
As per publisher copyright is ©2005

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Article Post-print starts on the next page →
Modeling of Automotive Gas Exchange Solenoid Valve Actuators

Ryan R. Chladny, Student Member, IEEE, Charles Robert Koch, Member, IEEE, and Alan F. Lynch, Member, IEEE

Abstract—A promising method for enhancing automotive engine efficiency uses solenoids to directly control the gas exchange valves of an internal combustion engine. A FEA (Finite Element Analysis) model is developed to describe transient and static operation of the valve. The FEA model is validated by experimental testing on an actual automotive prototype valve. We show that a nonlinear lumped parameter model which uses FEA results also closely matches experimental data. The lumped parameter model is amenable to optimization of design and can be readily used for closed-loop simulation. A simplified lumped parameter model is presented to facilitate controller design. Finally, a dynamic open-loop simulation is compared with experimental results.

Index Terms—engines, solenoids, finite element method, modeling, magnetic losses, eddy currents.

I. INTRODUCTION

It has been known as early as 1899 that having independent control over the timing of gas exchange valves of an internal combustion engine (ICE) can improve efficiency and performance [1]. Standard ICEs with fixed camshaft timing must compromise between low and high engine speed efficiency. Currently, a number of variable valve timing (VVT) actuators have been implemented on laboratory engines. These technologies include electrical motor [2], pneumatic [3], [4], hydraulic [5], [6], and solenoid actuators [7], [8]. Many of these approaches cannot provide sufficiently fast and precise control of cylinder charge during engine transients. An example of where the importance of transient cylinder charge control is critical occurs in combustion modes such as homogeneous charge compression ignition in spark ICEs. An example of a solenoid actuator is described in [9] and shown in Figure 1. Solenoids offer flexible valve timing resulting in precise regulation of transient cylinder charge. Power consumption, efficiency and consumer cost often provide the primary motivation for the development of new technologies. The electromagnetic valvetrain (EMV) is no exception. Although a production EMV, including the associated power electronics and generator, is estimated to increase the parasitic engine load by 1% over a conventionally driven cam-roller valvetrain [10], there is an immediate improvement of 15-20% in fuel economy through volumetric efficiency enhancement alone [11], [7], [12]. We expect the actuator used in this paper will have similar performance and energy consumption characteristics. The efficiency enhancement afforded by an EMV should be dramatic enough to motivate further research in enabling and cost sensitive fields such as power-electronics, sensors/controls and microprocessors [13], [14], [15], [16]. In addition, higher efficiency of the actuator itself can be attained through improved control strategies [17]. Efficient control of solenoids must also address a number of challenging problems common to most VVT approaches. Active control is required to prevent excessive valve seating velocity, premature wear and acoustic emissions [18], [19]. Solenoid valve control is also a challenge due to nonlinear effects such as magnetic saturation and system uncertainties including large disturbance forces from combustion pressure and parameter variation due to temperature change and component wear.

A number of designs for solenoids have been proposed. Typically the solenoid actuator consists of a linear-moving armature with two coils and two preloaded springs as shown in

Fig. 1. Schematic of prototype solenoid valve actuator [9]
Figure 1. The springs can achieve rapid flight times while minimizing electrical energy input and are essential in overcoming the significant combustion pressures. The electromagnets are required for “catching” the armature at either stroke bound. In addition, they are used to overcome friction and pressure disturbances. Permanent magnets have also been employed to “catch” the armature at the stroke bounds with electromagnets providing a release force [20], [21]. Other designs include hinged or clapper-type configurations [22].

Existing work on solenoid valve modeling includes methods based on reluctance networks [23] and FEA [24], [25], [26]. In the reluctance network method, the device flux path is approximated and characterized through material properties and geometry. The result is a magnetic circuit in which each of the distinct device regions constitute an element. Solving the circuit allows for the calculation of flux density in any particular region from which a mechanical force can be derived. It is often difficult for such models to include flux fringing, leakage, and material saturation. FEA-based modeling approaches usually do not simultaneously predict electric, magnetic, and mechanical responses. Even using software where this is possible [27], the computational time required for obtaining the system response is impractical. For this reason, this paper demonstrates the advantage of incorporating FEA in a LP (lumped parameter) model which accurately predicts the system response and can be readily used for control design or solenoid optimization.

This paper is organized as follows: Section II describes the prototype actuator and its FEA model for simulating steady state (fixed position and constant current) and transient voltages at a fixed armature position. In Section III, FEA results are incorporated into a LP model. Next, a simplified LP model which is convenient for control design is derived. Section IV compares the transient responses for the LP and FEA models. Section V contrasts a dynamic simulation with experimental data. Finally, conclusions are drawn in Section VI.

II. FEA Modeling

A. Actuator Description

A prototype actuator similar to the one described in [9] and shown in Figure 1, has been donated by Daimler-Chrysler. This linear actuator is characterized by a short stroke, small air gap, and flat pole and armature geometries. The flat-face, short-stroke properties allow for faster response at larger air gaps in addition to stronger holding forces due to increased flux density. Although a variety of pole and armature geometries are conceivable (such as conical or I-shaped), the flat-face offers a large surface area and minimal fringing for maximum force density [28]. Other configurations such as conical pole/armature interfaces produce greater fringing, resulting in a more linear force-position relationship but sacrifice force density. Another key design characteristic of the prototype actuator is the use of two preloaded linear compression springs. These springs are used to achieve rapid flight times while minimizing electrical power input by storing kinetic energy during valve deceleration. Thus, the electromagnets are only required for “catching” the armature at either end of the stroke as well as overcoming friction and pressure forces. The mechanical system of the actuator can be considered as a mass-spring oscillator with an undamped natural frequency of approximately 150 – 200 Hz. This resonant frequency largely determines the duration of valve flight (damped period of about 8ms) and is a function of the desired maximum engine speed. In a traditional cam-driven valvetrain, the valve flight time and timing are directly proportional to engine speed. In the case of a solenoid actuator, these properties are independent of engine speed and position. The natural frequency of the actuator considered here is selected for a maximum engine speed of about 5500 RPM. A constant lift trajectory independent of engine speed adversely affects engine performance at low RPM. Efforts have been made to address this issue through partial opening of the valve or “mini-lift” at lower engine speeds [29] and cylinder deactivation [7], [30]. The core and armature of the actuator used in this study are comprised of silicon-steel sintered-powder metallurgical castings. The fine grain structure of this material inhibits eddy currents. The core is liquid cooled to minimize ohmic losses and thermal parameter variation. The silicon steel has a conductivity of approximately 1.4 MS/m and a relative permeability of 1000.

B. Modeling Assumptions

Two dimensional representations of the opener and closer are separately modeled assuming vertical symmetry to minimize model complexity and computational time. This assumption implies that the actuator has a cylindrical as opposed to its actual elliptical cross-section. Figure 2 illustrates the actual and modeled cross-sections (normal to the air gap flux path) that will most influence force estimates. Using 2D axisymmetric geometry for the 3D actuator assumes that fringing in the corners of the back iron and armature, and the more complex 3D eddy current paths during transients, are negligible. The above simplifications will be shown to have
TABLE I
AIR GAP AND EXCITATION OPERATING POINTS

<table>
<thead>
<tr>
<th>Air Gap [mm]</th>
<th>0.04</th>
<th>0.08</th>
<th>0.15</th>
<th>0.20</th>
<th>0.30</th>
<th>0.40</th>
<th>0.50</th>
<th>0.60</th>
<th>0.80</th>
<th>1.00</th>
<th>1.50</th>
<th>2.00</th>
<th>3.00</th>
<th>4.00</th>
<th>6.00</th>
<th>8.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coil Excitations / MMF [Ampere-turns]</td>
<td>50</td>
<td>100</td>
<td>150</td>
<td>200</td>
<td>250</td>
<td>300</td>
<td>400</td>
<td>500</td>
<td>600</td>
<td>800</td>
<td>1000</td>
<td>1500</td>
<td>2000</td>
<td>2500</td>
<td>3000</td>
<td>3500</td>
</tr>
</tbody>
</table>

modest effect on model accuracy; less than 13% error. Our model considers only the opener component without modeling the closer. We ignore the closer due to the high permeability of the armature and since in practice only one coil is active at any time.

C. FEA method

We apply an FEA method which uses a magnetic vector potential [27]. This method is used for static and transient analyzes with a quasi-static limit. The following Maxwell equations are used:

\[
\nabla \cdot \mathbf{E}(\mathbf{r}, t) = \frac{\rho(\mathbf{r}, t)}{\varepsilon_0} \quad (1)
\]

\[
\nabla \times \mathbf{B}(\mathbf{r}, t) = \mu \mathbf{J}(\mathbf{r}, t) \quad (2)
\]

\[
\nabla \times \mathbf{E}(\mathbf{r}, t) = -\frac{\partial \mathbf{B}(\mathbf{r}, t)}{\partial t} \quad (3)
\]

\[
\nabla \cdot \mathbf{B}(\mathbf{r}, t) = 0 \quad (4)
\]

Where \(\mathbf{E} \) is electric field, \(\mathbf{B} \) is magnetic flux density, \(\mathbf{J} \) is current density, \(\mu(H) \) is the scalar field dependent magnetic permeability (isotropic material assumed), \(\rho \) is volumetric charge density, and \(\varepsilon_0 \) is electric permittivity of free space.

Denoting magnetic field intensity by \(\mathbf{H} \) and electrical conductivity by \(\sigma \) we have

\[
\mu(H) \mathbf{H} = \mathbf{B}, \quad \mathbf{J} = \sigma \mathbf{E} \quad (5)
\]

to describe material behavior assuming no temperature dependence or relative motion.

Using (1)–(5) and a Coulomb gauge condition, the FEA software solves the following three equations:

\[
- \nabla^2 \mathbf{A} = \mu(H) \mathbf{J}(\mathbf{r}, t)
\]

\[
\nabla \cdot \left(\frac{\partial \mathbf{A}}{\partial t} - \nabla P \right) = 0
\]

\[
\sigma \frac{\partial \mathbf{A}}{\partial t} - \frac{1}{\mu(H)} \nabla^2 \mathbf{A} + \sigma \nabla P = 0
\]

Where \(\mathbf{A} \) denotes vector magnetic potential and \(P \) denotes the electrical potential. In the case of axisymmetry, the vector potential \(\mathbf{A} \) has only one nonzero component.

1) Static Modeling and Simulation: Static models of the opener and closer are created. For each operating point, appropriate geometry, mesh, material properties, boundary conditions and current excitations are set and the resulting force and flux data saved. Results for the opener are determined for each of the operating points listed in Table I for a total of 336 static solutions. The operating points were selected to provide a relatively smooth force and flux relation as a function of air gap and current. A higher number of data points are required for a smooth data set at low air gaps due to the dramatic change in magnetic flux and force in these regions. Similarly, due to material saturation, a higher resolution of data is required at lower excitation. Mesh refinement is determined by inspection as well as by ensuring force and flux convergence with respect to an increase in element density. In order to prevent elements with poor aspect ratios, active mesh control was established in the back iron, armature and air gap regions in addition to the model boundaries. The default auto-mesh generator was used to mesh the remaining regions with the finest mesh refinement possible. In order to ensure appropriate element densities and shapes at extreme armature positions, a linear function was used to control the element mesh in the air gap region over the 8 mm range of motion.

For both iron and air regions, 2D quadrilateral elements with a magnetic potential degree of freedom are used. Figures 3 and 4 show close-ups of static and transient model elements and mesh.
and 4 illustrate a typical element mesh over the armature, air and back iron. A single layer of boundary elements is used around the perimeter of the model (excluding the axis of symmetry) to model far field decay. These infinite elements use shape functions which require the magnetic potential to be zero at infinity. Coil excitation is applied directly to the coil elements in the form of current density. Nodes located on the line of symmetry are constrained to zero magnetic potential (flux parallel or Dirichlet boundary condition). Validity of the model is assessed by comparing simulation results to experimental measurements (see Section IV-A).

2) Transient Modeling and Simulation: The transient behavior of the model is determined by applying a voltage step at a constant air gap to a quasi-static transient FEA model. A step voltage is chosen as it is a typical output waveform at a constant air gap to a quasi-static transient FEA model. The transient behavior of the model is determined by applying a voltage step to the FEA model for ease of comparison with experimental measurements (see Section IV-A).

III. NONLINEAR LUMPED PARAMETER MODEL

The LP model is an ordinary differential equation which facilitates prediction of system performance without the computational burden of FEA. The LP model will be shown to provide reliable system trajectories once it is parameterized using static and transient FEA results. The armature position of the solenoid valve system, shown schematically in Figure 5, is denoted by \(x \) and the origin of the \(x \)-coordinates is defined at the midpoint between the two coils. The armature is mechanically constrained to move on \(x \in [-4, 4] \) mm. As mentioned before, only one coil in isolation is considered.

Fig. 5. Schematic of the solenoid actuator valve

A. LP Model

A schematic of the system is shown in Figure 5, and the circuit used to model the electrical subsystem is shown in Figure 6. Circuit analysis and Newton’s law gives:

\[
\begin{align*}
\frac{d\lambda}{dt} &= v - R_c (i_c + i_c(\lambda, x)) \\
\frac{di_c}{dt} &= \frac{1}{L_e} (v - R_c (i_c + i_c(\lambda, x)) - R_e i_c) \\
m \ddot{x} &= F_m(i_c(\lambda, x), \dot{x}) + A(x, \dot{x})
\end{align*}
\]

(6)–(8)

Where \(v \) is the input voltage applied to the coil, \(R_c \) is the resistance of the coil, \(i_c \) is the coil current, and \(\lambda \) is the flux linkage. To model eddy current effects, a parallel branch including a resistor \(R_e \) and inductor \(L_e \) is included with current flowing in this branch denoted by \(i_e \). We remark that velocity induced eddy currents are not included in the model for several reasons. The estimated skin depths caused by transient coil currents are approximately 1 mm while those predicted by armature velocity exceed the core dimensions. Physically, this is to be expected as velocities are relatively low (<0.5 m/s) in the regions close to the pole faces, where motion control is executed. The assumption that transient excitation losses are dominant in contrast to those induced by armature motion is validated with empirical observation is Section V. Friction and spring force effects are included in \(A(x, \dot{x}) = -(k_s x + B \dot{x}) \), where \(k_s x \) is the restoring force due to both springs with an effective stiffness \(k_s \), \(B \dot{x} \) is viscous frictional force of the mechanism, and \(m \) is the effective moving mass. The magnetic force exerted on the armature is denoted by \(F_m(i_c, x) \). Steady state FEA results provide magnetic force and flux linkage data as a function of \(x \) and \(i_c \) and the evaluation of (6)–(8) is accomplished using lookup tables. The parameters \(R_e \) and \(L_e \) are determined from transient FEA step voltage simulations.

B. Simplified LP Model

The LP model (6)–(8) is further simplified by assuming no magnetic saturation, leakage flux or eddy currents. These assumptions result in the electromagnet having an inductance of the form:

\[L(x) = 2\beta/(\kappa - x) \]

Where \(\beta \) and \(\kappa \) are related to the number of turns, area and lengths of the flux paths, and magnetic permeabilities of the air and iron core of the coil. Again it is assumed that this
The force \(F_m \) is obtained by differentiating the coenergy function

\[
W(x, i) = \int_0^i \lambda(x, \xi) d\xi
\]

with respect to position, where \(\lambda(x, i) = L(x)i \) is the flux linkage of the coil, and \(i = i_c \) is the coil current. Thus, the force equation is:

\[
F_m(x, i) = \frac{\partial W}{\partial x}(x, i) = \int_0^i \frac{\partial \lambda}{\partial x}(x, \xi) d\xi = \frac{\beta i^2}{(\kappa - x)^2}
\]

(9)

Substituting this expression into Newton’s law (8) gives:

\[
\ddot{x} = \frac{\beta}{m(\kappa - x)^2} + \frac{A(x, \dot{x})}{m}
\]

(10)

The differential equation for \(i \) is:

\[
\frac{di}{dt} = \frac{\kappa - x}{2\beta} (v - Ri) + \frac{\dot{x}i}{\kappa - x}
\]

(11)

The parameters \(R \), \(m \), \(B \), and \(k_s \) can be readily measured from the system. Parameters \(\kappa \) and \(\beta \) are obtained from a least squares fit to the force data obtained from the FEM model described in Section II. Relative to (6)–(8), the simplified model (10) and (11) is amenable to model-based control methods [33].

IV. EQUIPMENT & EXPERIMENTAL SETUP

To validate the FEA and LP model (6)–(8), steady state and transient measurements are performed [34]. The experimental setup is shown in Figures 7 and 8. A 50 kHz pulse width modulation (PWM) current controller was used to regulate coil current.

A. Static Experiments

For the steady-state force, constant current was input to the coil. To avoid overheating the coil, excitation levels are limited to 40A. The static force results are plotted in Figure 9 as lines of constant mmf. This nonlinear force response is indicative of the flat pole face armature actuator type. Experimental results beyond \(x = 4 \) mm are not included due to load cell resolution at low loads. At higher values of mmf in Figure 9 the curves shown deviate from \(\beta i^2/(\kappa - x)^2 \) in (9). This deviation indicates onset of magnetic saturation [35].

B. Transient Experiments

In order to validate the accuracy of the FEA model results to voltage transients, several experiments are conducted that measure actuator force and current response to a voltage pulse input. A 1.5 ms voltage pulse is applied to the coil while the armature is held at a constant position using a material testing machine. This process is repeated with increasing pulse amplitudes of 24 V, 42 V, and 50 V over the full range of air gaps. As shown in Figure 10, experimental results are used as an input to the simulation. The experimental and simulated current and force are compared in Figures 11 and 12 for a 1.5 ms, 42 V pulse at a fixed air gap of 0.5 mm.

The small oscillatory response of the experimental force curve shown in Figure 12 suggests a resonant mode of the actuator or load cell structure due to the applied load pulse. Video images of the experiments reveal significant armature deflection, resulting in a nonuniform and smaller average air gap. Thus the measured peak forces are approximately 13% higher than the FEA predictions.

Similar results for other air gaps also show close agreement between simulation and experiment. At air gaps less than 0.2 mm, the impulse force resulted in the armature to contact the pole face. Correct force measurements could not be obtained for such positions.
Three input voltage waveforms of different amplitude were investigated – see Figure 13. The resulting FEA and experimental currents and forces are compared in Figures 14 and 15. The results show close agreement between FEA and experimental data.

V. DYNAMIC SIMULATION

A complete dynamic simulation using the developed hybrid FEA/LP model is implemented and contrasted with an open loop experiment. In addition to eddy current and electromechanical modeling, the simulation also includes a simplified power electronics model. The power electronics are modeled using the Matlab/Simulink SimPower Systems toolbox and circuitual physical parameters provided by the component manufacturers’ specifications. The experimental test equipment and setup is described in [34]. Figure 16 illustrates the model performance of the opener magnet in contrast to
Fig. 13. Applied 1.5 ms, 24 V, 42 V and 50 V pulses at 0.5 mm air gap

Fig. 14. Coil current response due to a 24 V, 42 V and 50 V, 1.5 ms pulse at 0.5 mm air gap

Fig. 15. Armature force response due to a 24 V, 42 V and 50 V, 1.5 ms pulse at 0.5 mm air gap

Fig. 16. Dynamic simulation and experimental results of the opener magnet ciruitical idealizations, account for the differences in voltage and current signals. Despite these idealizations, the simulation and experimental results are close, suggesting that this model can be used to evaluate control strategies accurately.

VI. CONCLUSION

The nonlinear uncertain dynamics and stringent performance requirements of solenoid valve actuators make modeling and control of these devices a challenging problem. In this paper a FEA model is used to generate experimentally accurate static force and flux data as well as voltage transient data for a real prototype actuator. The static force and flux data of the FEA model is used in a LP model which includes eddy
current effects. The trajectories of the FEA and LP models are shown to be in good agreement with experimental results. A simplified model of the solenoid actuator is described. Finally, a dynamic simulation using the FEA derived LP model is contrasted with an open loop test case. Our results indicate that the FEA-based LP model can be used as a plant model for simulating model-based control algorithms. Future work will concentrate on using the developed models for controller design and implementation on a single-cylinder research engine.

REFERENCES