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Although the discussion so far has focused upon a semi-infinite fluid with no
bottom boundary, these ideas extend straightforwardly to interfacial waves inmulti-
layer fluids that are vertically bounded or unbounded. The dispersion relation and
polarization relations are unchanged but the lateral boundary conditions restrict the
allowable wavenumbers to kn = nπ/L with n= 1,2, . . .

2.6 Shear flows

So far we have assumed the fluid is stationary in the absence of waves. However,
in many geophysical circumstances currents and winds have changing horizontal
speed with height. These are shear flows.

For example, the flow of fresh water into the ocean at an estuary could be approx-
imated by a two-layer fluid in which the upper layer moves with uniform speed
over stationary saline fluid. In another example that we have seen, the horizontal
velocity field of baroclinic waves is oriented in opposite directions on either side
of the interface. In some circumstances the shear at the interface can be so strong
as to cause the interface to wrap up into vortices.

Here we will derive the equations for interfacial waves in the presence of shear in
multi-layered fluids. In certain circumstances we will see that the resulting disper-
sion relations allow for a complex-valued frequencywhose real part is the frequency
in the normal sense. If the imaginary part is non-zero, this means the amplitude
of the disturbance grows exponentially in time. The derivation and analysis of
equations describing such potentially unstable disturbances comprise what is called
‘hydrodynamic stability theory’.

The essence of stability theory for temporally growing disturbances is to assess
whether complex ω exists for any (real-valued) k and, if so, to determine for what
k the growth rate is largest. Spatial instability, in which ω is real and k is com-
plex, and absolute-convective instability, in which both may be complex, are not
considered here.

2.6.1 Derivation of equations

For simplicity, here we neglect Coriolis forces and assume the fluid is laterally
unbounded, incompressible and two-dimensional, having structure in the x- and
z-directions alone. The fluid is composed of n layers, each with uniform density
ρi for i = 1 . . .n. That is, the background density ρ̄(z) is piecewise-constant. The
ambient flow is horizontal, varying only in the vertical. This is referred to as a
‘parallel flow’.

In general, we would like to allow vertical shear within a layer, so we cannot
assume the fluid is irrotational. Instead we will work with the momentum equations
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for an incompressible fluid. The motion of waves results in velocity fluctuations

u= (u,w) so that the total velocity field is (Ū +u,w). Consistent with linear theory
for small-amplitude disturbances, we will assume that the fluctuation quantities are
small but that Ū can be large.

Substituting the total velocity in the x-momentum equation of (1.72), setting
f0 = 0 and keeping only those terms that are linear in fluctuation quantities (hence,
for example, we keep Ū∂xu but discard u∂xu in the advection terms of the material
derivative), we find

∂u

∂t
+ Ū

∂u

∂x
+wŪ ′ = − 1

ρ̄

∂p

∂x
. (2.127)

Here the prime denotes an ordinary z-derivative.
Similarly, the z-momentum equation becomes

∂w

∂t
+ Ū

∂w

∂x
=− 1

ρ̄

∂p

∂z
. (2.128)

These equations apply within each layer of the multi-layer fluid. There is no buoy-
ancy term in (2.128) because within a uniform-density liquid this is balanced by
the background hydrostatic pressure. Buoyancy effects are felt through the fluc-
tuation pressure gradient which in turn depends upon the vertical displacement of
interfaces that bound each layer.

Because thefluid is incompressible,we can represent the velocityfields byderiva-
tives of the streamfunction,ψ . Separating the background and fluctuation parts, we
define the fluctuation streamfunction so that

(u,w)=
(
−∂ψ
∂z

,
∂ψ

∂x

)
. (2.129)

This can be substituted into (2.127) and (2.128) to give two equations in the
unknown functions ψ and p.

We could combine these to derive a single differential equation for, ψ , say.
However, the mathematics is less cumbersome if we first Fourier transform the
equations in x and t. This can be done because the coefficients of the equations
depend only upon z. Substituting

ψ = ψ̂(z) eı(kx−ωt) and p= p̂(z) eı(kx−ωt), (2.130)

the momentum equations become

(Ū − c)ψ̂ ′ − Ū ′ψ̂ = 1

ρ̄
p̂ (2.131)
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and

−k2(Ū − c)ψ̂ =− 1

ρ̄
p̂′. (2.132)

For convenience, we have defined c ≡ ω/k. This is the phase speed of the waves
when ω and k are both real-valued.

Assuming that ρ̄ is constant in each layer and eliminating p̂ from these equations
gives Rayleigh’s equation

ψ̂ ′′ −
(

Ū ′′

Ū − c
+ k2

)
ψ̂ = 0. (2.133)

This describes the structure of waves everywhere within a slab of fluid of uniform
density. In particular, if there is no background flow, then Rayleigh’s equation is
identical in form to (2.109). Whereas that formula gives the vertical structure of the
velocity potential, (2.133) gives the vertical structure of the streamfunction. Both
predict that the waves have amplitudes that change exponentially over a vertical
e-folding distance k−1.

The coupling between layers is once again determined by interface conditions
that require continuity of mass and pressure. These formulae must be written in
terms of the streamfunction and must account for changes in the background flow
across the interfaces.

Formaterial on the interface to stay therewe requirew=Dη/Dt to be continuous,
in which η is the vertical displacement of the interface. Linearizing the material
derivative, the statement that the vertical displacement at the lower side of the
interface is equal to that at the upper side is given by the condition that

ψ̂

Ū − c
(2.134)

is continuous across the interface.
Requiring that the pressure does not jump discontinuously across the interface,

we must have continuity of the following quantity:

ρ̄

[
(Ū − c)ψ̂ ′ − Ū ′ψ̂ − g

Ū − c
ψ̂

]
. (2.135)

This is found through manipulation of the horizontal and vertical momentum
equations.

The complete description of small amplitude disturbances in a multi-layer shear
flow is given by the ordinary differential equation (2.133) together with interface
conditions (2.134) and (2.135), and conditions for boundedness at infinity or no
normal flow at rigid upper and lower boundaries.
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Table 2.2. General and special conditions used to match the solutions for the
streamfunction amplitude ψ̂(z) across interfaces where the background horizontal
velocity, Ū , and/or density, ρ̄, change. The quantities in the middle and left col-
umn must simultaneously hold the same values above and below the interface. The
expressions involve c≡ ω/k, which is the phase speed cPx one would extract from
a horizontal time series.

Material continuity Pressure continuity

General ψ̂/(Ū − c) ρ̄
[
(Ū − c)ψ̂ ′ − Ū ′ψ̂ − g/(Ū − c)ψ̂

]
Ū continuous ψ̂ ρ̄

[
(Ū − c)ψ̂ ′ − Ū ′ψ̂ − g/(Ū − c)ψ̂

]
ρ̄ continuous ψ̂/(Ū − c) (Ū − c)ψ̂ ′ − Ū ′ψ̂

ρ̄, Ū , Ū ′ continuous ψ̂ ψ̂ ′

Boussinesq ψ̂/(Ū − c) (Ū − c)ψ̂ ′ − Ū ′ψ̂ − gρ̄/[�0(Ū − c)]ψ̂

The interface conditions can be simplified under special circumstances, summar-
ized in Table 2.2. In particular, if the background density varies continuously, it
follows from (2.134) that (2.135) reduces to

(Ū − c)ψ̂ ′ − Ū ′ψ̂ . (2.136)

Otherwise, if the density jump is small compared to the characteristic density,
ρ0, then (2.136) reduces to the condition that the following quantity must vary
continuously across the interface:

(Ū − c)ψ̂ ′ − Ū ′ψ̂ − gρ̄

ρ0

[
ψ̂

Ū − c

]
. (2.137)

This is the Boussinesq form of the pressure continuity condition which states that
the density jump is only important in its effect upon buoyancy forces.

2.6.2 Rayleigh waves

Analytic solutions of Rayleigh’s equation (2.133) are readily found if the back-
ground velocity Ū is constant or if it varies linearly with height, in which case
Ū prescribes a uniform shear flow. In this case, the Ū dependence vanishes from
(2.133) and so the streamfunction amplitude, ψ̂ , is given by exponential functions.

Though sometimes algebraically cumbersome, we can straightforwardly find
analytic solutions for ψ̂ and the dispersion relation if Ū is piecewise-linear,meaning
that it is subdivided into vertical ranges over which Ū is either constant or varies



SUTHERLAND: “CHAP02” — 2010/6/28 — 15:45 — PAGE 119 — #46

2.6 Shear flows 119

z

Ū
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Fig. 2.13. a) Waves associated with a kinked-shear velocity profile. The vertical
extent decays exponentially over a distance k−1 from the kink and the waves
move in the direction of the shear. b) Wave-pairs associated with a shear layer. The
waves on the upper flank move rightwards with respect to the upper layer flow;
the waves on the lower flank move leftwards with respect to the lower layer flow.
The background flow is shown as the solid black line and the waves are illustrated
by dashed lines.

linearly with height. In each range we have a pair of exponential solutions which
couple from one layer to the next through the interface conditions (2.134) and
(2.135).

First we demonstrate this with the simple circumstance of a uniform-density fluid
having the following kinked-shear flow profile in an unbounded domain:

Ū =
{
0 z ≥ 0
−s0z z < 0

, (2.138)

in which the shear s0 below z = 0 is constant. This ambient flow field is illustrated
in Figure 2.13a.

Requiring bounded solutions to (2.133) gives the streamfunction amplitude in
the upper and lower layer:

ψ̂ =
{Ae−kz z ≥ 0

Bekz z < 0.
(2.139)

The interface conditions (2.134) and (2.135) applied at z = 0 give the matrix
equation (

1 −1
ck ck− s0

)(A
B

)
=

(
0
0

)
. (2.140)

This eigenvalue problem has nontrivial solutions if the determinant of the matrix
is zero, that is if 2ck − s0 = 0 in which c = ω/k. The structure of the waves is
illustrated in Figure 2.13a.
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Thus we have determined the dispersion relation for waves that exist due to
vertically varying shear:

ω= s0/2. (2.141)

The frequency is independent of wavenumber and the group velocity is zero.
Becauseω is always real, we have shown that the kinked-shear profile is stable. The
phase speed of the waves is c= s0/2k. This matches the speed of the background
flow at some vertical level below z= 0, and it more closely matches the flow speed
at z = 0 as k increases and the horizontal and vertical extents of the disturbance
decrease.

These waves, driven by shear-induced pressure fluctuations, have no generally
accepted name. For convenience here we will describe them as Rayleigh waves,
although this terminology should not be confusedwith that used to describe surface-
trapped waves in solids.

2.6.3 Shear layer instability in uniform-density fluid

If Ū describes a flow with uniform shear over a finite depth, it is called a shear layer.
Here we will show that a shear layer in uniform density fluid is unstable through
resonant coupling between a pair of Rayleigh waves. The process is often referred
to as Kelvin–Helmholtz instability, after the two scientists who first examined the
phenomenon.

The background flow is prescribed by

Ū =


−U0 z ≥H
−U0

z
H |z|<H

U0 z ≤−H
. (2.142)

This velocity profile is effectively the result of splicing together two kinked-shear
flow profiles of the form (2.138), as shown in Figure 2.13b.

Requiring bounded solutions to (2.133), we find

ψ̂ =



Ae−kz z ≥H
B1 sinh kz+B2 cosh kz |z|<H
Cekz z ≤−H

. (2.143)

Here the solutions in the middle region have been written in terms of hyperbolic
functions in order to take advantage of symmetry as in (2.110) for interfacial waves
in a three-layer fluid.

Applying the interface conditions at z = ±H gives four equations in the four
unknowns A, B1, B2 and C. Solving the eigenvalue problem gives the dispersion
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Fig. 2.14. Frequency (ωr , solid line) and instability growth rate (ωi ≡ σ , dashed
line) of horizontally periodic disturbances with wavenumber k superimposed upon
an unstratified piecewise-linear shear layer of depth H . For kH � 0.64, ωr = 0;
for kH � 0.64, ωi = 0.

relation

ω2 = 1

4
s0

2
[
(1− 2kH )2− e−4kH

]
, (2.144)

in which s0 ≡ U0/H . The corresponding (complex-valued) dispersion relation is
plotted in Figure 2.14 for positive frequency when ω is real and for positive growth
rate σ = ωi when ω2 < 0.

In the limit kH →∞, the dispersion relation becomes ω→±s0(1− 2kH )/2=
±(s0/2−U0k). The positive root corresponds to the dispersion relation (2.141) for
Rayleigh waves with a constant flow, −U0, overlying a uniform shear flow. The
negative root corresponds to Rayleigh waves with a shear flow overlying a constant
flow with speed U0. Indeed, for large k the vertical extent of the Rayleigh waves
at the upper and lower kink in the shear is so small that one disturbance does not
feel the influence of the other.

Thus we see that the dispersion relation (2.144) describes the co-existence of
a pair of Rayleigh waves that couple together when their horizontal and vertical
extent, k−1, is comparable to H , as illustrated in Figure 2.13b.

Long-wavelength disturbances on either flank are not independent of each other
and resonantly couple to form growing modes with zero phase speed. In particular,
if 0< kH � 0.64, then the right-hand side of (2.144) is negative, meaning that ω is
a pure imaginary number.

The fact that ω is complex-valued, means that the flow is unstable. To see this,
suppose in general we have ω= ωr + ıσ . Substituting this into the formula for the
streamfunction in (2.130) gives

ψ = ψ̂(z)eı(kx−ωr t)eσ t . (2.145)
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Thus the real part of ω is the wave frequency and, if σ > 0, this is the growth rate of
waves whose amplitude increases exponentially in time. The quantity 1/σ is known
as the ‘e-folding time’. Typically, the dispersion relation for ω is a polynomial with
real coefficients. So if the roots are complex, they appear as complex-conjugate
pairs. That is to say, ifω is complex, then an unstable solution with σ > 0 must exist.

Although there is no restriction to the wavenumber of allowable unstable waves,
in reality the fastest growing solution is the one that is typically observed. From
(2.144), the fastest growing mode, which is computed numerically, occurs for
wavenumber k� 
 0.398/H , and the corresponding growth rate is σ� 
 0.20s0.

Recall that these predictions have been made under the assumption that the dis-
turbances are small amplitude. So, although the unstable waves grow exponentially,
they do not do so without bound. When their amplitude is sufficiently large, nonlin-
ear effects become significant. In the case of the unstable shear layer, thewaves grow
and develop into coherent vortices sometimes called ‘Kelvin–Helmholtz billows’.
Eventually they turbulently break down.

Although linear theory cannot predict the long-time evolution of the flow, the
wavelength of the most unstable mode sets the horizontal scale of the instability,
even as it develops nonlinearly. Thus we expect the unstable shear layer to develop
into a train of vortices separated approximately by 2π/k� 
 16H .

2.6.4 Shear instability of interfacial waves

So far we have examined waves and instability in a fluid with uniform density. If in
addition the system consists of layers of fluid with different density, then the system
can support interfacial waves as well as Rayleigh waves. Density interfaces modify
the interaction between pairs of Rayleigh waves in a Kelvin–Helmholtz unstable
flow. They also lead to two new classes of instability. One is called ‘Holmboe
instability’. This results from the resonant coupling of an interfacial wave with a
Rayleighwave.The other class of instability has no generally accepted terminology,
but will be referred to here as Taylor instability. This results from the resonant
coupling of two interfacial waves mediated by a shear layer.

2.6.4.1 Kelvin–Helmholtz instability

First we examine how Kelvin–Helmholtz instability, examined in Section 2.6.3 for
a uniform density fluid, is affected by the presence of density interfaces. Consider
the shear layer given by (2.142) which moves in a three layer fluid with background
density

ρ̄ =


ρ1 z ≥H
1
2(ρ1+ρ2) |z|<H
ρ2 z ≤−H

. (2.146)
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For mathematical simplicity, this is set up so that density interfaces exist at the
kinks of the shear profile and the density-jumps across each interface are equal.

The stability problem is solved by assuming the streamfunction amplitude has
the form (2.143) but now the effect of discontinuity in the density profiles must be
accounted for in the interface conditions (2.134) and (2.135).

After some algebra, the dispersion relation is given by the roots of the following
quartic polynomial:

ω̃4− 1

4

[
8k̃2− 4(1−Rib)k̃+ 1− e−4k̃

]
ω̃2

+ 1

4
k̃2

[
(2k̃− 1−Rib)

2− (1+Rib)
2e−4k̃

]
, (2.147)

in which the frequency and wavenumber have been expressed nondimensionally
by ω̃= ω/s0 and k̃ = kH .

In (2.147) we have introduced the bulk Richardson number defined by

Rib ≡ g′/H
s02

, (2.148)

in which s0 = U0/H is the shear at mid-depth and g′ = g ρ2−ρ1
(ρ2+ρ1)/2

is the reduced
gravity. This is a characteristic measure of the way in which buoyancy forces may
retard or overcome shear instability. Taking the limit Rib→ 0 in (2.147), we recover
the dispersion relation (2.144) as two of the roots.

Although the presence of density-jumps might be expected to stabilize the flow,
it turns out that the flow is unstable even for large Rib. Larger density-jumps act to
reduce the growth rate of the most unstable mode and to increase the corresponding
wavenumber. For example, Figure 2.15a plots the frequency and growth rate as a
function of wavenumber in the case Rib = 1. This should be compared with the
corresponding plot for the unstratified shear layer (for which Rib = 0) shown in
Figure 2.14.

Expecting that both ωr and ωi are zero at the conceptual boundary between
stable and unstable modes, we find that coupled Rayleigh waves are unstable if
their wavenumber k lies within a finite range of values given by

2kH

1+ exp(−2kH )
− 1< Rib <

2kH

1− exp(−2kH )
− 1. (2.149)

The so-called ‘marginal stability curves’ given by (2.149) are plotted in the
stability regime diagram shown in Figure 2.15b. In the limit Rib→ 0, corresponding
to a uniform-density fluid, the range of wavenumbers for which the flow is unstable
is given by the values of kH for which the right-hand side of (2.144) is negative.
The frequency and growth rate for modes in this case are plotted in Figure 2.14.
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Fig. 2.15. a) Frequency (solid line) and growth rate (dashed line) versus wave-
number of modes associated with a piecewise-linear shear layer in a three-layer
fluid whose middle-layer density is the average of the upper and lower layers. Val-
ues are computed for the bulk Richardson number Rib ≡ (g�ρ/ρ0)H/U0

2 = 1, in
which ρ0 is the characteristic density taken as the value of ρ̄ at z = 0. b) Growth
rates as they depend upon the wavenumber and Rib. The dashed lines indicate the
marginal stability boundaries, given by (2.149). For large Rib, the most unstable
mode has a nondimensional wavenumber kH 
 (Rib+ 1)/2.

Corresponding to each eigenvalue, ω, is the eigenfunction ψ̂(z), which gives the
structure of the Kelvin–Helmholtz modes. The z-dependence of ψ̂ in each layer is
given generally by (2.143) in which the coefficients A, B1, B2 and C effectively
form an eigenvector. Substituting ω for given k and Rib into the equations defining
the interface conditions, one can explicitly solve for A, B1 and C in terms of B2.
The result can be normalized by setting B2 = 1.

Figure 2.16a shows the perturbation streamfunction amplitude computed in this
way for the most unstable mode of the shear layer with Rib = 1. Note that the
function has real and imaginary parts as a consequence of ω = ı0.094s0 being
complex. To help interpret this result, Figure 2.16b shows greyscale contours of the
perturbation streamfunction ψ(x,z)=�{ψ̂eıkx}. Here the amplitude and phase are
established effectively by setting t = 0 and B2 = 1. At x = 0, ψ is identical to the
real part of ψ̂ ; at x= 3/4λ, ψ(x,z) is identical to the imaginary part of ψ̂ . At other
values of x the streamfunction is computed from ψ̂r(z)cos(kx)− ψ̂i(z)sin(kx).

The structure of the growing instability is best illustrated by superimposing
the perturbation streamfunction upon the background streamfunction ψ̄ , defined
implicitly through Ū =−dψ̄/dz. This is plotted in Figure 2.16d. Contours of the
total streamfunction ψT (x,z)= ψ̄(z)+ εψ(x,z) are shown in Figure 2.16e. Here,
the amplitude of the perturbation is established through the choice of ε. As time
progresses, the amplitude grows exponentially as exp(ωit). Thus we see that the
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Fig. 2.16. a) Vertical structure of the perturbation streamfunction amplitude
for an unstable disturbance in a shear layer with density interfaces at z =
±H . It is computed for the most unstable mode in the case Rib = 1, for
which k�H = 0.96 and ω/s0 
 ı0.094. The eigenfunction is normalized so that
ψ̂(0)= 1. b) Corresponding spatial structure of the perturbation streamfunction
ψ(x,z)=�{ψ̂ exp(ıkx)} = �{ψ̂}cos(kx)− {ψ̂}sin(kx). Background profiles of
c) density and d) velocity (solid line) and streamfunction (dashed line), the
latter being defined by Ū =−dψ̄/dz. e) Contours of the total streamfunction
ψT = ψ̄+εψ in which the amplitude of the perturbation has been taken as ε= 0.1.

instability distorts the streamlines, pulling them apart near the centre of the shear
layer between x= λ/4 and 3λ/4.

The waves grow by extracting energy from the background shear flow. The
growth rate decreases as the density-jump across the interfaces (measured by Rib)
becomes larger because some of the kinetic energy extracted must go into the
available potential energy associated with the disturbance.

As the instability grows to very large amplitude, the linear theory approximations
used to derive the form of the disturbance are no longer valid. Nonlinear simulations
show that the disturbance saturates at finite amplitude if Rib is sufficiently large. In
weak stratification however, the contours can wrap up to form a vortex centred in
the middle of the shear layers.
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2.6.4.2 Holmboe instability

Nextwe examineHolmboewaves.Generally, these occurwhen the density interface
is not coincident with the change in shear. In this piecewise-linear problem it is
necessary for the interface to be embedded within the shear in order for instability
to occur. Explicitly, we consider the kinked shear profile given by (2.138) and we
now suppose this is a two-layer fluid with a density interface at z =−H < 0:

ρ̄ =
{
ρ1 z ≥−H
ρ2 z <−H

. (2.150)

Solving (2.133) with interface conditions (2.134) and (2.135), we find that the
waves must satisfy the dispersion relation

ω̃3−
(

2k̃+ 1

2

)
ω̃2+ k̃

(
k̃+ 1− 1

2
Rib

)
ω̃− 1

2
k̃

(
k̃− 1

2
Rib

[
1− e−2k̃

])
= 0,

(2.151)
in which ω̃ ≡ ω/s0, k̃ ≡ kH , and we have defined the bulk Richardson number as
in (2.148), but with g′ ≡ g(ρ2− ρ1)/ρ0, in which ρ0 is the characteristic density,
which can be taken to equalρ2. The definitions of Rib are the same in theBoussinesq
limit.

In uniform fluid, Rib = 0 and so the cubic polynomial on the left-hand side of
(2.151) has one root ω̃= 1/2, corresponding to the dispersion relation for Rayleigh
waves (2.141). The remaining double root is ω̃ = −k̃. For finite Rib, this double
root introduces a new class of disturbance that evolves due to interfacial waves at
z=−H interacting with Rayleigh waves centred near z= 0. For a range of k, these
double-roots are complex-valued, meaning that the coupling between the two types
of waves renders them unstable. The complex dispersion relation is plotted for the
case Rib = 1 in Figure 2.17a. The thick solid line in the figure also shows the phase
speed cp = ωr/k.

Unlike shear instability,whose dispersion relation is given by the roots of (2.144),
the complex roots of (2.151) have non-zero real as well as imaginary parts. Thus
Holmboe waves are not stationary, but as they grow they also propagate in the
direction of the shear flow below z= 0. This is a distinguishing feature of Holmboe
waves.

The values of kH and Rib that result in unstable waves are shown in Figure 2.17b.
Consistent with our analysis, we see that the growth rate is zero if Rib = 0, meaning
that there is no density interface. Instability occurs even for very small Rib with
the most unstable mode having a wavenumber that increases as Rib increases. The
growth rate is fastest if Rib 
 0.56, in which case the most unstable mode has a
nondimensional wavenumber kH 
 0.89 and growth rate ωi = 0.14s0.
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Fig. 2.17. Frequency (ωr , solid line) and growth rate (ωi ≡ σ , dashed line) of the
Holmboe instability resulting from a density interface lying a distance H above
a kinked-shear profile with shear s0 below z = 0. The results are plotted for the
complex roots of (2.151) with the positive imaginary part for the case with Rib= 1.

The structure of the most unstable mode in the case Rib = 1 is shown
in Figure 2.18. Unlike the corresponding Kelvin–Helmholtz mode shown in
Figure 2.16, the Holmboe mode has a cusped structure that peaks near the kink of
the shear profile. As time progresses, this mode grows in amplitude and propagates
rightwards.

In many laboratory and geophysical circumstances Holmboe waves are created
by afinite-depth shear layer inwhich the density interface is offset from themidpoint
of the shear. In this case Holmboe waves appear on the upper and lower flanks of
the shear layer. Their presence is distinguished from Kelvin–Helmholtz instability
by the appearance of leftward- and rightward-propagating waves on either flank
of the shear layer. Whereas Kelvin–Helmholtz waves have the same speed as the
midpoint of the shear and wrap into vortices as they develop nonlinearly, finite-
amplitude Holmboe waves form cusps that move in opposite directions above and
below the shear layer. The cusps are more pronounced on one flank if the interface
is closer to the kink in the shear profile on that flank.

2.6.4.3 Taylor instability

Finally, we examine the circumstance in which two interfacial waves interact
through a uniform shear flow. Explicitly, we consider the circumstance in which
the background flow is given by

Ū =−s0z (2.152)

for all z, and the three-layer density profile is given by (2.146).
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Fig. 2.18. As in Figure 2.16 but showing the structure of the most unstable Holm-
boe mode in a kinked-shear flow with a density interface at z=−H . The functions
are computed for the case Rib = 1, in which circumstance the most unstable mode
has a wavenumber k�H = 1.16 and complex frequency ω/s0 
 0.443+ ı0.129. a)
Vertical structure of the perturbation streamfunction amplitude function ψ̂(z), b)
the corresponding spatial structure of the perturbation streamfunction, background
profiles of c) density and d) velocity (solid line) and streamfunction (dashed line),
and e) contours of the total streamfunction ψT = ψ̄ + εψ in which ε = 0.3.

Again we take the streamfunction amplitude to have the form (2.143). For math-
ematical simplicity we assume the fluid is Boussinesq and so apply the interface
conditions (2.134) and (2.137). Thus we find the dispersion relation is given by the
roots of

ω̃4− k̃
(
2k̃+Rib

)
ω̃2+ 1

4
k̃2

[
(2k̃−Rib)

2−Rib
2 exp(−4k̃)

]
= 0. (2.153)

Here ω̃≡ ω/s0, k̃ ≡ kH and the bulk Richardson number is given by (2.148).
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Fig. 2.19. As in Figure 2.15 but showing the dispersion relation associated with
a Taylor mode in a uniform shear flow with a three-layer density profile whose
middle-layer density is the average of the upper and lower layers. a) Frequency
(solid line) and growth rate (dashed line) versus wavenumber of modes computed
in the case Rib = 1. b) Growth rates as they depend upon the wavenumber and
Rib. The dashed lines indicate the marginal stability boundaries, given by (2.154).

The roots of (2.153) are complex and the flow unstable if

2k̃

1+ exp(−2k̃)
< Rib <

2k̃

1− exp(−2k̃)
. (2.154)

These stability boundaries are indicated by the dashed lines in Figure 2.19b. In a
shear flow with no density interfaces (Rib = 0), no instability occurs. Like Kelvin–
Helmholtzmodes, the frequency (and hence phase speed) of the disturbances is zero
if the mode is unstable. Here, however, the fastest growing modes generally have
a much smaller wavenumber and correspondingly larger horizontal and vertical
extents.

The structure of the most unstable mode in the case Rib = 1 is shown in
Figure 2.20. This is qualitatively similar to the structure of Kelvin–Helmholtz
modes but it must be kept in mind that there is no kink in the shear flow and
so the dynamics driving the instability are fundamentally different. The presence
of shear allows interfacial waves in a three-layer fluid to grow in amplitude through
extracting kinetic energy from the background shear.

2.7 Interfacial waves influenced by rotation

The Earth’s rotation is important for waves having periods longer than many hours
and typically on the order of days. Such waves also tend to be of broad horizontal
extent – so wide that shallow water theory may be applied.
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Fig. 2.20. As in Figure 2.16 but showing the structure of the most unstable Taylor
mode in a uniform shear flow with density interfaces at z=±H . The functions are
computed for the caseRib= 1, inwhich circumstance themost unstablemode has a
wavenumber k�H = 0.44 and growth rateωi/s0
 0.096. a)Vertical structure of the
perturbation streamfunction amplitude function ψ̂(z), b) the corresponding spatial
structure of the perturbation streamfunction, background profiles of c) density and
d) velocity (solid line) and streamfunction (dashed line), and e) contours of the
total streamfunction ψT = ψ̄ + εψ in which ε = 0.3.

For this reason, here we present the theory for waves in a two-layer shallow water
fluid in which buoyancy is felt through the reduced gravity g′ = g(ρ2 − ρ1)/ρ2,
and the equivalent depth is the harmonic mean of the upper and lower layer depths
(2.99): H̄ =H1H2/(H1+H2).

A shallow water two-layer fluid describes interfacial waves that are long com-
pared with the depth of the upper and lower layer fluids, as would be the case for
long oceanic waves at the thermocline.

A shallow water one-and-a-half-layer fluid, recovered in the limit H̄ →H , rep-
resents waves moving along an interface that separates a relatively thin slab of fluid
from an effectively infinitely deep fluid layer. This might describe long-wavelength


