Separation of Variables: Flow Chart

1. SET UP PDE AND INITIAL/BOUNDARY CONDITIONS

- Determine appropriate partial differential equation (wave/diffusion/potential equation)
- Determine co-ordinate system (Cartesian/polar/cylindrical/spherical)
- If possible, exploit symmetry (azimuthal) to reduce dimensionality of problem. $E.g.\ u(r,\theta,t) \Rightarrow u(r,t)$, if initial and boundary conditions are independent of θ .
- Explicitly rewrite resulting initial-boundary value problem.

2. SEPARATE VARIABLES

- Write u as product of "separated" functions of each variable (e.g. u(r,t) = R(r)T(t)).
- Substitute into partial differential equation and derive set of ordinary differential equations for each separated function.

E.g.
$$T' + \lambda \kappa T = 0$$
; $r^2 R'' + rR' + \lambda r^2 R = 0$.

• Use given zero/periodic/boundedness boundary conditions on u to find boundary conditions on corresponding separated functions.

E.g.
$$u(a,t) = 0 \Rightarrow R(a) = 0, R$$
 - bounded

• Do not try to impose boundary conditions on separated functions of a variable where u is given generally as a function of that variable. (E.g. if u(r,t) = f(t) is given, do not try to impose condition on T.)

3. FIND GENERAL SOLUTION

- Solve ordinary differential equations for separated functions with explicitly given boundary conditions.
- In finding your solution, you may rely on experience otherwise check cases where the separation constant (λ) is positive, negative and zero and, together with the boundary conditions, determine when you get non-trivial solutions.

E.g.
$$X'' - \lambda X = 0$$
; $X(0) = X(\pi) = 0$ has nontrivial solutions $(X \neq 0)$ only if $\lambda = -n^2$ in which case $X(x) \propto \sin(nx)$.

- your result is typically an infinite number of (eigenfunction) solutions with a corresponding infinite set of eigenvalues. (e.g. $R_n(r) = J_0(\alpha_n r/a)$ corresponding to $\lambda_n = (\alpha_n/a)^2$, n = 0, 1, 2, ...)
- Substitute these eigenvalues into the remaining ordinary differential equations and solve these equations. $E.g. \ T' + (\alpha_n/a)^2 \kappa T = 0 \Rightarrow T(t) \propto \exp[-(\alpha_n/a)^2 \kappa t].$
- Form superposition of the product of separated functions to get the general solution. $E.g.\ u(r,t) = \sum_{n=0}^{\infty} a_n J_0(\alpha_n r/a) \exp[-(\alpha_n/a)^2 \kappa t].$

4. FIND COEFFICIENTS IN GENERAL SOLUTION

- Apply the non-zero initial/boundary condition (given in terms of some arbitrary function, f, say) and so write f as a series (e.g. $f(r) = u(r,0) = \sum_{n=0}^{\infty} a_n J_0(\alpha_n r/a)$).
- Recognize that this series is an orthogonal expansion (Fourier series/Bessel series/Legendre series) of f
 and use property of orthogonality to pull out coefficients from the sum.
 e.g.

$$\int_{0}^{a} f(r)J_{0}(\alpha_{m}r/a)r dr = \sum_{n=0}^{\infty} a_{n} \int_{0}^{a} J_{0}(\alpha_{n}r/a)J_{0}(\alpha_{m}r/a)r dr$$
$$= a_{m} \int_{0}^{a} [J_{0}(\alpha_{m}r/a)]^{2}r dr$$

- Evaluate integrals using tables or by direct calculation.
- Substitute results back into general solution.
- Explicitly evaluate first few non-zero terms if required.