the Residue test button. The results are shown in Figure 5.

11) The estimated model can be refined using the prediction error method. You can use the

Refine by PEM button in the Validation panel.

5

12) Direct step response estimation and continuous-time transfer function models between

each input and output can also be obtained using the Step Resp. button in the Validation

panel. The results are shown in Figure 6.

Figure 5: Residue test results

Figure 6: Step response model results

6

Detailed Instructions

Theory

Subspace identification methods provide an alternative approach to the classical system

identification methods like the prediction error method (Ljung L. , 1999) and the instrument

variable method (Söderström & Stoica, 1989). Subspace methods use efficient computational

algorithms such as QR-factorization and singular value decomposition to compute the parameter

values. This makes these methods numerically robust. Different subspace identification methods

have been developed in the last two decades, including the regression analysis approach, N4SID

(numerical subspace state space identification), MOESP (MIMO output error state space), CVA

(canonical variate analysis) (Knudsen, 2001; Larimore, 1996; Moonena, De Moora,

Vandenberghea, & Vandewalle, 1989; Van Overschee & De Moor, 1994; Van Overschee & De

Moor, 1995; Verhaegena & Dewilde, 1992; De Moor & Van Overschee, 1996). As well, work

has been devoted to implementing closed-loop, subspace system identification for control-

relevant identification and controller performance assessment. Many subspace methods have

been extended to closed-loop identification (Knudsen, 2001; Ljung & McKelvey, 1996;

Tangirala, Lakshminarayanan, & Shah, 1997; Van Overschee & De Moor, 1997; Kadali &

Huang, 2002). An improved closed-loop subspace identification method was also presented in

(Danesh Pour, Huang, & Shah, 2008) using the joint input-output identification approach. An

alternative formulation of this method with guaranteed consistency is proposed in(Huang &

Kadali, 2008). This programme is based on the last algorithm.

Subspace Identification

 Consider the following state space representation for a linear system with l inputs and m

outputs:

1t t t

t t t

t

t

x Ax Bu Ke
y Cx Du e

+ = + +⎧
⎨ = + +⎩

 (1)

where xt ∈ Rn is the state, ut ∈ Rl is the input, yt ∈ Rm is the output, and et ∈ Rm is the white noise

disturbance. System (1) can be rewritten in terms of the basic subspace equations for output and

states, that is,

7

f N f u f e f

N d s
f p N p N

Y X L U L E

pX A X U E

= Γ + +

= + Δ + Δ
 (2)

where p represents past values of the system, f represents future values of the system, Xf ∈ Rn×j is

the subspace matrix of future states given by

 ()1, ,f N N N jX x x x+ += … 1−

⎟
⎟

 (3)

ΓN ∈ RmN×n is the extended observability matrix defined as

 (4)

1

N

N

C
CA

CA −

⎛ ⎞
⎜ ⎟
⎜Γ =
⎜
⎜ ⎟
⎝ ⎠

#

Lu ∈ RmN×lN
 is the extended process dynamics matrix defined as

2 3

0 0
0

u

N N

D
CB D

L

CA B CA B D− −

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"

%
"

 (5)

Le ∈ RmN×mN
 is the extended error dynamics matrix defined as

2 3

0 0
0

e

N N

I
CK I

L

CA K CA K I− −

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"

%
"

 (6)

Δd
N ∈ Rn×lN is the transposed extended controllability matrix of (A, B)

 ()1 2, , , ,d N N
N A B A B AB B− −Δ = … (7)

Δs
N ∈ Rn×mN is the transposed extended controllability matrix of (A, K)

 ()1 2, , , ,s N N
N A K A K AK K− −Δ = … (8)

Up ∈ RnlN×j is the data Hankel matrix for past inputs defined as

0 1 1

1 2
0| 1

1 2

j

j
p N

N N N j

u u u
u u u

U U

u u u

−

−

− + −

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"

#
"

 (9)

Uf ∈ RlN×j is the data Hankel matrix for future inputs defined as

8

−

−

1 1

1 2
|2 1

2 1 2 2 2

N N N j

N N N j
f N N

N N N j

u u u
u u u

U U

u u u

+ +

+ + +
−

− +

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"

#
"

 (10)

Yp ∈ RmN×j is the data Hankel matrix for past outputs defined similarly to Equation (9),

Yf ∈ RmN×j is the data Hankel matrix for future outputs defined similarly to Equation (10), Ep ∈

RmN×j is the data Hankel matrix for past errors defined similarly to Equation (9), and Ef ∈ RmN×j is

the data Hankel matrix for future errors defined similarly to Equation (10).

 In open-loop subspace identification in order to reduce sensitivity to noise, j should be

much larger than

 ()max ,mN lN (11)

In many ways, j plays the same role as the number of observations in classical identification. The

number of rows in the data Hankel matrices, N, is related to the order of the system.

 Using a regression analysis approach (Knudsen, 2001), it can be shown that

 f w p u f e fY L W L U L E= + + (12)

 where Lw ∈ RmN×(l + m)N and Wp is defined as

 p
p

p

Y
W

U
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

(13)

This gives an input-output equation in the subspace framework.

Subspace identification of a closed-loop system

For the closed-loop system shown in Figure 7, two separate open-loop models can be

defined: a model from the setpoint rt to the output yt and another model from rt to the controller

output ut. Similarly to Equation (12), these two systems can be represented by the following

input-output relationships (Huang & Kadali, 2008):

 p
f Y YR f Y

p

Y
Y L L R L E

R
⎡ ⎤

= + +⎢ ⎥
⎣ ⎦

E f (14)

 p
f U UR f U

p

U
U L L R L E

R
⎡ ⎤

= + +⎢ ⎥
⎣ ⎦

E f (15)

where

9

pY
p

p

pU
p

p

Y
W

R

U
W

R

⎡ ⎤
= ⎢ ⎥
⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (16)

e

u +

 H

y

Figure 7: Closed-loop system

 If it is assumed that Rf is uncorrelated with Ef, and WU
p with WY

p, each of the open-loop

problems can be solved using the least square method. In (Huang & Kadali, 2008), it has been

shown that the open-loop subspace matrices Lu, Le, and ΓN, and the input noise covariance matrix

can be estimated from the closed-loop subspace matrices, LYR, LUR, and LUE, using a joint input-

output framework. The state-space matrices can be obtained as follows:

()()
()
()

()
() ()

()

() () 1

1: 1 ,:

1: ,:
ˆ 1: ,1:

ˆ

ˆ 1: ,1:

ˆ 1: ,1:

ˆ ˆ 1: ,1:

u
N N

y
N N

N

u y
N N

u
N u

u

u
N v

N m

m Nm

C m n

A

B L m Nm l

D L m l

K P m Nm m

+

+

+
R̂−

Γ = Γ −

Γ = Γ +

= Γ

= Γ Γ

= Γ +

=

= Γ +

 (17)

where + represents the Penrose pseudo-inverse, ◌̂ represents an estimated value, Pv is the noise

covariance matrix, and R is the parameter covariance matrix.

 The Lu and Le matrices as defined by Equations (5) and (6) contain the impulse response

coefficients (Markov parameters) of the process. Therefore, the step response coefficients

between each input and output can be directly extracted from these subspace matrices without

+

C G
r +

_

10

requiring an explicit process model. In fact, this approach provides more reliable estimation of

the step response, especially when the final model is not accurate. In this toolbox, nonlinear

regression is used to fit a continuous-time transfer function model to each set of step response

coefficients. Both the first-order plus time delay (FOPTD) and second-order plus time delay

(SOPTD) models are fitted to each set and the model with the better fit is selected.

Data Storage

Data Storage Format

 The data storage format is called a compact format. Assume that there are j samples of

output, input, and setpoint data with a total of m control variables and l manipulated variables

with a total of q tags. In the compact data storage method, the data is stored as an object

containing the following entries:

1) controller_Status: This is a j-by-1 double matrix that contains the status of each of the

controllers, where 1 represents a controller that is “on” and 0 represents a controller that

is “off.”

2) cell_char_TagList: This is a q-by-1 cell matrix that contains the name of each of the tags

that are presented in the process.

3) cell_char_TimeStamp: This is a j-by-1 cell matrix that contains the time stamp for each

of the samples.

4) dbl_Compact_Data: This is a j-by-(2m+l) double matrix that contains the values for

each of the outputs, inputs and setpoints at sample periods.

5) dbl_SamplingTime: This is a scalar double that contains the sampling time for the data.

6) int_CVNumber: This is a scalar integer that contains the number of controlled variables

in the process, that is, m.

7) int_MVNumber: This is a scalar integer that contains the number of manipulated

variables in the process, that is, l.

8) status: This is a j-by-(l + m) double matrix that stores the data in the following manner:

The first t columns contain the status of the controller variables, while the remaining s

columns contain the status of the manipulated variables. A value of 1 signifies that the

data is good.

11

Data Generation

The data storage file can be generated using gen_cmpct_data.p. A set of closed-loop experiment

data (identification data) should be present in the MATLAB workspace. If your data is ready in

the workspace, run the code. The followings will appear in the command window:

Consider a process with m inputs and p outputs:
The following information should be available in WORKSPACE:

 1. CL Excitation data; Output, Input and Setpoint data (y,u,r)
 2. Sampling time

Press ENTER to continue or type X to exit :

Press enter to continue if the data has already been created; otherwise quit the programme, create

the data, and try again. Once enter is pressed, the following will appear:

Provide Closed-loop excitation data matrix [y u r]:

The data should be arranged in the given order, that is, output, input, and setpoint. Next, the

number of process outputs must be entered:

number of outputs:

Then, the sampling time will be entered:

Sampling time:

Finally, the name of the file to which the data should be saved is entered at the prompt:

The file name to save compact data (e.g. test_cmpct_data):

 This programme will create a “.mat” file that is saved to the current path in MATLAB.

Using the Toolbox

Installation

 The toolbox can be installed by simply unzipping the files to any desired location. In

order for the toolbox to function properly, the System Identification Toolbox should be installed.

Starting the Toolbox

The toolbox can be accessed from MATLAB using the following sequence of commands.

12

First MATLAB itself should be started from the directory pointing to the folder containing the

files for this toolbox. Next, at the command prompt, type >> main_CLsysID. The GUI shown in

should appear. This GUI is the main access to the toolbox. To start a session of the toolbox, click

on the Run submenu in the Start menu. This will bring up a new GUI, which is shown in Figure

9. Each of the main parts of the GUI in Figure 9 will be discussed separately later.

Figure 8: The first GUI that appears

13

Figure 9: The main GUI for this toolbox

In-depth Discussion of the Toolbox

Section 1: Main Menu

 The Main Menu consists of the following areas:

Figure 10: The “File” menu

14

1) Data: Clicking this menu will allow the user to load the closed-loop experiment data for

analysis.

2) New: Clicking this menu will clear all the data from the current GUI and allow the user

to restart the analysis from a clean layout.

3) Save: Clicking this menu will allow the user to save the resulted state space model or step

response coefficients on the disk.

4) Save as: Clicking this menu will allow the user to re-save the resulted state space model or

step response coefficients.

Figure 11: The “Save” menu

Section 2: Data Information Button

 This button opens a new window which shows information about the loaded experiment

data including the data file name, the number of controller variables (CV), the number of

manipulated variables (MV), the sampling time, the starting time, and end time. A sample

example of the data provided is shown in Figure 9.

Figure 9: Data Information Window

Section 3: Data View and Selection Panels

 The data view and selection panels are shown in Figure 10.

15

Figure 10: Data View and Selection Panel

 The following are the most important sections:

1) Data view: This pane enables you to choose the controlled variable (CV), manipulated

variable (MV), or setpoint variable (SP) which you want to be shown on the

corresponding axes.

2) Data selection: In this filed, you can specify which data sections are to be used for

identification (est. data) and validation (val. data). The end value for each selection must

be greater than its starting value. In order to register the values, click the select button.

Section 4: Run Panel

 A close-up view of the run panel is shown in Figure 11.

Figure 11: Run Panel

1) Run: This button is used to run the main closed-loop identification algorithm. The button

is disabled until the data is loaded.

2) Prediction Horizon (N) Panel: The slider can be used to set the appropriate values for

the prediction horizon, N. The range of values selected is determined by the algorithm on

16

first run. From then on, the user is able to select the appropriate value. In order to enable,

manual selection, the radio button beside auto should be ticked off; otherwise an

automatically selected value will be used.

Section 5: Plot Data

Three axes, as shown in Figure 12, are used to display the controlled variables,

manipulated variables, and setpoint data. Since only a single variable of each type can be

displayed at a time, the selections are made in the data selection panel (see Section 3: Data View

and Selection Panels).

Section 6: Validation Panel

In this panel, model validation and residual test results are presented. A close-up of this

section is shown in Figure 13. As well, in this panel the model order can be changed and the step

response functions determined. The main parts of this panel are:

1) Model Order Subpanel: The estimated order for the state space model is shown in this

subpanel. If the Set option is enabled, then the model order can be changed manually.

When the new order is entered, press the Change button to rerun the model estimation

algorithm to display the new results.

Figure 12: Data Plot Axes

17

Figure 13: Validation Panel

2) Validation Data Plot: This plot shows the validation data as well as the model prediction.

Only one pair of data points can be shown at a single time, so the user has to choose

which output is to be displayed using the CV drop-down box located at the top of the

panel. The prediction horizon can be changed using the Pred. hor. textbox. The default

value for the prediction horizon is 15 samples.

3) Prediction Fit for Each CV Plot: This plot shows the results of comparing the

validation output to the model prediction for each process output. Each bar represents the

percent fit for one controller variable.

The three push buttons, located on the left of this panel, are called as follows:

1) Refine by PEM: This button will run the pem function from MATLAB’s system

identification toolbox to refine the identified model obtained subspace identification. It

should be noted that this need not produce a better model. If the new model is not better,

then the previously estimated subspace model can be restored by pressing the Change

button.

2) Residue Test: This button can be used to view the results of residue tests on the last

estimated model. Only the cross-correlation test is performed, so the disturbance model is

not tested. The results are shown in Figure 14.

18

Figure 14: Residual Test Window

3) Step Resp.: This button will open a new window that allows the user to estimate the step

response coefficients directly from the subspace matrices. This is shown in Figure 15.

The Export menu is used to save the step response coefficients. The "Cont. Model"

menu is used to obtain the continuous-time models (FOPTD or SOPTD) for the estimated

step response coefficients. A window as shown in Figure 19 will be opened to enter the

model orders for each step response. The nonlinear regression algorithm from

MATLAB’s statistics toolbox is used to fit a continuous-time model to each step

response. The results will be shown in a new window, similar to that shown in Figure 17.

Note that the results of this calculation may not be reliable.

Figure 15: Estimated Step Response Coefficients

19

t

t t

Figure 16: Window for Entering the Continuous-Time Model Orders

Figure 17: Estimated Continuous-Time Models

Example 1

 A set of closed-loop identification data generated from the following system is provided

with the toolbox in a file called SISO_IdData_CL.mat:

()

1

0.6 0.6 0 1.6161 1.1472
0.6 0.6 0 0.3481 1.5204
0 0 0.7 2.6319 3.1993

0.4373 0.5046 0.0936 0.7759

t t t

t t

x x u

y x

+

−⎛ ⎞ ⎛ ⎞ ⎛
⎜ ⎟ ⎜ ⎟ ⎜= − + − + −⎜ ⎟ ⎜ ⎟ ⎜
⎜ ⎟ ⎜ ⎟ ⎜ −⎝ ⎠ ⎝ ⎠ ⎝

= − − − +

e

u e

⎞
⎟
⎟
⎟
⎠

 (18)

A continuous-time proportional-integral (PI) controller,

 0.050.1tu
s

⎛= +⎜
⎝ ⎠

ty⎞⎟ (19)

is used to control the process. The Simulink diagram shown in Figure 18 can be used to collect

the data. The identification test signal, r(t), is created using MATLAB’s idinput command

20

r=idinput(1000,'rbs',[0,0.06], [-1,1]);

Figure 18: Simulink Model for Collecting the Data

The idmodel block needs a variable called sys to be defined in the workspace. This can be done

as follows:

A=[0.6 0.6 0;-0.6 0.6 0;0 0 0.7];
B=[1.6161; -0.3481; 2.6319];
C=[-0.4373 -0.5046 0.0936];
Du=-0.7759;
K=[-1.1472; -1.5204; -3.1993];
sys=idss(A,B,C,D,K,[0;0;0],1);
sys.NoiseVariance=0.01;

In the block parameters of idmodel, there is an option called “Add noise” which must be selected.

Once the required variables have been defined in the workspace and the Simulink file has been

run to obtain the simulated data, run gen_cmpct_data.p to create and save the data file using the

Compact format. The data file is called SISO_IdData_CL. Loading this data file into GUI, the

state space model and continuous-time transfer function model of this process can be estimated.

Click the run button to obtain the model estimates. The GUI should look similar to that shown

in Figure 19.

21

Figure 19: Results of Using the Given Data

 The residual values are shown in Figure 20.

Figure 20: Residual Test Results for Example 1

22

Example 2

 A MIMO example is also provided with the toolbox. The process to be controlled has two

inputs and two outputs with transfer functions:

1 2

1 1

1 2

1 1

1

1 1

1

1 1

0.5
1 0.4 1 0.1

0.3
1 0.4 1 0.8

1 0.6
1 0.5 1 0.5

0.5 1
1 0.5 1 0.5

p

l

z z
z zG

z z
z

z
z zG

z
z z

− −

− −

− −

− −

−

− −

−

− −

⎛ ⎞
⎜ ⎟− −⎜ ⎟=
⎜ ⎟
⎜ ⎟− −⎝
⎛ ⎞−
⎜ ⎟− −⎜ ⎟=
⎜ ⎟
⎜ ⎟
− −⎝ ⎠

z ⎠ (20)

The controller transfer function is given as

1

1

1

1 1

0.5 0.2 0
1 0.5

0.25 0.20
(1 0.5)(1 0.5)

c

z
zG

z
z z

−

−

−

− −

⎛ ⎞−
⎜ ⎟−⎜=
⎜ ⎟−
⎜ ⎟− +⎝ ⎠

⎟ (21)

The required closed-loop data can be generated using the following commands:

Gp=tf({[1],[4];[0.3],[1]},{[0 1 -.4],[1 -0.1 0];[0 1 -0.1],[1 -0.8 0]},1);
Gl=tf({[1 0],[-.6];[0.5],[1 0]},{[1 -.5],[1 -.5];[1 -.5],[1 -.5]},1);
Gc=tf({[.5 -.2],[0];[0],[.25 -.2 0]},{[1 -.5],[1];[1],[1 0 -.25]},1);
r1=idinput(1000,'rbs',[0,0.03], [-5,5]);
r2=idinput(1000,'rbs',[0,0.03], [-5,5]);
r = [r1 r2];
t=[1:1000]';
[A,B,C,D,K] = tf2ssGpGl(Gp,Gl);
% controller
cont=idss(Gc);
Ac = cont.a; Bc = cont.b; Cc = cont.c; Dc = cont.d;
seeds = [1 2];

where tf2ssGpGl is a user-specified function given as

function [A,B,C,D,K] = tf2ssGpGl(Gp,Gl)
 ny = size(Gp.OutputDelay,1);
 nu = size(Gp.InputDelay,1);
 NUMGt={Gp.num Gl.num};
 DENGt={Gp.den Gl.den};

23

 Gt = tf([NUMGt{1,1} NUMGt{1,2}] ,[DENGt{1,1} DENGt{1,2}] ,1);
 set(Gt,'InputGroup',struct('Noise',[nu+1:nu+ny]))
 model = idss(Gt);
 A = model.a; B = model.b; C = model.c;
 D = model.d; K = model.k;
end

A similar Simulink model to that used in Example 1 can be used to generate the data. After

saving the simulated data using the compact format, loading it into the GUI, and pressing the run

button, the results similar to that shown in Figure 21 should appear. The residual test results are

shown in Figure 22.

Figure 21: Results of Closed-Loop Identification for Example 2

24

Figure 22: Residual Test Results for Example 2

25

References

Danesh Pour, N., Huang, B., & Shah, S. L. (2008). Closed-loop subspace identification for

performance assessment. Journal of Process Control .

De Moor, B., & Van Overschee, P. (1996). Subspace identification for Linear Systems: Theory,

Implementation, Application. Berlin, Germany: Springer.

Huang, B., & Kadali, R. (2008). Dynamic Modeling, Predictive Control, and Performance

Monitoring. Springer-Verlag.

Kadali, R., & Huang, B. (2002). Estiamtion of dynamic matrix and noise model for predictive

control using closed-loop data. Industrial and Engineering Chemical Research , 41, 842-

852.

Knudsen, T. (2001). Consistency analysis of subspace identification methods based on linear

regression approach. Automatica , 37, 81-89.

Larimore, W. E. (1996). Statistical optimality and canonical variate analysis system

identification. Signal Processing , 52, 131-144.

Ljung, L. (1999). System Identification Theory for the User. Upper Saddle River, New Jersey,

United States of America: Prentice Hall PTR.

Ljung, L., & McKelvey, T. (1996). Subspace identification from closed-loop data. Signal

Processing , 52, 209-215.

Moonena, M., De Moora, B., Vandenberghea, L., & Vandewalle, J. (1989). On- and off-line

identification of linear state-space models. International Journal of Control , 49 (1), 219-

232.

Söderström, T., & Stoica, P. (1989). System Identification. New York, New York, United States

of America: Prentice Hall.

Tangirala, A. K., Lakshminarayanan, S., & Shah, S. L. (1997). Closed-loop identification using

canonical variate analysis. 47th CSChE Conference. Edmonton, Alberta, Canada.

Van Overschee, P., & De Moor, B. (1995). A unifying theorem for three subspace system

identification algorithms. Automatica , 31 (12), 1877-1883.

Van Overschee, P., & De Moor, B. (1997). Closed-loop subspace system identification.

Proceedings Of The 36th IEEE Conference On Decision And Control, 2, pp. 1834-1853.

26

Van Overschee, P., & De Moor, B. (1994). N4sid: Subspace algorithm for the identification of

combined deterministic-stocahstic systems. Automatica , 30 (1), 75-93.

Verhaegena, M., & Dewilde, P. (1992). Subspace model identification part 1: the output-error

state-space model identification class of algorithms. International Journal of Control , 56

(5), 1187-1210.

	Table of Contents
	List of Figures
	Introduction
	System Requirements
	Quick Start
	Detailed Instructions
	Theory
	Subspace Identification
	Subspace identification of a closed-loop system

	Data Storage
	Data Storage Format
	Data Generation

	Using the Toolbox
	Installation
	Starting the Toolbox
	In-depth Discussion of the Toolbox
	Section 1: Main Menu
	Section 2: Data Information Button
	Section 3: Data View and Selection Panels
	Section 4: Run Panel
	Section 5: Plot Data
	Section 6: Validation Panel

	Example 1
	Example 2

	References

