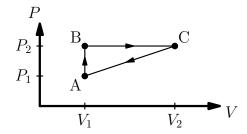

PHYS310: Sample Midterm Exam

1. A (non-insulated) cylinder with a movable piston initially contains air with density, ρ_1 , and pressure, P_1 . The piston is slowly raised simultaneously decreasing the density, ρ , and increasing the pressure, P, with heat passing through the walls of the cylinder so that at every instant P and ρ are related by the equation

$$P = k/\rho$$
,

in which k is a constant.

- a) Write an expression for the initial temperature of the gas, T_1 . [Give your answer in terms of P_1 , ρ_1 , and R_a .]
- b) Express the constant k in terms of P_1 , T_1 , and R_a .
- c) Find an expression for the temperature when the density has halved to $\rho_1/2$. [Give your answer in terms of T_1]
- 2. As a radiosonde balloon rises, it finds the temperature is constant (T_0) as the pressure changes from P_1 to $P_2 < P_1$. What is the vertical distance between the two pressure levels, P_2 and P_1 ? [Give your answer in terms of T_0 , P_1 , P_2 , R_a and g.]
- 3. Suppose an ideal gas operates in a heat engine with a 4-step cycle: isochoric for $A \rightarrow B$ and $C \rightarrow D$; isobaric for $B \rightarrow C$ and $D \rightarrow A$. Its PV diagram is shown to the right. The pressure along BC is twice the pressure along DA: $P_2 = 2P_1$. The volume along CD is three times the volume along AB: $V_2 = 3V_1$.



- a) What is the total work performed by this engine?
- b) What is the total heat input to the engine?
- c) Evaluate the efficiency of this engine.

[Give your answers in terms of any or all of P_1 , V_1 and the adiabatic constant γ .]

4. Consider the triangular PV cycle shown to the right. Here, $P_2=2P_1$ and $V_2=3V_1$.

Find the change in entropy over each part of the cycle. I.e. find ΔS_{AB} for $A \rightarrow B$, ΔS_{BC} for $B \rightarrow C$, and ΔS_{CA} for $C \rightarrow A$. [Give your answers in terms of C_v and the adiabatic constant γ .]

