

University of Alberta Computer Process Control Group

 Multivariate Controller

Performance Assessment
Limited Trial Version

Written by: CPC Control Group, University of Alberta

Version 2.1

 ii

Table of Contents

Introduction 1

System Requirements 1

Quick Start 1

Detailed Instructions 5

Theory 5

Data Storage 6

Model Storage Format 7

Output Data Storage Formats 8

Comprehensive 8

Compact 9

Data Generation 9

Using the Toolbox 11

Installation 11

Starting the Toolbox 12

In-depth Discussion of the Toolbox 13

Section 1: Main Menu 13

Section 2: User Input 14

Section 3: Plot of Data 14

Section 4: Overall Performance Index 15

Section 5: Individual Performance Indices 15

Examples 15

Part I: Interactor Matrix for this Process 17

Iteration 1: 18

Iteration 2: 20

 iii

Iteration 3: 22

Iteration 4: 24

Obtaining the Interactor Matrix 24

Part II: State-Space Model for the Process Data 25

Part II: Determining the Infinite Response Model 28

Manually 28

In MATLAB 30

Part III: Determining the Variance of the Residuals and of the Model 32

Part IV: Determining the Overall Performance Efficiency 33

Part V: Determining the Individual Performance Efficiencies 33

Part V: Using the Programme to Obtain the Same Results 35

Part VI: Some Other Issues Using the Toolbox 37

References 38

 iv

List of Figures

Figure 1: The First GUI that appears 1

Figure 2: The main GUI for this toolbox, with the main regions highlighted 2

Figure 3: Screen shot after loading the data 3

Figure 4: Screen shot after clicking "Run" 4

Figure 5: The First GUI that appears 12

Figure 6: The main GUI for this toolbox, with the main regions highlighted 13

Figure 7: Close-up of the Main Menu 14

Figure 8: Deviation value of all of the controllers as a function of sampling interval 25

Figure 9: Screen shot 1 for the example 35

Figure 10: Screen shot 2 for the example 36

Figure 11: Results of using a range of time sections 37

List of Tables

Table 1: Summary of the Parameters Generated using the "gen_cmpct_Data" command 11

Table 2: Summary of the parameters required to calculate the interactor matrix 18

1

Introduction

 The multivariate controller performance assessment toolbox was developed by the

Computer Process Control Group at the University of Alberta to allow performance assessment

to be performed using MATLAB using the Filtering and Correlation (FCOR) Algorithm.

 A “Quick Start” approach to using this toolbox will be presented, along with a detailed

section containing full explanations and examples for using this toolbox.

System Requirements

 In order to run this toolbox properly, the following programmes are required:

1) MATLAB 2006a (MATLAB 7.1) or better. It should be noted that the newest version of

MATLAB (MATLAB 2008a) makes the toolbox run slower.

2) The SYSTEM IDENTIFICATION TOOLBOX from MATLAB is required.

Quick Start

 For quickly using the toolbox, the following steps should be followed:

1) Unzip the files to the desired location.

2) Start MATLAB, and point the current directory to the location of the unzipped files.

3) At the command prompt, type “>> main_mvpa” to start the toolbox. The GUI shown

in Figure 1 should appear.

4) Press the “MVPA” menu. A new GUI will appear that is shown in Figure 2.

Figure 1: The First GUI that appears

2

Figure 2: The main GUI for this toolbox, with the main regions highlighted

5) For the purpose of this quick start, we will be using the sample data provided in the zip

file. Go to the “Model” Menu located in the Main Menu area, which is denoted as 1 in

Figure 2. Select the “Case_Model.mat” file. Be patient as the file is loaded. This file

contains the open-loop model for the process. Then go to the “Data” Menu located in the

same area. Select the “Compact” option and, finally, select the “Case_Compact_Data.mat”

file. Wait patiently as the file is loaded.

6) After a few seconds, the data should be loaded and a graph of the data should appear in

region 5 of Figure 2. The resulting screenshot is shown in Figure 3.

2. User Input

1. Main Menu

3. Plot of Data

4. Overall

Performance

Index

5. Individual

Performance

Indices

3

Figure 3: Screen shot after loading the data

7) At this point, the data can be zoomed in, but not out and a portion of the graph selected.

This can be accomplished by changing the values in section 2 of Figure 2. For this case,

nothing will be done.

8) Once this has been entered, click the “Run” menu, which is found in the Main Menu

region of Figure 2.

9) After a few minutes, the screen should become similar to that shown in Figure 4.

4

Figure 4: Screen shot after clicking "Run"

10) Figure 4 shows that using the given controllers, the overall performance index is

approximately 1. This implies that the given controller, compared to a minimum variance

controller, is almost the same, which implies that the control is optimal. Furthermore, the

performance indices for each of the output are also close to 1. This would also suggest

that these variables are running optimally.

11) To save the current model, click the “Export” Menu located in the Main Menu area and

choose an appropriate name for the file.

12) To exit the toolbox, click the “Exit” Menu. This will only close the second GUI that

appeared. To close the first GUI that appeared (Figure 1), click its “Exit” Menu. An error

message may appear, but it can safely be ignored.

5

Detailed Instructions

Theory

 The basic theory for multivariate controller performance assessment is similar to the

univariate controller performance assessment, except that now more than one variable is being

controlled and could potentially be assessed. The overall performance index is defined as:

()
()

trace

trace
mv

y

η
Σ

=
Σ

 (2.1)

where yΣ is the actual covariance of the process determined based on the process data or through

time series modelling and mvΣ is the covariance matrix under minimum variance control, which

is defined as

1

0

d
T

mv i e i
i

F F
−

=

Σ = Σ∑ (2.2)

where eΣ is the covariance matrix of the error (or residuals or noise if the data is fitted), d is the

time delay, and Fi are the Markov parameter (infinite impulse response model) of the process,

that is,

0

d i
cl i

i

q DG F q
∞

− −

=

= ∑ (2.3)

with D being the interactor matrix. The interactor matrix is calculated using either the open-loop

process transfer function or determined from closed-loop experimental data.

 If it is desired to determine the performance of each individual component of the process,

then the following formulae can be used:

 ()() ()()()1

1: diag diag diag diag diagm mv yη
−

= Σ Σ (2.4)

where “diag” is a MATLAB function that takes the diagonal of a matrix or creates a diagonal

matrix from the given entries, and mvΣ is calculated as

1

0

d
T

mv i e i
i

E E
−

=

Σ = Σ∑ (2.5)

with

6

 []
0 1 10

1 21
0 1 2 1

11

0
, , ,...,

0 0
0 0

T
d

d

dd

F F FD
F FD

E E E E

FD

−

−

−−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

 (2.6)

and

1

0

d
d i

i
i

D D q
−

−

=

= ∑ (2.7)

The following algorithm can be followed in analysing the performance of a process (Huang &

Kadeli, Dynamic Modeling, Predictive Control and Performance Monitoring, 2008):

1) Obtain operating data from the desired, closed-loop system, when there is no set point

change. The mean should be subtracted from the data.

2) Perform a time series analysis of the data to obtain an appropriate model of the system.

The model should be stable, since the original closed-loop process is itself stable.

3) Obtain the interactor matrix, D, for the (open-loop) process.

4) Obtain the F’s using Equation (2.3).

5) Obtain the covariance matrix of the noise using the model residuals.

6) Calculate the minimum variance matrix using Equation (2.2).

7) The overall performance index is given by Equation (2.1).

8) Rewrite the interactor matrix using Equation (2.7).

9) Obtain the required E’s using Equation (2.6).

10) Obtain the minimum variance matrix of the original output yt using Equation (2.5).

11) Obtain the individual performance indices using Equation (2.4).

Data Storage

 A total of 2 files are required to store the data for the analysis. The first file stores the

information required to describe the model, while the second file stores the data required to

describe the data that is to be analysed using the model. For a quick generation of the compact

data storage objects, the file “gen_cmpct_Data.p” can be used.

7

Model Storage Format

 The model storage file contains information about the multivariate model that is being

used to describe the system. It must be entered as a transfer function object (tf). This matrix can

be created using the following steps:

1) Assume that a process with n inputs and m outputs is being analysed. The transfer

function between the jth input and the ith output is a rational function of either s or z, given

as Aij / Bij, where A is the numerator and B is the denominator. Let A’ be a row vector

containing in descending order of powers of s or z the corresponding co-efficients of the

numerator A. Similarly, let B’ be the corresponding row vector of co-efficients of s or z

for the denominator.

2) It is now necessary to create 2 cell arrays that contain all the information about the

process. The first cell array, A , is created as follows:

' ' '
11 12 1

' ' '
21 22 2

' ' '
1 2

{ , , , ;

, , , ;
;

, , , }

n

n

m m mn

A A A

A A A

A A A

=A

The first row contains the transfer function between the first output and each of the

inputs, while the second row contains the transfer function between the second output

and each of the inputs. It should be noted that the curly brackets, {}, are used to create a

cell array. In order to access, the (i, j) entry of the array, the command would be { , }i jA .

A similar cell array containing the values of the denominator, denoted as B , is also

created.

3) The time delay for the model can be created by forming the matrixD , such that the (i, j)

entry contains the time delay associated with the transfer function for the ith output and jth

input. The array simply contains the numeric values.

4) The continuous transfer object can then be created using the following MATLAB

command: “>>Atf=tf(A,B,’ioDelay’,D)”, where A is the cell array A , B is the

cell array B , and D is the time-delay matrix, D . To create a discrete time transfer

function, the MATLAB command would be “>>Atf=tf(A,B,Ts,’ioDelay’,D)”,

where Ts is the sampling time. If it is desired to create a discrete model that contains

8

powers of “z-1”, then the command would be

“>>Atf=tf(A,B,Ts,’ioDelay’,D,’Variable’,’z^-1’)”

Output Data Storage Formats

 There are 2 different methods to store the output data that is required for the toolbox:

comprehensive and compact.

Comprehensive

 Assume that there are p samples of output data with a total of t controlled variables and s

manipulated variables with a total of q tags. In the comprehensive data storage method, the data

is stored as an object containing the following entries:

1) controller_Status: This is a p-by-1 double matrix that contains the status of each of the

controllers, where 1 represents a controller that is “on” and 0 represents a controller that

is “off.”

2) cell_char_TagList: This is a q-by-1 cell matrix that contains the name of each of the tags

that are presented in the process.

3) cell_char_TimeStamp: This is a p-by-1 cell matrix that contains the time stamp for each

of the samples.

4) dbl_Comprehensive_Data: This is a p-by-q double matrix that contains the values for

each of the tags and sample periods.

5) dbl_SamplingTime: This is a scalar double that contains the sampling time for the

process.

6) int_CVNumber: This is a scalar integer that contains the number of controlled variables

in the process, that is, t.

7) int_MVNumber: This is a scalar integer that contains the number of manipulated

variables in the process, that is, s.

8) status: This is a p-by-(s + t) double matrix that stores the data in the following manner:

The first t columns contain the status of the controller variables, while the remaining s

columns contain the status of the manipulated variables. A value of 1 signifies that the

data is good.

9

Compact

 The compact data storage method is very similar to the comprehensive method except

that instead of storing all the tags for a given process, only the tags for the controlled variables

are stored. This implies that q is equal to t. The same fields as for the comprehensive method are

used, except that “dbl_Comprehensive_Data” is now appropriately called “dbl_Compact_Data”.

Data Generation

 The data storage files for multivariate analysis can be generated using the p-file

“gen_cmpct_data.p”. The following steps should be followed to create a compact data set.

1) Start MATLAB and point the directory to the location of the above binary file.

2) At the command prompt create the following data matrix, which contains the 3 sample

values of the process for the 2 controlled variables: ““>> W=[1 2;3 4;5 6]”.

3) It will be assumed for the sake of this example that the process to be entered can be

described as

5 1
2 2

1 3
2

2.3 2 1
1 3 1

5 4
1 3 1

s s

s s

se e
s s sy

se e
s s s

− −

− −

+⎡ ⎤
⎢ ⎥+ + += ⎢ ⎥
⎢ ⎥
⎢ ⎥+ + +⎣ ⎦

Thus, the required arrays and matrices for the transfer function will be created as

follows:

a) Form the 4 A-matrices as “>>A11=[2.3]; A12=[2 1]; A21=[5];

A22=[4 0];”.

b) Form the 4 B-matrices as “>>B11=[2 0 1]; B12=[1 3 1]; B21=[1 1];

B22=[1 3 1];”.

c) Create the A-cell array as “>>A={A11,A12;A21,A22};”.

d) Create the B-cell array as “>>B={B11,B12;B21,B22};”.

e) The time delay matrix can be created as “>>D=[5 1;1 3];”. It should be noted

that the negative signs in the time delay have been ignored.

f) The transfer function object is then created using the following command:

“Atf=tf(A,B, 'ioDelay',D)”. The resulting transfer function should match

the one given above.

4) Type at the command prompt: ““>> gen_cmpct_Data”. The following should appear

10

Consider a process with m inputs and p outputs

1. p x m plant continuous transfer

matrix/discrete transfer function

2. Output data (y): N x p matrix

3. Sampling time

Continuous/discrete transfer function matrix:

5) Type “Atf” or the name of the transfer function object that was created above, and press

enter. This is the transfer function object that contains the open-loop plant model.

6) Next, type “W” and press enter. This is the sampled data matrix for the given process.

7) Finally, type “0.1” and press enter. It will be assumed that the sampling time is 0.1

seconds.

8) Enter a name for the output data storage file, say, for example, “test_data.mat” and press

enter. It should be noted that files that have the same name as those currently

present in the directory will be overwritten without any warning.

9) Enter a name for the model storage file, say, for example, “test_model.mat” and press

enter. It should be noted that files that have the same name as those currently

present in the directory will be overwritten without any warning.

10) In order to view the results, type “>>load test_model.mat” followed by

““>>sys_MPC_Model”. The results should be identical to that displayed below:

Transfer function from input 1 to output...

 2.3

 #1: exp(-5*s) * ------------

 2 s^2 + 1

 5

 #2: exp(-1*s) * -----------

 s + 1

Transfer function from input 2 to output...

 2 s + 1

 #1: exp(-1*s) * ------------------

 s^2 + 3 s + 1

11

 4 s

 #2: exp(-3*s) * ----------------

 s^2 + 3 s + 1

11) In order to view the other file type “>>load test_data.mat”. This will load each

of the entries into the workspace of MATLAB. Entering the name of each of the entries

given below should give the same results as are presented in Table 1.
Table 1: Summary of the Parameters Generated using the "gen_cmpct_Data" command

Entry Value

Controller_status

 [1

 1

 1]

cell_char_TagList
['CV1'

 'CV2']

cell_char_TimeStamp
It should give the current time incremented by

0.1, 0.2, and 0.3

dbl_Compact_Data

[1 2

 3 4

 5 6]

dbl_SamplingTime 0.1000

int_CVNumber 2

int_MVNumber 2

status

 [1 1 2 2

 1 1 2 2

 1 1 2 2]

Using the Toolbox

Installation

 The toolbox can be installed by simply unzipping the files to any desired location. In

order for the toolbox to function properly, the System Identification Toolbox should be installed.

12

Starting the Toolbox

 The toolbox can be accessed from MATLAB using the following sequence of commands.

First MATLAB itself should be started and the directory pointed to the folder containing the files

for this toolbox. Next, at the command prompt, type “>> main_mvpa”. The GUI shown in

Figure 5 should appear. This GUI is the main access to the toolbox. To start a session of the

toolbox, click on the “MVPA” menu. This will bring up a new GUI, which is shown in Figure 6.

In Figure 6, each of the main parts of the GUI is highlighted and will be discussed separately.

Figure 5: The First GUI that appears

13

Figure 6: The main GUI for this toolbox, with the main regions highlighted

In-depth Discussion of the Toolbox

Section 1: Main Menu

 A close-up of the Main Menu section is given in Figure 7. The Main Menu consists of the

following 7 areas:

1) New: Clicking this menu will clear all the data from the current GUI and allow the user to

restart the analysis from a clean layout.

2) Model: Clicking this menu will allow the user to select the open-loop model file that will

be used in the analysis.

3) Data: Clicking this menu brings up a drop-down list that has 2 choices:

2. User Input

1. Main Menu

3. Plot of Data

4. Overall

Performance

Index

5. Individual

Performance

Indices

14

a. Compact: This assumes that the data to be used is stored using compact data

storage.

b. Comprehensive: This assumes that the data to be used is stored using

comprehensive data storage.

4) Approach: This allows the user to select what approach is going to be used to analysis

the system. Currently, there is only a single choice: FCOR.

5) Run: Clicking this menu will cause the toolbox to analysis the data that has been selected.

6) Export: Clicking this menu will allow the current analysis to be saved as a “.mat” file.

7) Exit: Clicking this menu will cause the toolbox to close.

Figure 7: Close-up of the Main Menu

Section 2: User Input

 In this section, the user can enter information about the process. There are 3 potential

areas that can be changed:

1) Time Sections: In this filed, the user can specify what part of the total data is to be used

in the analysis. The format for this entry is “[start sample value, end sample value]”. A

comma must separate the 2 values and the end value must be greater than the start value.

As well, there must a sufficient number of data samples in order for the computer to

estimate a model. It is possible to try more than 1 section simultaneously. Each sample

section is separated by a semicolon (;). For example “[1,100; 40, 500]” will consider 2

sections; the first ranging from sample 1 to sample 100 and the second from sample 40 to

sample 500. Clicking “Display” will display the selected samples in the data plot area

(Section 5).

2) Zoom In: This allows the user to zoom in onto a certain section of the graph. However,

there is no zoom-out button, so there is no way to undo the command.

3) Select CV: This allows the user to select which controlled variable will be used for the

analysis. A drop-down menu will list all the possible controlled variables.

Section 3: Plot of Data

 This graph displays a time series plot of the values for all (or only those that are selected)

controlled variable.

15

Section 4: Overall Performance Index

 This graph displays the overall performance index for the process.

Section 5: Individual Performance Indices

 This section displays a bar graph that displays the performance index for each controller.

Examples
 The following examples will examine how the toolbox using MATLAB functions to

solve the given examples. As well, a detailed explanation of how to perform the same using the

toolbox is presented. In order to perform the analysis using MATLAB, the following functions

from the System Identification Toolbox are required:

a. model = n4sid(z, order): Takes the “iddata” object, z¸ and the desired

order for the model to return a state-space estimated model saved as an “iddata”

object, model, for the data. If for order is it entered ‘best’, then the best

model with orders between 1 and 10 will be determined.

b. model = pem(z,Mi): Takes the “iddata” object, z, and the specifications for

the model, Mi, to return an estimation for the model saved as an “iddata” object,

model. If Mi = [na nb nc nd nf nk], where nk is the time delay, and

the remaining entries are the orders of the polynomials in the following

expression:

 () ()()
() ()t t t

B nb C ncA na y u e
F nf D nd

= + (4)

c. [num,dem]=ss2tf(A,B,C,D,i): Takes the state-space model,

 1t t t

t t t

x Ax Bu
y Cx Du
+ = +

= +
 (5)

and for the ith input, calculates the numerator and denominator of the transfer

function.

d. tfmodel=tf(num,dem,’iodelay’,delay): Creates a continuous time

transfer function given the numerator, num, denominator, dem, and time delay,

delay, and returns the results as a transfer function object, tfmodel.

16

e. [y]=impulse(model): This calculates the impulse response co-efficients

given either a transfer function object (model) or a state space object (model),

and returns the appropriate co-efficients.

2) Other Required Functions:

a. Y=cov(A): Determines the covariance of a matrix A and returns the result as the

covariance matrix Y.

b. W=diag(A): Takes the diagonal elements of a matrix, A, and returns the row

vector, W, containing the diagonal entries. This function also will take a row

vector, A, and return a diagonal matrix, W, whose entries are the sequential entries

of A.

 The examples in this section will be based on the data found in the example folder. Given

the nature of the process, with 6,001 data points, and large calculations, most of the steps will be

carried out with the help of the computer. A parallel analysis using the toolbox will also be

presented.

 The data used in this example comes from the example presented in (Huang & Kadeli,

Dynamic Modeling, Predictive Control and Performance Monitoring, 2008). It will be assumed

that the time delay in the process is 2 samples.

 In order to simplify the process, it will be assumed that a discrete model is available. The

programme will accept either a continuous or discrete models. In this example, it will be

assumed that the discrete, open-loop, transfer function is given as:

 ()

1 2

1 1
1

1 2

1 1

4
1 0.4 1 0.1

0.3
1 0.1 1 0.8

p

z z
z zG z

z z
z z

− −

− −
−

− −

− −

⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥
⎢ ⎥− −⎣ ⎦

 (2.8)

 The first step before any of the further examples can be done is to load the transfer

function object into MATLAB. All the required data is found in the Examples folder. The

following command will load the required model “>>load data.mat”. The data will be

stored in the vector “data”. Once the data has been loaded the following tasks can be performed.

17

Part I: Interactor Matrix for this Process

 For the purpose of this explanation, it will be assumed that nilpotent interactor matrix

will be desired. The algorithm presented by (Rogoziński, Papliński, & Gibbard, 1987) will be

used to derive the nilpotent interactor matrix.

 From (2.8), the process transfer function is given as

 ()

1 2

1 1
1

1 2

1 1

4
1 0.4 1 0.1

0.3
1 0.1 1 0.8

p

z z
z zG z

z z
z z

− −

− −
−

− −

− −

⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥
⎢ ⎥− −⎣ ⎦

 (2.8)

 In order to apply the algorithm it must be converted into a function of z and made a

proper transfer function. Thus, multiplying each entry of (2.8) by z / z gives

 ()

1

1

1 4
0.4 0.1

0.3
0.1 0.8

p

z
z zG z

z
z z

−

−

⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥
⎢ ⎥− −⎣ ⎦

 (2.8.1)

 The remaining negative value of z in the numerator can be removed by extracting a factor

of z-1 from (2.8.1).

 This gives

 () 1 1

4
0.4 0.1 ()

0.3 1
0.1 0.8

p

z
z zG z z z T z

z
z z

− −

⎡ ⎤
⎢ ⎥− −= =⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎣ ⎦

 (2.8.2)

 In order to apply the algorithm, the process transfer function without the time delay must

be factored into parts, which are denoted in (Rogoziński, Papliński, & Gibbard, 1987) as N(z)

and D(z), such that

 () 1() () ()T z N z D z −= (2.8.3)

and D(z) is a diagonal matrix. One possible diagonalisation can be determined as

() ()
() ()

()()
() ()

2

2

0.1 4 0.8 0.1 4 3.2
()

0.3 0.4 0.1 0.3 0.12 0.1

0.1 0.4 0
()

0 0.1 0.8

z z z z z z
N z

z z z z z z

z z
D z

z z

− −⎡ ⎤ ⎡ ⎤− −
= =⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦⎣ ⎦

− −⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

 (2.8.4)

18

From D(z), it can be concluded that the highest ordered polynomial is 2. Thus, n = 2. Next, the N

matrix must be constructed, which is a stacked matrix containing in decreasing powers of z the

co-efficients of the polynomials in N. In this case, N has the following form:

0

1 0
0.3 0

0.1 4
0.12 1

0 3.2
0 .1

n

N
N

N

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤ ⎢ ⎥−⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥⎣ ⎦

⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦

 (2.8.5)

From (2.8.5), it can be concluded that

 0

1 0
0.3 0

N ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 (2.8.6)

A summary of some further values is presented in Table 2.
Table 2: Summary of the parameters required to calculate the interactor matrix

Parameter Value

n 2

m (number of columns in T(z)) 2

p (number of rows in T(z)) 2

min(m,p) 2

 According to the algorithm presented in (Rogoziński, Papliński, & Gibbard, 1987), the

following algorithm was defined:

Iteration 1:

1) Check whether () ()0rank min ,ir N m p= = . If this is the case, the algorithm

terminates. In this the rank of N0 is 1, which is not equal to min(m,p). Thus, it is

necessary to proceed to the next step.

2) Factorise N0 using any appropriate methods (QR-factorisation will be used in this

example), so as to obtain a p-x-p non-singular matrix Q(i). Using MATLAB’s qr

function gives:

19

>>[Q1,R1]=qr([1 0;0.3 0])

 Q1 =

 -0.9578 -0.2873

 -0.2873 0.9578

 R1 =

 -1.0440 0

 0 0

3) Premultiply N(z) by Q(i) to obtain ()N z . Thus,

()

2

2

2

()

0.9578 0.2873 0.1 4 3.2
0.2873 0.9578 0.3 0.12 0.1

1.044 0.1303 4.119 3.094
0.0862 0.1914 0.8236

iN Q N z

z z z
z z z

z z z
z z

=

− − ⎡ ⎤− −⎡ ⎤
= ⎢ ⎥⎢ ⎥− − −⎣ ⎦ ⎣ ⎦
⎡ ⎤− + − −

= ⎢ ⎥− − −⎣ ⎦

 (2.8.1.1)

4) Obtain the row shift polynomial matrix (r.s.p.m) for the process. In this iteration, the

value of ki = p - ri = 2 – 1 = 1. Thus, U equals

 0

1

0 00
1 0
0 1

0
0 0

i

i

r

p

k

U
U I

U

⎡ ⎤⎡ ⎤ ⎢ ⎥⎡ ⎤ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (2.8.1.2)

 This implies that U(z) can be obtained as

 0 1

0 0 0 1 0 1
()

1 0 0 0 0
U z U z U z

z
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= + = + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (2.8.1.3)

5) Premultiply ()N z by U to obtain the N(z) matrix for the next iteration. Thus,

() ()

2

3 2 2

() () ()
0 1 1.044 0.1303 4.119 3.094

0 0.0862 0.1914 0.8236

0.0862 0.1914 0.8236
1.044 0.1303 4.119 3.094

i iN z U z N z

z z z
z z z

z z
z z z z

=

⎡ ⎤− + − −⎡ ⎤
= ⎢ ⎥⎢ ⎥ − − −⎣ ⎦ ⎣ ⎦

− − −⎡ ⎤
= ⎢ ⎥− + − −⎣ ⎦

 (2.8.1.4)

 Thus, N(2) is given as

20

 (1)

0 0
0.1303 4.119

0.0862 0.1914
0 3.094

0 0.8236
0 0

N

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥= ⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.8.1.5)

 Therefore,

 (1)
0

0 0
0.1303 4.119

N
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 (2.8.1.6)

6) The value of S(z) for the current iteration is found by multiplying U(z) and Q. This

gives,

() () ()() ()
0 1 0.9578 0.2873

0 0.2873 0.9578

0.2873 0.9578
0.9578 0.2873

i i iS z U z Q

z

z z

=

− −⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

−⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

 (2.8.1.7)

Iteration 2:

1) Check whether () ()0rank min ,ir N m p= = . If this is the case, the algorithm

terminates. Like before in iteration 1, the rank of N0 is 1, which is not equal to min(m,p).

Thus, it is necessary to proceed to the next step.

2) Factorise N0 using any appropriate methods (QR-factorisation will be used in this

example), so as to obtain a p-x-p non-singular matrix Q(i). Using MATLAB’s qr

function gives:
>>[Q2,R2]=qr([0 0;0.1303 -4.119])

Q2 =

 0 -1

 -1 0

R2 =

 -0.1303 4.1190

21

 0 0

3) Premultiply N(z) by Q(i) to obtain ()N z . Thus,

()

2 2

2 2

()
0 1 0.0862 0.1914 0.8236
1 0 0.1303 4.119 3.094

0.1303 4.119 3.094
0.0862 0.1914 0.8236

iN Q N z
z z

z z z

z z z
z z

=

− − − −⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦
⎡ ⎤+

= ⎢ ⎥+⎣ ⎦

 (2.8.2.1)

4) Obtain the row shift polynomial matrix (r.s.p.m) for the process. In this iteration, the

value of ki = p - ri = 2 – 1 = 1. Thus, U equals

 0

1

0 00
1 0
0 1

0
0 0

i

i

r

p

k

U
U I

U

⎡ ⎤⎡ ⎤ ⎢ ⎥⎡ ⎤ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (2.8.2.2)

 This implies that U(z) can be obtained as

 0 1

0 0 0 1 0 1
()

1 0 0 0 0
U z U z U z

z
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= + = + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (2.8.2.3)

5) Premultiply ()N z by U to obtain the N(z) matrix for the next iteration. Thus,

() ()

2 2

3 3 2

() () ()

0 1 0.1303 4.119 3.094
0 0.0862 0.1914 0.8236

0.0862 0.1914 0.8236
0.1303 4.119 3.094

i iN z U z N z

z z z
z z z

z z
z z z

=

⎡ ⎤+⎡ ⎤
= ⎢ ⎥⎢ ⎥ +⎣ ⎦ ⎣ ⎦

+⎡ ⎤
= ⎢ ⎥+⎣ ⎦

 (2.8.2.4)

 Thus, N(2) is given as

 (2)

0 0
0 3.094

0.0862 0.1914
0 0

0 0.8236
0 0

N

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.8.2.5)

 Therefore,

22

 (2)
0

0 0
0 3.094

N ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 (2.8.2.6)

6) The value of S(z) for the current iteration is found by multiplying U(z) and Q. This

gives,

() () ()() ()
0 1 0 1

0 1 0

1 0
0

i i iS z U z Q

z

z

=

−⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 (2.8.2.7)

Iteration 3:

1) Check whether () ()0rank min ,ir N m p= = . If this is the case, the algorithm

terminates. Like before in iteration 2, the rank of N0 is 1, which is not equal to min(m,p).

Thus, it is necessary to proceed to the next step.

2) Factorise N0 using any appropriate methods (QR-factorisation will be used in this

example), so as to obtain a p-x-p non-singular matrix Q(i). Using MATLAB’s qr

function gives:
>> [Q2,R2]=qr([0 0;0 3.094])

Q2 =

 1 0

 0 1

R2 =

 0 0

 0 3.0940

3) Premultiply N(z) by Q(i) to obtain ()N z . Thus,

23

()

2

2

()
1 0 0.0862 0.1914 0.8236
0 1 0 3.094

0.0862 0.1914 0.8236
0 3.094

iN Q N z
z z

z

z z
z

=

+⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

+⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 (2.8.3.1)

4) Obtain the row shift polynomial matrix (r.s.p.m) for the process. In this iteration, the

value of ki = p - ri = 2 – 1 = 1. Thus, U equals

 0

1

0 00
1 0
0 1

0
0 0

i

i

r

p

k

U
U I

U

⎡ ⎤⎡ ⎤ ⎢ ⎥⎡ ⎤ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (2.8.3.2)

 This implies that U(z) can be obtained as

 0 1

0 0 0 1 0 1
()

1 0 0 0 0
U z U z U z

z
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= + = + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (2.8.3.3)

5) Premultiply ()N z by U to obtain the N(z) matrix for the next iteration. Thus,

() ()

2

2

2 2

() () ()
0 1 0.0862 0.1914 0.8236

0 0 3.094

0 3.094
0.0862 0.1914 0.8236

i iN z U z N z
z z

z z

z
z z z

=

+⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
⎡ ⎤

= ⎢ ⎥+⎣ ⎦

 (2.8.3.4)

 Thus, N(3) is given as

 (2)

0 3.094
0.0862 0.1914

0 0
0 0.8236

0 0
0 0

N

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.8.3.5)

 Therefore,

 (3)
0

0 3.094
0.0862 0.1914

N ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 (2.8.3.6)

24

6) The value of S(z) for the current iteration is found by multiplying U(z) and Q. This

gives,

() () ()() ()
0 1 1 0

0 0 1

0 1
0

i i iS z U z Q

z

z

=

⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (2.8.3.7)

Iteration 4:

1) Check whether () ()0rank min ,ir N m p= = . If this is the case, the algorithm

terminates. In this case, it can be seen that the rank of N0 is 2, which is equal to min(m,p).

Thus, all the iterations have been completed.

Obtaining the Interactor Matrix

 Based on the criteria stated in (Rogoziński, Papliński, & Gibbard, 1987), the interactor

matrix can be calculated as a product of all the S(i) that have been calculated above, that is,

1

()

1

()
j

i

i

K S z
−

=

=∏ (2.9)

where j is the total number of iterations completed. In the example above, 4 iterations where

completed. Thus, the interactor matrix can be calculated as

1
()

1

2 2

()

0 1 1 0 0.2873 0.9578
0 0 0.9578 0.2873

0 0.2873 0.9578
0 0.9578 0.2873

0.9578 0.2873
0.2873 0.9578

j
i

i

K S z

z z z z

z
z z z

z z
z z

−

=

=

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

− −⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦

∏

 (2.10)

 Since the unitary interactor matrices are not unique, the final interactor matrix that will be

used is given by Equation (2.11). Internally, the programme calculates the interactor matrix as

 2 2

0.9578 0.2873
0.2873 0.9578

z z
D

z z
− −⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 (2.11)

25

 It should be noted that the calculated interactor matrices are not unique. For a given

transfer function matrix, 2 interactor matrices, D1 and D2, are “equivalent” if and only if (Huang

& Shah, Performance Assessment of Control Loops: Theory and Applications, 1999),

 1 2D D= Γ (2.12)

where Γ is an n-by-n, unitary, real matrix. The interactor matrices obtained using (2.10) and

(2.111) have

1 0
0 1
⎡ ⎤

Γ = ⎢ ⎥−⎣ ⎦
 (2.13)

and, thus, can be considered to be “equivalent.” For the purposes of this example, the interactor

matrix obtained using (2.11) will be used. This will simplify comparisons between the

programme and the manual results.

Part II: State-Space Model for the Process Data

 Figure 8 shows a plot of the original data from which it is desired to obtain a model using

time series analysis. Since there is no input, it is desired to model the process using an

autoregressive, moving average (ARMA) model.

Figure 8: Deviation value of all of the controllers as a function of sampling interval

0 1000 2000 3000 4000 5000 6000 7000
-10

-5

0

5

10

Time Sample

N
or

m
al

is
ed

 V
al

ue

First Control Variable

0 1000 2000 3000 4000 5000 6000 7000
-5

0

5

Time Sample

N
or

m
al

is
ed

 V
al

ue

Second Control Variable

26

 In MATLAB, this can be accomplished in the following steps:

1) First, the mean must be removed from the data. This can be accomplished using

“>>outputde = detrend(data,‘constant’)”.

2) Create an iddata object that stores the information about the process,

“>>z=iddata(outputde,[],1)”, since the output from the process is t, there are

no inputs, and the sampling time is 1. This creates an object that can be used for time

series analysis.

3) Since it is desired to learn how the MATLAB toolbox actually calculates the values,

“n4sid” will be used for modelling the data. In general, the accuracy of the model is

considered by examining the residuals. For easy of calculations, it will be assumed that

the results from MATLAB can be trusted. This command will accomplish the desired

results “>>modeln4sid=n4sid(z,’best’)”. The result can be improved by using

the “pem” function. Thus, ““>>modelPEM=pem(z,modeln4sid)”. MATLAB

returns the following final results:
State-space model: x(t+Ts) = A x(t) + K e(t)

 y(t) = C x(t) + e(t)

A =

 x1 x2 x3 x4 x5

x1 0.151 -0.483 -0.222 0.735 0.160

x2 0.524 -0.606 0.275 -0.435 -0.002

x3 -0.409 -0.339 0.300 0.096 -0.441

x4 -0.090 -0.010 0.310 0.352 0.230

x5 -0.074 -0.081 -0.164 -0.110 0.173

C =

 x1 x2 x3 x4 x5

y1 103.51 75.83 28.22 13.03 -27.72

y2 -37.51 21.80 57.93 -58.91 -0.954

27

K =

 y1 y2

 x1 -5.81x10-5 -0.0096

 x2 -0.00097 0.0054

 x3 0.0035 -0.00017

 x4 -0.0028 -0.0006

 x5 -8.41x10-5 9.19x10-5

x(0) =

 x1 0

 x2 0

 x3 0

 x4 0

 x5 0

Estimated using PEM using SearchMethod = Auto from data set

z

Loss function 0.996583 and FPE 1.00323

Sampling interval: 1

 The above MATLAB results can be rewritten as

5

1

0.151 0.483 0.222 0.735 0.160 5.81x10 0.0096
0.524 0.606 0.275 0.435 0.002 0.00097 0.0054
0.409 0.339 0.300 0.096 0.441 0.0035
0.090 0.010 0.310 0.352 0.230
0.074 0.081 0.164 0.110 0.173

t tx x

−

+

− − − −⎡ ⎤
⎢ ⎥− − − −⎢ ⎥
⎢ ⎥= +− − −
⎢ ⎥− −⎢ ⎥
⎢ ⎥− − − −⎣ ⎦

5 5

0.00017
0.0028 0.0006

8.41x10 9.19x10

103.51 75.83 28.22 13.03 27.72
37.51 21.80 57.93 58.91 0.954

t

t t t

e

y x e

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
− −⎢ ⎥

⎢ ⎥−⎣ ⎦
−⎡ ⎤

= +⎢ ⎥− − −⎣ ⎦

 It should be noted that the output also provides the initial states (values) of the system

when the sampling time is equal to zero.

28

Part II: Determining the Infinite Response Model

Manually

 Before the infinite response model can be determined, it must be converted into a transfer

function form in order to perform the calculations manually. This can be accomplished in the

following 2 steps:

1) First, the model needs to be converted into transfer function form. This conversion can

be performed manually by solving for yt as a function of the et. The resulting conversion

equation is then given as

 () 1 1t

t

y C zI A K
e

−= − + (5)

 However, given the large size of the matrices involved and the need to work in symbolic

variables, MATLAB’s build in function, “ss2tf”, will be used. Unfortunately, this

function will not convert a matrix of transfer function. Instead, it will only convert the

transfer functions associated with a given input. The results are:

>> [num1,dem1]=ss2tf(modelPEM.A,modelPEM.K,modelPEM.C,[1 0;0

1],1)

num1 =

 1.0000 -0.3842 0.0060 -0.5367 0.5694 -0.1056

 0 0.3545 0.0840 -0.0664 -0.0084 -0.0110

dem1 =

 1.0000 -0.3697 0.0029 -0.1633 0.2029 -0.0774

>> [num2,dem2]=ss2tf(modelPEM.A,modelPEM.K,modelPEM.C,[1 0;0

1],2)

num2 =

 0 -0.5959 -0.8052 1.0799 -0.1655 0.0110

 1.0000 0.1332 -0.1155 -0.0376 -0.0498 0.0068

dem2 =

 1.0000 -0.3697 0.0029 -0.1633 0.2029 -0.0774

29

The closed loop transfer function can be obtained as:
>>Gcl=tf({num1(1,:) num2(1,:);num1(2,:) num2(2,:)},{dem1

dem2; dem1 dem2},1)

Transfer function from input 1 to output...

 z^5 - 0.3842 z^4 + 0.005959 z^3 - 0.5367 z^2 + 0.5694 z - 0.1056

 #1: --

 z^5 - 0.3697 z^4 + 0.002873 z^3 - 0.1633 z^2 + 0.2029 z - 0.0774

 0.3545 z^4 + 0.08401 z^3 - 0.06643 z^2 - 0.008448 z - 0.011

 #2: --

 z^5 - 0.3697 z^4 + 0.002873 z^3 - 0.1633 z^2 + 0.2029 z - 0.0774

Transfer function from input 2 to output...

 -0.5959 z^4 - 0.8052 z^3 + 1.08 z^2 - 0.1655 z + 0.01104

 #1: --

 z^5 - 0.3697 z^4 + 0.002873 z^3 - 0.1633 z^2 + 0.2029 z - 0.0774

 z^5 + 0.1332 z^4 - 0.1155 z^3 - 0.03757 z^2 - 0.04979 z + 0.006807

 #2: --

 z^5 - 0.3697 z^4 + 0.002873 z^3 - 0.1633 z^2 + 0.2029 z - 0.0774

Sampling time: 1

2) Now the multiplication ˆd
clz DG− must be performed. This gives

5 4 3 2 4 3 2

5 4 3 2 5 4 3 2
2

2 2 4 3 2

0.38 0.01 0.53 0.57 0.11 0.60 0.81 1.08 0.17 0.01
0.9578 0.2873 0.37 0.003 0.16 0.20 0.08 0.37 0.003 0.16 0.20 0.08

0.2873 0.9578 0.36 0.08 0.07

z z z z z z z z z
z z z z z z z z z z z zz

z z z z z
−

− + − + − − − + − +
− − − + − + − − + − + −

=
− + − −

⎡ ⎤
⎢ ⎥⎣ ⎦ 5 4 3 2

5 4 3 2 5 4 3 2

6 5 4 3 2

5 4 3 2
2

0.01 0.01 0.13 0.12 0.04 0.05 0.01

0.37 0.003 0.16 0.20 0.08 0.37 0.003 0.16 0.20 0.08

0.96 0.26 0.03 0.53 0.54 0.11

0.37 0.003 0.16 0.20

z z z z z z

z z z z z z z z z z

z z z z z z

z z z zz −

− + − − − +

− + − + − − + − + −

− + − + − +

− + − +
=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

6 5 4 3 2

5 4 3 2

7 6 5 4 3 2 7 6 5 4 4 3

5 4 3 2

0.29 0.54 0.81 1.02 0.18 0.01

0.08 0.37 0.003 0.16 0.20 0.08

0.29 0.45 0.07 0.09 0.17 0.02 0.96 0.30 0.12 0.35 9.5x10 0.

0.37 0.003 0.16 0.20 0.08

z z z z z z

z z z z z z

z z z z z z z z z z z

z z z z z

−

− + + − + −

− − + − + −

− − − + − − − − + − −

− + − + −

2

5 4 3 2

4 3 2 1 4 3 2 1

5 4 3 2 5 4 3 2

01

0.37 0.003 0.16 0.20 0.08

0.96 0.26 0.03 0.53 0.54 0.11 0.29 0.54 0.81 1.02 0.18 0.01

0.37 0.003 0.16 0.20 0.08 0.37 0.003 0.16 0.20 0.

z

z z z z z

z z z z z z z z z z

z z z z z z z z z z

− −

− + − + −

− + − + − + − + + − + −

− + − + − − + − + −
=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

5 4 3 2 5 4 3 2 4

5 4 3 2 5 4 3 2

08

0.29 0.45 0.07 0.09 0.17 0.02 0.96 0.30 0.12 0.35 9.5x10 0.01

0.37 0.003 0.16 0.20 0.08 0.37 0.003 0.16 0.20 0.08

z z z z z z z z z z

z z z z z z z z z z

−− − − + − − − − + − −

− + − + − − + − + −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

30

1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 1 2 3 4 5

1

0.96 0.26 0.03 0.53 0.54 0.11 0.29 0.54 0.81 1.02 0.18 0.01

1 0.37 0.003 0.16 0.20 0.08 1 0.37 0.003 0.16 0.20 0.08

0.29 0.45 0.07

z z z z z z z z z z z z

z z z z z z z z z z

z z

− − − − − − − − − − − −

− − − − − − − − − −

− −

− + − + − + − + + − + −

− + − + − − + − + −
=

− − 2 3 4 4 1 2 3 4 4 5

1 2 3 4 5 1 2 3 4 5

0.09 0.17 0.02 0.96 0.30 0.12 0.35 9.5x10 0.01

1 0.37 0.003 0.16 0.20 0.08 1 0.37 0.003 0.16 0.20 0.08

z z z z z z z z

z z z z z z z z z z

− − − − − − − − −

− − − − − − − − − −

− + − − − − + − −

− + − + − − + − + −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

3) At this point long division would need to be performed for each of the transfer function to

determine the infinite response model for each of the entries, which then can be combined

to yield the overall model. Since only the first 2 terms are required for this example, it

will be faster to use the remainder theorem and a bit of examination. The first thing to

consider is that the first row of the transfer function matrix has the largest power in the

numerator that is smaller than the denominator. Thus, the value of the constant term (z0)

will be 0. Next, note that the denominator in all cases starts with a 1. Thus, for the second

row, the value of the constant term will be equal to the first term of the numerator. Thus,

0

0 0
0.29 0.96

F
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
. The first row of F1 will be the first value in the numerator in the first

row above. For the second row, the second co-efficient of the numerator less the second

co-efficient of the denominator multiplied by either 0.29 for the first column or -0.96 for

the second column will give the terms for the second row of F1. Thus,

1

0.96 0.29
0.34 0.66

F
− −⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
. It should be noted that this method works for this example solely

due to the nature of the problem presented.

In MATLAB

 In MATLAB, the impulse response co-efficients can be found using the “impulse”

function and the final transfer function matrix obtained above. In order to save some time and

effort, the final model obtained by hand after multiplying in the delay and the interactor matrix

has been saved as “ImpulseModel”. Thus, this needs to be loaded
>> load ImpulseModel

 In this case, the results are
>> [y]=impulse(ImpulseModel)

y(:,:,1) =

31

 0 0.2873

 -0.9578 -0.3437

 -0.0880 -0.2067

 -0.0596 -0.1191

 0.3550 0.0138

 -0.2316 0.0439

 -0.0484 0.0121

 0.0460 0.0148

 -0.0973 0.0006

 0.0305 -0.0057

 0.0109 0.0013

 -0.0250 -0.0015

 0.0190 -0.0005

 -0.0048 0.0012

 -0.0058 -0.0005

 0.0069 0.0001

 -0.0040 0.0002

 0.0000 -0.0003

 0.0019 0.0001

 -0.0018 0.0000

 0.0007 -0.0001

 0.0003 0.0001

 -0.0006 -0.0000

y(:,:,2) =

 0 -0.9578

 -0.2873 -0.6529

 0.4262 -0.3594

 0.9628 0.0588

 -0.7157 0.1106

32

 0.0333 0.0370

 0.0504 0.0453

 -0.2607 -0.0050

 0.1286 -0.0138

 -0.0056 0.0034

 -0.0527 -0.0059

 0.0583 0.0001

 -0.0255 0.0030

 -0.0071 -0.0016

 0.0172 0.0009

 -0.0137 0.0003

 0.0034 -0.0007

 0.0036 0.0004

 -0.0050 -0.0001

 0.0028 -0.0002

 -0.0001 0.0002

 -0.0013 -0.0001

 0.0013 -0.0000

 It is important to understand how to read the values obtained from MATLAB properly.

The first row of each of the 2 results (y(:,:,1) and y(:,:,2)) represent the 2 columns of the first F

matrix, that is, F0. The next row of each of the results represents the next 2 columns of the

second F matrix, that is, F1. Given the assumptions made above, both the hand and manual

results are the same.

Part III: Determining the Variance of the Residuals and of the Model

 The variance of the residuals can be found from the model output, using the command

“>>sigmaE=modelPEM.noisevariance”. In this case, the following matrix is returned

0.992 0.002
0.002 1.01e

−⎡ ⎤
Σ = ⎢ ⎥−⎣ ⎦

This implies, by Equation (2.2) that the minimum variance is given as:

33

1

0

0 0 1 1

0 0 0.992 0.002 0 0
0.29 0.96 0.002 1.01 0.29 0.96

0.96 0.29 0.992 0.002 0.96 0.29
0.34 0.66 0.002 1.01 0.34 0.66

0.998 0.516
0.516 1.569

d
T

mv i e i
i

T T
e e

T

T

F F

F F F F

−

=

Σ = Σ

= Σ + Σ

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

− − − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

=

∑

⎡ ⎤
⎢ ⎥
⎣ ⎦

 The covariance matrix for the process data can be obtained using the command

“>>cov(outputted)”. The resulting matrix is given as:

3.214 0.250
0.250 1.487Y

−⎡ ⎤
Σ = ⎢ ⎥−⎣ ⎦

Part IV: Determining the Overall Performance Efficiency

 The overall performance efficiency index efficiency can be calculated as

()
()

0.998 0.516
trace

trace 0.516 1.569 0.998 1.569 0.546
3.214 1.4873.214 0.250trace

trace
0.250 1.487

mv

y

η

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥Σ +⎣ ⎦⎝ ⎠= = = =

+⎛ − ⎞Σ ⎡ ⎤
⎜ ⎟⎢ ⎥−⎣ ⎦⎝ ⎠

.

Thus, the computed performance index is 0.546.

Part V: Determining the Individual Performance Indices

 The first step in calculating the individual performance indices is to calculate the E matrix.

The E matrix can be calculated as follows:

34

[]
0 1 10

1 21
0 1 2 1

11

0
, , ,...,

0 0
0 0

0 0 0 0 0.96 0.29
0.2873 0.9578 0.29 0.96 0.34 0.66
0.9578 0.2873 0.96 0.29 0 0

0 0 0.34 0.66 0 0

1.003 0.0

T
d

d

dd

T

F F FD
F FD

E E E E

FD

−

−

−−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥− − − −
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

=
02 0.098 0.190

0.002 1.003 0.326 0.632
⎡ − − ⎤
⎢ ⎥−⎣ ⎦

 The minimum variance matrix of the original output can be calculated as

1

0

1.003 0.002 0.992 0.002 1.003 0.002
0.002 1.003 0.002 1.01 0.002 1.003

0.098 0.190 0.992 0.002 0.098 0.190
0.326 0.632 0.002 1.01 0.326 0.632

1.044 0.155
0

d
T

mv i e i
i

T

T

E E
−

=

Σ = Σ

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

− − − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

−
=

−

∑

.155 1.524
⎡ ⎤
⎢ ⎥
⎣ ⎦

The performance indices can be then be calculated as

()() ()()()1

1:

1

diag diag diag diag diag

1.044 0.155 3.214 0.250
diag diag diag diag diag

0.155 1.524 0.250 1.487

0.325
1.025

m mv yη
−

−

= Σ Σ

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ − ⎞ ⎛ − ⎞⎡ ⎤ ⎡ ⎤⎜ ⎟= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟− −⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

.

Thus, the computed performance index for the first controller, that is, the controller for the

controller variable 1 (CV1) is 0.325, while it is 1.025 for the second controller. It should be

noted that an individual controller can have a performance index greater than 1.

35

Part V: Using the Programme to Obtain the Same Results

 Now, that it has been explained how to perform the calculations manually with minimal

computer help, the programme that was designed to do this will be explained. The first step is to

load the programme, “>>main_mvpa”, and click on “MVPA” in the window that appears.

 Next, load the model into the programme. This can be accomplished by clicking on the

Model Menu and selecting the “Dtf.mat” file.

 After a few seconds, load the data by clicking the Data Menu and selecting the “Compact”

option. Select the file entitled “Book_Data.mat”. The screen should now look similar to that

shown in Figure 9.

Figure 9: Screen shot 1 for the example

 Once it has been verified the Figure 9 matches the screen that was obtained, click on

“Run” Menu and patiently wait until the results are displayed. The screen should then resemble

Figure 10.

36

Figure 10: Screen shot 2 for the example

 From Figure 10, it can be seen that the overall performance index is calculated as 0.543,

which compares favourably with the values obtained by hand at 0.546. The same conclusion can

be drawn as before that the control of this process can be improved. For the first control variable,

the performance index is about 0.30, which compares favourably with the previously obtained

value of 0.325. On the other hand, for the second control variable, Figure 10 suggests that it is

approximately equal to 1.02, while the previously obtained value was 1.02. For the first variable,

the control is not very good, while for the second variable the control is quite good. In neither

case are the individual controllers very good.

37

Part VI: Some Other Issues Using the Toolbox

 Assume that we are using the same dataset as before. Now, let us enter a time section as

“[300, 400; 800, 2000; 1500, 3000]”, which allow the user to examine the behaviour of the

control for 3 different sections: from the 300th to the 400th, from the 800th to the 2,000th, and from

the 1,500th to 3,000th samples. Once the time section have been entered in Section 2 of the

interface, press “Run” and wait for the results to be displayed. If you are unlucky, and there is no

change in the results, then press “Run” again (There seems to be a quirk in the programme that

causes it to improperly display the results). The correct screen should look like Figure 11.

Figure 11: Results of using a range of time sections

 Figure 11 shows the results. In theory, all of the 3 bars should be at the same height as

they were for all the data together. However, a smaller sample, as in the first time section, may

lead to “inaccurate” results. In fact, the larger the sample size, the close will the values approach

the results obtained above and the theoretical results. Also, it should be noted that the value

displayed above the overall performance index bars is the average performance index for all 3

cases. It can be seen that for the last 2 bars, the overall performance index was close to the true

value of 0.54. Similar results can be seen for the individual performance indices.

38

References

Huang, B., & Kadeli, R. (2008). Dynamic Modeling, Predictive Control and Performance

Monitoring. London, United Kingdom: Springer Verlag.

Huang, B., & Shah, S. (1999). Performance Assessment of Control Loops: Theory and

Applications. Springer.

Rogoziński, M. W., Papliński, A. P., & Gibbard, M. J. (1987, March). An Algorithm for the

Calculation of a Nilpotent Interactor Matrix for Linear Multivariable Systems. IEE Transactions

on Automatic Control , AC-32 (3), pp. 234-237.

