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Controlling cyclic combustion timing variations using a

symbol-statistics predictive approach in an HCCI Engine

Ahmad Ghazimirsaied, Charles Robert Koch∗

Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 2G8, Canada

Abstract

Cyclic variation of a Homogeneous Charge Compression Ignition (HCCI) engine near misfire
is analyzed using chaotic theory methods and feedback control is used to stabilize high cyclic
variations. Variation of consecutive cycles of θPmax (the crank angle of maximum cylinder
pressure over an engine cycle) for a primary reference fuel engine is analyzed near misfire
operation for five test points with similar conditions but different octane numbers. The
return map of the time series of θPmax at each combustion cycle reveals the deterministic
and random portions of the dynamics near misfire for this HCCI engine. A symbol-statistic
approach is used to predict θPmax one cycle-ahead. Predicted θPmax has similar dynamical
behavior to the experimental measurements. Based on this cycle ahead prediction, and
using fuel octane as the input, feedback control is used to stabilize the instability of θPmax

variations at this engine condition near misfire.
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Nomenclature

aBDC after Bottom Dead Center
aTDC after Top Dead Center
CAS Combustion Analysis System
CA50 Crank Angle for 50% mass fraction burnt fuel
θPmax Crank Angle where the maximum pressure inside cylinder occurs
COV Coefficient of Variation
ECU Engine Control Unit
EGR Exhaust Gas Recirculation
EVO Exhaust Valve Opening
HCCI Homogeneous Charge Compression Ignition
HR Heat Release
IMEP Indicated Mean Effective Pressure
IVC Intake Valve Closing
Pman Intake Manifold Pressure
PRF Primary Reference Fuels - volume percentage of iso-octane in n-heptane
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RPM Revolution Per Minute
SI Spark Ignition
SOC Start of Combustion
TDC Top Dead Center
Tman Intake Manifold Temperature
Toil Oil Temperature

1. Introduction

HCCI engines are of interest due to certain advantages over conventional Spark Ignition
(SI) and Compression Ignition (CI) engines. In particular, low emission levels in terms of
NOx and particulate matter and high thermal efficiency of these engines are beneficial [1].
Two main concerns about this engine technology are: limited operation range, and lack of
any direct control on ignition timing [2]. Typically the HCCI operating range is limited by
engine damaging knock at high load, and by undesirable high cyclic variation at low load.
This paper focuses on understanding how to extending the low load range of HCCI where
high cyclic variations are responsible for unstable combustion which limits the operating
range of the engine [3]. The combustion stability of a SI engine has been investigated by
means of both experimental tests and numerical analysis [4]. Cyclic variations are classified
as linear random or having deterministic coupling between consecutive cycles, both of which
have been analyzed using nonlinear and chaotic theory [5, 6, 7]. The term deterministic is
used when future states, for some horizon of the system, can be calculated from the past
values [8]. Temporal dynamics of the combustion process in a lean-burn natural gas engine
was studied by the analysis of time series of consecutive experimental in-cylinder pressure
data [9, 10]. This structure is then used to predict future cycles and incorporated in a control
algorithm to influence the HCCI ignition timing [11, 12]. Thus, understanding the dynamics
of HCCI combustion during high cyclic variation operating conditions, could be used to
extend the operating range if there is deterministic structure inherent between engine cycles.

Cyclic variation of HCCI is highly dependent on the timing of Start Of Combustion
(SOC). Early combustion timing right after Top Dead Center (TDC) tends to have low SOC
cyclic variation while late HCCI combustion timing tends to have high cyclic variations [3].
Period-doubling and bifurcation in experimental measurements of SI engines are investigated
as the mixture is made leaner [13, 14]. Their results indicate that there is a transition from
stochastic behavior to a noisy nonlinear deterministic structure as the mixture is made leaner.
This seems to indicate that for lean mixture conditions, cycles are related. Engine dynamics
appeared to pass through distinct stages including stochastic, periodic, and chaotic behavior.
The combustion process in a SI engine is analyzed and shows that the system can be driven
to chaotic behavior [15]. In [16, 17], a method is proposed based on a symbolic approach
to measure temporal irreversibility in the time series and a method is introduced to detect
and quantify the time irreversibility. In [18], the symbolic method is analyzed such that
the symbolization is used to enhance the signal-to-noise ratio. The onset of combustion
instabilities under lean mixture conditions have been studied using symbolic methods for
observed in-cylinder pressure measurements in SI engines [16, 19]. A time-series analysis
technique called symbolic time series analysis is summarized in [20]. The observation of
time irreversibility in cycle-resolved combustion measurements of SI engines is discussed
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in [11] and the advantage of their model compared to linear gaussian random processes is
presented. The transition dynamics from conventional SI combustion to HCCI combustion
is described using nonlinear tools in [21], where the cyclic combustion oscillations occurring
in transition between the SI and HCCI mode are presented as a sequence of bifurcations in
a low-dimensional map. Temporal dynamics of the variation of consecutive cycles of crank
angle of 50% mass fraction of fuel burnt (CA50) is analyzed using chaotic theory tools in
[22]. The sequential unstable cyclic combustion measurements in the SI-HCCI transition
are used to obtain the global kinetic parameters [23]. This aids in discriminating between
the multiple combustion states and to provide qualitative insight into the SI-HCCI mode
transition. CA50 is predicted one cycle ahead using a symbol-statistics approach in [22].

Fuel stratification have been applied to extend HCCI high load range by controlling the
combustion phasing [24]. A parametric study has been performed in order to gain more
understanding in the emission reduction possibilities via HCCI new combustion technology
[25]. The comparison of the results obtained from a modified HCCI multi-zone model to
experimental measurements, at different load and boost pressure conditions are presented
in [26]. The possibility of controlling combustion phasing and combustion duration using
various Exhaust Gas Recirculation (EGR) fractions have been investigated in [27]. The com-
bustion and emission characteristics of a HCCI engine fueled with ethanol were investigated
on a modified two-cylinder, four-stroke engine using port injection technique for preparing
homogeneous charge [28]. The implementation of HCCI combustion in direct injection diesel
engines using early, multiple and late injection strategies has been reviewed in [29]. The
development and a preliminary validation of a heat transfer model for the estimation of wall
heat flux in HCCI engines via multi-zone modeling has been the focus of [30]. A multi-
zone model is used for the purpose of investigating the importance of mass transfer on the
formation of the most important HCCI engine emissions in [31].

The main objective of this paper is to investigate and control the cyclic variation of com-
bustion timing near the misfire limit by using the identified dynamics to predict one cycle
ahead and use this prediction in feedback control to stabilize unstable HCCI operation near
misfire. Nonlinear and chaotic theory tools are used to identify the inherent deterministic
patterns of cyclic variation during HCCI combustion. This paper is organized into sections
with the engine experimental procedure described first. Then return maps are used to qual-
itatively observe the dynamical patterns near engine misfire. The return maps are a useful
tool to recognize the dependency of the current combustion cycle on previous ones. Then the
deterministic structure inherent in the cyclic engine data at 5 octane numbers is captured
using a symbol-sequence approach. Joint probability distributions are calculated from the
frequency histograms. Then, a joint probability estimator is used to predict combustion
timing one cycle ahead for each octane number. Finally, the cycle ahead prediction at all
5 octane numbers is combined with feedback control that modulates the octane number to
control ignition timing and extending the HCCI operating range of the engine.

2. Experimental Procedure and Ignition Timing

The experimental single cylinder engine operating in HCCI mode is detailed in [22]. A
schematic of the Ricardo Hydra Mark 3 single cylinder engine fitted with a modified Mer-
cedes E550 cylinder head is shown in Figure 1. This cylinder head is typical for a modern
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spark ignition engine with four valves per cylinder and a pent-roof combustion chamber
shape. The fuels that are used in this work are blends of n-Heptane and iso-Octane. These
two fuels (n-Heptane and iso-Octane) are Primary Reference Fuels for octane rating in in-
ternal combustion engines, and have octane number of 0 (100% n-Heptane) and 100 (100%
iso-Octane), with cetane number of approximately 56 and 15, which is very similar to the
cetane number of conventional gasoline and diesel fuel, respectively. Dual fuel of iso-octane
and n-heptane are injected at the intake port of the engine. The fuel is injected into the
intake air directly onto the intake valves, at TDC. Both the iso-Octane and n-Heptane in-
jectors are placed at the same distance from the intake valves. These two independent fuel
systems are installed on this engine so that blending of iso-Octane and n-Heptane can be
done on a real time basis. Port fuel injection is typical of a SI production engine in a modern
automobile. Both fuel systems are calibrated to determine the injector flow rates. This is
done so that the mass flow rate of both fuels can be estimated. The fuel injection is done
with a dSpace-MicroAutobox ECU (Engine Control Unit), which provides accurate control
of the injection timing as well as the duration. This ECU also controls the spark timing,
which is used during the engine warm up in SI mode but is turned off for HCCI combustion.

Figure 1: Ricardo single cylinder testbench schematic.

The engine specifications are listed in Table 1. Cylinder pressure is recorded 3600 times
per crank revolution and processed with an NI Labview and A&D Baseline CAS using
a degree based real time processor. The pressure trace is then analyzed for combustion
metrics, such as IMEP and θPmax. These metrics are then logged for a duration of 3000
engine cycles.

The details of the base engine experimental conditions used in this study are listed in
Table 2.
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Table 1: Fixed parameters of the Ricardo single-cylinder engine for the 5 tests

Parameters Values

Number of Cylinders 1
Bore × stroke [mm] 97 × 88.9
Compression Ratio 12
Displacement [L] 0.653

Connecting rod length [mm] 159
Valves 4

Valve Lift [mm] 9.3

Table 2: Base test operating conditions

Parameters Values

Engine Speed [RPM] 1000
Manifold Temperature [ ◦C] 38

Oil Temperature [ ◦C] 60
Manifold Pressure [kPa] 93-95

IVC [aBDC] 200
EVC [aBDC] -26

PRF 3, 4, 5, 6 , 7

θPmax is defined as the crank angle of the maximum in-cylinder pressure trace over one
engine cycle and is a measure of combustion timing. Using heat release analysis the cyclic
variability in ignition timing, θPmax, is found to be a robust criteria of ignition timing
[32] since θPmax depends predominantly on the timing of combustion and is independent
of charge variations. This makes it a useful measure of variability in combustion timing
[33]. An example of the location of θPmax for HCCI combustion is shown in Figure 2 where
cylinder pressure is plotted versus crankangle.

3. Cycle-Ahead Prediction

θPmax is used as the feedback parameter in this work as it is a simple ignition timing
parameter requiring a low amount of computation [34]. A one step ahead prediction of θPmax,
using previous and current values of θPmax is used in subsequent feedback control. To obtain
an accurate prediction several techniques are evaluated. First a chaotic analysis is performed
on 5 test points with 5 different octane numbers at steady-state for 3000 consecutive engine
cycles. Then the data is analyzed at each of these operating points to find the probabilistic
histogram. At each of the 5 operating points one set of data is used for analysis while the
other set of data is kept for validation. A test point with varying octane number, close
to misfire with many partial burn combustion events and with engine torque only slightly
above the motoring condition is used as a final validation and is not used to parameterize
the model. This is also the condition where feedback control is used to stabilize ignition
timing. A flowchart of cycle-ahead prediction based on chaotic analysis results is illustrated
in Figure 3. This figure outlines the analysis procedure that is described next.
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Figure 2: Sample operating point for HCCI combustion

Figure 3: Flowchart: Use of chaotic tools for nonlinear prediction
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3.1. Return Maps

A return map can be used to observe the structure inherent in a time series [21]. Here
they provide a tool to check the probable interaction between the combustion timing at the
current cycle ( θPmaxi

) with the next consecutive cycle ( θPmaxi+1
). For a random time series,

consecutive cycles are uncorrelated and the return map shows an unstructured cloud of
data points gathered around a fixed point. With deterministic coupling between consecutive
points, the return map shows more structure such as dispersed data points about a diagonal
line [35]. In this paper the analysis of HCCI engine data at condition listed in Table 2 is
performed. The octane number is varied from 3 to 7 in steps of 1 by changing the ratio of
fuels injected by two fuel injectors and the return maps of all 3000 engine cycles of θPmax for
these 5 engine operating conditions are shown in Figure 4. The combustion timing return
map is a phase plane and plots θPmax at cycle i + 1 on the y-axis and θPmax at cycle i on
the x-axis where i represents the cycle (time).
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Figure 4: Return map of combustion timing, θPmax, for 5 octane numbers. conditions listed in Table 2

The relationship between combustion timing of the current cycle and the next cycle in-
dicates that for some of the cases shown in Figure 4 there is a deterministic dependency on
previous cycles. In these cases, predicting future cycles (for some prediction horizon) using
previous combustion cycles is possible. However, the detailed relationship between cycles
is not apparent in Figure 4 and further analysis is needed. To characterize the combustion
timing dynamics, the following functional form for θPmax (at cycle i) using previous cycles
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is used:

θPmax(i) = f(θPmax(i− 1), θPmax(i− 2), ..., θPmax(i− (L− 1)))

Chaotic tools such as return maps and symbol-sequence techniques are used to find the
approximate function f and value of L. Since a random time series with an unstructured
cluster of data points tends to produce a high dimensional function f [21], the return maps
of ON 5 through 7 in Figure 4 seem to indicate a relatively low value of L. It can also be
inferred from Figure 4 that the function f is a nonlinear function [36].

The net heat release rate is determined using the usual heat release method [32], that
applies the first law analysis on the engine charge assuming ideal gas properties. The heat
release rate for sample operating point is shown in Figure 2. Heat release return maps for
conditions corresponding to 5 operating conditions of Table 2 is shown in Figure 5. The
experimental measurements are dispersed for ON 3 and 4 indicating the effects of stochastic
component of measurements. By increasing the octane number, these fixed concentrated
points start to destabilize in certain directions of the return map. The highest levels of
destabilization occurs for cases of ON 6 and 7 in Figure 5.
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Figure 5: Return map of H.R. for 5 octane numbers. conditions listed in Table 2

3.2. Symbol-sequence Analysis

The symbol-sequence method is used to extract information from the experimental mea-
surements of θPmax. This method is used to detect the patterns occurring in the data
points and is useful when dealing with data with high measurement error or dynamic noise
[13]. Symbolization includes generating discretized symbols from raw experimental analog
signals. The symbolization method is based on partitioning the original data points into
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finite discrete regions and each region is then attributed to a particular symbolic value. The
number of possible symbols n is called the symbol-set size [20, 37, 38]. This conversion has
the practical effect of producing low-resolution data from high resolution data and reducing
the effect of dynamic and measurement noise. In a practical sense for combustion timing
prediction and control purposes in this work, the more qualitative description such as early or
late combustion timing is desired. After symbolization, each group of symbols form a finite-
length template called the symbol sequence L. The symbol sequence consists of consecutive
symbols stepping through the whole data set point-by-point to form a new sequence. The
sequence of symbols carries some important information about the experimental dynamics
[16]. The total possible number of symbol sequences N is a combination of symbol-set size
n and symbol sequence length L as follows: N = nL [16].

The symbol-sequence approach is used to detect inherent structure in experimental data
despite a random-like appearance. This is performed by observing if some patterns dominant
the time series, since a Gaussian process would on average have a flat histogram of the N
symbol-set [13].

For the HCCI combustion data near misfire, θPmax is partitioned equally in eight parti-
tions, n=8, in a symbol series from 0 to 7. The data points, below the first bottom partition
are assigned to symbol 0 and those between the first and second partition are assigned to
symbol 1 and so on. The relatively high number of eight partitions is selected to extract de-
tailed information from the original data set despite that the observed dynamics are obscured
with noise [37, 39].

Much of the deterministic structure inherent in the data can be captured using the
symbol-sequence approach [38]. A joint probability distribution to predict the next cycle
occurrence using previous cycle information is used to determine L. These joint probability
histograms give the maximum likelihood probability of next cycle given the occurrence of
previous cycles in the whole time series. Then by comparing the one-cycle ahead predictions
for different values of L, an optimal value of L can be determined. These histograms also give
the probabilistic function for different data series. For the engine test points (with return
maps in Figure 4), the optimal one-step ahead prediction is found using two previous cycles
( L = 2 + 1 = 3).

Another important way to choose the optimum value of L is to employ Shannon entropy.
Shannon entropy is a quantitative measure of nonrandom structure in time series measure-
ments based on information theory. Because Shannon entropy provides an unambiguous
indicator of temporal patterns, it is useful in determining the optimum sequence length L
[38]. Shannon entropy is defined as:

HS(L) = − 1
log(N)

∑
pLlog(pL)

where N is the total number of symbol sequences with nonzero frequency, pL is the
probability of observing a sequence L. For the defined quantity, a value of one indicates the
measured data are random, while a value of less than one indicates the presence of temporal
correlation [40]. In the current context, lower HS implies more deterministic structure. The
value of HS varies as the sequence length L changes. In this work, it is found that HS

typically reaches a minimum value as L is increased from 1. This trend is shown in Figure 6
for the five operating points listed in Table 2. The minimum HS occurs at a sequence length
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of 3 which is optimal for these cases and also reflects the symbol-sequence transformation
which best distinguishes the data from a random sequence.
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Figure 6: Modified Shannon entropy vs. symbol sequence length for 5 octane numbers. Conditions listed in
Table 2

The symbol-sequence histogram for consecutive cycles of θPmax corresponding to the data
in Figure 4 is shown in Figure 7. In Figure 7, the vertical axis corresponds to the normalized
frequency of occurrence of a symbol sequence and the horizontal axis is the symbol-sequence
equivalent binary code. The symbol set size is n = 8 and sequence length is L = 3, resulting
in N = 83 = 512 possible sequence codes.

A large normalized frequency peak accompanied by some smaller peaks in the sequence
code histogram is apparent in the ON 7 plot of Figure 7 indicating a non-random sequence.
The large peak occurs at sequence 0 (symbol series 000) which is three consecutive early
values of θPmax and physically corresponds to a weak combustion (most probably not having
a main stage of combustion). Pattern number 438, which correspond to sequence 666, is also
one of main local peaks for plots with ON 6 and ON 7. In addition, sequence codes 007
and 700, corresponding to pattern numbers 7 and 448 respectively, are among the possible
sequences that the dynamics would pass through before entering or leaving three consecutive
symbols of 0. For these cases, θPmax does not stay in the late regions but oscillates between
relatively early and late θPmax angles. These local peaks indicate relative deterministic
behavior of θPmax combustion timing for the experimental cases with ON 6 and ON 7.

Symbol-sequence histograms are also useful for determining the time irreversibility since
the relative frequencies will shift when analyzed with time reversal. It has been shown that an
important method to discriminate the Gaussian random processes from deterministic prior-
cycle effects is time irreversibility [41]. Particularly processes with non-random structure
between consecutive cycles show an arrow of time which increases as the time dependence
between cycles increases. On the other hand, processes with random inherent structure are
symmetrical in time (i.e. the behavior of the forward and reverse time series are the same)
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Figure 7: θPmax symbol sequence histogram with (n=8, L=3) for HCCI combustion cycles 1 to 3000
(conditions as in Figure 4)

[11]. Time irreversibility versus the five cases is plotted in Figure 8 and shows that increasing
the octane number results in higher time irreversibility. The details of time irreversibility
for the operating points studied in this work are listed in the Appendix. The higher time
irreversibility close to the engine misfire region at higher octane numbers is also an indication
of having more deterministic patterns in that region. These deterministic patterns can be
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captured in a chaotic predictive model and is detailed next.
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Figure 8: Time irreversibility versus octane number (conditions as in Figure 4)

14



3.2.1. Chaotic Predictive Model with Added Fuel Octane Number Dynamics

HCCI combustion timing is not only dependant on the temperature and pressure of the
compression stroke, but also on the fuel chemistry and burnt gas residual from previous cycles
[42]. The cycle-by-cycle combustion timing is strongly dependant on the octane number [43]
which can be changed cycle-by-cycle in this experiment by injecting two fuels (n-heptane
and iso-octane) using two fuel injectors. The fuel octane number can be used to increase the
load range of the HCCI engine [44].

The range of HCCI combustion timing for each of the five octane numbers is shown
in Figure 9. All other inputs are kept constant but the variation of θPmax increases with
increasing octane number as the engine has more misfire cycles. The combustion timing angle
increases as expected with an increase in fuel octane number for octane numbers ranging
between 3 to 5. By increasing the octane number further, the average θPmax advances
primarily due to θPmax occurring early due to partial burn or misfire. The variation of
θPmax also increases with octane number due to the combustion instability.
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Figure 9: Combustion timing range of engine for 5 octane numbers used for HCCI combustion operating
points near misfire (conditions as in Figure 4)
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Nonlinear Prediction. A schematic of the real-time chaotic prediction for all five octane num-
bers is shown in Figure 10. To predict θPmax with varying octane number, the interpolated
deterministic part of the data captured by each of the five models is used. To obtain the
predicted return map, the octane number and two previous θPmax values are used to predict
θPmax of the next cycle such that the pattern of two previous inputs for each of the five
octane numbers and the input octane number determines the most probable one step ahead
θPmax.

Figure 10: Schematic of the chaotic prediction used in Figure 14 for prediction of θPmax for HCCI combustion
operating points near misfire conditions

Using the joint probability estimator of θPmax for each of the five operating points and
the measured octane number in the test where the octane number varies between 3 to 7,
the simulated behavior of consecutive cycles of θPmax is constructed. To predict θPmax, the
following form is used:

θPmax(i) = f(ON(i), θPmax(i− 1), θPmax(i− 2), ..., θPmax(i− (L− 1))) (1)

The experimental data for θPmax in Figure 11(a) is compared to the prediction for the
same cycles in Figure 11(b). The direction of arrows in Figure 11(b) illustrates transitions
between different θPmax phase plane locations and gives an indication of the complexity of
the dynamics.
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Figure 11: Comparison of experiment and prediction of θPmax for HCCI combustion with varying octane
number

The predicted return map in Figure 11(b) has the general appearance of the experimental
data in Figure 11(a).

Prediction Validation. Cycles 900 to 1250, a 350 cycle portion of the test point with vary-
ing octane number, is used to check the prediction quality. The residual ( ∆θPmax =
θPmax(pred) − θPmax(measured)) is shown in Figure 12 and autocorrelation of the resid-
ual is shown Figure 13.
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Figure 12: Prediction error ( ∆θPmax) between predicted values and experimental measurements for HCCI
combustion (same condition as in Figure 11)

No obvious visible pattern in the residual error values in Figure 12 indicate, as a simple
first check, that there is no dependency between consecutive error values and the model
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Figure 13: Autocorrelation of residuals ( ∆θPmax) for predicted consecutive cycles for HCCI combustion
(same condition as in Figure 11)

seems to capture the dynamics. To further check this, the autocorrelation function for the
residuals ( ∆θPmax) is shown in Figure 13 for all the 3000 ∆θPmax residuals. The 99%
confidence interval is shown by dashed lines. Ideally for an acceptable model the correlation
curves should fall between these lines [45] which is the case in Figure 13.

3.2.2. Controller

θPmax control based on a chaotic predictive model using fuel octane changes. To control
the unstable HCCI operating region, the fuel octane number is varied using two injectors.
Iso-octane is injected by one injector while n-heptane is injected by the other and by varying
the volumetric ratio the octane number in the engine can be changed cycle by cycle.

A proportional-integral (PI) controller using combustion timing for the next cycle as
determined by the chaotic predictive model, regulates combustion timing ( θPmax) by varying
the ration of iso-octane and n-heptane. A block diagram of the control system is shown in
Figure 14. A single-input single-output controller is used since other inputs are kept constant.
Since the engine combustion timing θPmax can have a chaotic pattern, i.e. for an early/late
θPmax the next cycle could have late/early combustion timing, the chaotic predictive model
described previously, is used to predict the next cycle combustion timing. This prediction is
used as the feedback signal to stabilize the combustion timing.

To implement the control in real time, θPmax is calculated from 0.1 degree cylinder
pressure data at each cycle. This value θPmax(i, i-1) in Figure 14 is output to the engine
controller once per engine cycle and well before the next combustion. The engine controller
is combustion event based with a sampling rate of once every two engine revolutions and
modulates the two fuels to command the injector pulse widths to set the fuel octane (wall
wetting is ignored) while maintaining a constant injected fuel energy despite changing the
octane number.

The PI controller is tuned using simulation and then manually adjusted on the real
engine. The controller implementation is ui = kP ei + kI

∑
ej where e = ∆θPmax is the
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Figure 14: Schematic of the Controller of HCCI combustion timing for θPmax in unstable region using fuel
octane

difference between the desired and predicted θPmax, and u is the controller output ∆ON
as shown in Figure 14.

Experimental Results. With PI control, the fuel octane number (input) and θPmax (output)
are recorded and shown in Figure 15. For this case θPmax is about 10 ◦aTDC for normal
combustion and 0 ◦for misfire. Cycles 800 to 900 show uncontrolled engine operation with
the controller off and the octane number manually set to 5. At cycle 901, the PI controller
is activated and modulates the octane number to stabilize θPmax to the desired value. As
seen in Figure 15, the controller reduces θPmax variation resulting in a more stable engine
operation with fewer misfire cycles. The average octane number is about 4 for the controlled
portion of cycles 901 to 1260. The uncontrolled operation of the engine with the same
conditions and octane number 4 exhibits unstable operation with misfire cycles as shown in
Figure 16. The minor change in operating conditions (specifically intake manifold pressure)
results in unstable operation of Figure 16 compared to conditions of Figure 4. The standard
deviation of θPmax decreases from 6.2 ◦(for cycles 800 to 900 without control) to 2.5 ◦ for the
next 360 cycles with control. Most θPmax values are within the normal operating condition
of the engine after the controller is turned on although the control is not perfect with some
cycles near misfire. This can be quantified by counting the percentage of misfire cycles for
the region with the controller on (3%) versus percentage of misfire cycles for the uncontrolled
operation (79%).
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Figure 15: Combustion timing θPmax using fuel octane input. Controller is turned on at cycle 901; kP =
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Figure 16: Combustion timing θPmax using fuel octane input. Uncontrolled Operation

The pressure trace for the last two cycles of the uncontrolled operation (cycle 899 and
900) and the first two cycles of the controlled operation condition (cycle 901 and 902) are
shown in Figure 17. Cycle 899 and 900 have the characteristics of misfire cycles while 901 and
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902 have the characteristics of HCCI combustion indicating that the controller is effective.
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Figure 17: Cylinder pressure trace of cycles 899-902 of Figure 15
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4. Conclusions

Deterministic patterns in cyclic variation of ignition timing ( θPmax) at operating points
near the misfire limit of an HCCI engine are observed. Near the misfire limit the return map
of θPmax consists of multiple different regions, indicating non-constant nonlinear combustion
timing. Non-random patterns of cyclic variation of ignition timing θPmax under specific op-
erating conditions emerge in symbol sequence analysis as large peaks in the symbol-sequence
histogram and indicate a coupling between consecutive cycles. A joint probability estimator
to predict one cycle ahead using the two previous cycles is developed and is used to predict
combustion timing. An autocorrelation of predicted-actual θPmax residual shows uncorre-
lated residuals which indicates that the joint probability model is acceptable. For the one
base engine operating condition tested, θPmax one cycle prediction is used to command fuel
octane number (and thus modify combustion timing θPmax) and results in a significantly
lower number of misfires. The θPmax prediction is combined with feedback control and
demonstrates lower HCCI combustion variation and misfire rates in an experimental engine
at one operating point for the same average octane number. This indicates that this method
could potentially be used to extend into the misfire region of the HCCI engine range.
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Appendix: Time-Irreversibility

The use of symbol-sequence histograms for determining the time irreversibility is used
since the relative frequencies will shift when they will be observed with time reversed. It
has been shown that one of most important features to discriminate the Gaussian random
processes from deterministic prior-cycle effects is time irreversibility [41]. Particularly, pro-
cesses with non-random structure between consecutive cycles show an arrow of time which
increases as the nonlinear memory between cycles increase. On the other hand, processes
with random inherent structure, is symmetric in time(i.e. the behavior of forward and reverse
time series are the same) [11].

For the case when a process is time symmetric, there should not be a major difference
between forward and backward time histogram. The observed relative frequency of the
pattern numbers of a specific time series are compared with their reverse counterparts and
the comparison is quantified with the following Euclidean-norm:

Tirr =
√∑

(Fi −Ri)2 (2)

where i is indexed over all possible sequence codes. F and R in the above equation
are the histogram frequencies for the forward and reverse-time. The magnitude of Tirr

is a quantitative measure of the level of time irreversibility. Figure 18 illustrates symbol-
sequence histograms for the forward and reverse time of the HCCI θPmax data corresponding
to Figure 4. Reverse time series of the data points is generated by reversing the order of
forward flow of data points.

In Figure 18 with ON 7, there are large peaks at sequence codes 0 (symbol sequence
000) and sequence code 438 (symbol sequence 666) for the forward direction which are very
different in the reverse time realizations. This is attributed to the nonstationary or transient
dynamics of the engine near the misfire limit, where the sequences of 0 or 6 occur often. The
Euclidean-norm increases with octane number indicating that time irreversibility increases
with increasing octane number as the engine operation approaches the misfire limit. As the
engine is operated away from misfire (eventually knock could occur) the forward and reverse
time symbol sequence histograms appear more similar to each other implying no major time
irreversibility.
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Figure 18: Forward and reverse θPmax Symbol sequence histogram with (n=8, L=3) for HCCI combustion
cycles 1 to 3000 (conditions as in Figure 4)

Appendix: Symbol Sequence Method

The principle idea of experimental data symbolization is to convert the time series values
into a few possible values. Depending on the value of a given data, it is assigned to a symbolic
value. The number of symbolic values is referred as the symbol-set size, which indicates the
number of symbols available to symbolize the data; Figure 19 shows a portion of time series
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of ignition timing for a sample point with conditions of ON 3 in Table 2. To illustrate the
process the symbol-set size is selected as 2 and partition between symbols is located at the
median of the data points. The data above the median is symbolized as 1 and the ones
below the median as 0. The group of first consecutive three symbols, data points 1-3 form
the symbol sequence 101, data points 2-4 form the sequence 011 and so on.
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Figure 19: Ignition timing for a sample point with conditions of ON 3 of Table 2.
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The symbol sequence histogram of Figure 19 is shown in Figure 20.
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Figure 20: Ignition timing for a sample point with conditions of ON 3 of Table 2.
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After data symbolization, the joint probability is calculated by counting the number
of occurrence of each sequence. The resulting joint frequency histograms can be used to
approximate the mapping function by determining the maximum likelihood estimate for the
next cycle given the occurrence of a specific set of past cycles. An example of probability of
occurrence of consecutive symbols is shown below:

The probability of occurrence of three consecutive cycles Pabc emerges in the bottom
level of the tree. The length of symbol sequence in this example is three which consists
of three consecutive symbols. The sequence code is formed from converting the symbol
sequences to their equivalent base-10 codes. For instance, in case of binary symbols used
in this work, the symbol sequence 000 is equal to sequence code 0, 001 to 1, 010 to 2, 111
to 7 and so on. Symbol sequence histograms used in this paper are the representation of
these symbol sequence probabilistic with the sequence codes as the horizontal axis values.
A completely random time series results on average in equal frequencies for histogram with
equal number and equiprobable sequence codes. Deterministic data sets show deviations from
the equiprobability because of existing time correlations and dependency of data points.
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