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Abstract: An internal combustion engine (ICE) is a highly nonlinear dynamic and complex engi-
neering system whose operation is constrained by operational limits, including emissions, noise,
peak in-cylinder pressure, combustion stability, and actuator constraints. To optimize today’s ICEs,
seven to ten control actuators and 10–20 feedback sensors are often used, depending on the engine
applications and target emission regulations. This requires extensive engine experimentation to
calibrate the engine control module (ECM), which is both cumbersome and costly. Despite these
efforts, optimal operation, particularly during engine transients and to meet real driving emission
(RDE) targets for broad engine speed and load conditions, has still not been obtained. Methods of
model predictive control (MPC) have shown promising results for real-time multi-objective optimal
control of constrained multi-variable nonlinear systems, including ICEs. This paper reviews the
application of MPC for ICEs and analyzes the recent developments in MPC that can be utilized in
ECMs. ICE control and calibration can be enhanced by taking advantage of the recent developments
in the field of Artificial Intelligence (AI) in applying Machine Learning (ML) to large-scale engine
data. Recent developments in the field of ML-MPC are investigated, and promising methods for ICE
control applications are identified in this paper.

Keywords: internal combustion engines; combustion control; optimization; predictive control;
artificial intelligence; machine learning; emissions

1. Introduction
1.1. Progress in Engine Control

Internal Combustion Engines (ICEs) are widely used for small power applications,
such as lawnmower and string trimmers, to large applications, such as power generation
and commercial transportation, such as ships, locomotives, and heavy-duty trucks [1–10].
Due to widespread and broad application, ICEs contribute more than 20% of total GHG
(greenhouse gas) emissions in the world [11].

Reducing GHG emissions and improving the fuel economy of ICEs under real driving
conditions are increasing challenges in the area of engine research [12–14]. The complexity
of combustion phenomena combined with more stricter emission regulations and higher
fuel economy demands requires more advanced engine controller. The improvement of
micro controllers and the availability of online optimization methods allows the automotive
industry to utilize even more advanced control methods.

In automotive applications—especially in ICE control—feedback control often couples
with feedforward control to deal with the influence of varying operating points. One of the
most common techniques to design a feedforward controller is two-dimensional look-up
tables—so-called calibration maps. The feedforward controller enables fast changes in
operating points, while the feedback controller performs the error compensation. The
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conventional controller type for feedback controller is a Proportional Integral Derivative
(PID) controller.

The gains of PID controllers are tuned using the procedure of parameter optimization
and fine tuning using the trial-and-error method. The optimization process results in
finding look-up tables, and controller gains are usually referred to as engine calibration [15,
16]. Due to the demands mentioned above on low-fuel consumption and emissions,
the number of control inputs have increased substantially, making manual test-bench
calibration extremely difficult and time-consuming.

However, systematic optimization methods based on a model developed and identi-
fied using experimental results are ideal ways to tackle this problem. Several model-based
controllers have been used in engine feedback control to address this, such as the Linear
Quadratic Regulator (LQR) controller [17], Linear Quadratic Gaussian (LQG) controller [18],
Sliding Model Controller (SMC) [5,19,20], Adaptive [20], and Model Predictive Control
(MPC) controller [21,22].

Among these mode-based controllers, MPC is one of the most promising controllers
that can deal with the highly constrained nonlinear system of ICEs. MPC can provide an
optimal real-time solution for meeting multi-objective goals while addressing system and
operational constraints. New variants of MPC utilize optimization solvers and packages
that are suitable for the real-time operation of time-critical systems [21,22].

Model-based engine control techniques have been applied to ICEs for over five
decades [23]; however, conventional MPC techniques have been applied for ICE applica-
tions over the past 23 years. Two examples of early MPC on ICEs include: (i) air-fuel ratio
(AFR) control of an SI gasoline engine using a linear AFR model by linear approximation
of a neural network model [24] in 1998, and (ii) idle speed control of an SI gasoline engine
using a linear model by applying system identification techniques on GT-Power engine
model simulations [25] in 1999.

These early works were done in simulation environments, while recent work [26]
includes experimental implementation of nonlinear multi-objective MPC on a real engine.
MPC has been successfully implemented for ICEs control with an increasing trend [21,26–
54]. The integration of Machine Learning (ML) and MPC is a new emerging area that
provides additional opportunities for the control and optimization of ICEs.

1.2. Rationale for Using Model Predictive Control (MPC) in ICE

Advanced ICEs exhibit highly nonlinear and stochastic dynamic behavior due to
complex thermo-kinetic reactions coupled with nonlinear turbulent in-cylinder flow dy-
namics causing engine cyclic variability. These factors make the design and calibration
of controllers for ICEs a challenging and time consuming task that lead to trade-offs that
limit the performance and robustness of these engines. For instance, the current ECM for a
compression ignition engine often has over 12,000 calibration parameters. The controller
calibration and validation process for this ECM is time- and labor-intensive and can cost
several million dollars.

Despite extensive controller calibration, the optimum and robust engine performance
for a broad operational range cannot be guaranteed. In addition, the engine control
needs to be coordinated with other control modules in a vehicle, e.g., the transmission
control unit (TCU), anti-jerk control, vehicle stability control, etc. This makes the engine
control a constrained, multi-objective, multi-variable, optimal control problem that needs
to be solved with a millisecond timescale to allow cycle-by-cycle or within-cycle engine
combustion control.

MPC is a control technique that has been increasingly used in industry during the past
four decades due to the following five main advantages: (1) implicitly considers constraints
on state, input, and output variables, (2) provides closed loop control performance and
stability for the optimal problem with constraints, (3) exploits the use of a future horizon
while optimizing the current control law, (4) offers the possibility of both offline and real-
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time implementations, and (5) provides the capability to handle uncertainty in the system’s
parameters, delays, and non-linearity in the model [55].

MPC can be employed for different purposes, which are generally categorized into
four main groups: setpoint stabilization, trajectory tracking, path following, and eco-
nomic operation [56]. A survey of MPC shows that it is one of the most common control
approaches. The superiority of the MPC controller over classical PID controller is well
documented [57].

1.3. MPC Background
1.3.1. A Short History of MPC

The idea of using MPC begun around 1960s [58]; however, the first reported applica-
tion of MPC in industry was in 1978 [59]. Then, after the initial applications of MPC in the
late 80s, MPC usage grew rapidly in several industries. In particular, the process industry
was an early adopter of MPC as it was able to handle both input constraints and states
constraints. Some of these processes were slow enough to allow MPC implementations
with the processors of that time.

A survey in 1997 estimated 2233 applications of MPC from five different vendors [60].
A graphical depiction of MPC development and implementation is shown in Figure 1.
Increased interest in MPC stability and robustness started in the early 1990s [60]. At the
same time, multiple algorithms were developed to control the nonlinear systems using
MPC [61]. Starting at about the year 2000, new approaches began to be developed. For
example, hybrid MPC, which considers both continuous and discrete variables [62], and
also explicit MPC [63].

1970 – 1990 1991 – 2000 2001 – 2005 2006 – 2010 2011 - 2021

- Developing MPC theory 
- Implementing MPC in the
  petrochemical and
  process industry

- Nonlinear MPC 
- Robust MPC

- Hybrid MPC
- Distributed MPC
- Stochastic MPC
- Explicit MPC

- Economic MPC
- Fast MPC (Online
  optimization)

- Real-time nonlinear/
  nonconvex MPC

Figure 1. Timeline of MPC development and types.

In explicit MPC, the goal is to perform all computations offline for all the feasible
inputs and then implement the optimal control law using a lookup table stored in computer
memory. The control law trades off computation with computer memory. Explicit MPC
becomes untenable when the number of states or variables increases. To overcome this
problem, Fast MPC was proposed to solve the MPC problem implicitly but much faster
than the earlier algorithms [61].

These advances in solving the MPC problem with low computational cost and improv-
ing MPC performance have expanded the applications of MPC from the process industry
to the other industries, such as manufacturing, automotive, power and energy system,
aerospace, healthcare, and finance [61]. Increasing processor speeds has also allowed the
application of MPC to control nonlinear and nonconvex systems in real time [64].

1.3.2. Terminology

MPC uses a receding horizon to minimize a cost function to calculate the optimal
control inputs for a finite control horizon. Over the finite prediction horizon the cost
is minimized with respect to dynamics of the system, current states of the system, and
constraints applied to the system. From these calculated control inputs, only the first step
is applied to control the system output, and then, for the next time interval, MPC repeats
the same process.

A schematic about MPC operation in an ICE application is depicted graphically
in Figure 2 where the Indicated Mean Effective Pressure (IMEP) is controlled using the
injection fuel quantity as control variable. In this figure, Hu is the control horizon, and Hp
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is the prediction horizon. The prediction horizon is longer than the control horizon with
more computational costs for longer horizons [65].

In ICEs, the control horizon could be one cycle for an ICE in highly transient operation
in a conventional vehicle and could be three or more engine cycles for operation in a
hybrid electric vehicle for the operating mode that the ICE is decoupled from the road load
conditions. MPC formulation can be defined as:

min
u0,...,uN−1

J f (xN) +
N−1

∑
k=0

J(xk, yk, rk, uk, sk)

s.t. xk+1 = f (xk, uk, dk), yk = g(xk, uk, dk) k ∈ NN−1
0

xk ∈ X , uk ∈ U k ∈ NN−1
0

XN ∈ X f x0 = x(t)

(1)

where x, y, u, r, s, d, and N represent states, outputs, inputs, references, slack variables,
disturbances, and the prediction horizon, respectively. In this equation, J, f , g, X , U , and
X f represent the state function, output function, cost function, state constraint set, input
constraint set, and terminal state constraint set, respectively.

Control Horizon 

Prediction Horizon 

Past

Optimized fuel quantity
injections 

Model-based predicted
IMEP trajectory 

IMEP reference trajectory

IMEP measured Trajectory

 fuel quantity injections

Value

Engine
Cycle, 1 2

Figure 2. The MPC control concept and prediction receding horizon: illustrated for engine load
control.

1.3.3. Methods

The broad range of industry applications of MPC control has resulted in different
MPC methods being developed. The selection of MPC methods depends on the solution
method, uncertainties in the system, dynamics of the system, and scale of the system. MPC
types are categorized based on these criteria and are shown in Figure 3.
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Model Predictive
Control (MPC)

Economic
MPC [66–70]

Scale of
the system

Decentralized
MPC [71]

Hierarchical
MPC [72]

Dynamic of
the system

Linear
MPC [30,
40,45,45]

Nonlinear
MPC [26,

32,34,41,51]

Hybrid
MPC [73,

74]

Uncertainties
in the system Robust

MPC [71,
75,76]

Stochastic
MPC [77,

78]

Offset-free
MPC [79]

Adaptive
MPC [80]

Solution
method

Explicit
MPC [81–

83]

Implicit
MPC [26,

84–88]

Fast
MPC [26,

84,89]

Figure 3. MPC categories and corresponding MPC methods [26,30,32,34,40,41,45,51,66–89].

Economic MPC uses economic objectives directly as the cost function of the control
process, and thus instead of tracking a set point based on a given economic solution, the
economic performance is optimized in real-time [90]. This combines two layers of the
control system. The upper layer, Real-Time Optimization (RTO), computes the economically
optimal solution using a steady state model of the process, while the lower control layer
considers the economics of the process [91]. Using economic MPC over MPC can enhance
the efficiency and performance of the controller [91].

Explicit MPC is used to speed up the optimization process by pre-computing the
control law offline. This requires solving a multi-parametric Quadratic Programming
(mpQP) problem and then replacing the online optimization with a simple linear function
to find the corresponding region for the given states, reference, and disturbance while
maintaining MPC characteristics [63,92]. Explicit MPC can reduce the online computational
cost of optimization, which can speed up the control law calculation for a problem with
smaller number of dimensions. For problems with large dimensions, the computational
cost and memory footprint increase rapidly and can be prohibitive [93].

To allow MPC to be implemented on systems with a fast dynamics controller, fast MPC
was developed. In fast MPC, customized algorithms are used to solve the optimization
problem online much faster than other MPC methods [89]. The computational cost and
complexity of fast MPC is highly dependent on the application—the linearity and convexity
of the system. If the application is nonlinear and nonconvex, the solution is more difficult
and computationally more expensive.

To ensure closed loop performance and stability, despite system uncertainties, robust
MPC was developed [71]. One common approach in robust MPC is using a Min-Max
algorithm. Here, the worst-case scenario among all admissible solutions is considered.
In another approach, the constraints can be rewritten in the form of linear matrix inequali-
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ties (LMIs), and this can be used to limit the worst-case performance of the system under
bounded uncertainty [76].

Robust MPC can increase the robustness of MPC for unknown and bounded dis-
turbances and uncertainties in the model. However, when some knowledge about the
disturbances or uncertainty of the model is available, this approach does not take this into
account. Stochastic MPC was developed to considering the possibility of some optimality or
economic benefits, which can be gained by moving towards or violating those disturbances’
boundaries [77,94]. Stochastic MPC can handle states and model parametric uncertainties
and independent disturbances by employing the information about the mean and variance
of the prediction states, parameters, and disturbances to make sure that possible violation
of the constraints remain admissible relative to a predefined threshold [78].

A hybrid system consists of discrete and continuous states, and hybrid MPC has been
developed for this application [73]. Mixed Logical Dynamical systems (MLD), piecewise
affine systems, and Discrete Hybrid Automata (DHA) are frameworks that can be used to
model hybrid MPC. A common approach in hybrid MPC is to reformulate the problem
as a Mixed Integer Nonlinear Programming (MINLP) (or, in the case of a linear system,
Mixed Integer Quadratic Programming (MIQP)) and then solve the optimization problem
using numerical methods [74].

MPC was developed to gather all the information about system dynamics and its
variables at a single location and then perform all the computation and optimization. This
approach is not feasible on large-scale systems, such as water networks, urban traffic design,
and power grids, due to the computing and data gathering requirements [95]. To overcome
this, techniques, such as decentralized MPC [71], distributed MPC, or hierarchical MPC [72],
can be employed.

1.4. Scope of the Paper

This paper builds upon our prior experience for the design and implementation of
model-based ICE controllers [2,4,5,7,21,22,46,96–130]. In this review paper, we searched for
relevant papers in the field of MPC and ICE using the Scopus, Web of Science, IEEE Xplore,
ScienceDirect, Springer, SAE, ASME, Wiley, Taylor & Francis, arXiv, and SAGE databases.
Then, papers were carefully reviewed, and key publications were identified.

The previous review papers were not focused on internal combustion control specifi-
cally, and most of them focused on the general application of MPC [131] or MPC application
in automotive applications, including vehicle dynamics control [132] and thermal manage-
ment systems [132–134]. In this paper, we perform a comprehensive review of research
articles in the fields of MPC for ICE controls . First, the MPC applications and design
methods are analyzed. Real-time implementation is investigated based on categorizing
by optimization and solver types. Finally, recent developments of MPC using Machine
Learning (ML) for ICE applications are discussed.

This paper is organized into six sections. In the "Introduction", the definition of MPC
and a brief history is provided. In "MPC applications in ICEs", the structure of MPC along
with methods and design of MPC for ICEs are presented. The "Real-time Implementation of
MPC" section focuses on the implementation of MPC in ICEs. The "AI and MPC integration"
section provides examples of AI and MPC integration for ICE applications. Finally, the
main conclusions and recommendations are detailed in the "Recommendation and Future
Directions" and "Summary and Conclusions" sections.

2. MPC Applications in ICEs

MPC has been used in ICE control for a wide variety of ICE control problems.
Among these control problems, MPC has been used widely for the control of fuel con-
sumption [28,30,33–36,52,54,135–137], combustion phasing [21,22,27,28,37–39,52,54,108,
129,130,138], cyclic variability [54,130], torque and load (IMEP) [22,27,28,33,37–42,52,54,
108,129,130,136–138], idle speed [25,36,43,139,140], airpath (Pman, EGR) [29–32,34,40,44–
50,52,54,137,141–144], knock and Maximum Pressure Rise Rate (MPRR) [22,54], engine-out
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emissions [26,28,30,35,41,47,51,137,145], exhaust after treatment [29,145,146], multi-mode
operation [53], and waste heat recovery [147–149].

MPC applications are not limited to a specific engine type, and, due to the capability of
MPC, they have been implemented in various types of engines. MPC has been implemented
for different ICE combustion modes, including Compression Ignition Combustion (CI) [26,
28–31,34,35,40,45,47–50,53,135,137,139,141–143,145,147,148,150], Spark Ignition (SI) [25,33,
36,41–43,51,52,54,136,138,140,144], and Low Temperature Combustion (LTC) [21,22,27,37–
39,108,129,130].

MPC has also been implemented in wide varieties of engine size ranging includ-
ing a single cylinder [37,108,138], four cylinder [21,22,25,27,35,42,45,51–53,129,130,137,139,
140,143], six cylinder [28–30,54,135,147], and eight cylinder [36,43,149] with different dis-
placement volume (Vd) including Vd ≤ 2.0 [21,22,27,28,37,53,108,129,130,137,138,143], 2.0
< Vd ≤ 7.0 [25,30,31,35,36,38,39,41,42,45,51,52,54,139,142], and 7.0 < Vd ≤ 15.0 liter [29,
40,135]. In addition, MPC is widely used in different application of ICEs including light
duty engines [21,22,25–27,35,37–39,41,42,45,51–54,108,136–140,142–144], medium duty en-
gines [34,36,43,47,48,147,149], and heavy duty engines [28–31,40,135,147].

3. MPC Designs for ICEs

In this part, first, different topologies of applying MPC into engine control are dis-
cussed, and then MPC methods and ICE models for the design of MPC in different topolo-
gies of ICEs are discussed.

The main benefit of MPC is providing real-time optimal solution to a constrained,
multi-objective, multi-variable control problem. Thus, MPC is a natural choice for use as a
supervisory ICE controller to set optimal trajectories, e.g., optimal CA50, EGR, or AFR tra-
jectories to constrain engine-out emissions while minimizing fuel consumption. However,
MPC has been also widely used as a tracking controller, e.g., tracking reference IMEP, CA50,
or engine idle speed trajectory. MPC has been also used in ICEs to provide a combination
of supervisory and tracking control functions.

3.1. Topology/Structure

Depending on how MPC is used in the engine control hierarchy, three different
topologies can be identified in the existing literature. Schematics of these three topologies
are shown in Figure 4.

The first and second typologies (Figure 4a,b) include three main control levels:

• Level 1 (L1A): Optimizer/supervisory controller.
• Level 2 (L2A): Feedback optimal tracking controllers.
• Level 3 (L3A): Actuator controllers.

The third typology (Figure 4c) includes two main control levels:

• Level 1 (L1B): Combined supervisory and feedback controller.
• Level 2 (L2B): Actuator controllers.

Level 1A acts as an optimizer to design the reference for tracking controllers in level
2A. Examples of objective functions in Level 1A include minimizing fuel consumption
and/or maximizing use of natural gas or hydrogen fuel in a dual fuel engine. Examples
of optimization constraints include the maximum allowable engine-out NOx, soot, uHC
emissions, MPRR, peak in-cylinder pressure, combustion stability limit (COVIMEP), and
drivability (e.g., the maximum allowable deviation from the driver requested torque). The
output of the MPC supervisory controller in level 1A will depend on the engine type and
application and could include optimal reference trajectories for AFR, CA50, idling speed,
desired heat release shape, or desired combustion mode in a multi-mode engine.
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Figure 4. Different topologies for hierarchy control—shown for a compression ignition engine.
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Level 2A includes feedback tracking control to follow the generated optimal reference
from level 1A. In general, these tracking controllers can be MPC or non-MPC controllers.
For cases using MPC, minimizing the tracking error is typically part of the cost function
and the optimization is subject to engine operational constraints and actuator constraints.
The MPC will determine the optimal control action for low-level actuator controllers (level
3A/2B).

Depending on engine control applications, MPC may command optimal values for
EGR percentage, variable geometry turbine (VGT) level or waste-gate position, valve
timing, throttle position, fuel injection quantity, fuel injection pressure, number of injections,
injection timing, and the duration of each injection. Level 3A/2B often includes PI or PID
controllers to implement the requested control values and adjust engine actuators, such as
VGT, EGR, exhaust back pressure flap, variable valve actuation (VVA), throttle body, DI
injectors, and the fuel pump.

Depending on the availability of computational resources, different topologies have
been used. The most common structure is topology I with three divided control levels
(Figure 4a). Since the supervisory and feedback controllers are in a separate loop, low com-
putational resources are required. In topology II (Figure 4b), injection control variables
are determined by the supervisory controller in level 1A, while airpath control is done
in level 2A. This has been used in engines where in-cylinder pressure measurement for
real-time combustion feedback was not available for engine load and combustion phasing
controllers. Thus the level 2A controller focuses on airpath feedback control for which air
flow measurement, compressor air pressure, and intake manifold pressure measurements
are available for real-time feedback controllers.

The last and most complex structure is topology III (Figure 4c), where both airpath and
fuel path controls are conducted by a combined supervisory and feedback controller (Level
L1B) and actuator control (level L2B). This topology will require the highest amount of com-
putational resources, but it can provide the most optimal control actions since all dynamics,
including the system dynamics, feedback control dynamics, and actuator dynamics, are
taken into account in a unified control layer while optimizing the engine performance.

All three topologies include the actuator control level, which can be implemented
using MPC or some other control methods. It is critical that the limitations of the actuators
response are considered in level 1B of topology III or levels 1A and 2A of topologies 2 and 3;
otherwise, the engine will operate in an suboptimal manner and may even become unstable.

All three of these topologies have been implemented experimentally or in sim-
ulation in the literature. Most studies focused on the topology I—level 2A, i.e., op-
timal tracking controllers, and these studies assumed that the optimal reference val-
ues were given. Implementation of L2A of topology I has been done both in simula-
tion [22,25,108,129,130,136–145,147–151] and in real-time experimental platforms [21,27–
51].

For instance, both L1A and L2A have been done for IMEP control of SI engines with
external EGR, while minimizing fuel consumption; constraining COVimep, and knock
intensity in L1A and tracking of CA50, Manifold Absolute Pressure (MAP), and Mass Air
Flow (MAF) in L2A [54]. Another example includes a three-level hierarchy control with
focus on Level 2A [30]. Schematic of supervisory (L1A), fuel path and air path feedback
controllers (L2A) are shown in Figure 5. In this study, explicit MPC is used to regulate
NOx and PM emissions, while the controller ensures the engine follows the requested
torque.

The L1A controller sets the optimal air-fuel equivalence ratio and the optimal dilution
level to regulate emissions. Then, the L2A controllers will determine EGR level, variable
geometry turbine (VGT) position, injection pressure, start of injection timing, and pilot
fuel/total injected fuel ratio.

Few articles have focused on topology II [26], and III [135] to generate comprehensive
optimal control actions (to achieve level 1B). This is partly due to the complexity and
required computational resources in topology II and III on an actual engine. The example
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of topology II was published in a recent study [26] and is shown in Figure 6. In this
study, a supervisory MPC controller (L1A) sets both the optimum EGR rate and fueling
rate while an MPC feedback controller (L2A) tracks those set points. The airpath L2A
controller adjusts the engine EGR level by commanding the required throttle angle, EGR
valve position, and VGT position.

Level 1A Level 2A Level 3A

Air Path
Controller

Fuel Path
Controller

Supervisory
Controller

DI Injector
Controller

EGR
Controller

VGT
Controller

Fuel Pump
Controller

Estimator

Estimator

 

Requested Torque

Engine Speed

Figure 5. An MPC framework to regulate the engine-out NOx and PM emissions of a turbocharged
CI engine. This includes three-level hierarchy ICE control based on topology I. Wc: Compressor air
mass flow rate, Pin: Intake manifold pressure, Texh: Exhaust manifold temperature, R f uel : Fuel ratio
(pilot/total), pinj: Fuel rail pressure, XEGR: EGR rate, XVGT : VGT rate, ym: measured output, and x̂:
estimated states (based on [30]).

Level 1A

Level 2A

Level 3A

Air Path
Controller

Supervisory
Controller

DI Injector
Controller

EGR
Controller

VGT
Controller

Fuel Pump
Controller

Estimator

Requested Torque

Engine Speed

Figure 6. The architecture of a supervisory model predictive controller (L1A) and a nonlinear model
predictive feedback controller L2A to minimize engine-out emissions (NOx, uHC) of a diesel fueled
CI engine—This includes a three-level hierarchy ICE control based on topology II where the fueling
rate input from L1A is applied directly to the engine, while the EGR rate (XEGR), EGR throttle (Xthr),
and VGT rate (XVGT) target generated by L1A are passed to the L2A controller (based on [26]).

As discussed, topology II was implemented in a real-time engine application [26]; how-
ever, to date, no experimental implementation of topology III was found in the literature.
The only example of topology III included the implementation into processor-in-loop (PIL)
platform [135]. The schematic of this example is shown in Figure 7 where the supervisory
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MPC controller generates optimal control action to control output torque and emission
level (NOx and Soot). In this schematic, both the fuel path, including the fuel rail pressure
(Pinj) and SOI, and the air path, including VGT, EGR, and EF (Exhaust flap), are optimized
by the supervisory controller.

Level 1B Level 2B

Supervisory
Controller

DI Injector
Controller

EGR
Controller

VGT
Controller

Fuel Pump
Controller

Estimator

Requested Torque

Engine Speed

Control signal

NOx
Soot

Torque

Figure 7. Architecture of a supervisory model predictive controller (L1B) and actuator controller as
L2B to minimize engine-out emissions of NOx and soot of a diesel fueled CI engine—This includes a
two-level hierarchy ICE control based on topology III where the VGT, EGR, EF (Exhaust flap), SOI,
and fuel rail pressure (Pinj) are generated by supervisory control and PIL model controller using
actuator-generated control signal based on L1B control actions (based on [135]).

3.1.1. Methods of MPC in ICEs

Different MPC methods, previously discussed in the MPC Background section, have
been applied to ICEs. The three main MPC methods that have been implemented on
ICEs are Linear, Economic, and Nonlinear MPC as shown in Table 1. Due to the limited
computational capability of engine ECU, linear methods, such as Explicit MPC [30,38–
40,43,45,47,50], single MPC [24,28,36,37,40,49,108,142,145,151], switching MPC [27,29,33,
46,53,147,149], and linear parameter varying (LPV) MPC [21,22,29,42,48,129,143,150], have
been widely implemented in ICEs.

Most linear methods have been implemented experimentally, and their control per-
formance has been verified on real ICEs [21,24,27–30,33,36–40,42,43,45–50,53]. These in-
clude implementation on mass production ECU [33] and prototype ECU [21,24,27–30,36–
40,42,43,45–50,53] for broad engine applications. Recent developments include the im-
plementation of real-time nonlinear MPC for emission control of a light-duty diesel en-
gine [26,32,34,41,51]. Using newly developed solvers along with real-time iteration scheme
and symbolic code generation tools, estimated computational time under 8 ms for real-time
prototyping was achieved [26].

Table 1. Types of MPC controllers used in the literature that are demonstrated for ICE controls.

MPC Types Experimental Simulation Processor-In-Loop (PIL)

Linear

Explicit [30,38–40,43,45,47,50] – –
Single [24,28,36,37,40,49] [108,142,145,151] –
Switching [27,29,33,46,53] [147,147,149] –
LPV [21,29,42,48] [22,129,143,150] –

Economic Linear [35] – –
Nonlinear [52,54,136] [137] –

Nonlinear – [26,32,34,41,51] [130,138–141,144,148,150] [135]
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3.1.2. Dynamic Models for MPC

A core part of an MPC structure includes the dynamic model that is used to predict the
system performance over a prediction horizon. The system dynamics are often included as
equality constraints in an MPC formulation. Typically, MPC has high sensitivity to model
uncertainty, and classical MPC performance will significantly deteriorate in the presence
of a large model uncertainty. The three most important factors for selecting models for
MPC are: (i) accuracy in predicting the required states, (ii) linear vs. nonlinear and the
type of nonlinearities in the model, and (iii) convex vs. non-convex and the possibility of
convexification.

These three factors will directly affect the MPC performance, computational cost,
and solver type for solving the optimization problem. Often, these three factors must be
trade-off against each other. For instance, one can choose a detailed non-convex model to
predict engine-out soot emissions accurately; however, this will lead to high computation
cost and will likely require a more complex solver.

On the other hand, one can create a linearized model or develop multi linear mod-
els to predict soot emission. This will result in a less accurate model that can lead to
suboptimal MPC control actions, but it will be computationally efficient and can use a
common Quadratic Programming (QP) or Sequential Quadratic Programming (SQP) solver.
Developing appropriate dynamic predictive models for MPC is often a large part of the
development effort when designing MPCs for ICEs.

Classification of the ICE models that have been used for model predictive control
of different ICE control problems is shown in Table 2. Often, ICE dynamic models are
nonlinear and nonconvex. However, provided that acceptable performance by the MPC
feedback controller is obtained, some of the ICE nonlinear models can be linearized or
represented by multiple linear models at different engine speeds and loads. In addition,
some of the nonconvex ICE models can be convexified, and this will lead to more flexibility
for selecting solvers and also obtaining globally optimal solutions.

Emission models, such as soot, uHC, and CO, have a complex structure, and model-
based emission regulation usually results in a non-convex problem. Knock and maximum
pressure rise rate, and cyclic variability are also problems that result in the nonconvex opti-
mization problems. Fortunately, airpath turbocharged engine, NOx emission, combustion
mode transition, and exhaust after-treatment systems are often convex or convexifiable,
thus, making it possible to use a convex solver.

Multilinear problems, developed using either LPV or piecewise modeling, result in
linear MPC for which there are a wide variety of effective solvers to choose from. Waste
heat recovery, burn rate, combustion phasing, airpath of turbocharged engines, torque,
IMEP, and idle speed controls have been successfully represented as multilinear problems
in the literature (see Table 2).

Table 2. Classification of ICE control problems based on the engine model and optimization problem.

Problems Control Applications

Multi linear

Waste heat recovery [147,149]
Burn rate/combustion phasing [21,22,27,28,37–39,108,129]
Torque and IMEP [22,27,28,33,35,37–40,42,108]
Idle speed [25,36,43,140]

Convex or
convexifiable

NOx emission [26,28,30,137]
Exhaust aftertreatment system [145]
Combustion mode transition [53]
Airpath of turbocharged engines [32,34,52,141,144]

Non-Convex
Cyclic Variability [54,152]
Soot and uHC emissions [153,154]
Knock and MPRR [155–157]
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Engine dynamics have different time scales as shown in Figure 8. The response time
of the controlled dynamics is a critical factor in design of the appropriate MPC framework.
Depending on the control target in an ICE, different phenomena with different time scales
need to be considered. This affects the structure of MPC model, and also the selection of
the control horizon and prediction horizon, which could be either fixed or time-varying
based on the engine speed and load.

Figure 8 shows fuel-air mixing, combustion knock, in-cylinder residual gas fraction
and temperature. In-cylinder emission formation is considered to have fast dynamics
and typically results in a non-convex optimization problem. Most of the subsystems that
involve thermal dynamics have a relatively slow dynamic (more than a second) as shown
by red color in Figure 8. Most thermal dynamics result in either convex or convexifiable
problems as well as multi-linear problems.

The blue color in Figure 8 represents flow dynamics that are also a convex problem or
convertible to a convex problem. Depending on the ICE control problem and the time scale
of associated dynamics, a coupled or decoupled MPC model structure should be chosen. If,
in a control problem, the subsystems have substantially different time scales, the problem
can be solved decoupled for simplicity; however, for systems with overlapping response
times, a coupled system needs to be considered for the MPC model.

For example, as shown in Figure 8, NOx formation and in-cylinder residual gas
fraction and temperature have similar response times; therefore, cycle-by-cycle control of
the NOx control problem must be coupled with engine dynamics. However, the in-cylinder
residual gas fraction and temperature can be decoupled from the cylinder wall temperature
as they have a substantially different response time. In this case, a decoupled MPC model
can be used for simplicity for cycle-by-cycle engine combustion control.
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Fuel-air mixing inside combustion
chamber (turbulence, …)
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EGR Flow

Exhaust Gas Temperature in
tailpipe
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for PFI
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In-cylinder residual gas
fraction and temperature

Turbocharger lag
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TWC, SCR temperature

during warmup

Thermal Dynamics
Flow Dynamics
Chemical Kinetics

Engine speed dynamics

Rotational Dynamics
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Figure 8. Time scale of engine related dynamics for a light-duty engine running between 1000 and
4000 RPM.

An important factor for selecting control horizon is knowing the engine actuator
dynamics. Typical engine actuator response times are shown in Figure 9 where the ignition
coil in SI engines and direct fuel injectors in both GDI and CI engines have the fastest
actuator dynamics. Slower actuators, sorted from the fastest to the slowest, include the
cam phaser, fuel pump, throttle valve, wastegate and EGR valve. Consideration of these
response times is critical for cycle-by-cycle engine control particularly at high engine speeds.
For instance, an engine cycle in a single-cylinder four-stroke engine running at 6000 RPM
takes only 20 ms, while most control actions need to be implemented within 1–2 ms.
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Figure 9. Typical engine actuators response times—assuming first order dynamics.

Equally important to the response time is the structure of the model, i.e., the number
of states and control inputs, since the structure directly affects the MPC computational cost
and provides feasible optimal solutions in real-time. The classification of engine-related
modeling based on number of states is shown in Figure 10 for a large number of prior
ICE control studies. The problems are divided into three main classes based on number
of states: two to three states, four to six states, and seven to nine states, and then sorted
further based on the number of control input (u).

Experimentally demonstrated MPCs in the ICE literature are mostly done for the
problems with the maximum of six states. The studies with seven to nine states are usually
only demonstrated in the simulation and include offline optimization selection of number
of system states and control inputs depend on (i) ICE control application, (ii) MPC topology
and centralized versus decentralized approach, and (iii) available computation power and
memory in ECU.
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Figure 10. Number of states (x) and inputs (u) for demonstrated MPC applications on ICEs.

4. Real-Time Implementation of MPC

This section focus on the experimental implementation of real-time MPC controllers
on real engines.

4.1. MPC Optimization Methods

MPC is realized by numerically solving an Optimal Control Problem (OCP) at each
time step. The three common approaches to solve an OCP problem are: Dynamic Pro-
gramming (DP), the Indirect Method, and the Direct Method [158]. The Hamilton–Jacobi–
Bellman (HJB) equation can be formed by minimizing a cost function, and it provides the
rule for defining the optimals of a continuous time system using DP. Due to the curse of
dimensionality, DP is not applicable for the problems with a large number of states and
control variables.

The indirect method uses the Pontryagin Minimum Principle and considers boundary
conditions and equality constraints in the form of the Two-Point Boundary Value Problem
(TPBVP). Indirect methods cannot handle inequality constraints smoothly [158,159]. Finally,
the direct method forms a Nonlinear Programming (NLP) by first discretizing the OCP
using single shooting, multiple shooting, or collocation methods. For the MPC context,
the direct method is the most common approach for transforming OCP to an optimization
problem that can handle inequalities and provides a robust solution [159].
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Constrained or unconstrained optimization is one way to categorize the optimization
problem. Convexity is another metric that can be used to categorize optimization problems.
Convex problems are normally easier to solve with well-established algorithms to find
the global optima. For nonconvex problems, it is difficult to find a general algorithm for
solving the problem, and normally finding the global solution cannot be guaranteed.

For nonconvex problems, the feasibility and optimality of the solution highly depend
strongly on choosing an appropriate initial point. Further, when solving a nonconvex
problem, local minima, saddle point, flat region, and widely varying curvature of the
function cause difficulties [160]. An optimization taxonomy is presented in Figure 11.
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Quadra�cally-Constrained QP

Second Order Cone Programming

Mixed Integer Nonlinear Programming

Robust Op�miza�on

Stochas�c Programming

Integer Programming

Combinatorial Op�miza�on

Nonlinear Equa�ons

Least Squares

Figure 11. Optimization taxonomy in MPC.

Numerical optimization can also be categorized based on input or state variables.
In some cases, the variables can only take integer values, while, in other cases, problems
can take continuous variables, and finally there is a possibility of having both types of
variables in a problem. The first case forms discrete optimization, the second is continu-
ous optimization, and the third is called the mixed integer programming problem [160].
Another category could be based on uncertainty in the system. Although most of the
optimization problems use a deterministic approach and assume that all the variables of
the system are well known, some optimization methods, such as robust optimization and
stochastic programming, build uncertainty into the optimization formulation [160].

4.2. Non Linear Programming (NLP)

NLP is the most general form of constrained optimization. A NLP can be written as:

min f (x)
s.t. gi(x) ≤ 0 for i = 1, . . . , m

hi(x) = 0 for i = 1, . . . , l

x ∈ X

(2)

If the cost function and constraints are linear, the NLP transforms into a Linear
Programming (LP). A quadratic cost function with linear constraints is a Quadratic Pro-
gramming (QP) problem, and a quadratic cost function and quadratic constraints define
Quadratically Constrained Quadratic Programming (QCQP) [161]. In Semi-Infinite Pro-
gramming (SIP) problems, many finite variables are subject to infinite inequality constraints.
This type of NLP can arise in robust optimization [162].

Second Order Cone Programming (SOCP) problems are part of convex optimization
problems that minimize a linear cost function with respect to intersection of affine linear
constraints with second-order cones [163]. SOCP can be considered as a subset of Semi-
Definite Programming (SDP), which minimizes a cost function over the intersection of
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affine constraints and the cone of positive semidefinite matrices. Even though LP and QP
can be reformulated as SOCP problem, the computation cost of SOCP problems is higher
than LP and QP problems [163].

Mixed Integer Nonlinear Programming (MINLP) is another class of NLP that has both
integer and real variables in its cost function or constraints. Due to nonconvexity, which
can occur in these types of problems, they are computationally expensive to solve [161].

To solve NLP problems, a variety of algorithms can be used. Some of the most
prevalent methods are: First Order Methods (FOM), Active Set (AS) methods, Interior
Point (IP) methods, and Sequential Quadratic Programming (SQP) methods. For FOM,
alternating direction method of multipliers (ADMM), gradient methods, and forward
backward newton (FBN) use the gradient of the function as opposed to using the Hessian
to solve the optimization problem [164]. These methods are often simple to implement, but
they can suffer from slow convergence and are sensitive to problem scaling.

Active Set (AS) methods solve a sequence of equality-constrained quadratic sub-
problems. They attempt to find set of equality constraints that are satisfied at the solution
of the problem. The classical approach for AS methods considers two phases. The first
phase is focused on feasibility, and the second one emphasizes optimality [165]. These
methods are simple to implement, fast for the small to medium size QPs, and can benefit
from a warm start when they are used in SQPs. Due to the existence of exact complexity
certification for these methods [166,167], they are an excellent candidate for fast embedded
MPC applications [168].

Interior Points (IP) methods consider iterations that fall inside one of the feasible
regions based on the constraints instead of considering the boundary of these regions.
IP methods follow this path until they find the optimal solution [165] and can find the
solution in less iterations compared to active set methods. The computational cost of IP is
higher per iteration due to more complex linear algebra operations needed [165]. A warm
start is also difficult to implement for IP methods, as the warm start point could be far from
the path they follow [165].

SQP methods linearize the cost function of NLP and solve a quadratic programming
subproblem in each iteration. This is performed so that the sequence finds the local mini-
mum of the original NLP [160]. To reduce the computational cost of SQP, some algorithms
limit the number of iterations and return a suboptimal solution [169]. SQP methods employ
either AS or IP methods to solve the QP at each iteration. Generally SQP methods are faster
than IP methods; however, they can end up with a suboptimal solution [169].

Commercial or open source solvers are available to solve NLP problems. A list of
common solvers, which can be used for MPC is given in Table 3. To help select a solver for
a specific type of problem, [170] provided a decision tree for optimization software and
benchmarks for different solvers.

Table 3. Common solvers for MPC along with the application type, optimization method, and availability of open source)

Optimization Solver MPC Problem Type Optimization Commercial/Free

IPOPT * [171] LMPC, Convex NMPC, Nonconvex NMPC IP F
BARON [172] LMPC, Convex NMPC, Nonconvex NMPC IP, SQP C
Gurobi [173] LMPC, Convex NMPC, Nonconvex NMPC IP C
ForcesPro [169,174] LMPC, Convex NMPC, Nonconvex NMPC IP, SQP, FOM C
SNOPT * [175] LMPC, Convex NMPC, Nonconvex NMPC IP, SQP C
OOQP [176] LMPC IP F
duQuad [177] LMPC, Convex NMPC FOM F
HPIPM [178] LMPC, Convex NMPC IP F
qpOASES * [179] LMPC, Convex NMPC, Nonconvex NMPC SQP F
OpEn [179] LMPC, Convex NMPC, Nonconvex NMPC AGD F
WORHP * [180] LMPC, NMPC SQP, IP C
CPLEX [181] LMPC, Convex NMPC C
CVXOPT [182] LMPC, Convex NMPC IP F
KNITRO * [183] LMPC, Convex NMPC, Nonconvex NMPC IP, SQP C
Mathworks MPC Toolbox * [184] LMPC, NMPC C
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Table 3. Cont.

Optimization Solver MPC Problem Type Optimization Commercial/Free

FiOrdOs [185] LMPC FOM F
APOPT [186] LMPC, Convex NMPC SQP F
LOQO [187] LMPC, Convex NMPC, Nonconvex NMPC IP,SQP C
OnRAMP (Honeywell) * LMPC, Convex NMPC, Nonconvex NMPC C
YALMIP * [188] LMPC, Convex NMPC, Nonconvex NMPC IP,SQP F
ACADO * [189] LMPC, Convex NMPC, Nonconvex NMPC IP,SQP F

* Implemented in ICE application.

To mathematically formulate the optimization problem and solve an optimal control
problem, many software tools are available. One of the free and open-source software
programs that easily integrates with MATLAB® and Python for nonlinear optimization
and algorithmic differentiation (AD) is CasADi, which has been used for solving NMPC in
ICEs [137,138]. CasADi is an open-source software that uses most of mentioned solvers
in Table 3, and it has been used in NMPC [190]. Other well-known software includes
CVXOPT [191], YALMIP [188], ACADO [189], and ForcesPro [174].

4.3. MPC Implementation

MPC control on ICE engines has been extensively studied using simulation. However,
for implementation of MPC controllers on a real engine, only a limited amount of published
work can be found. MPC has been implemented in a real-time system in various univer-
sities, industry, and service providers. A summary of studies that have experimentally
implemented MPC controller on ICE engines is shown in Figure 12.

Among these studies, only General Motors deployed mass production of engine
controller using MPC. Due to the recent developments in microprocessors and availability
of efficient solvers, it is anticipated that MPC will be implemented in other ICE industries
in the near future. Other than GM, other companies, such as Cummins, Toyota, Ford, Fiat
Chrysler Automobiles (now Stellantis), and Hyundai Motor have implemented MPC for
ICE operations under real-time transient conditions.

Due to the fast dynamics of engines, explicit MPC and fast MPC are the two MPC
methods that have been often used for real-time implementation of engine studies on
prototype ECU. Explicit MPC has the advantage that it has lower computational require-
ments but has the disadvantage of a high memory footprint. For a typical ECM, systems
with more than five states are impractical to implement with explicit MPC due to the
computational expense and parameter tuning difficulty. On a real engine, different solvers
(optimizers) have been employed to apply MPC.

Figure 13 show the solvers that have been used in the literature for implementing
MPC experimentally on spark ignition (SI) engines and compression ignition (CI) engines.
For SI engines, SQP is used more often for different control problems, including IMEP,
fuel, airpath controller [52,54,136]. In CI engine, mpQP is used for fuel path [21,28,30,40],
and airpath [21,30]. OnRAMP solver is used for after-treatment controller [29,147] and for
engine combustion optimization broad type of IP, and SQP-based solvers, including IPOPT,
WORHP, KNITRO, and SNOPT, are implemented in the literature [135].

For most studies, a single linear MPC or a set of linear MPCs have been used to
model the dynamics of the engine [21,27–30,33,147]. This simplification in defining the
model enables an MPC controller to be implemented in mass production embedded
processors [33]. Conversely, nonlinear MPC is used to capture the non-linearity of the
system more accurately but is more complex [26,31,32,135,141].
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Figure 12. Successful experimental demonstrations of implementing MPC on ICEs.

In a recent study, a nonlinear MPC was implemented on a prototype CI engine
controller that could be implemented in a production ECM [26]. This study is an example
of topology II that includes two levels of control: Level 1A as supervisory NMPC (SNMPC)
and Level 2A as optimal feedback controller. The main objective of SNMPC is safety
enforcement by guaranteeing fuel input and EGR rate upper band to prevent engine
damage and satisfying fuel-air ratio constraints for limiting smoke in engine transients.

The level 2A controller includes both feedforward and feedback parts to address both
high performance and robustness to disturbance and uncertainties to track the supervisory
provided EGR rate and intake manifold pressure targets as shown schematically in Figure 6.
These three controllers are implemented on a dSPACE DS1006 rapid prototyping unit.

All necessary derivatives of three optimal control problems, including cost function,
constraints, and dynamics, were calculated symbolically using the Maple symbolic lan-
guage. Then, a symbolic control design environment (SCDE) was used to translate these
symbolic calculations into highly optimized C code to embed in MATLAB®/Simulink
S-function. The QP solver for supervisory NMPC was then embedded in MATLAB®.
Feedback/feedforward control was Cholesky factorization routines, which were directly
implemented in SCDE.
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They scaled the execution time of MPC to a standard ECM, as shown in Table 4 where
the average execution time for SMPC, NMPC feedforward, and NMPC feedback is 530, 31,
and 127 µs that sum up to total average execution time of lower than 700 µs. The maximum
estimated ECU execution time shows that, for all three controllers, the summation of the
Maximum estimated ECU execution time is 7.43 ms, which is below the given sampling
time of 8 ms in their engine setup [26].

MPC implementation solvers in ICEs

SI engines [52,54,136]

IMEP
controller

Fuel path
controller

SQP

Airpath
controller

CI engines

Engine
combustion

optimization [135]

IPOPT

IP

WORHP KNITRO

SQP

SNOPT

Aftertreatment
controller

[29,147]

OnRAMP

FOM

IMEP
controller
[22,27,28]

MATLAB®

MPC
toolbox

Fuel path
controller

[21,28,30,40]

Explicit
MPC

toolbox

mpQP

Air path
controller

[21,30]

MATLAB®

MPT
toolbox

Figure 13. Optimization, solvers, and software implementation platforms used in the literature for
implementing MPC for different control applications on compression ignition (CI) and spark ignition
(SI) engines.

Table 4. Problem size and execution time for MPC controllers reported in [26]—ECU execution times are estimated for a
256 MHz ECU clocking scaling.

Supervisory SMPC NMPC Feedforward NMPC Feedback

Average execution time [µs] 530 31 127
Maximum execution time [µs] 550 32 133
Maximum estimated ECU execution time [ms] 5.6 0.33 1.5
Number of decision variables 17 18 18
Number of hard constraints 41 0 0

To achieve this low execution time, a sequence of tasks were performed. These in-
cluded using the symbolic calculation for the derivative, linearizing the nonlinear model for
supervisory control, using Gauss–Newton Hessian approximation instead of Lagrangian
in the cost function derivative, solving a single-linear system per timestep for each NMPC
in feedforward/feedback control, selecting an optimal solver and well tuned MPC con-
trollers [26].

Although their results show that their nonlinear MPC could be implemented in real-
time on a dedicated ECM; they note this is still not feasible for mass production as the ECM
still needs to handle many other functions in addition to the emission control strategies
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tested. Further improvements on CPU usage or using a more capable ECM are still needed
before the proposed method is ready for mass production [26].

For [26] the results in Figure 14 show that the designed nonlinear MPC outperforms a
well-calibrated production ECM control strategy for reducing engine-out NOx, soot, and
total hydrocarbon (THC) emissions. In Figure 14, the MPC L2A controller tracks with high
accuracy supervisory controller (L1A) generated fueling rate, intake pressure, and EGR
rate, which results in the optimal reduction of THC, NOx, and smoke opacity.

As shown, the designed hierarchical MPC satisfies fuel-air ratio and smoke opacity
limits while NOx and THC levels are lower than Benchmark (BM) controller. Their results
show no tailpipe visible smoke and also a 10% to 15% reduction in the NOx and total HC
emissions compared to a state-of-the-art industry controller when testing a diesel engine
under transient drive cycle as part of worldwide harmonized light-duty vehicles test cycle
(WLTC) [26].

Figure 14. Performance of a nonlinear MPC versus benchmark (BM) production vehicle control
strategy to regulate NOx, soot (opacity), and unburned hydrocarbons for a diesel CI engine as part of
WLTC drive cycle (Reprinted from [26] with permission of Wiley).

Another example of MPC experimental implementation for ICE control applications
is found in [27]. Switching linear MPC to control combustion phasing (CA50) and engine
load (IMEP) of an RCCI engine under transient conditions are used in [27]. Their results,
depicted in Figure 15, show CA50 and IMEP tracking errors less than 1.5 CAD and 20 kPa,
while the engine combustion stability was controlled by keeping COVIMEP less than 5%.

Table 5 lists the main results for successful applications of MPC for ICEs. These results
show that MPC can provide substantial fuel saving, engine-out emission (NOx, PM, and
HC) reduction, and improving reference tracking performance, while significantly reducing
the engine calibration efforts particularly for transient speed and load conditions.
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Figure 15. Performance of multi-linear MPCs to track desired load (IMEP) and combustion phasing
(CA50) by adjusting injected fuel quantity (FQ), start of injection (SOI), and dual fuel premixed ratio
(PR) for a four-cylinder RCCI engine. (a) Tracking of reference load (IMEP), (b) Tracking of reference
combustion phasing (CA50), (c) SOI control action, (d) PR control action, (e) FQ control action, and (f)
cyclic variability of IMEP (Reprinted from [27] with permission of Elsevier).

Table 5. Summary of the main accomplishments of articles reviewed about MPC in ICEs in compari-
son with conventional control methods.

Achievements References

Fuel Saving (0.3 to 12%) [26,28,29,34–36,47,52,54,135–137]
NOx reduction (up to 15%) [26,28,30,41,45,47,135,137,145]
PM reduction (up to 11%) [29,47,137]
HC reduction (10 to 15%) [26]
Calibration effort reduction [36,46,52,53]
Tracking improvement (up to 40%) [21,22,25–54,108,136–144,147–151]

5. AI and MPC Integration

This section discusses the integration of Artificial Intelligence (AI) and Model Predic-
tive Control (MPC) for ICE control. AI, in general, refers to the broad discipline of creating
intelligent machines, while Machine Learning (ML) predominantly refers to algorithmic
subsystems of AI that can learn from experience. The integration of MPC with AI mainly
refers to ML-based MPC or data-driven MPC in the literature. The integration of ML and
MPC started in the early 2000s but has accelerated in the last few years in broad disciplines,
especially in engineering applications [192–196].

Due to the complexity of combustion phenomena and the high number of subsystems
in ICE, physical-based model development is time-consuming and may become nonlin-
ear and non-convex. In addition, the accuracy of the physics-based method is typically
compromised, mainly due to linearization or model-order reduction techniques [120].
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The requirement of accurate modeling to guarantee MPC robust performance while simul-
taneously having a simpler model has opened an opportunity to utilize the ML method in
developing required models in MPC platforms.

In ML-based MPC, a machine learning-based model is used to develop a model. This
model is used directly to design MPC or implement optimization. The training process of
this model can be either adaptive or based on offline learning. Adaptive learning improves
accuracy by deploying ML in real-time, and MPC model coefficients change online in
real-time [197–199] while, in offline modeling, the coefficient and structure of the model
are developed ahead of time using offline statistical data [192,200–202].

Several ML-based data-driven modeling techniques have been used, including Ar-
tificial Neural Network (ANN) [197,203], Extreme Learning Machine (EL)M [198,204],
Bayesian Neural Network (BNN) [205], and Least-Square Support Vector Machine (LS-
SVM) [21,22] to provide a predictive model of sufficient accuracy for control of ICEs. MPC
and ML integration in ICEs applications is depicted in Figure 16. In this figure, the structure
of the ML-based data-driven model, control problems, modeling methods, and engine
combustion types are summarized.

ML and MPC in-
tegration in ICEs

Combustion
type

RCCI [21,22,112,
129,130,197,205]

CI [206,207]

SI [24,203,
206,208] HCCI [198,204]
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methods

BNN [205]

ANN [24,112,
197,203,208]

ELM [198,204]

LS-SVM [21,
22,129,130]

Control
objectives

IMEP & CA50
[21,22,112,129,130,
197,198,204,205]

Speed [206]

Air-
path [208]
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203]

EGR
rate [207]

MPRR [22]

Model
structure

for control

Nonlinear [130,
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state-space
LPV [21,22,112,

129,197,205]

Linearized
state-space [24,
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Figure 16. ML and MPC integration [21,22,24,112,129,130,197,198,203–208]

Among all data-driven modeling using ML, ANN is the most common in ICEs. A
classical time-series system identification technique to identify a dynamic system in the
literature is Nonlinear AutoRegressive eXogenous (NARX) [209] where the discrete-time
structure of the model can be defined as

xk+1 = f (xk, xk−1, ..., xk−d,

uk, uk−1, uk−2, ..., uk−n)
(3)

where xk is predicted state of system based on d past values of xk and n past values of
control input, uk. In most of these cases, the output of the system, yk, can be yk = Cxk.
Here, C is the system matrix to map states to outputs. The function f used to approximate
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the input–output response can be any nonlinear function, such as polynomials and Neural
Networks (NNs).

An ANN can be used, and adding shallow networks (low number of hidden lay-
ers) could enable an accurate function approximation f [24,203]. This model, Equa-
tion (3), in general, is nonlinear and usually requires NLP for MPC implementation (Equa-
tion (1)) [130,198,203,208]. The model of Equation (3) provides the required model, f (x), to
perform NLP optimization in Equation (1). Alternatively, by linearizing Equation (3), linear
MPC can be used [24,204]. By performing linearization around one specific operating point
of engine, the state-space equation of the model is derived as

xk+1 = Axk + Buk

xk = Cxk + Duk
(4)

where A, B, C, and D are state-space model matrices that are found based on linearizing f
in Equation (3)

A =
∂ f
∂x
|(xop ,uop)

B =
∂ f
∂u
|(xop ,uop)

(5)

where xop and uop are states and control inputs of the operating point when the system
is linearized. The output matrix, C can be defined based on the required output, and,
usually, D is zero. This equation provides the predicted state, output, and control input
for MPC optimization in Equation (1). A linearized ANN-based model is used to simplify
MPC and change the nonlinear optimization problem of NMPC to the linear MPC that
could be interpreted as a quadratic programming problem [210]. However, through this
linearization, the main benefits of using neural networks to capture nonlinear system
optimization for MPC are lost, and thus using NLP is typically preferred [203].

Extreme Learning Machine (ELM) is a well-known method of ANN for adaptive
learning where a gradient-based backpropagation is not required to update the network
weights. In ELM, hidden nodes are randomly chosen, and the weights of the network are
determined analytically. It has a very efficient training time; however, the accuracy may
vary in different cases [211].

In ICEs, ELM was combined with MPC to provide a model for both offline and online
learning. An HCCI engine was modeled using ELM, and then nonlinear MPC was used to
design IMEP and stability controller [204].

In this study, seven variables of the engine model, including IMEP, CA50, maximum
in-cylinder pressure Pmax, maximum pressure rise rate Rmax, output torque, and equivalent
air-fuel ratio (EAFR), were predicted for the given input variables including injected fuel
mass m f , EVC, and SOI. Then, each output was modeled using one network where inputs
are m f , EVC, and SOI. For example, to model CA50 in this study, a single hidden layer was
used, which is shown schematically in Figure 17.

Activation

Figure 17. Modeling CA50 using ELM.
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The output of this network can be calculated as

x̂ =
L

∑
i=1

βig(wiuj + bi) j = 1, . . . , N (6)

where x̂ is the state of system, L is the number of hidden units (neuron in hidden layer), N
is the number of training samples, β is the weight vector between the hidden layer and
output, w is the weight vector between the input and hidden layer, b is the bias vector, g
is the activation function, and u is the control input vector. In the case ib [204], x̂ = CA50
and u = [m f SOI EVC]T . The ELM algorithm first randomly assigns weights for wi and
bi, then, based on the following equation, β is analytically calculated as

β = H−1utr (7)

where xtr is training output (actual value of CA50 from experimental data) and H is N × L
matrix with elements of g(wiuj + bi) where i is neuron index while j is training data index.
Then, the model can be evaluated for new data by evaluating x̂ = Hβ [204]. Figure 18
shows the comparison of the predicted outputs and actual experimental data.

The ELM model of this study was trained offline, and the coefficients of linearized
ELM were updated in real-time application. This model then used to design MPC to control
IMEP and CA50 while constraining the maximum pressure rise rate Rmax. In this study, a
fast QP algorithm is used for optimizing MPC in simulation. The optimum control inputs
generated by MPC is EVC, SOI, and Fuel Mass. The performance of ELM-MPC control
of [204] is shown in Figure 19.

Another standard method of machine learning for MPC modeling is Support Vector
Machine (SVM) [212]. In SVM, a convex quadratic programming is solved to find a
correlation between input–output or classification. A least-squares version of SVM to solve
a set of linear equations to lower the computation cost for the constrained optimization
programming is described in [114,115,117,118].

Both regression SVM and least-squares SVM, so-called LS-SVM, have been used to
provide ICE models for MPC. Linear Parameter Varying (LPV) formulation of a Reactivity
Controlled Compression Ignition (RCCI) model for CA50 and engine load control is driven
based on LS-SVM in [21]. The LPV version of the state-space structure discrete-time model
(LPV-SS) can be described as

xk+1 = A(pk)xk + B(pk)uk

yk = C(pk)x(pk) + D(pk)uk
(8)

where uk and xk are inputs and states at k, respectively; pk is a scheduling variable; and
A, B, C, and D are state-space model matrix functions of the scheduling variable. This
model can be directly used in Equation (1). Using this LPV model can improve linear
MPC performance. To find model matrices, both ANN and Least-Squared versions of
SVM are used [21,22,129,130]. One example of implementing the LS-SVM-based model for
MPC was presented in [21]. State-space model matrices in the LS-SVM framework can be
calculated as

A(pk) =
N

∑
j=1

αjxT
j KRBF(pj, pk)

B(pk) =
N

∑
j=1

αjuT
j KRBF(pj, pk)

C(pk) =
N

∑
j=1

β jxT
j KRBF(pj, pk)

(9)
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where the j index shows data in the training set where the model developed using the
training set of xj j ∈ (1, 2, . . . , N) and uj j ∈ (1, 2, . . . , N). Additionally, the scheduling
parameter, p, is also given in the training set where pj j ∈ (1, 2, . . . , N). In these equations,
KRBF is a Radial Basis Function (RBF) kernel, which is defined as

KRBF(pj, pk) = exp(−
||pj − pk||2

2σ
) (10)

where ||pj − pk||2 is the L2 norm between the two feature vectors and σ is a free parameter.
This method of updating model matrices was used in [21,22,129,130].

For instance, fuel-injected per engine cycle, FQ (mg/cycle), is used as a scheduling
parameter, and the goal is to control CA50 by varying Start of Injection (SOI) in the
framework of RCCI engine in [21]. The true output of the system along with the predicted
value are shown in Figure 20a. Experimental implementation of LPS-SS based design MPC
performance is shown in Figure 20b. In this implementation, a dSPACE MicroAutoBox
(MABX) unit along with dSPACE RapidPro are used for experimental implementation.

Figure 18. The true output and prediction of IMEP, CA50, maximum in-cylinder pressure Pmax, maximum pressure rise
rate Rmax, output torque, and equivalent air-fuel ratio (EAFR) using ELM for the modeling of an HCCI engine (Reprinted
from [204] with permission of Elsevier).
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Figure 19. Implementation of ELM-based MPC for HCCI engine in simulation. (a) state trajectory of HCCI engines with
noise by constraints on the maximum pressure rise rate (Rmax), (b) Manipulated control trajectory generated by MPC with
constraints on EVC and Fuel mass (Reprinted from [204] with permission of Elsevier).

Figure 20. Implementation of LS-SVM based LPV-SS MPC to control RCCI engine. (a) The true output and prediction of
CA50 using LS-SVM-based LPV-SS modeling approaches, (b) MPC control performance with variable fuel rate to track
desired CA50 [21] (Reprinted from [204] with permission of IEEE).

LPV-SS modeling is not limited to using LS-SVM, and ANN was also used in LPV-SS
modeling to improve the accuracy of modeling inside the MPC. Then, MPC was used to
control IMEP and CA50 of the RCCI engine. In an LPV-SS structure, the system matrix
function (A, B, C, and D) was represented by a fully-connected ANN. Then, these matrices
were updated based on defined scheduling parameters [112,197,205]. An online learning
technique was used to refine the model to improve model accuracy for MPC control
applications in [197].

Bayesian neural networks (BNNs) were also augmented to LPV-SS in [205]. BNN
is a stochastic artificial neural network, which is trained by using Bayesian inference
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and is another neural network-based method that can be used to mimic MPC behavior.
The main advantage of BNN is that the neural network is trained and contains a probability
distribution attached to its weights [213]. The ANN-based LPV-SS modeling results in high
accuracy prediction of dynamic of CA50 and IMEP where the Best Fit Ratio (BFR) is more
than 95% for both cases [112].

In addition to using ML in the model of MPC, ML can be also used to tune the
MPC optimization gains is ICE applications. An ANN-based method is used to optimize
MPC weights for diesel engine boost pressure and EGR rate [207]. In this study, how
humans tune the matrix of MPC (P, Q, and R in MPC optimization) is learned by an
ANN. The output of ANN is an approximated human learned cost function based on given
performance of manual tuned MPC time response to characterstics, such as overshoot,
settling time, and undershoot. Therefore, based on NN’s results, the cost function can be
created where can help to tune MPC parameters optimally [207]. This method has the
potential to decrease calibration effort but has not been explicitly discussed in the literature.

6. Recommendation and Future Directions
6.1. MPC in ICEs

A summary of MPC benefits and its current status based on the latest developments
for ICE control are shown in Figure 21. Implementing MPC uses a systemic approach
and provides real-time optimal control solutions. This can result in fuel savings up to
12% while providing a 10–15% reduction in soot, UHC, and NOx emissions. These make
MPC a promising method for engine control to assist in meeting future RDE regulations.
In addition, MPC can improve reference tracking performance up to 40% for ICE control
applications, while substantially reducing controller calibration efforts under transient
operating conditions (Table 5).

This can provide benefits for the control of modern ICEs that have several actuators
and include coupled dynamics that make calibration of ICE controllers time consuming
and often sub-optimal for transient operating conditions.

0.3% to 12%

Real-time implementation of
NMPC, EMPC, and LMPC
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computational resources
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Figure 21. Promises of MPC for ICE control applications based on the studies in the literature.

Two main well-recognized challenges of MPC include the computational cost and
sensitivity to model accuracy. This directly affects the required modeling efforts. Recent
developments in the areas of fast MPC and applications of ML for modeling and integration
with ICE control offer promising solutions. Successful experimental implementation of
NMPC for ICE control applications show implementing MPC using techniques of NMPC,
EMPC, and LMPC. Implementing NMPC and EMPC in production ECMs is being realized,



Energies 2021, 14, 6251 29 of 40

while there is already evidence of implementing LMPC on production ECMs. To implement
NMPC and EMPC on production ECMs, an integrated approach is necessary.

This approach includes reducing computational costs by (i) using techniques of model
order reduction and incorporating adaptive model complexity depending on engine speed
and load conditions and considering the relative importance of the engine dynamics in-
volved, (ii) optimal and adaptive selection of the control horizon and prediction horizon
for transient engine control, (iii) optimal selection of a solver/optimizer for specific engine
control problems, and (iv) optimizing the solver structure and use of relaxation tech-
niques based on the required accuracy for certain engine control functions and operating
conditions.

Based on the literature, three main topologies are introduced for ICE control (see
Figure 4) and depending on the availability of computational resources the appropriate
method can be selected. Selection of the best topology for an engine control application
should be decided based on the available ECM computational resources, availability of
feedback sensors, type of feedback controllers, and required model fidelity for the coupled
engine dynamics in each specified ICE control application.

In topology I, the controller has three levels: supervisory control, feedback control,
and actuator controllers. This is the most common topology that has been implemented for
many ICE applications, though most studies focused on one of these three levels. The most
common model structure for implementing MPC in ICEs has four to six states and two to
four control inputs. This is linked with the status of computational resources available in
an ECM.

Topology III can provide the best performance. This topology is a promising method
where supervisory control is combined with the feedback controller but requires more
computational resources than the other two topologies. An example of topology II is the
fuel path control is done in the supervisory optimal controller, while the air path control
is implemented in the feedback control level. The computational load in this topology is
between that in topology I and topology III.

6.2. Optimization of MPC in ICEs

Several different methods for implementation on embedded real-time MPC were
investigated in this paper. Active Set methods and Gradient Projection methods are the
two most promising methods for implementation on embedded real-time MPC. This is
due to their simplicity to code, speed, and feasibility/optimality of their solution. Despite
these advantages of Active Set and Gradient Projection methods, their speed advantage
degrades quickly for larger problems.

Thus for large-scale problems, Interior Point methods are usually a more effective
solution in comparison with the other methods. This is summarized schematically in
Figure 22. In addition to selecting an appropriate method, using a fast and reliable solver is
crucial for the real-time MPC embedded on the ECM. While Gurobi and BARON are state
of the arts solvers, they are mostly suitable to desktop computers solving the nonlinear
nonconvex problem, which can arise from NMPC. Solvers, such as IPOPT, ForcesPro,
and qpOASES provide decent performance for a wide range of MPC problems including
real-time MPC—the solvers are summarized in Table 3.

Fast real-time MPC

Small & medium problems

Active set

Large problems

Gradient projection

Interior point

Figure 22. Recommended methods for small and large scale MPCs.
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The compromise between reduced order modeling and solver computational cost
when formulating the optimal control problem as a nonlinear programming affects the
solver selection for NMPC. This trade off is shown in Figure 23. Many ICE control problems
are nonlinear and nonconvex, and thus there is a trade-off between high effort to find a set
of linearized models that capture the features of the system or higher computational cost
to solve a more complex optimization problem, such as MINLP.

Increase in computational cost, complexity and nonconvexity

Increase modeling time to capture all the system properties

QCQP SOCP SDP SIP MINLPQPLP

Figure 23. Trade off between reduced order modeling efforts and the solver computational cost.

To implement MPC for a specific ICE problem, both the method and solver must be
determined. To find the best formulation for NMPC, different solvers and methods should
be assessed using a suitable benchmark ICE problems.

6.3. Integration of AI and MPC

The integration of AI and MPC were reviewed by focusing on ICE applications. In ICE,
the use of ML methods as a subset of AI by focusing on supervised learning in developing
high-fidelity plant model inside MPCs were used widely in the literature. In general,
a data-driven model is used to predict future steps of MPC by employing a wide variety
of learning algorithms and training methods. Training methods can be either offline or
online (adaptive). A data-driven model is developed via offline learning, and the model’s
coefficients stay constant during the implementation of MPC.

On the other hand, the offline learning process is used in adaptive learning, except
that coefficients are updated in real-time. It is essential to update the model based on
changing the engine conditions. Although retraining networks and then using MPC
optimization based on a current ECM hardware seems infeasible due to the computational
load, connected vehicles using cloud/edge computing could make this a future possibility
for specific engine applications.

The ECM of the engine can be connected to cloud/edge servers, and data can be trans-
ferred to the server using high-quality internet, and updated coefficients of the networks
can be transferred back to ECM without adding additional computational load to ECM.
The first beta version of this idea can be realistically implemented in stationary engines in
the near term. For mobile applications and real-time engine control, network latency needs
to be considered unless a real-time ECM update is not required.

Despite the fact that machine learning methods have been used widely in modeling
ICEs for MPC application in the literature, it still needs further improvement to make
it more compatible with the existing solvers used inside MPC. Additionally, adaptive
learning has only been used in limited publications in the literature that seems promising.
The integration of ML and MPC was only reported for developing a model; however, other
disciplines have used other methods to enhance MPC.

For example, robotics, process control, and heating, ventilation, and air conditioning
used (i) learning dynamic modeling for MPC by adjusting the model structure of MPC [192,
200–202,214–216], (ii) the controller design of MPC [193,217–220], (iii) optimization of
MPC solvers [196], (iv) imitation of MPC [195,195,221], and (v) MPC-based safe-learning



Energies 2021, 14, 6251 31 of 40

of ML [194,222,223]. These methods seem promising for future implementation in ICE
applications but must be comprehensively assessed.

7. Summary and Conclusions

MPC provides an effective and systematic framework to optimize and control internal
combustion engines (ICEs). The utilization of MPC for multi-objective transient engine
control and reducing real driving emission (RDE) is promising. This can substantially
reduce ICE calibration efforts and provide more optimal performance, compared to con-
ventional industrial PID-based engine control methods. Recent developments of fast MPC
algorithms and solvers have made it possible to implement nonlinear MPC on engine
control modules (ECMs).

For the successful implementation of MPC on today’s ECMs, a comprehensive and
integrated design approach is required to minimize the MPC computational footprint. This
can be done using these four integrated steps: (i) applying model order reduction tech-
niques to reduce nonlinearities, simplifying coupled engine dynamics, and convexifying
ICE models wherever possible, (ii) the design of a mechanism to implement variable pre-
diction and control horizons based on ICE system and actuator dynamics, (iii) the selection
of an optimal solver based on the complexity and convexity of ICE target dynamics and
constraints, optimization of the solver for each specific ICE control problem (e.g., by time-
distributed SQP solver), and (iv) selection of appropriate ECM hardware and processor to
compute ICE control action within 1–2 ms for cycle-by-cycle engine combustion control.

Integration of AI and machine learning to enhance MPC for ICE control is a promising
area to help complex modern ICE comply with future stringent emission targets. The MPC
enhancement can be achieved via use of accurate machine learning (ML) or grey-box
models for predicting ICE complex dynamics, such as transient soot emissions and/or use
of AI within MPC structure, or improving MPC solvers. There is a gap in the literature for
techniques to modify ML models for direct use in existing MPC structure. Finally, further
investigation is needed to fully assess the potential of AI-MPC methods for a variety of
challenging optimal engine control problems.
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