Solution to exercise 5.3 .13 .

(A7) is the principal type schema of the combinator S . The provability of this formula in $L T_{\rightarrow}^{\boldsymbol{t}}$ means that the consecution $\boldsymbol{t} \vdash(\mathcal{A} \rightarrow \mathcal{B} \rightarrow \mathcal{C}) \rightarrow(\mathcal{A} \rightarrow \mathcal{B}) \rightarrow \mathcal{A} \rightarrow \mathcal{C}$ has a proof. Here is a proof.

The proof yields a combinator, namely, $B\left(B^{\prime} B^{\prime}\right)\left(B(B W) B^{\prime}\right)$, which is easily seen to define S.
(A13) is a closely related formula that is the principal type schema of the combinator S^{\prime}. We need to show that the consecution $\boldsymbol{t} \vdash(\mathcal{A} \rightarrow \mathcal{B}) \rightarrow(\mathcal{A} \rightarrow \mathcal{B} \rightarrow \mathcal{C}) \rightarrow \mathcal{A} \rightarrow \mathcal{C}$ has a proof in $L T_{\rightarrow}^{\boldsymbol{t}}$. The proof above may be slightly modified to obtain the following proof.

The combinator that we obtain from this proof is $B(B W)\left(B B B^{\prime}\right)$, which-indeed-defines S^{\prime}.

