
SUTHERLAND: “CHAP06” — 2010/6/28 — 15:47 — PAGE 326 — #12

326 Wave propagation and spectra

the waves do not veer significantly towards the shore. Only as the lower-layer depth
becomes comparable to H1 do the waves feel the influence of the bottom slope. At
this point, just as in the case for surface waves, the crests of the interfacial waves
rotate so as to become more parallel to the beach. Of course, the waves never reach
the shore. In reality theywould grow in amplitude and develop into nonlinearwaves.
These would eventually break, partially reflect or would otherwise be affected by
near-slope currents where the interface intersects the bottom slope.

6.5 Ray theory for internal waves

Here we consider the vertical and horizontal propagation of internal waves in non-
uniformly stratified fluid in which we also include the effects of vertically varying
backgroundwinds. Formathematical simplicity, we focus uponBoussinesq internal
waves and we ignore the effects of background rotation.

We begin by looking at internal waves restricted to the x–z plane, in which case
the ray theory equations can be reduced to a simple integral expression analogous
to (6.19). Two cases arise that are of particular interest. In one, internal waves
asymptotically approach a vertical level where their extrinsic frequency is zero or,
equivalently, where the horizontal crest speed of the wavesmatches the speed of the
background flow. This is known as a critical level. In the other case, the background
wind and stratification are prescribed so that at some height the extrinsic frequency
equals the background buoyancy frequency. Waves reflect from this level.

6.5.1 Internal waves in two dimensions

Here we consider the general circumstance in which internal waves move in
non-uniformly stratified Boussinesq fluid, with buoyancy frequency N (z), and in
vertically varying background flow Ū (z) that moves in the x-direction. For the
assumptions of ray theory to remain valid, the vertical wavelength of waves must
be short compared with the scale of variations of N and Ū . The horizontal compo-
nent of the wavenumber vector is taken parallel to the flow in the x-direction. This
circumstance is not unrealistic: in Section 5.4 we found that internal waves gen-
erated by flow over two-dimensional obstacles have their horizontal wavenumber
aligned with the flow.

It follows from (6.13) that the horizontal components of thewavenumber are con-
stant following the motion of the wavepacket. Because the horizontal wavenumber
is parallel to the flow direction we set ky = 0 and kx = kx0. Likewise, for steady
motion the intrinsic frequency ω=ω0 is constant although the extrinsic frequency
� = ω0 − kx0Ū can change following the wave motion because the background
flow Doppler-shifts the waves.
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From (6.12), the x- and z-positions of the wavepacket vary in time according to

dx

dt
= cgx + Ū (6.29)

and

dz

dt
= cgz. (6.30)

Combining these equations, the path of the waves is given by solving the
differential equation

dz

dx
= cgz

cgx + Ū
, (6.31)

in which the components of the group velocity are given by (3.62). Explicitly,

dz

dx
= −N sin�cos2�

N sin2�cos�+ kx0Ū
, (6.32)

in which, from (3.56), �(z)= tan−1(kz/kx0) represents the angle formed between
lines of constant phase and the vertical.

The solution to (6.32) is nontrivial in that N and Ū are functions of z, and� itself
is a function of z through its dependence upon the vertically varying wavenumber
kz. Rearranging the dispersion relation (3.54), kz is given explicitly in terms of N
and Ū by

kz(z)= −kx0

√
N 2

(ω0 − kx0Ū )2
− 1. (6.33)

Here we have chosen the sign of the square root to correspond to upward- and
rightward-propagating waves with � = ω0 − kx0Ū < N . Thus |kz| decreases and
the vertical wavelength increases as the waves move to heights where either the
buoyancy frequency decreases or the extrinsic frequency � increases through
Doppler-shifting by the background winds.

If Ū = 0, the path of internal waves is given simply by

dz

dx
= −cot�= −kx0

kz
. (6.34)

This predicts that the slope of the path increases to infinity as the extrinsic frequency
of upward-propagating waves increases to N , in which case |�| → 0 and |kz| → 0.

In Section 6.4.1 we found that conservation of energy requires the amplitude of
surface waves to increase as their horizontal group velocity decreases. A similar
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principle holds for internal waves. For waves propagating in a background shear
flow, wave action, not energy, is conserved. Wave action, A, is the ratio of energy
to the extrinsic frequency, as defined by (3.94). For internal waves with vertical
displacement amplitude Aξ , (3.87) predicts the average energy per unit mass is
〈E〉 = (NAξ )2/2, which is independent of wavenumber and frequency. Assuming
that the waves do not spread substantially in the horizontal as they move vertically
(as is the case for horizontally periodic waves), the requirement that the wave action
flux is non-divergent means that

cgz
N 2Aξ 2

�
= cgz

N 2Aξ 2

ω0 − kx0Ū
= constant. (6.35)

So the amplitude increases as N or cgz decreases or as the extrinsic frequency
� increases. Whether nonlinear effects become important so that ray theory pre-
dictions become unreliable is assessed by the breaking conditions described in
Section 4.6.

Because the vertical group velocity goes to zero as |�| approaches either 0 or
π/2 the question arises as to where the energy ends up. Next we examine these
two circumstances in detail beginning with a study of waves approaching a critical
level, where |�| → π/2, followed by a study of waves approaching a reflection
level, where |�| → 0.

6.5.2 Critical levels

In continuously stratified fluid a critical level is the height at which the extrinsic
frequency, �, of internal waves is zero. Equivalently, it is where the horizontal
speed ω/kx of wave crests measured by a stationary observer matches the ambient
flow speed, Ū .

There is a subtle difference between this definition of critical levels and that
which arises in the study of shear flow instability. In the latter case, horizontally
periodic perturbations are determined as stable or unstable modes having the same
phase speed as a point in the background flow.Where this matching occurs is called
a critical level. In stability theory, the waves originate about the critical level itself.
Conversely, here we are concerned with internal waves whose properties are set
independently of the background flow and which move towards, rather than being
situated at, a critical level.

In a well-studied case, one assumes that N = N0 is constant and the ambient flow
Ū increases linearly with height as Ū (z) = s0z, in which the constant shear s0 is
positive. The two-dimensional internal waves are situated initially at the origin with
horizontal wavenumber kx0> 0 (which does not change in time) and initial vertical
wavenumber kz0 < 0. Thus the waves are set to move upwards and to the right.
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The initial intrinsic frequency of the waves situated at z = 0 isω0 = N0 cos�0, in
which�0 = tan−1(kz0/kx0). Because the flow is steady, ω0 is constant for all time.
Likewise, the horizontal phase speed measured by a stationary observer, ω0/kx0,
is constant for all time. Thus the height of the critical level zc can be determined
immediately from the solution of Ū (zc)= ω0/kx0. Explicitly,

zc = N0

s0kx0
cos�0. (6.36)

The actual path of the wavepacket as it approaches a critical level is found
by solving (6.32) with � given by (3.56) and (6.33). Explicitly, the initial value
problem is

dx

dz
= tan |�|+ kx0s0z

N0 sin |�|cos2 |�| , x(0)= 0

with |�| = tan−1

(
N0

2

(ω0 − kx0s0z)2
− 1

)1/2

.

(6.37)

This is solved numerically through straightforward integration of both sides of the
differential equation with respect to z.

The result is shown in Figure 6.4 for waves moving at the fastest vertical group
velocity in a flow with shear strength s0 = 0.01N0. The path shown in Figure 6.4a
asymptotically approaches the critical level at zc � 81.6kx0

−1. At early stages dur-
ing the propagation of the waves, where Ū � 0, lines of constant phase are nearly
tangent to the path. This is consistent with the fact that the group velocity is oriented
perpendicular to the wavenumber vector. At later times, the Doppler-shifting back-
ground wind results in a steeper angle of the phase lines compared with the slope
of the path. In this calculation, after 200 buoyancy periods (in which one buoy-
ancy period is TB = 2π/N0) the waves have travelled 91% of the vertical distance
towards the critical level.

As the waves approach a critical level, (6.35) predicts that the amplitude will
change in proportion to [(ω0 − kx0s0z)/cgz]1/2. Near the critical level the waves
become increasingly hydrostatic so that cgz � (N0/kx0)cot2 |�|. So, using the over-
turning condition (4.117), the level where internal waves break can be estimated
numerically by finding the value of z where

cot |�(z)| = C(ω0 − kx0s0z)
1/4. (6.38)

Here C is a constant with respect to z that depends upon the initial wavenumber,
frequency and amplitude of the waves.

This prediction does not guarantee the waves will break in reality: over suffi-
ciently long distances the ambient flow may veer with height, in which case the
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Fig. 6.4. a) The path followed by internal waves approaching a critical level in
uniformly stratifiedfluid and in uniform shear of strength s0 = 0.01N0.The intrinsic
wave frequency is set to be ω0 = (2/3)1/2N0, corresponding to waves with the
fastest vertical group velocity in stationary fluid. The orientations of constant-
phase lines are superimposed on the path at three positions. b) The angle� formed
between phase lines and the vertical (solid line) and values of cot� (dashed line)
as the waves move along the path. The value of cot� can be used to assess the
stability of the waves to overturning depending upon their amplitude.

assumption of two-dimensional flow is no longer valid; over sufficiently long times
the flow may no longer be steady; as the waves grow to large amplitude, weakly
nonlinear effects will change their structure and may lead to instability through
wave–wave interactions; if the fluid is sufficiently viscous, as may occur in labo-
ratory experiments, the waves may broaden due to diffusion and so deposit energy
to the mean flow without overturning and mixing.

The approach of internal waves to a critical level has been observed in several
laboratory experiments. For example, Figure 6.5 shows internal waves launched
by stratified flow over model topography (see Section 5.4) which then encounter
a level in the flow above which the mean flow speed is zero, the same as that
of the stationary hills. Consistent with the prediction of ray theory, the upward-
propagating waves evolve to have decreasing vertical wavelength as they approach
the critical level.

In Figure 6.5a the isopycnal surfaces, indicated by the dashed lines, become
gradually less distorted as the waves approach the critical level. The incident
waves have sufficiently small amplitude that viscosity damps the waves before they
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Fig. 6.5. Shadowgraph images taken from experiments in which a) small-
amplitude and b) large-amplitude internal waves are launched by flow over a
leftward-moving set of sinusoidal hills in a stratified shear flow. The waves
approach a critical level where the velocity profile, indicated, crosses the vertical
line. The dashed lines illustrate the distortion of isopycnal surfaces at different ver-
tical levels. [Adapted, by permission of Cambridge University Press, from Figures
5 and 7 of Koop and McGee, J. Fluid Mech., 172, 453–480 (1986).]

become overturning. In comparison, the large-amplitude incident waves shown in
Figure 6.5b break turbulently below the critical level.

The second experiment demonstrates an important aspect of critical-level inter-
actions. When waves break, they deposit momentum to the mean flow and this
changes the background flow profile. Indeed, the velocity profile shown to the right
of Figure 6.5b exhibits a nearly constant velocity between the critical level and the
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height at which the waves break. Over time the level at which the waves break
occurs at progressively smaller heights above the source of the waves.

This interaction between waves and the mean flow has been used to explain the
essential dynamics governing the Quasi-Biennial Oscillation (or, more succinctly,
the ‘QBO’). This refers to the observed zonal winds in the equatorial stratosphere
that alternately flow eastwards and westwards with a period of about two years, as
shown in Figure 6.6.

It is believed that the flow is driven by upward-propagating waves originating in
the troposphere andwhich deposit momentumwhere they break in the stratosphere,
as illustrated in Figure 6.7. Incident waves have both eastward and westward phase
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Fig. 6.6. Schematic of the alternating westward and eastward winds in the lower
equatorial stratosphere associated with the Quasi-Biennial Oscillation.
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Fig. 6.7. Schematic illustrating how the absorption of internal waves at critical
levels results in the alternating westward and eastward zonal flows associated with
theQuasi-BiennialOscillation.The solid line in each plot represents the zonalwind
profile and the left and right sinusoidal curves represent upward-propagatingwaves
respectively with westward and eastward zonal phase speeds. a) Westward waves
deposit momentum at a critical level which b) reduces the altitude of the level until
c) the critical level reaches the level of the source. d) The process then repeats for
eastward-propagating waves.
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speeds. During the phase of the QBO when the stratospheric winds are westward,
the westward-propagating waves encounter a critical level and, by depositing their
momentum, they lower the altitude of the critical level. The eastward-propagating
waves do not encounter a critical level and so propagate high up into the stratosphere
where they dissipate or break due to other processes and so accelerate an upper-level
eastward flow.

Eventually the critical level for westward waves is so low in the stratosphere that
it reaches the source of the waves.Afterwards these waves can pass freely upwards
through the stratosphere. Meanwhile the eastward-propagating waves encounter a
critical level high in the stratosphere and, through momentum deposition, progres-
sively lower the altitude at which this critical level is situated. The process repeats
itself so that the wind in the lower stratosphere alternately flows westwards, then
eastwards, then westwards again.

6.5.3 Reflection levels

Ray theory predicts that internal waves reflect from a vertical level where the
extrinsic frequency matches the background buoyancy frequency. This is called a
reflection level. There are two distinct idealized circumstances in which this may
occur, both of which are considered here for upward-propagating incident waves.
In one, the ambient flow is stationary and the stratification decreases with height. In
the other, the stratification is uniform and the ambient flow decreases with height,
Doppler-shifting the waves to higher extrinsic frequencies.

First we consider rightward- and upward-propagating waves in decreasing strat-
ification with N (z)= N0(1−σ0z), in which σ0 is a constant. The background flow
is taken to be stationary so that the intrinsic and extrinsic frequencies are equal. For
waves with intrinsic frequency ω0, the reflection level occurs where

z = zr = 1−ω0/N0

σ0
. (6.39)

The path followed by these waves is found by solving (6.32) with Ū = 0. The
solution is shown in Figure 6.8a for a case with σ0 = 0.003kx0 andω0 = (2/3)1/2N0.

As the waves approach the reflection level, the slope of the path increases with
height and becomes infinite at z = zr . Thewaves then reflect, stillmoving rightwards
but now moving downwards along a path whose slope is negative and decreasing
in magnitude.

Because there is no background flow the slope is given by (6.34): dz/dx =
−cot�, in which � is the angle formed between constant-phase lines and the
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Fig. 6.8. The path followed by internal waves approaching a reflection level in a)
stationary fluid whose stratification decreases according to N = N0(1−0.003kxz)
and b) uniformly stratified fluid in constant negative shear with s0 = −0.003N0. In
both cases the initial intrinsic frequency is taken to beω0 =N0

√
2/3, corresponding

to internal waves thatmove upwards at the fastest vertical group velocity in station-
ary fluid. In both plots, the orientations of constant-phase lines are superimposed
on the path at three positions.

vertical and� is negative (positive) for upward- (downward-) propagating waves.
Thus the slope of the phase linesmatches the slope of the ray path everywhere along
the path. In particular, at the reflection level phase lines are vertically oriented and
the corresponding vertical wavelength is infinite.

In the second example, we consider the circumstance in which a uniformly
stratified fluid has uniform but negative shear Ū (z) = −s0z with s0 > 0. In this
case, waves with intrinsic frequency ω0 and horizontal wavenumber kx0 > 0 that
move upwards from z = 0 are Doppler-shifted to increasing extrinsic frequencies
� = ω− kxŪ = ω0 + kx0s0z. Eventually, the waves reach a level zr at which the
extrinsic frequency equals the buoyancy frequency. Explicitly,

zr = N0 −ω0

kx0 s0
. (6.40)

The path followed by an internal wavepacket reflecting from a negative shear
flow is shown in Figure 6.8b. As expected, the wavepacket moves upwards from
the origin and reflects from the reflection level predicted by (6.40). Unlike the
previous case, however, the waves follow a counter-clockwise path and approach
the reflection level tangentially rather than at a cusp. During the motion the phase
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Fig. 6.9. Shadowgraph images taken from experiments in which internal waves
generated by an oscillating cylinder move upwards into a leftward-moving shear
flow. The leftward-propagating waves encounter a critical level; the rightward-
propagating waves encounter a reflection level. [Reproduced, by permission of
CambridgeUniversity Press, fromFigure 10 ofKoop, J. FluidMech.,113, 347–386
(1981).]

lines are not parallel with the path except at z = 0 where Ū = 0. As in the previous
example, the phase lines become more vertically oriented as the waves approach
the reflection level, meaning that the vertical wavelength becomes infinite.

These two examples show that the energy andmomentum transported by internal
waves are reflected back towards the source of the waves if the waves encounter
a level where their extrinsic frequency equals the background buoyancy fre-
quency. The different behaviour of waves at a critical and reflection level is
beautifully illustrated by the laboratory experiment shown in Figure 6.9. Here
internal waves are generated in a uniformly stratified fluid by a vertically oscil-
lating cylinder (see Section 5.2) and the left and right beams propagate upwards
into a leftward-moving shear flow. The leftward-propagating waves encounter a
critical level, their phase lines tilting towards the horizontal as they move upwards.
The rightward-propagating waves encounter a reflection level resulting from their
extrinsic frequency being Doppler-shifted to match the background buoyancy fre-
quency. The shear is so strong in this case, that the looped path shown in Figure 6.8b
occurs within a short vertical distance from the reflection level and so appears to
be more cusp-like, as in Figure 6.8a.

In this section we have noted that as internal waves approach a reflection level
their vertical wavelength becomes infinitely large. This poses a problem for ray the-
ory,which is valid only in the limit of background variations being long compared to
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the vertical wavelength. Ray theory predicts its own demise for waves approaching
a reflection level.

Nonetheless it is possible to model the behaviour of waves within the context
of the WKB approximation by performing an asymptotic expansion of the wave
equations about the reflection level. This is an example of the treatment of waves
near so-called caustics.

6.5.4 Caustics

Caustics refer to singularities in the equations of ray theory which result when
ray paths intersect. This occurs, for example, when internal waves encounter a
reflection level as shown in Figure 6.8: the meeting at a cusp of the incident and
reflected waves forms a caustic.

This class of caustics, resulting fromwave reflection, is treated by solving the lin-
earized equations of motion in a neighbourhood about the reflection level. The
solutions can then be spliced together with the ray theory prediction far from the
caustic to give an approximate solution for the evolution of incident and reflected
waves.

To demonstrate the treatment of such caustics, we consider the evolution of
incident internal waves in the lower-half plane that propagate upwards in a non-
uniform shear flowwith non-uniform stratification andwhich encounter a reflection
level at zr = 0. Suppose that N (z) and Ū (z) vary continuously about z = 0, so
that near this level we can approximate the background buoyancy frequency and
horizontal velocity by linearized functions

N (z)= N0(1−σ0z) and Ū (z)= U0 − s0z. (6.41)

We assume that ω0> 0 and kx0> 0 and that the constants σ0, s0 and U0 are positive
so that the stratification weakens with height and the background shear Doppler-
shifts upward-propagating waves to higher extrinsic frequencies �(z). For z = 0
to be a reflection level, we must have

�(z = 0)= ω0 − U0kx0 = N0. (6.42)

The vertical structure of small-amplitude horizontally periodic disturbances in a
parallel shear flow is prescribed by the Taylor–Goldstein equation (3.134). For the
profiles defined by (6.41), this becomes

d2ξ̂

dz2
+ kx0

2
{ [N0(1−σ0z)]2

[N0 + s0kx0z]2 − 1

}
ξ̂ = 0, (6.43)
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in which we have used the reflection level condition (6.42). For conceptual con-
venience, the equation has been recast as a formula for the vertical displacement
amplitude, ξ̂ (z), instead of the streamfunction amplitude, ψ̂(z).

In (6.43) the term in curly braces is zero at z = 0, and the signs of s0 and σ0 have
been chosen so that the term is positive if z< 0 and negative if z> 0. Thus solutions
have an oscillatory form in the lower-half plane, consistent with propagatingwaves,
and have a monotonically decreasing form in the upper-half plane, consistent with
the structure of evanescent disturbances.

We can examine the detailed structure near the reflection level by performing
a Taylor-series expansion about z = 0 of the term in curly braces in (6.43) and
keeping only the leading-order term in z. This yields the approximate differential
equation

d2ξ̂

dz2
− 2kx0

2σ0

(
1+ s0kx0

N0σ0

)
z ξ̂ � 0. (6.44)

Through a straightforward change of variables this can be converted into the
canonical form of Airy’s equation for the function ξ(Z):

ξ ′′ + Zξ = 0, (6.45)

in which Z = −{2kx0
2σ0[1+ (s0kx0)/(N0σ0)]}1/3z.

Generally, the solution of (6.45) is a superposition of the Airy functions Ai and
Bi. However, the latter function is unbounded as Z → ∞ and so is neglected. The
plot of Ai(Z) is shown as the solid line in Figure 6.10a. The dashed lines represent
asymptotic approximations to the Airy function:

Ai(Z)�




1

2
√
πZ1/4

exp

(
−2

3
Z3/2

)
Z � 0,

1√
π(−Z)1/4

sin

(
2

3
(−Z)3/2 + π

4

)
Z 
 0.

(6.46)

Below z = 0 the vertical wavelength and amplitude of the waves increases as Z
increases. However, the full treatment of the Airy function shows that the vertical
wavelength and amplitude do not approach infinity as Z → 0. Above the reflection
level the amplitude decreases exponentially as exp(−(2/3)Z3/2)/Z1/4.

The structure of the wavefield at a snapshot in time is shown in Figure 6.10b.
Explicitly, the greyscale indicates values of Ai(Z)cos(kx0x) with light greys indi-
cating positive values up to 0.5 and dark greys indicating negative values as low as
−0.5. As a consequence of the superposition of the incident and reflected waves,
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Fig. 6.10. a) Plot of Airy function (solid line) and asymptotic approximations to
this function (dashed lines) for large and small Z as given by (6.46) and b) the
structure of internal waves incident from below upon a reflection level where the
buoyancy frequency decreases linearly with height. The greyscale indicates crests
(light grey) and troughs (dark grey) of the vertical displacement field.

the disturbance field adopts a checkerboard pattern below the reflection level. The
associated flux of wave action is everywhere zero, with no energy transport by
the evanescent waves above Z = 0 and with the upward flux by incident waves
cancelled by the downward flux by reflected waves below Z = 0.

6.6 Eckart resonance and tunnelling

Both the ocean and atmosphere are characterized by layers of strong and weak
stratification. In the ocean, for example, the seasonal and main thermoclines are
separated by a relatively weakly stratified region. In some circumstances internal
waves can be generated in the seasonal thermocline with frequency less than the
local buoyancy frequency in the region but greater than the buoyancy frequency
immediately underneath. Such waves are said to be ducted, meaning that they are
trapped within the stratified layer. However, depending upon their spatial scale it
may be possible for the waves to transmit energy through to the main thermocline.
In this sense, the seasonal thermocline acts as a leaky duct and, more generally, the
waves are said to tunnel from one strongly stratified region to another through a
region in which they are evanescent.


