1. A (non-insulated) cylinder with a movable piston initially contains air with density, ρ_1 , and pressure, P_1 . The piston is slowly raised simultaneously decreasing the density, ρ , and increasing the pressure, P, with heat passing through the walls of the cylinder so that at every instant P and ρ are related by the equation

$$P = k/\rho$$
,

in which k is a constant.

- a) Write an expression for the initial temperature of the gas, T_1 . [Give your answer in terms of P_1 , ρ_1 , and R_a .]
- b) Express the constant k in P_1 , T_1 , and R_a .
- c) Find an expression for the temperature when the density has halved to $\rho_1/2$. [Give your answer in terms of T_1]

0)
$$P = P_1 = P_2 = P_1 = P_2 = P_2$$

C) IF
$$\ell_2 = \frac{\ell_1}{2} \Rightarrow P_2 = K/\ell_2 = K/\ell_2 = 2 \frac{k}{\ell_1}$$

USE b) $\Rightarrow P_2 = 2(\frac{P_1^2}{R_0\ell_1})\frac{1}{\ell_1} = 2P_1$

So $T_2 = \frac{P_2}{R_0\ell_2} = \frac{2P_1}{R_0(\ell_1/2)} = 4(\frac{P_1}{R_0\ell_1}) = 4T_1$

2. As a radiosonde balloon rises, it finds the temperature is constant (T_0) as the pressure changes from P_1 to $P_2 < P_1$. What is the vertical distance between the two pressure levels, P_2 and P_1 ? [Give your answer in terms of T_0 , P_1 , P_2 , R_a and g.]

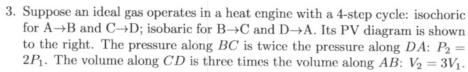
USE HYDROSTATIC BALANCE
$$\frac{dP}{dz} = -\frac{9}{R_0T_0}P$$

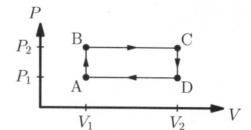
INTERRATE BOTH SIDES FROM P, TO PZ WHERE HEIGHT GOES FROM Z, TO ZZ

=)
$$\int_{P_{1}}^{P_{2}} \int_{P_{1}}^{P_{2}} dP = -\frac{9}{R_{1}T_{0}} \int_{Z_{1}}^{Z_{2}} dZ \Rightarrow LnP|_{P_{1}}^{P_{2}} = -\frac{9}{R_{1}T_{0}} (Z_{2}-Z_{1})$$

SO DESTANCE BETWEEN PZ AND P, IS

$$Z_2 - Z_1 = -\frac{R_0 T_0}{9} \left[Ln(P_2) - Ln(P_1) \right] = \left[\frac{R_0 T_0}{9} Ln(P_1/P_2) \right]$$





- a) What is the total work performed by this engine?
- b) What is the total heat input to the engine?
- c) Evaluate the efficiency of this engine.

[Give your answers in terms of any or all of
$$P_1$$
, V_1 and the adiabatic constant γ .]

A) Work is area of PV diagram

$$W = (P_2 - P_1)(V_2 - V_1) = (2P_1 - P_1)(3V_1 - V_1) = 2P_1V_1$$

b) Heat IN AN ISOCHORIC PROCESS IS $\Delta Q = C_V \Delta T$

"I ISOBARIC " IS $\Delta Q = C_V \Delta T$

"I ISOBARIC " IS $\Delta Q = C_V \Delta T$

Que = $C_V(T_B - T_A) = C_V(\frac{P_2}{NR} - \frac{P_2}{NR} V_1) = C_V V_1(P_2 - P_1)$

$$P_2 > P_1, \text{ so this is heat in}$$

Que = $C_P(T_C - T_B) = C_P(\frac{P_2}{NR} - \frac{P_2}{NR} V_1) = \frac{C_P}{NR} P_2(V_2 - V_1)$

$$V_2 > V_1, \text{ so this is also heat in}$$

Other Pressoric or volume deads then goes out ($Q_{CO} < 0, Q_{OA} < 0$)

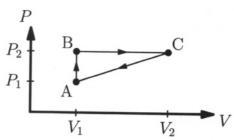
So total heat in is

$$Q_{DA} = \frac{C_V}{NR} V_1(P_2 - P_1) + \frac{C_P}{NR} P_2(V_2 - V_1)$$

USE $Q_{CV} = NR + V = \frac{C_P}{C_V} \Rightarrow \frac{C_V}{NR} = \frac{C_V}{Q_1 - C_V} = \frac{1}{V_1}, \frac{C_P}{NR} = \frac{C_P}{C_P - C_V} = \frac{V}{V_1}$

4. Consider the triangular PV cycle shown to the right. Here, $P_2=2P_1$ and $V_2=3V_1$.

Find the change in entropy over each part of the cycle. I.e. find ΔS_{AB} for $A \rightarrow B$, ΔS_{BC} for $B \rightarrow C$, and ΔS_{CA} for $C \rightarrow A$. [Give your answers in terms of C_v and the adiabatic constant γ .]



IN AN INOCHORIC ACCRESS
$$C_V dT = SQ = T dS \Rightarrow dS = C_V \frac{1}{T} dT$$

So $\Delta S_{AB} = C_V \int_{T_A}^{T_B} \frac{1}{T} dT = C_V LnT|_{T_A}^{T_B} = C_V Ln(\overline{T}_B/T_A)$
 $= C_V Ln \left[\frac{P_2 V_1/nR}{P_1 V_1/nR}\right] = C_V Ln \left(\frac{P_2}{P_1}\right) = \left[C_V Ln(2)\right]$

IN AN ESOBARIC PROCESS CP dT =
$$8Q = TdS \Rightarrow dS = CP dT$$

So $\Delta SBC = CP \int_{TB}^{Te} dT = CP Ln (Te/TB) = CP Ln (\frac{P_2V_2/nR}{P_2V_1/nR})$
= $CP Ln (\frac{V_2}{V_1}) = VC_V Ln(3)$

CAN FIND ASCA ONE OF 2 WAYS!

1)
$$S$$
 ES A STATE VAR:ABLE => $GdS=0$ => $\Delta S_{AB} + \Delta S_{BC} + \Delta$

2)
$$dU = TdS - PdV \Rightarrow dS = \frac{CvdT}{T} + \frac{P}{T}dV$$

But $\frac{P}{T} = \frac{nR}{V} \Rightarrow dS = \frac{CvdT}{T} + nR\frac{1}{V}dV$

$$\int_{C_{A}} S_{CA} = C_{V} \left(\frac{T_{A}}{T_{E}} + dT + nR \int_{V_{E}}^{V_{A}} \frac{1}{V}dV \right)$$

$$\int_{C_{V}} C_{V} \ln \left(\frac{T_{A}}{T_{E}} \right) + nR \ln \left(\frac{V_{A}}{V_{E}} \right)$$

$$\int_{C_{V}} C_{V} \ln \left(\frac{RV_{V}/nR}{P_{2}V_{2}/nR} \right) + \left(C_{F} - C_{V} \right) \ln \left(\frac{V_{I}}{V_{2}} \right)$$

$$\int_{C_{V}} C_{V} \left[\ln \left(\frac{1}{6} \right) + \gamma \ln \left(\frac{1}{3} \right) - \ln \left(\frac{1}{3} \right) \right]$$

$$\int_{C_{V}} C_{V} \left[\ln \left(\frac{1}{2} \right) + \gamma \ln \left(\frac{1}{3} \right) \right] = -C_{V} \left[\ln \left(\frac{1}{2} \right) + \gamma \ln \left(\frac{1}{3} \right) \right]$$