Solution to exercise 7.6.9.

- **3.** If \mathcal{A} is $\neg \mathcal{B}$ and $v(\mathcal{A})$ is T, then $v(\mathcal{B})$ is F, by clause (2) in Definition 7.40. By the hypothesis of induction, $\neg \mathcal{B} \in \mathfrak{T}$. If $v(\mathcal{A})$ is F, then $v(\mathcal{B})$ is T, by clause (2). By inductive hypothesis, $\mathcal{B} \in \mathfrak{T}$. However, from \mathcal{B} , we get $\neg \neg \mathcal{B}$ by the rule DN, hence, $\neg \mathcal{A} \in \mathfrak{T}$.
- **4.** If \mathcal{A} is $\mathcal{B} \vee \mathcal{C}$, and $v(\mathcal{A})$ is T, then $v(\mathcal{B})$ is T or $v(\mathcal{C})$ is T. By inductive hypothesis, $\mathcal{B} \in \mathfrak{T}$ or $\mathcal{C} \in \mathfrak{T}$. If one of the two latter formulas is not an element of \mathfrak{T} , then the missing formula may be added by an application of the rule K. Then, by rule $\mathcal{B} \vee \mathcal{C}$ follows, hence, $\mathcal{B} \vee \mathcal{C} \in \mathfrak{T}$.
- If $v(\mathcal{A})$ is F, then $v(\mathcal{B})$ and $v(\mathcal{C})$ are F, by (3). The hypothesis of the induction gives that $\neg \mathcal{B} \in \mathfrak{T}$ and $\neg \mathcal{C} \in \mathfrak{T}$. From the latter, $\neg (\mathcal{B} \vee \mathcal{C})$ follows by DM; that is, $\neg \mathcal{A} \in \mathfrak{T}$, as we wanted to prove.